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Abstract

Regulation of human papillomavirus (HPV) gene expression is tightly linked to

differentiation of the keratinocytes the virus infects. HPV late gene expression is

confined to the cells in the upper layers of the epithelium where the virus capsid

proteins are synthesized. As these proteins are highly immunogenic, and the upper

epithelium is an immune‐privileged site, this spatial restriction aids immune evasion.

Many decades of work have contributed to the current understanding of how this

restriction occurs at a molecular level. This review will examine what is known about

late gene expression in HPV‐infected lesions and will dissect the intricacies of late

gene regulation. Future directions for novel antiviral approaches will be highlighted.
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1 | INTRODUCTION

Human papillomaviruses (HPVs) are nonenveloped DNA viruses

which infect cutaneous and mucosal epithelia causing mainly benign

lesions.1,2 Currently, there are 227 fully classified HPV genotypes

divided into α‐, β‐, γ‐, μ‐ and ν‐papillomaviruses.3,4 The α‐

papillomaviruses infect mucosal or cutaneous epithelial while other

papillomaviruses infect cutaneous epithelia. Fourteen α‐HPV geno-

types (HPVs 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68),

the “high risk” HPVs (HR‐HPVs), are oncogenic and upon persistent

infection cause cancer progression5,6 mainly in anogenital and

oropharyngeal sites.7 HR‐HPV subtypes, HPV16 and HPV18, provide

the biggest burden of disease, attributable to up to 70% of cervical

and oropharyngeal cancers (mainly HPV16) cases.7

HPV infects epithelial cells and uses the cellular DNA replication/

repair and protein synthesis machinery for successful replication.8

HPV avoids immune detection by establishing a persistent, low‐level

infection in basal epithelial cells,9 and limiting productive infection to

the upper layers of the epithelium where immune surveillance is

restricted.10,11 Cancer formation is an unwanted side effect of viral

strategies that allow persistence and replication in the face of the

host immune response against infection.

1.1 | The epithelium and the epithelial barrier

Squamous epithelia are divided into cutaneous on skin surfaces and

mucosal epithelia on inner body surfaces. The epithelium consists of

the basal, spinous, granular, and for cutaneous epithelia, cornified

layers (Figure 1).17 The basal layer contains epithelial stem cells, the

only epithelial cells normally capable of cell division. Basal cell

division yields two daughter cells which may remain in the basal layer

or may generate “transit amplifying cells” which undergo a finite

number of cell divisions before switching to a differentiated

phenotype to supply the cells of the spinous layer.18 Spinous layer

cells flatten their shape as they become more differentiated. The

granular layer contains cells in the process of losing their nuclei and

cytoplasmic organelles.19 These cells synthesize keratins and filaggrin
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to form a tight fibrous network. Transglutaminase cross‐links

involucrin, first synthesized at an earlier differentiation stage, and

small proline‐rich proteins to cell membrane proteins. These

complexes, in addition to loricrin, form a robust cell envelope as a

strong physical barrier against the environment.17,19 The epithelium

is an immune‐privileged site. Although T‐cells, mast cells, and

dendritic cells are present in the dermis, only Langerhans cells

penetrate the epidermis.20 Epithelial keratinocytes are considered

sentinel cells of the immune system because they present a toll‐like

receptor (TLR)‐activated innate immune barrier to infectious agents,

including viruses.21

1.2 | The HPV life cycle and the infected
epithelium

The HPV double‐stranded DNA genome is ~8 kb in length.1

Transcription is from one strand resulting in the expression of

proteins E1, E2, E4, E6, and E7 (Figure 1), which have regulatory

functions in viral replication, transcription, innate immunity to HPV

infection, and inhibiting host cell differentiation. Most human

papillomaviruses studied so far also express E8^E2, while the

α‐papillomaviruses express E5. The late region encodes the two

capsid proteins L1 and L2 (Figure 1).

HPVs infect epithelia by binding first to the basement membrane,

then, for α‐papillomaviruses, binding and infecting basal layer

cells.22,23 β‐papillomaviruses may enter stem cells in hair follicles to

establish latent infection.24 Upon entry, HPV virions undergo

retrograde transport to the trans‐Golgi network and then, in an

innate immune avoidance strategy, enter membrane vesicles. Viral

DNA then associates with chromosomes upon nuclear envelope

breakdown during cell division. When the nuclear envelope reforms,

viral genomes are located in PML nuclear bodies, where replication

begins.1,22

Initial gene expression in an infected basal epithelial cell involves

the expression of viral early proteins E1 and E2,25 which activate viral

replication leading to amplification of the incoming genome to

between 50 and 100 viral genomes.26 E8^E2 restricts viral genome

amplification to this low‐level by repressing E1/E2‐mediated viral

genome replication and transcription.27 Basal layer daughter cells

each contain an equal number of HPV genomes, which are thought to

be relatively silent transcriptionally.25 When these cells begin to

differentiate into the spinous layer, they initiate full viral gene

expression. First, the viral early gene products E5,28 E6,29 and E730

are synthesized to repress cellular differentiation, activate cell cycle

progression, and inhibit apoptosis, which would be the normal

consequence of inappropriate cellular replication activity in differen-

tiating cells.8 They also repress the antiviral innate immune

F IGURE 1 The stratified epithelium and HPV infection. (A) The normal stratified mucosal epithelium consists of basal, spinous (lilac‐colored
cells), and granular layers (purple‐colored cells). The dermis is shown in pale pink. Arrows to the right‐hand side indicate approximate positions of
expression of the named differentiation markers. (B) An HPV‐infected mucosal epithelium supporting a productive viral life cycle. E1, E2, E6, E7,
and E8^E2 are all expressed in basal keratinocytes.12–14 E1^E4, L1, and L2 expression is restricted to the upper epithelial layers.15,16 The
cytopathic effect of HPV infection, enlarged nuclei, and a perinuclear halo (koilocytes) are shown in the upper layers where virions (small red
circles) are produced. Triangles to the righthand side indicate expression profiles of viral early and late proteins. Created with BioRender.com.
HPV, human papillomavirus.
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response.11 E1 and E2 expression is reinitiated for viral genome

replication31,32 (Figure 1). The host cell recognizes viral replication in

differentiating cells as abnormal and induces the ATR and ATM DNA

damage response and repair (DDR) pathways leading to damage

repair‐induced viral genome amplification to many thousands of

copies.33,34

Expression of E4 has been reported to induce G2 arrest in

HPV16‐positive cells35 to provide a “pseudo‐S‐phase” that supports

viral genome replication36 but other studies have suggested that E7

may play such a role.37–42 E5 is also expressed at late stages of the

α‐papillomavirus life cycle43 where it reprograms differentiating cells

to retain proliferation capacity to allow DNA synthesis and at least

for HPV31, may subtly support viral genome amplification and late

gene expression.44,45 E6 and E7 expression increases late in the life

cycle of HPV16, 18, and 3146–48 to maintain cellular proliferation to

facilitate viral genome amplification and late gene expression.41

In the final, late phase of the HPV life cycle, the L1 major and L2

minor capsid proteins are expressed to form the virion49,50 (Figure 1).

These proteins are highly immunogenic and so delayed expression to

the upper epithelial layers allows virion formation without triggering

an immune response.

In this review, we provide an overview of the current under-

standing of late events in the virus life cycle. We will explore the

molecular and cellular mechanisms controlling the expression of the

capsid proteins and the formation and egress of newly formed

virions. We include some information on innate immunity to HPV

infection as it pertains to viral genome amplification and late gene

expression but readers are referred to the following reviews for a full

analysis of immunity to HPV.10,51

1.3 | HPV late gene expression

Tight linkage of viral late gene expression to epithelial differentiation

ensures immune evasion, and spatial coupling of virion formation, to

the site of viral egress. Moreover, viral vegetative genome amplifica-

tion precedes viral late gene expression and if impaired, viral late

messenger RNAs (mRNAs are not expressed. Host cell signaling,

particularly innate immune signaling, is significantly altered by HPV

infection, and this impacts on late events in the HPV life cycle.

Although some key innate immune factors are upregulated upon

HPV‐associated keratinocyte differentiation,52 the virus has evolved

countermeasures to ensure that viral replication can occur success-

fully. For example, E6 and E7 can each suppress STAT‐1 expression,

even when levels increase upon differentiation of both normal and

HPV‐positive keratinocytes53 and reduced STAT‐1 levels are

required for viral genome amplification. Repression of TGF‐β by E6

results in differentiation‐specific downregulation of the keratinocyte‐

specific interferon, IFN‐κ to facilitate late events in the life cycle.54,55

HPV31 E5, which is expressed late in the virus life cycle, has also

been shown to downregulate IFN‐κ and the ISGs it controls via

repression of the JAK‐STAT pathway, leading to viral genome

amplification and late gene expression. Caspases 3, 7, 8, and 9 have

all been shown to be slightly upregulated upon differentiation of

HPV‐infected cells.56 Apoptosis is not induced by these low caspase

levels but the interferon response, which would otherwise clear the

infection, is repressed. Therefore, the activity of these caspases and

downregulation of interferon signaling is required for late events in

the HPV life cycle.55

The status of the differentiated host cell itself contributes to the

spatial regulation of HPV late gene expression; expression of the late

transcripts is repressed in less differentiated epithelial cells and

induced in terminally differentiating keratinocytes. These processes

are regulated at transcriptional and posttranscriptional levels and

involve interplay between viral and cellular proteins.57 The following

sections explain in detail what is currently known about mechanisms

controlling late gene expression.

1.4 | Repression of late gene expression in
undifferentiated epithelial cells

1.4.1 | Transcription

In undifferentiated cells, inappropriate capsid protein expression may

be inhibited by a range of transcriptional and posttranscriptional

mechanisms. It is likely prevented at the transcriptional level by viral

late promoter repression, although late promoter regulation requires

further study. The episomal genome may be epigenetically repressed

in basal keratinocytes.46,47 What is known so far is that the HPV31

late promoter displays active histone marks in both undifferentiated

and differentiated keratinocytes46 and for HPV16, RNA polymerase II

(RNA Pol II) is already loaded onto the late promoter in

undifferentiated cells.58 Transcription elongation is inhibited because

low levels of cyclin‐dependent kinase 9 (CDK9) lead to hypopho-

sphorylation of the RNA Pol II carboxyl‐terminal domain (CTD), which

precludes its activation.58 Differentiation stage‐specific relative

levels of essential transcription‐activating or repressive factors are

likely to play a role in repressing the late promoter in the early stages

of the life cycle.59 BRD4 is a key E2 partner protein controlling

replication, transcription, and episomal genome segregation.60

BRD4S, a short form of BRD4, can bind and inhibit E2 activity and

repress late promoter activation in undifferentiated epithelial cells,

possibly by altering chromatin conformation.61 Finally, the viral

protein, E8^E2 has been shown to repress not only the viral early

promoter but also the late promoter.62–64

Transcription elongation from the HPV early promoter is likely to

interfere with RNA polymerase binding at the late promoter.65

Therefore, active transcription of the early gene region likely

represses late gene expression by steric hindrance/transcriptional

interference. Some late gene transcription in less differentiated

epithelial cells has been reported in HPV‐positive cell lines and in vivo

in low‐grade cervical lesions.15,48,66–68 It is possible some viral

episomes may stochastically activate the late promoter, and late gene

transcription, instead of the early promoter and early gene

transcription.
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1.4.2 | Polyadenylation

Repression of late gene expression also occurs through differential

use of the viral early and late polyadenylation sites (pAs).57 In

undifferentiated epithelial cells, early gene expression terminates at

the early polyadenylation site, preventing read‐through to the late

region.69 HPVs possess weak consensus early pAs (pAE), and at least

for HPV31, there is some heterogeneity in polyadenylation site

selection. The HPV16 pAE possesses an upstream regulatory element

which binds polyadenylation‐enhancing factors such as human Fip1,

cleavage stimulation factor 64 kDa subunit (CstF‐64), heterogenous

nuclear ribonucleoprotein (hnRNP) C1/C2 and polypyrimidine tract

binding protein (PTB)70,71 (Figure 2). Moreover, sequences in the

HPV16 and HPV31 L2 open reading frames (ORFs) bind splicing

regulatory factor hnRNP H and the 64 kDa subunit of polyadenyla-

tion factor CstF to enhance recognition of the pAE by the cleavage

and polyadenylation machinery72–75 (Figure 2). Presumably, high‐

level expression of polyadenylation‐enhancing factors in cells

synthesizing early gene transcripts will ensure spatially appropriate

expression but weak recognition of the pAE by polyadenylation

factors may allow RNA polymerase read‐through to the late

region explaining the observations of late RNAs in undifferentiated

epithelial cells.15,48,66–68

If transcription progresses into the late region in less differenti-

ated cells, a U‐rich RNA element exists at the end of the L1 ORF

spanning into the late 3′ untranslated region (3′UTR) which may

repress late gene expression in undifferentiated epithelial cells.76 For

HPV16 and HPV31, the element, termed the negative‐ or late‐

regulatory element (NRE, LRE), binds a U1 snRNP‐like complex77–79

that has been shown to inhibit polyadenylation80 (Figure 2). Such

improperly processed late RNAs would not be licensed to be

exported to the cytoplasm and would be degraded in the nucleus.

1.4.3 | Splicing

Splicing is regulated by binding of U1 snRNP to the 5′ splice site

followed by location of the 3′ splice site through splicing factor U2AF

and splicing factor 1 (SF1) recruiting U2 snRNP to the intron branch

point. These events are followed by the formation of the entire

spliceosome and subsequent steps in splicing (see Graham and

Faizo81 for a full description of splicing). The binding of U1 and U2

snRNPs to splice sites is regulated positively by serine‐arginine‐rich

(SR) proteins and negatively by hnRNP proteins. Splicing regulation

contributes to the repression of late gene expression in

undifferentiated keratinocytes. hnRNP L and hnRNP C1/C2 can bind

upstream and downstream of the early polyadenylation site.82 hnRNP

L may antagonize hnRNP C1 activation of the 5′ splice site at the end

of the E4 ORF, resulting in mRNAs which do not splice out the E5

gene region and the early region 3′UTR.83 This would enhance the

F IGURE 2 RNA binding proteins which interact with HPV16 late RNAs. (A) Diagram of the HPV16 genome. Colored cylinders, open reading
frames. Blue horizontal arrows, viral promoters. Polyadenylation sites are shown with downward black arrows. Gray lozenge, HPV16 3′UTR LRE.
Proteins that bind HPV late RNAs are shown above and below the genome map. Those in the red type are activators, those in blue type are
inhibitors. Those in black type are not sufficiently investigated as yet. HPV, human papillomavirus; LRE, late‐regulatory element; 3′UTR, 3′
untranslated region.
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formation and/or activity of the cleavage/polyadenylation complex

on the early 3′UTR. Splicing repressors hnRNP L, hnRNP A1, hnRNP

A2/B1, and SAM68 were shown to bind to elements in the L1 coding

region to inhibit late gene expression possibly by inhibiting binding of

U2AF and formation of an early splicing complex at the 3′ splice site

at the 5′ end of the L1 coding region84–88 (Figure 2). Thus, repression

of splicing has direct links to early polyadenylation regulation to

inhibit mature late mRNA production in undifferentiated HPV‐

infected cells.

1.4.4 | RNA stability and translation

The processes of mRNA stability and translation are molecularly

linked.89 Defective mRNAs are detected on the ribosomes and

targeted for degradation while the stability of viable mRNAs is

positively controlled during translation.89 The late 3′UTR LRE

controls HPV16 late mRNA stability.90,91 HPV16 LRE‐containing

RNAs were very unstable in a HeLa cell in vitro decay assay90 while in

cells transfected with an expression vector containing the HPV1 L1

gene and a portion of the 3′UTR, cytoplasmic L1 mRNAs were

detected but no L1 protein was synthesized.91 These data suggest

that L1 mRNAs were unstable and/or unable to be translated in

undifferentiated cells.

HuR, a protein that promotes nuclear export and mRNA stability,

binds an AU‐rich element in the HPV1 late 3′UTR and low

cytoplasmic HuR levels correlated with inhibition of expression of a

reporter gene containing the 3′UTR.92,93 The HPV16 LRE also binds

HuR.94 In undifferentiated keratinocytes, HuR overexpression

resulted in unscheduled expression of the L1 capsid protein94

suggesting that low HuR expression in these cells leads to unstable

capsid‐encoding mRNA.66,68

HPV1 and HPV16 capsid protein expression is inhibited in

undifferentiated cells via two RNA regulatory elements, one

located at the 5′ end and another at the 3′ end of the HPV16 L2

ORF. The 5′ element inhibited cytoplasmic mRNA stability, while

the 3′ element bound hnRNP K and poly(rC) binding proteins 1 and

2 to inhibit translation of L2 mRNA in vitro74,84,95 suggesting that

these proteins are required for efficient translation in differenti-

ated HPV‐infected keratinocytes. A stability/translation regulatory

element consisting of three UUUUU‐motifs present in the HPV1

late 3′UTR bound hnRNPC to inhibit CAT reporter mRNA

translation.96,97 hnRNP C can regulate RNA stability either directly

in the cytoplasm98 or via inhibition of nuclear pre‐mRNA

degradation or prevention of pre‐mRNA export to the cyto-

plasm.99,100 The role of hnRNP C and how it controls HPV1 late

gene expression remains to be investigated.

Finally, depletion of CUG binding protein 1 (CUGBP1) in HeLa

cells could repress mRNA translation from a Renilla reporter gene

construct containing the GU‐rich 3′ portion of the HPV16 LRE,

suggesting that this factor may contribute to translational repression

of mRNA expression in undifferentiated keratinocytes.80

1.5 | Activation of late gene expression
in differentiated epithelial cells

1.5.1 | Transcription

Late promoter activation results in the expression of mRNAs

encoding E1^E4, E5, L2, and L1.1 This promoter is positively

controlled by CDK8, CDK9, BRD4,58 and by E7.101 As noted above,

transcription elongation by RNA Pol II may commence in less

differentiated cells but is only fully activated in differentiated cells.

CDK8 is recruited to the Mediator complex via BRD4. This is

followed by CDK9 recruitment to phosphorylate the CTD of RNA Pol

II, which activates transcription elongation.58 HPV18 late promoter

mapping identified an element that binds cellular factors ARE/poly

(U)‐binding/degradation factor 1 (AUF1) and hnRNP A1/B2 in a

differentiation‐dependent manner to repress the late promoter,102

while the LAP and LIP forms of transcription factor C/EPB‐β have

been shown to activate and repress gene expression from the HPV31

late promoter, respectively.103 However, the exact role of positive

and negative transcription factors to controlling the late promoter is

unknown due to the location of the late promoter within the E7 ORF

and cross‐talk with the enhancer in the URR and the viral origin

of replication.102

Late events in the HPV life cycle including the DDR and viral genome

amplification and late gene expression are linked. p63 transcriptionally

regulates expression of cell cycle proteins such as cyclins, CDKs, and DDR

proteins such as RAD51 to activate viral genome amplification and late

gene expression. Other transcription factors controlling late gene

expression via viral genome amplification include Kruppel‐like factors

(KLF) 4 and 13. KLF4 is an essential factor for normal keratinocyte

differentiation but in infected cells, the levels of KLF4 regulator miR145

are reduced. Together with changes in posttranslational modifications,

this results in upregulation of KLF4 and altered expression of its target

genes and upregulation of viral genome replication and late gene

expression.104,105 KLF13 was shown to similarly affect the late stages of

the HPV life cycle but was also found to be required for STAT5

phosphorylation and subsequent activation of the ATM DDR106 to

facilitate viral genome amplification.107,108

HPV minichromosomes are composed of up to 32 nucleo-

somes.59,109 Nucleosomal histones can be acetylated, methylated,

and phosphorylated by chromatin remodeling factors, and at least for

HPV16, HPV18, and HPV31, the late promoter is regulated by such

changes.46,59,110,111 The HPV31 late promoter has an open (active)

chromatin conformation in both undifferentiated and differentiated

keratinocytes but activated chromatin marks increase significantly in

differentiated cells allowing binding of transcriptional activator

CCAAT/enhancer‐binding protein (CEBP)‐α to the late promoter.46

This agrees with the observation that increased H3 acetylation

could induce HPV16 late gene expression.112 Kim et al., demon-

strated that the HPV16 genome was hypomethylated (open

chromatin conformation).113 Histone H3 and H4 in the HPV1 and

HPV18 minichromosomes have posttranslational modifications

KIRK and GRAHAM | 5 of 15

 10969071, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

v.29461 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [05/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



indicative of active chromatin114 which E7 can regulate during

keratinocyte differentiation.47,48 Open chromatin conformation of

HPV genomes in differentiated cervical keratinocytes should support

vegetative viral genome amplification and late gene expression. The

transcription factor CCCTC‐binding factor (CTCF) binds a sequence

in the HPV E2 ORF and in undifferentiated keratinocytes creates a

repressive chromatin loop between the E2 gene and the URR. Upon

differentiation and related changes in expression of certain transcrip-

tion factors,59 this chromatin loop is disrupted and uncovers activity

of the enhancer in the URR,115 which is required to activate the

HPV18 late promoter.47,48 Subsequently, the late promoter acquires

histone H4 acetylation associated with increased recruitment of

transcriptional activators. Finally, histone variants, especially those of

histones H3 and H4, can affect transcription by altering nucleosome

and chromatin structure. Histone H3.3 variant was found to be

enriched in HPV virions, which may suggest that this variant was

recruited to viral chromatin before encapsidation to support active

late gene transcription.114 SIRT1 is a histone deacetylase that can

bind and activate chromatin and is required for the formation of DNA

repair complexes to double strand breaks and as such it activates

HPV31 replication and late gene expression.116 SETD2 is a histone

H3 methyltransferase (H3K36me3) that activates transcription

elongation and is required for HPV replication. It also controls

alternative splicing of the late RNAs117 possibly through the known

link between the ATM DDR and alternative splicing regulation.118

In summary, accurate differentiation stage‐specific late promoter

activation is regulated by multiple processes including DNA replica-

tion,102 chromatin remodeling/transcription, controlled by differenti-

ation stage‐specific transcription complexes, and inhibition of

repressive transcription factors.

1.5.2 | Polyadenylation

Upon keratinocyte differentiation, there is a switch in the use of

polyadenylation sites in the HPV genome. Early mRNAs continue to

terminate at the pAE, but use of the late polyadenylation site (pAL),

located downstream of the L1 gene in the late 3′UTR, is upregulated.57,69

Most late mRNAs initiate at the late promoter in the E7 ORF3,4 so RNA

Pol II must ignore the pAE to terminate at the pAL. Possible mechanisms

of repression of pAE in differentiated keratinocytes include down-

regulation of auxiliary polyadenylation factors required to enhance the

pAE, as discussed above, and changes in alternative splicing to produce

viral late mRNAs such as E1^E4^L1, E6E7^L1 and E1^L1 which splice

out the pAE. Some late mRNAs do not splice out the pAE but E2 can

inhibit recognition of the pAE in these transcripts resulting in read‐

through of transcription into the late region.119

1.5.3 | Splicing

Most HPV RNAs undergo alternative splicing.120,121 Together with

differential promoter usage, this strategy ensures that each viral ORF

is present as a first ORF in an mRNA (subsequent ORFs are

inefficiently translated122) and may allow the virus genome to encode

all its proteins efficiently.68

Many splicing regulators have been shown to bind to HPV

RNAs (Table 1).123 A key event in late gene expression is the

splicing out of the intron between E1 and E4 and the E4 and L1

ORFs (Figure 2). E1^E4^L1 is the major late transcript encoding L1.

Additonal L1‐encoding mRNAs include rare transcripts E6E7^L1,

E6^E4^L1, E1^L1, and L1 initiating from the weak E4 pro-

moter.48,68,124 L2 proteins may be encoded by the E1^E4E5L2L1

readthrough RNA or, for HPV6,125 HPV16,68 and HPV18,48 by an

L2L1 RNA initiated at a weak promoter in the E5 gene region

(Figure 2). Which of these mRNAs encode L1 or L2 proteins is

unknown. It is possible that all can be translated to yield these

proteins through leaky scanning,126 but that translation efficiency

may be low for some (Figure 3).

E2 is a transcriptional activator of cellular SR proteins, SR

splicing factor (SRSF) 1, SRSF2 and SRSF3 and their activator

kinase, SR protein kinase 1 (SRPK1).127–130 Since SRSF3 is required

for HPV16 late gene expression, this means that E2 indirectly

controls the expression of the capsid proteins.129 The E2

binding partner, BRD4 can control alternative splicing through

direct interaction with the spliceosome during RNA Pol II

transcription.131 Therefore, BRD4, or its short form BRD4S, could

control late RNA splicing via E2.61 E2 itself can bind splicing

factors therefore E2 could regulate cellular or viral constitutive

and alternative splicing.132,133 Finally, E2 regulates transcription of

a wide range of cellular genes.134 If the protein products of such

genes are involved in transcription or posttranscriptional events,

or signaling that impacts these processes, E2 could be a master

regulator of late gene expression.

HPV late mRNAs include unusually long terminal exons

(L1 = 1.5 kb; L2 = 2.9 kb) whose splicing would be inefficient.135 The

same LRE that can inhibit late mRNA polyadenylation in

undifferentiated epithelial cells may activate terminal exon splicing

in differentiated epithelial cells by allowing formation of a splicing

complex mimic at the 3′ end of the L1 ORF acting to define the

terminal exon and link it to upstream splicing events.77,136

The cellular DNA damage response (DDR) is key to HPV genome

amplification in differentiating keratinocytes,34 but the DDR can also

control splicing.137 DNA damage induced by the drug melphalan

induced association of phosphorylated BRAC1 and BARD 1 with

HPV16 DNA. The data suggest that DDR inhibited the pAE while the

increased association of key splicing factors U2AF65 and SF3b with

the HPV genome via phosphorylated BRAC1 and/or BCLAF1 or

TRAP150 could activate late pre‐mRNA splicing.71

As well as acting as a transcriptional regulator, CTCF can

control alternative splicing of cellular genes138–141 and has been

shown to regulate splice site choice for HPV18 transcripts.47 CTCF

may activate late gene expression by enhancing spliceosome

recognition of the alternative splice sites required for late mRNA

production, perhaps through chromatin changes due to CTCF‐

mediated chromatin looping from the CTCF binding site in the E2
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TABLE 1 List of RNA binding proteins involved in HPV late gene expression, their known functions and the experimental systems in which
they were analyzed.

RNA binding
protein Functions Experimental system

SRSF1 Inclusion of E4 exon, binds E4 ESE SRSF1 and HPV16 subgenomic plasmid expression in HeLa cells

SRSF3 Required for E4^L1 splicing siRNA depletion in differentiated HPV16‐infected cells

SRSF3 Inhibits E4 SA3358 splicing SRSF3 and HPV16 subgenomic plasmid expression in HeLa cells

SRSF9 Inhibits splicing to SA3358 but activates splicing to SA5639 SRSF3 and HPV16 subgenomic plasmid expression in HeLa cells

hnRNP A1 Binds an ESS in the L1 ORF and inhibits L1 splicing Mutation of the L1 binding sequence in CAT reporter gene

assays in HeLa cells and UV crosslinking data

hnRNPD Binds an ESS in the E4 ORF to suppress late gene expression siRNA depletion of hnRNPD and HPV16 subgenomic plasmid
expression in C33a cells

hnRNPC1 Inhibits p(AE) and activates E4 SD3632 hnRNPC1 and HPV16 subgenomic plasmid expression in C33a,
HeLa and HFK cells

RALYL Inhibits p(AE) and activates E4 SD3632 RALYL and HPV16 subgenomic plasmid expression in C33a,
HeLa and HFK cells

hnRNPAB Binds an ESS in the E4 ORF to suppress late gene expression siRNA depletion of hnRNPAB and HPV16 subgenomic plasmid
expression in C33a cells

hnRNPDL Binds an ESS in the E4 ORF to suppress late gene expression siRNA depletion of hnRNP DL and HPV16 subgenomic plasmid
expression in C33a cells

hnRNPA2/B1 Binds an ESS upstream of SD3632 to repress late gene

expression.

siRNA depletion and HPV16 subgenomic plasmid expression in

C33a cells

hnRNPG Prevents inclusion of the E4 exon to inhibit HPV16 L1
expression.

hnRNPG and HPV16 subgenomic plasmid expression in HeLa
cells

PTB Inhibits p(AE) and activates E4 SD3632 splicing PTB and HPV16 subgenomic plasmid expression in HeLa and
HPV‐infected W12 cells

CstF64 Binds to a sequence in the HPV31 and 16 L2 ORF and
enhances upstream p(AE) to repress late gene expression.

Mutation of the L2 binding sequence in the HPV genome and
testing in keratinocyte differentiation.

hnRNPH Binds to a sequence in the HPV31 and 16 L2 ORF and
enhances upstream p(AE) to repress late gene expression.

Mutation of the L2 binding sequence in CAT reporter gene
assays in HeLa cells and UV crosslinking data

hnRNPL Antagonizes hnRNP C1 activation of the E4 SD 3632 and
binds to an ESS in the L1 ORF to inhibit splicing at
SA 5639.

siRNA depletion and HPV16 subgenomic plasmid expression in
C33a cells

Fip1 Binds an HPV16 early 3′UTR upstream regulatory element to
enhance p(AE)

Mutation of the early 3′UTR and UV crosslinking in HeLa cells

U1snRNP Binds the HPV16 and 31 LREs to inhibit late gene expression

by repressing p(AL)

Mutational analysis of the late 3′UTR and CAT reporter gene

assays in HeLa cells, UV crosslinking, affinity purification.

CUGBP Represses p(AL) siRNA depletion in HeLa cells transfected with CAT reporter
constructs

HuR Binds the HPV16 LRE to destablise late RNAs in
undifferentiated cells and stabilize them in differentiated
keratinocytes

Overexpression/siRNA depletion in HPV‐infected
keratinocytes

HuR Binds the HPV1 late 3′UTR to inhibit stability and translation

of late RNAs

CAT reporter gene and RNA binding assays in HeLa cells

PABPC Binds the HPV1 late 3′UTR to inhibit translation of late RNAs Mutational analysis of the late 3′UTR and CAT reporter gene

assays in HeLa cells, RNA binding assays.

hnRNP K Inhibits HPV1 late mRNA translation In vitro translation assays and CAT reporter gene expression in
HeLa cell overexpressing the protein. RNA binding assays.

PCBP1,2 Inhibits HPV1 late mRNA translation In vitro translation assays and CAT reporter gene expression in
HeLa cell overexpressing the protein. RNA binding assays.
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ORF to the URR and/or by slowing progression of RNA Pol II

across the HPV genome.48

1.5.4 | Stability and translation

The LREs located in the late 3′UTRs of the HPV1 and HPV16 RNAs

bind cellular factors hnRNP C, HuR, and Poly(A) Binding Protein C

(PABPC) to control mRNA stability and translation.92,94,97,142 While

HuR overexpression in undifferentiated HPV16‐infected keratino-

cytes resulted in unscheduled capsid protein expression, depletion of

HuR in differentiated keratinocytes reduced L1 protein expression.94

HuR may positively regulate capsid protein expression in differenti-

ated cells by allowing nuclear export, stabilizing the capsid mRNAs

and enhancing translation. The splicing regulator SRSF1 has been

shown to regulate mRNA stability and translation.143 SRSF1 levels

rise in differentiated HPV16 and HPV31‐infected epithelia128,129 in

concert with increased levels of cytoplasmic mRNAs encoding capsid

proteins.68 In cervical keratinocytes, SRSF1 relocated to the cyto-

plasm due to HPV infection130 and upon depletion of SRSF1, fewer

HPV16 capsid mRNAs were located on the polysomes compared to

control siRNA‐treated cells (Graham S. V. and Caceres J. F.,

unpublished data) suggesting that SRSF1 may be required to support

capsid protein stability or translation.

1.6 | Codon bias in translation of late mRNAs

Kozak rules of translation suggest that in mRNAs containing more

than one translation start codon, usually only the first is chosen by

the ribosomes to initiate protein synthesis.122 The major late mRNA

E1^E4^L1 contains a strong AUG at its 5′ end144 suggesting that

translation of the L1 ORF, the second ORF in the mRNA would be

inefficient. The E1^L1 mRNA could be translated to yield L1, albeit

with five amino acids from E1 at its 5′ end, while the E6^L1 mRNA

could be efficiently translated since the E6 start codon is of weak

consensus leading to translation initiation at the downstream L1 ORF.

All known L2‐encoding transcripts contain L2 as at least a third ORF

suggesting that L2 is inefficiently translated. However, activity of the

putative E5 promoter, although limited,48 could yield sufficient L2

protein production to provide the low ratio of L2 to L1 protein

subunits found in the virus capsid.

All viruses rely on host cell translation to complete their life

cycles and many viruses manipulate translation to facilitate produc-

tion of virus proteins. Infection of different tissues results in codon

optimization to maximize efficiency of viral protein production.145

HPV L1 and L2 mRNAs show a strong codon bias towards use of rare

codons with a T‐nucleotide at the third position146,147 and this codon

bias occurs in a keratinocyte differentiation stage‐specific manner.

Importantly, codon profile determines spatially restricted capsid

F IGURE 3 Major events of terminal epithelium differentiation and how HPV infection disrupts this. As epithelial cells terminally
differentiate, enucleation (light blue discontinuous oval in the center of the lower cell) takes place coupled with a loss of organelles. Dark red
clusters of fibers represent keratohyalin granules that mark granular layer cells. As cells flatten, an intracellular keratin network (lilac‐colored
fibers) is formed. E4 (green circles) can be cleaved at its N‐terminus by calpain resulting in multimerization of E4 C‐termini to form amyloid‐like
fibers (green circle chains). E4 can also be cross‐linked to the cornified envelope (light brown line around the cells) by transglutaminase (purple‐
colored protein). HPV (blue circles) infection has also been demonstrated to disrupt the function of gap junctions, adherens, desmosomes and
tight junctions (see figure caption). Created with BioRender.com. HPV, human papillomavirus.
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protein expression.148–151 Recently, it has been shown that in general

viral late protein translation is reduced compared to early protein

translation because early proteins seem to be better adapted to the

tRNA pools of their target tissues. Interestingly, at least for the few

early and late proteins analyzed, HPV proteins did not follow this

rule: L1 and L2 proteins were translated as well as early proteins.145

Codon bias can influence mRNA stability as well as translation

efficiency.89 Late RNAs are very much less abundant than early

mRNAs in HPV‐infected cells in vitro and in vivo.48,152 Optimized

capsid protein translation from stable late mRNAs would be essential

to yield sufficient pools of capsid proteins for virion production.

1.7 | Capsid formation and egress

There is still a lack of clarity concerning HPV capsid formation and

virion egress in keratinocytes in vivo. Some HPVs such as HPV16

express L2 protein before L1153 but for HPV1, L1 expression

precedes L2.154 Following translation, L1 monomers assemble into

pentamers in the cytoplasm and are imported into the nucleus. L2 is

imported as a monomer with involvement of karyopherins and

Hsc70.155,156 Karyopherins also prevent spontaneous capsid assem-

bly.157 Capsids are formed of 72 L1 pentameric capsomeres and it is

likely that up to the same number of L2 monomers are incorporated

internally at the capsomere fivefold axes of symmetry.

A link between viral DNA replication and capsid formation is

essential to ensure the correct order of virion formation. L2 interacts

with E2 to inhibit viral transcription but not replication.158–160

However, E2 also interacts with L1 at viral replication foci and this

enhances transcription and replication of viral genomes.161 Viral

genome encapsidation may begin by recruitment of E2 to viral

replication foci through its interaction with L2158 because L2 null

mutant HPV31 genomes displayed a 10‐fold reduction in packaging

viral genomes compared to wild type HPV31.162 L1 capsomeres

themselves and/or together with cellular nucleophosmin may act as

histone chaperones to aid formation of viral minichromosomes.

Together with L2, this ensures proper formation of the capsid.163–165

The HPV capsid may not be selective in incorporating DNA since no

packaging signals have been identified and HPV pseudovirions can

incorporate heterologous episomes, such as plasmids,166 while

capsids containing cellular DNA have been detected in productive

infection.167 There may be a restriction on size such that only DNA

fragments ≤8 kb can be packaged leading to the hypothesis that

capsids that incorporate larger fragments of DNA are unable to form

stable virions.167

Epithelial terminal differentiation has been proposed to provide a

suitable environment for capsid assembly.168,169 Virion stability is

achieved through capsomeres binding to each other via disulfide

bridges169,170 in response to the redox gradient between the

suprabasal and cornified layers of the epithelium.170 Virions

are transmitted in squames released from the upper surface of the

infected epithelium168 and are extremely stable in the environment.

This ensures transmission is efficient, which is important given the

relatively low (compared to other viruses) number of virus particles

produced during productive infection.171,172 However, while

immature capsids are unstable, they may be just as infectious as

mature capsids and it has been proposed that immature virions could

be released from deeper layers of the epithelium to play a role in

natural infection.169

Spatial control of late events and links to epithelial differentiation

suggests that HPV infection can alter the differentiated keratinocyte

to facilitate virion formation and egress. Transglutaminase, a key

protein of terminally differentiated keratinocytes, can crosslink E4 to

the cornified envelope resulting in decreased structural stability of

squames.168,173 E4 can multimerise via its C‐terminus and has been

shown to form amyloid‐like fibers in HPV16‐infected differentiated

keratinocytes. E4 also interacts with intermediate filament keratins to

collapse the cytokeratin network leading to reduced thickness and

increased fragility of infected squames (Figure 3).174,175 E5 may

promote vacuole formation in, and disintegration of, keratinized

squames to aid the release of progeny virus particles.176,177 More

recently, transcriptomic studies have revealed that virus infection

results in disruption to adherens, tight and gap cell junctions and

desmosomes in differentiated keratinocytes.178,179 Small proline‐rich

proteins, which act as crosslinking proteins in the cornified envelope,

and changes in mucins were also significantly downregulated.178 These

changes are probably due to E6/E7‐mediated decreased keratinocyte

differentiation capacity. All these changes would be predicted to reduce

cell‐to‐cell adhesion and disrupt the physical epithelial barrier19 to allow

easier egress of newly formed virus particles.

1.8 | Future directions

Several of the studies reported above were carried out in monolayer

culture. Differentiation of keratinocytes by culturing in high calcium

concentration or by growth in methylcellulose may not allow full viral

genome amplification or capsid protein expression. Organotypic raft

culture of HPV‐infected or HPV genome‐transfected keratinocytes is

far superior for studying late events because this system allows virion

formation and virus release and should be the method of choice for

future studies of late events.180,181 That said, these are in vitro

approaches, which may not recapitulate the in vivo environment. A

number of animal papillomavirus have been used to mimic HPV

infection, but there are clear differences between the different

animal viral life cycles and HPV life cycles.182,183 The development of

a murine model of infection has transformed the HPV research

field.183–188 However, murine epithelia generally display fewer cell

layers than human epithelia188 and MmuPV1 does not express an E5

protein, which is important for late gene expression44,45 meaning that

late events in the MmuPV1184 life cycle may exhibit significant

differences to that of HPVs. Importantly, the tractability of a murine

model offers an approach to lineage tracing of MmuPV1 infected

cells, including observation of late events and spatial analysis of

host‐pathogen interactions, which could transform our understand-

ing of HPV late gene expression.189
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Therapeutic strategies against HPV infection would involve

inhibiting the viral life cycle and, for high‐risk types, targeting

persistent infection by interfering with increased viral oncoproteins

expression responsible for cancer progression.190

A strategy to reveal HPV infection in the lower epithelial layers

would involve induction of capsid protein synthesis as this would

stimulate an immune response against infection. The experimental

evidence using overexpression of HuR suggests that the highly

immunogenic capsid proteins can be made to be expressed in basal

HPV‐infected keratinocytes.94 CUGBP1 is another potential target;

therapeutic siRNAs against CUGBP1 could potentially unmask capsid

protein expression in basal epithelial cells but as CUGBP1 is part of

an inhibitory protein complex80 siRNAs targeting multiple proteins

may be necessary. There is clear evidence for changes to the viral and

cellular epigenome during infection.114 As these changes are

essential for viral replication and gene expression, epigenetic

therapies in development against cancers could be deployed to

modulate such changes as a means to disrupt the viral life cycle.

Topical rather than systemic anti‐HPV therapies are key since the

target tissue is superficial. Small molecules that can travel through

epithelial layers to target the production of late mRNAs could

prevent virion formation and spread in the environment. This is

relevant to genital warts, where multiple lesions can occur locally and

spread to other individuals. Small molecule inhibitors of HuR, have

been identified191,192 which may restrict HPV16 capsid protein

expression.94 SRPIN340 and related, next‐generation drugs,193

inhibit the kinase SRPK1194 which phosphorylates SR proteins,143

that are required for the HPV life cycle.129,130 SRPIN340 can inhibit

the expression of HPV16 late proteins E4 and L1 and reverse the

effects of the infectious process on differentiation and the epithelial

barrier (Faizo and Graham in preparation). Finally, since DNA damage

results in activation of HPV16 late gene expression,71 DNA damage

inhibitors, being developed as anticancer drugs,195 could be used to

inhibit HPV late mRNA splicing. Cancer progression is driven by

persistent expression of viral oncoproteins in the basal layer of the

infected epithelium.190 Thus, it would be essential that intervention

strategies targeting events in the upper epithelial layers would not

impinge on basal layer cells.

2 | CONCLUSIONS

Repression of late gene expression in undifferentiated epithelial cells

is a multilayered and tightly controlled process, and although less

explored experimentally, this is likely also true of activation in

differentiated keratinocytes. A full understanding of differentiation‐

specific late events in the viral life cycle could lead to the

development of novel therapies against HPV infection.
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