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Voting Consensus Based Decentralized Federated
Learning

Yan Gou, Student Member, IEEE, Shangyin Weng, Student Member, IEEE, Muhammad Ali Imran, Fellow, IEEE,
and Lei Zhang, Senior Member, IEEE

Abstract—With the fourth industrial revolution, the construc-
tion of the Internet of Things (IoT) has developed vigorously, and
machine learning is also widely used in IoT management and data
processing. Given the existence of massive distributed and private
datasets generated by a large number of IoT devices, centralized
machine learning is unsatisfactory. Therefore, federated learning
(FL), as a distributed learning method, becomes a promising
solution. In FL, clients can train models by transferring model
parameters to the aggregation server while keeping private data
locally. However, FL still relies on a central server, which has
questionable reliability. The single point of failure and limited
communication resources also hinder the application of FL in the
IoT. In this paper, we propose a voting consensus based decen-
tralized federated learning method (VCDFL) by incorporating
the leader-candidate-follower hierarchical management method
and the consensus based leader election mechanism to solve the
single point of failure and exclude outlier models for accelerating
convergence during aggregation. Then, we propose a joint deci-
sion method to exchange decision information rather than model
transfer between clients to further protect privacy and reduce
communication overhead while ensuring accuracy. Furthermore,
we mathematically derive the probability of successfully electing
a leader, the communication efficiency and the joint decision
accuracy. We conduct our method in an image recognition
scenario. The results show that our joint decision mechanism
promotes the accuracy of both system and local decision-making.
Meanwhile, the proposed scheme greatly reduces communication
costs compared to benchmark learning methods.

Index Terms—Decentralized federated learning, consensus,
hierarchical, communication efficient, fault tolerant

I. INTRODUCTION

IN the fourth industrial revolution, Internet of Things (IoT)
applications that have been proposed in recent years, such

as smart cities [1], autonomous vehicles [2], intelligent trans-
portation [3], smart industry [4], intelligent health care [5]
are being realized. The deployment of these smart services
involves billions of IoT devices [6] that will generate billions
of zettabytes of data [7]. Along with the development of mo-
bile network communication technology, artificial intelligence
and machine learning are provided with good conditions for
rapid development. Against this background, the development
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of decentralized federated learning (FL) has attracted much
attention.

Compared with other centralized machine learning, such
as deep learning, FL allows users to store personal training
data, train local models, and only transfer model parameters
to the central server for global model aggregation. This not
only greatly reduces the risk of personal privacy exposure
during data transmission but also greatly reduces communi-
cation overhead. However, traditional FL is still a centralized
architecture that relies on the computing capability of a fixed
central server, which leaves the problem of a single point of
failure, i.e., any failure of the central server could cause a
process outage, stopping the entire learning process. Given that
the computing ability of IoT devices has greatly increased in
recent years with the development of hardware, end devices
can also take on the responsibility of model aggregation to get
rid of the dependence on the central server and solve the single
point of failure. Therefore, decentralized FL is an appropriate
solution.

There are two ways of decentralization; one way is that all
users have the function of a central server. For example, in
[8], [9], each client in the system broadcasts the local model
updates to the other clients and obtains the other models for
model aggregation. The disadvantage of this approach is high
communication cost and inefficient computation workload.
Another way is hierarchical management, where different
users have different responsibilities to cooperate [10]–[12].
For example, in [11], the authors divide clients into clusters
and introduce leader-follower relationships in each cluster for
hierarchical management. In each round, a leader is chosen in
every cluster for model collection and aggregation. Then, all
leaders cooperatively aggregate one global model and provide
feedback to their followers to achieve global information
sharing. Compared with the first method, the hierarchical
framework has fewer communication costs, higher efficiency,
and faster convergence performance.

However, the hierarchical architecture still has some prob-
lems that need to be researched. For example, since the
aggregated client is responsible for the model collection,
aggregation and broadcasting. How to choose the aggregated
client (leader) is a very important issue. Some authors choose
leaders based on the actual situation of the user. In [12], the
authors select one client with high reputation and communi-
cation capabilities as the leader for model aggregation man-
agement. Nevertheless, other authors select leaders through a
voting mechanism. In [13], the authors leverage raft consensus
algorithm [14] and introduce the leader-candidate-follower
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relationship. In the beginning, all clients are followers who
train and provide local models. Those who realize that there
is no viable leader become candidates to request votes, and
the one who gets enough votes becomes the leader for model
aggregation during its tenure. In [15], all clients vote for the
new leader they support by secret ballot without a list of
candidates. The current leader tallies the votes, and the client
with the most votes becomes the next leader. Although all
of the above methods can elect suitable clients to serve as
leaders, they ignore the quality of the leaders’ model, which
should also be an important factor in measuring the leader’s
suitability.

Besides, the accuracy of the local model is different due
to the difference in the personal database. If the local model
with low accuracy is involved in model aggregation, the
convergence speed of the system is delayed, and the accuracy
of the system is reduced. Hence, how to select models for
aggregation is crucial for FL. In [16] and [17], by calculating
phase deviation or cosine similarity between models, only
relatively benign models can participate in model aggregation
so as to eliminate the outliers of the models. In [18], a formula
to calculate reputation values for all clients in the system
and set the clients with the highest reputation as the leader
group. Then, each leader evaluates the model accuracy of the
remaining clients using their local data, unifies all accuracy
against other leaders and ranks them to select the models
with the highest accuracies for model aggregation. Besides,
in [19], clients are ranked based on their ratings and majority
vote aggregation is performed. In [20], authors use blockchain
technology to combine model aggregation and voting mecha-
nism in smart contracts for model selection and fault tolerance
improvement through consensus. Nevertheless, those model
selection methods all require the model exchange and then
perform screening based on the model effect through model
calculation, which not only consumes huge communication
resources but also increases the computational burden due to
the complexity of the model.

Furthermore, the communication cost is always a bottleneck
in decentralized learning networks since there may be millions
of IoT devices generating data and training local models at
high speed in the network [21]. On the issue of improving
communication efficiency and alleviating bandwidth pressure,
one way is to reduce the size of the messages communicated
at each round. For example, in [22], the authors encode the
updated gradients before sending them to the server in a
lossy compression way. Then, the server decodes the updated
gradients before aggregating. The other way of improving
communication efficiency is to reduce the number of model
aggregations or model updates. For example, in [23], the
authors reduce the number of model aggregations with a
dynamic sampling method. However, these methods bring a
worse accuracy performance. In addition, the transmission of
the model can not fully protect the users’ privacy since private
data can still be leaked as it can be recovered from the model
through reconstruction attacks by malicious clients or servers
[24], [25]. Hence, further research is needed to reduce model
transfer or transfer information in a more secure manner.

To cope with the questions mentioned above, our answer

is a novel voting consensus based decentralized FL algorithm
(VCDFL) along with a joint decision mechanism. In this paper,
we assume all clients in our system are honest but curious. The
following are the major contributions:

1) We propose a voting consensus based leader elec-
tion mechanism. Based on the leader-candidate-follower
hierarchical management framework, followers decide
whether to vote based on decision-making information,
and only candidates who receive enough votes will
become the leader. Local models are also filtered based
on voting information for aggregation to speed up con-
vergence. Furthermore, there is no model interaction
during the entire voting process, which not only protects
the model’s privacy but also reduces communication
overhead while transmitting information.

2) We propose a joint decision-making mechanism. By
following the majority principle, the decisions of the
few are replaced by the majority, which will improve
fault tolerance and the accuracy of decision-making. In
addition, replacing model transmission with decision in-
teraction can greatly reduce communication costs while
protecting personal privacy.

3) In the algorithm analysis, we derive the probability of
leader election under different local decision distribu-
tions. The mathematical derivations of communication
efficiency and joint decision accuracy are also presented.

4) We conduct simulations based on IID data and non-IID
data in an image recognition scenario to evaluate the
performance of our method. Results demonstrate that
our method can save up to 88% (64.4%) communication
costs using IID (non-IID) data and increase the accuracy
compared with the traditional centralized FL.

The rest of the paper is organized as follows. A detailed vot-
ing consensus based decentralized federated learning frame-
work and descriptions are presented in Section II, followed
by Section III, where we analyse the performance of our
algorithm theoretically. The simulation results are presented
in Section IV. Finally, the paper concludes in Section V. A
summary of basic notations is provided in Table I.

II. THE VOTING CONSENSUS BASED DECENTRALIZED
FEDERATED LEARNING FRAMEWORK

This section introduces the training process of VCDFL as
shown in Figure 1, which has four stages: 1) local learning
stage (Step 1); 2) voting consensus based leader election stage
(Steps 2-6); 3) model aggregation stage (Steps 7-10); and 4)
joint decision stage (Steps 11-14). Every client in the system
can switch among three roles: Leader, Candidate and Follower.

A. Local learning stage

In the local learning stage, clients train their local model
with their local dataset. In order to accelerate the learning pro-
cess, there can be multiple stochastic gradient descent (SGD)
training rounds within this step. After q local updating rounds
(q ≥ 1, q ∈ Z), clients make local decisions with their local
models. Local decisions are referred to the results associated
with or applied to the local models in an application. For
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Fig. 1: The diagram of VCDFL: Local Learning Stage: (1) Every client di trains their local model with their local dataset;
Voting Consensus Based Leader Election Stage: (2) A client becomes the candidate C, the remaining clients become followers
fj ; (3) The candidate C broadcasts voting request messages to the followers; (4) Each follower determines whether it reach a
consensus with the candidate by comparing the decision information contained in the voting request; (5) Followers who agree
with the candidate broadcast the vote; (6a) According to the majority principle, candidate who reach more than m

2 followers
becomes the leader L; (6b) The candidate fail to becomes the leader, change another client as the candidate and repeat step
3 to step 5; (6c) No candidate is able to become the leader, return to Step 1 for local learning; Model Aggregation Stage: (7)
Leader send the model collection requests to the supportive followers; (8) Supportive followers send their local models to the
leader for model aggregation; (9) After model aggregation, leader L broadcast the global model; (10) Model update, begin the
next iteration; Joint Decision stage: (11) Stop model transmission and aggregation; (12) Broadcast joint decision requests; (13)
Return decision to the requester; (14) Replace individual decision with joint decision

example, in an image recognition scenario, the model is used
to distinguish images. Therefore, the decisions can be the
labels or logics, which are represented in a matrix or a serial
number.

B. Voting consensus based leader election stage

As present in Figure 1 and algorithm 1, every client in
the system can switch among three roles: Leader, Candidate
and Follower. At the beginning of the voting consensus based
leader election stage, we set up a random client as the candi-
date to contest the election. Let the number of all clients in the
network be n. D represents the set of clients in the system.
r represents the local decision. After one client becomes the
candidate, the remaining m = n− 1 clients will be followers.
Therefore, we have D = (d1, d2, d3, ...dn) = C ∪ F , where
di, 1 ≤ i ≤ n represents the i-th client, C means the candidate
and F = (f1, f2, ...fm) is the set of followers. Since the
candidate is chosen at random, it needs to get enough votes
to become the leader. First, the candidate broadcasts voting

request messages that carry its own local decision rC . Then,
after each follower fi receives the voting request message,
it calculates the difference between its decision rfi and the
candidate’s decision rC , and decides whether to vote for the
current candidate by comparing the difference |rC − rfi | with
the margin of error e. The margin of error e is a value
the follower sets to judge whether a candidate meets its
voting criteria. Since the candidate does not know and cannot
interfere with the value of e, it cannot control the election’s
result. If the difference |rC−rfi | is smaller than the margin of
error e, we call that the candidate C and the follower fi have
reached a consensus, and then fi votes for C to support it as
the leader. On the contrary, if |rC − rfi | > e, this situation
is referred as that the candidate C and the follower fi do not
reach a consensus, and then fi does not vote for C.

After receiving all voting information, the candidate counts
the votes. Since our voting system obeys the majority princi-
ple, if the number of followers, s, who reach a consensus with
the candidate is larger than m

2 , then it can be called the system
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TABLE I: Notations.
Notation Definition

D The set of clients
n The number of clients
F The set of followers
m The number of followers (m = n− 1)
C The candidate
L The leader
S The set of supportive followers
s The number of supportive followers
q The number of local updating rounds
e The margin of error
x The number of types of non-IID data owned by each client
r The symbol of decision
W The symbol of model
R The set of decisions collected by the requester

PCFC The probability of the candidate reach a consensus with
followers

PSC The probability of the system reaches a consensus
T The set of rounds
t The number of rounds

TCS The set of rounds before leader election
Tc1 The set of rounds where the first candidate becomes the leader
Tc2 The set of rounds where the second candidate becomes the

leader
Tf The set of rounds where the leader is unsuccessfully elected
TCE The set of joint decision rounds
OCS ,
Oc1,
Oc2,
Of ,
OCE

Communication cost in each corresponding round

Oall All communication overhead
Sm The size of model
Sr The size of request
Sv The size of vote
Sd The size of decision
Vij The total number of votes for the j-th voting time of Ti round
a The accuracy of local decisions
ajd The accuracy of joint decision

reaches a consensus. Then, the candidate becomes the leader,
and the system switches to the Model aggregation stage.

However, if s < m
2 , it can be considered that the system

has not reached a consensus. Hence, the candidate cannot
become the leader. Below are three reasons for this situation.
1. It is too early to reach a consensus (q is small). As
the time for local learning is insufficient, the decision results
are too scattered, and a consensus cannot be reached within
the system. 2. A wrong candidate. In this case, clients in
the system who are eligible to become the leader, that is, can
reach a consensus with more than half of the followers, are
not selected as the candidate. 3. e is too small. If e is too
small, similar decisions cannot be regarded as a consensus.
Therefore, if the first candidate fails to become the leader, we
will repeat the leader election stage and choose another client
to become the candidate. Given the time and communication
costs involved in the leader election stage and the failure may
be due to insufficient local training and premature consensus,
we will only repeat the election once in this paper. Hence,
if the second candidate still does not receive enough votes,
we will return to the local learning stage and enlarge the
parameter of the error range e during the next time in the
Voting consensus based leader election stage. The e here can
be used in follow-up research to design adaptive algorithms
for adjusting the value according to individual requirements

Algorithm 1: Voting consensus based leader election
stage.

1 Initialization: h = 1
2 repeat
3 Randomly select a client as the candidate C, and

the others become followers F = (f1, f2, ...fm)
4 The candidate C broadcasts voting request

message carrying rC
5 foreach fi, 1 ≤ i ≤ m do
6 Receive voting request message
7 Calculate |rC − rfi |
8 Compare |rC − rfi | with the margin of error e
9 if |rC − rfi | > e then

10 fi do not reach a consensus with C
11 else
12 fi reach a consensus with C
13 Vote for C
14 end
15 end
16 Candidate C count the votes
17 if Vote number s > m

2 then
18 The system reaches a consensus
19 Candidate C becomes the Leader L
20 Go to the Model aggregation Stage
21 else
22 The system does not reach a consensus
23 t← h+ 1
24 end
25 until h = 3;
26 Enlarge e
27 Go to the Local learning stage

and selecting the most suitable leader. However, this is not
the main research direction of this paper, so it is uniformly
represented by e in this paper, and the relationship between e
and the system consensus probability is provided in Section
IV.

C. Model aggregation stage

In the Voting consensus based leader election stage, only
when their own decision and the candidate’s decision reach a
consensus will they vote for the candidate. Therefore, while
the leader is elected, the followers are also screened. Hence,
as shown in algorithm 2, in the Model aggregation stage, the
leader only sends model collection requests to the followers
(fi ∈ S) who have voted for it, where S is the set of supportive
followers who reach a consensus with the leader and s is the
number of those followers. After followers receive the request,
they send their local model Wi, back to the leader. Then, the
leader aggregates the received models by the weighted average
method to calculate a global model:

Wg =

∑
fi∈S Wi +WL

s+ 1
. (1)

In this way, by aggregating only the models of clients whose
decisions reach a consensus, outliers will not interfere with the
global model, which not only greatly reduces the transmission
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Algorithm 2: Model aggregation stage.

1 The leader L sends the model collection request to
fi ∈ S

2 foreach fi ∈ S do
3 Receive the request from L
4 Send local model Wi to L
5 end
6 L aggregates the received models Wg =

∑
fi∈S Wi+WL

s+1

7 L evaluates the loss value of Wg and judge whether
the FL has converged

8 if FL has converged then
9 Stop model transmission and aggregation

10 Go to the Joint decision stage
11 else
12 L sends Wg to the followers
13 Model updates
14 Go to the Local learning stage
15 end

of models but also accelerates the convergence speed of the
system. In addition, after FL converges, the accuracy of the
model will not be improved much during model aggregation.
On the contrary, user privacy is at risk of being leaked during
model transmission. Therefore, after the leader obtains the
global model, it uses part of its local dataset as the test dataset
to evaluate the loss value of the global model. If the loss
value is low to a certain extent, it can be judged that FL has
converged, where the model aggregation is stopped and the
system switches to the Joint decision stage. If the model has
not converged yet, the leader sends the global model to the
followers. Then, the model is updated by both the leader and
followers. After the model updates, the system returns to the
Local learning stage and starts the next iteration.

D. Joint decision stage
In this stage, we begin decision exchange and decision con-

sensus building instead of model exchange. In the application
scenario, a client di who needs to use the model for decision-
making broadcasts a joint decision request. Clients who re-
ceive the request use the local model to make a responding
decision about this information and send its decision back to
the requester. Then, the decision which is agreed upon by the
largest number of clients in the system is referred to as a joint
decision:

rdi
= rjoint = argmaxriP (ri : ri ∈ R), (2)

where R is the set of decisions collected by the requester and
P (ri : ri ∈ R) represents the probability of the decision value
of ri in R. Therefore, the fault tolerance rate of the system
and the accuracy of the joint decision can be improved in this
stage.

III. ANALYSIS OF THE FRAMEWORK

This section presents the analysis of the voting probability
and the system consensus probability in the Voting consensus
based leader election stage. The communication efficiency and
joint decision accuracy of VCDFL are also proposed.

A. The voting probability and the system consensus probabil-
ity in Voting consensus based leader election stage

In order to calculate the probability of system consensus.
First, we need to calculate the probability PCFC that the
followers and the candidate reach a consensus, which is also
the probability that followers will vote :

PCFC =P (|rC − rfi | < e)

=P (rC − rfi < e, rC − rfi > 0)+

P (rfi − rC < e, rC − rfi < 0).

(3)

Assuming probabilities of all local decisions are IID and
continuous probability distribution, we consider three common
distributions as examples: a Uniform distribution, an Exponen-
tial distribution and a Gaussian distribution. The following are
the corresponding formulas:

PCFC =



−e2 − 2ae+ 2be

(b− a)2
,

with a Uniform distribution rC , rfi ∼ U(a, b)

1− exp(−λe),
with an Exponential distribution rC , rfi ∼ E(λ)

erf(
e√
2σ

),

with a Gaussian distribution rC , rfi ∼ N(µ, σ2)
(4)

The proof of Equation 4 is given in Appendix, and the sim-
ulation results are shown in Figure 2. The system consensus
is only reached when the candidate reaches a consensus with
more than half of the clients in the system. Therefore, the
probability of the system reaching a consensus PSC is:

PSC =

m∑
k=m

2

Ck
mP k

CFC(1− PCFC)
m−k, (5)

which is similar to the consensus reliability of raft when the
links are assumed reliable [26]. The simulation results are
shown in Figure 3.

B. Communication efficiency

Communication costs are always a vital index in decentral-
ized learning. In order to evaluate the communication overhead
of our method, we divide the whole procedure into five types
according to the information transfer process. T represents the
set of all t rounds. TCS , Tc1, Tc2, Tf and TCE are the sets
of rounds of five different communication processes where the
meaning are shown in Table I. T = TCS∪Tc1∪Tc2∪Tf∪TCE .
Besides, tCS , tc1, tc2, tf , tCE represent the number of rounds
in each kind so that t = tCS + tc1 + tc2 + tf + tCE , where
tCS , tc1, tc2, tf , tCE ∈ N . Figure 4 shows the communication
procedures in different situations.

When Ti ∈ TCS , in rounds without consensus voting, clients
use local data to learn local models, and there is no decision
exchange, voting and model communication. Therefore, the
communication cost OCS in the round before leader election
is:

OCS = 0, Ti ∈ TCS . (6)
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Fig. 2: The probability of the candidate and each follower reaching a consensus PCFC . (a) the probabilities of the candidate’s
and follower’s local decisions satisfy a uniform distribution, and the corresponding PCFC is shown in (d); (b) the probabilities
of the candidate’s and follower’s local decisions satisfy an exponential distribution, and the corresponding PCFC is shown in
(e); (c) the probabilities of candidate’s and follower’s local decisions satisfy a Gaussian distribution, and the corresponding
PCFC is shown in (f).
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Fig. 3: The system consensus probability PSC .

As shown in Figure 4 (a), when Ti ∈ Tc1, the procedure of
communication begins with the decision and the voting request
from the first candidate. After comparing the candidate’s deci-
sion with their own, followers who reach a consensus with the
candidate will vote for the candidate. Then, because we have
the total number of votes in the first voting round, Vi1, larger
than m

2 , the system reaches a consensus, and the first candidate
becomes to be the leader. The approved leader sends the model
collection request to its followers S and then collects the local
models from them. After model aggregation by the leader, the
global model will return feedback to followers. Hence, the
communication overhead Oc1 in each round when the first

candidate becomes the leader is:

Oc1 =(Sd + Sr) ·m+ Vi1 · Sv ·m+ Sr · Vi1

+ Vi1 · Sm + Sm · Vi1, Ti ∈ Tc1.
(7)

When Ti ∈ Tc2, as shown in Figure 4 (b), since the first
candidate does not receive more than half of the votes, a
second candidate is required. Therefore, there is an additional
round of voting processes. Therefore, the communication cost
Oc2 in each round that the second candidate becomes the
leader is:

Oc2 =(Sd + Sr) ·m+ Vi1 · Sv ·m+ (Sd + Sr) ·m
+ Vi2 · Sv ·m+ Sr · Vi2 + Vi2 · Sm

+ Sm · Vi2, Ti ∈ Tc2.

(8)
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Fig. 4: The communication procedure (a) when Ti ∈ Tc1, (b) when Ti ∈ Tc2, (c) when Ti ∈ Tf , (d) when Ti ∈ TCE .

In Figure 4 (c), when Ti ∈ Tf , both candidates failed to
become the leader. Hence, each round of communication
overhead Of when the leader is not successfully elected is
computed as follows:

Of =(Sd + Sr) ·m+ Vi1 · Sv ·m+ (Sd + Sr) ·m
+ Vi2 · Sv ·m,Ti ∈ Tf .

(9)

Shown in Figure 4 (d), in joint decision rounds, when
Ti ∈ TCE , only decisions are transmitted between clients.
Therefore, the communication overhead OCE in each joint
decision round is:

OCE = Sr ·m+ Sd ·m,Ti ∈ TCE . (10)

To conclude, the communication overhead of our method Oall

is computed as:

Oall = OCS · tCS +Oc1 · tc1+Oc2 · tc2+Of · tf +OCE · tCE .
(11)

In our system, model transmission only happens in the Model
aggregation stage. In the Voting consensus base leader election
stage and Joint decision stage, we transmit decisions for
information exchange. Since the size of decisions is only a
few bytes and the number of rounds of model transfer is
also reduced compared with traditional FL, our method saves
communication overhead to a large extent.

C. Joint decision accuracy

Even if the joint decision is a local decision agreed upon
by the largest number of clients in the system, there is still
a possibility that the joint decision is wrong. Therefore, the
question we discuss below is whether the joint decision can
improve accuracy. In some application scenarios like image
recognition or automatic driving, the decision can be the label
of the picture or vehicle control decisions like turning left
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Fig. 5: The relationship between joint decision accuracy and
individual accuracy when the number of clients n is 20, 40,
60, 80, 100.

or stopping whose distribution is discrete, and only when
the decisions are the same (e = 0) can both clients reach
a consensus. Hence, the accuracy of the joint decision is
related to the accuracy of the clients’ local decisions. Since the
system has converged in the joint decision stage, the decisions
are highly similar, so we assume that all local decisions are
collected, the joint decision is agreed by at least n

2 clients,
and the accuracies of local decisions are the same, which is
represented by a. Therefore, the accuracy of joint decision ajd
is:

ajd =

n∑
k=n

2

Ck
na

k(1− a)n−k. (12)

In Figure 5, we choose the number of clients in the system
as n = 20, 40, 60, 80, 100 to show the result. We can see that
when the accuracy of clients a is larger than 0.5, the joint
decision mechanism has a positive effect on the system, which
improves the accuracy of the system. In this way, even if the
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training results of the client devices are not very good and the
decision-making accuracies are not high, the system accuracy
can still be greatly improved with very little communication
overhead through the joint decision mechanism. The more
clients in the system, the better the improvement of joint
decision-making on the accuracy and the more difficult it is to
unify the decisions. When n = 20 and a = 0.8, the accuracy
of the joint decision is about 0.98. When n = 100, and even
though the local decision accuracy is low (i.e., a = 0.6), the
accuracy of the joint decision is larger than 0.99.

IV. PERFORMANCE EVALUATION

A. Evaluation setup

To simulate the performance of our method, we apply our
method in an image recognition scenario. We use the standard
MNIST dataset1, which consists of 60000 images for training
and 10000 for testing. We also randomly selected some images
to serve as a public database without labels for clients to make
decisions based on their models. All images are handwritten
digits from zero to nine. We set 100 clients in the system and
assume all clients are benign and honest. The artificial neural
network includes two hidden layers with 200 units using ReLu
activation. We study both IID and non-IID sampling of the
local training data. In the IID setting, all data is shuffled and
divided into 100 clients. Each client has data in all kinds of
labels. In the non-IID setting, we allocate x types of data for
each client (1 ≤ x ≤ 10, x ∈ Z). Hence, all training data is
first sorted by labels, and the data of each label is divided into
10x shards without overlapping.

B. Performance using IID data

Decision similarity. Since whether the model can be ag-
gregated is related to the difference between local decisions,
we analyze the client’s decision similarity with the help of
box plots, as shown in Figure 6. In each box plot, the
circles represent outliers, the upper and lower horizontal lines
correspond to the maximum and minimum values, and the
upper and lower edges of the box correspond to the Q3 value
(75th percentile) and Q1 value (25th percentile). In addition to
this, we show the average as a green triangle and the median as
an orange line. The first box plot on the left shows the decision
similarities of clients after only 5 epochs of local learning.
Without any model exchange or aggregation, in the IID data
situation, the local decisions are at least 75% similar so that
systematic consensus can be reached in the first round. The
remaining three boxes show, from left to right, the similarity of
local decisions within the system after one, five, and ten rounds
of the model aggregation stage. It can be seen that with the
information exchange through model aggregation, the mean
similarity is gradually improved from 75% to about 92.5%.
And the system can reach a consensus in every round.

Joint decision effect. Although, in the framework design,
the joint decision mechanism will only run after the FL
converges. Due to different convergence standards, in order

1http://yann.lecun.com/exdb/mnist/
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Fig. 6: The similarity of decisions when each client uses IID
data.
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Fig. 7: The joint decision effect for IID data in 100 commu-
nication rounds.

to demonstrate the effect of joint decision-making, this mech-
anism starts from the first round of simulation. In Figure 7,
we compare the accuracy of joint decisions with the accuracy
of the global model and local models, where the joint decision
mechanism is initiated by the leader in each round. Besides,
the maximum accuracy in each kind is shown in Table II.
It can be seen that the accuracy of the joint decisions is
higher than one of the global models and much higher than
any other local models. The highest joint decision accuracy is
0.9885. The reason is that on the basis of obtaining the global
model, the joint decision is the result of local decisions filtered
again based on the majority principle, thereby promoting
the accuracy of system decision-making and improving local
decision-making to some extent.

TABLE II: Maximum accuracy with IID and non-IID data.
Category Value

IID x=7 x=8 x=9
Global accuracy 0.9824 0.9793 0.9797 0.9796

Mean local accuracy 0.9754 0.9158 0.9289 0.9426
Max local accuracy 0.9818 0.9741 0.9766 0.9758

Joint decision (consensus) accuracy 0.9885 0.9918 0.9913 0.9894

Communication cost. Based on Formulas (6)-(11) and the
simulation result when clients use IID data, we calculate the
communication cost of our algorithm and compare it with the
communication overhead of the traditional FL, as shown in
Figure 8, to demonstrate the advantage of our algorithm in
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Fig. 8: The communication cost comparison between tradi-
tional FL and VCDFL when each client uses IID and non-IID
data.

saving communication resources. According to the simulation
parameter set above, the size of each model is about 8× 105

bytes. Hence, if all clients in traditional FL are involved in
model transmission in 100 rounds, the communication cost is
about 1.6 × 1010 bytes, which is shown as the green bar in
Figure 8 and named as traditional FL. In our network, we
set the size of voting requests, votes, decisions and collecting
requests as Sr = Sv = Sd = 8 bytes, which are negligible
compared with the model size. When using IID data, the deci-
sion similarities of clients are high enough to make the system
continuously reach a consensus after the first communication
round. Moreover, nearly all followers in the system can reach
a consensus with the first candidate in each round. Therefore,
tCS = tc2 = tf = 0 and Vi1 = m = 99. Since the magnitude
of tCE is determined by when the system converges, we set the
loss threshold to judge whether the system converges. In other
words, if the loss of the global model is less than the threshold,
the system converges and enters the Joint Decision Stage. If the
loss threshold is 0.2, the system converges after 12 rounds, and
we have tc1 = 12 and tCE = 88. Therefore, we have Oall =
Oc1 · tc1+OCE · tCE ≈ 1.92×109, which is the red bar in the
Figure 8 that saves 88% communication overhead compared
with the centralized FL method. If the system convergences
when the global model loss is less than 0.15, and we have
tc1 = 25, tCE = 75 and Oall = Oc1 ·tc1+OCE ·tCE ≈ 4×109
that represent as the orange bar in Figure 8 which saves about
75% of communication cost compared with the centralized FL
method. If the threshold is 0.1, then we have tc1 = 84 and
tCE = 16. The communication cost is Oall ≈ 1.34 × 1010,
which is shown as the yellow bar in Figure 8. Our system saves
about 16.25% communication cost compared to the centralised
learning method.

C. Performance using non-IID data

Decision similarity. In Non-IID simulation, the distribution
of local data has strong inference on the decision similarity of
clients, which is closely linked to the probability of the system
reaching a consensus. Therefore, as with the IID experiments
above, we still use box plots to show the maximum similarities
of local decisions in 100 rounds of local training when each
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Fig. 9: The max similarities of local decisions in 100 rounds
of local training when each client has x = 3 to x = 9 types
of local training data.

client has x = 3 to x = 9 types of local training data. It can
be seen from the median similarity represented by the orange
line in Figure 9 that with the increase of data types owned by
individuals, the similarity of data increases, and the median
similarity of individual decisions also increases from about
10% when x = 3 to about 50% when x = 9.

Joint decision effect. In Figure 10, we evaluate the joint
decision effect of our method by comparing the accuracy
of joint decisions with the accuracy of the global model
and the max and mean accuracy of local models. As in the
IID simulation above, to analyse the effect of joint decision-
making, the joint decision mechanism is initiated by the leader
in each round. There are three simulations with x = 7, 8, 9
kinds of non-IID data owned by clients for local learning. To
visualize the results better, we zoom in on the performance
from round 40 to 100. Therefore, as can be seen from Figure
10a and Figure 10b, when the client has 7 or 8 categories
of non-IID data, the circumstance of the system failing to
select a leader is mostly in the first twenty rounds. During
that time, the uncertainty of the candidate success to be the
leader and the low individual accuracy in the initial stage leads
to great fluctuations in the accuracy of joint decisions. Then,
with the increase of local learning and model aggregation,
the system becomes more stable in reaching a consensus,
and the accuracy of joint decisions increases rapidly, which
is even higher than that of the global model. The reason
is that in the Joint decision stage, minority clients whose
decisions are wrong can be corrected by obeying the majority
rule. In this way, we can improve the accuracy of decisions
and individual fault tolerance rate by paying a very small
amount of communication overhead for decision transmission.
Therefore, as shown in Table II, the maximum joint decision
accuracy is 0.9918, 0.9913 and 0.9894 when x = 7, 8, 9. By
using the joint decision mechanism, the joint decision accuracy
is higher than both global accuracy and max local accuracy.
In addition, it can be seen in Figure 9 and Figure 10 that the
higher the category similarity of individual data is, the higher
the possibility of the system reaching a consensus.

Communication cost. As with the communication cost
calculation above in the case of IID data, we calculate the
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Fig. 10: The joint decision effect for non-IID data in 100
communication rounds. (a) The comparison between the global
model accuracy, the max local model accuracy, the mean local
model accuracy and the joint decision accuracy when x = 7;
(b) The accuracy comparison when x = 8; (c) The accuracy
comparison when x = 9.

communication cost of our algorithm by Equations 6-11
and compare it with the 1.6 × 1010 bytes of traditional FL
communication overhead, which is shown as the green bar
in Figure 8. As shown in Figure 10, it is not easy for the
system to reach a consensus at the beginning of the Non-IID
simulation. Moreover, since the similarity of local decisions
in the early stage is not very high, even if the system reaches
a consensus, it may be reached in the second round of voting
when the first candidate fails. Therefore, according to the non-

IID simulation result in Figure 10a, when we set x = 7
and m = 99, we have tCS = 0 and tf = 9. If loss
threshold is 0.4, the system converges after 58 rounds, we
have tc1 = 48, tc2 = 10, tCE = 42. Hence, the communication
overhead is Oall = Of ·tf +Oc1 ·tc1+Oc2 ·tc2+OCE ·tCE ≈
5.7 × 109 bytes, shown as the dark blue bar in Figure 8,
which saves about 64.4% of the communication overhead
comparing with centralized FL. If the loss threshold is 0.35,
the system will achieve convergence in about 75 rounds. At
that time, the communication overhead is 8 × 109 bytes,
represented as the blue bar in Figure 8, saving about 50%
of the communication overhead compared to the centralized
FL. Moreover, if the system converges when the loss value
of the global model is less than 0.3, the convergence will be
achieved in about 93 rounds. At this time, the communication
overhead is 1.07× 1010 bytes, which saves about 33% of the
communication overhead compared with the centralized FL
method, shown as the light blue bar in Figure 8.

V. CONCLUSION

This paper proposes a voting consensus based decentralized
federated learning. The consensus discrimination mechanism
between the candidate and followers based on decision com-
munication and the voting mechanism in the system ensures
that the local model does not leave the local device when the
candidate is an outlier node and eliminates the interference
of the outlier models on the model aggregation. The consen-
sus probability, communication efficiency and joint decision
accuracy have been analyzed. In addition, we simulate our
method in an image recognition scenario with IID and non-IID
partition of data. The simulation results are verified through the
design of a joint decision mechanism, and the communication
overhead is greatly reduced while the system accuracy is
improved.
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APPENDIX A
PROOF OF EQUATION 4

Considering the probabilities of the leader’s and follower’s
local decisions satisfy a uniform distribution: rL, rfi ∼
U(a, b), we have

P (rL, rfi) =
1

(b− a)2
, a ≤ rfi , rL ≤ b. (13)

Applying eq. 1, we have

PCFC =2P (rfi < e+ rL, rL < rfi)

=2[

∫ a+e

a

∫ rfi

a

1

(b− a)2
dx dy

+

∫ b

a+e

∫ rfi−e

rfi

1

(b− a)2
dx dy]

=
−e2 − 2ae+ 2be

(b− a)2
.

(14)

Considering the probabilities of leader’s and follower’s local
decisions satisfy an exponential distribution: rL, rfi ∼ E(λ),
we have

P (rL, rfi) = λ2exp(−λ(rL + rfi)), 0 ≤ rfi , rL. (15)

Considering eq. 1, we have

PCFC =2P (rfi < e+ rL, rL < rfi)

=2[

∫ e

0

∫ rfi

0

λ2exp(−λ(rL + rfi)) dx dy

+

∫ ∞

e

∫ rfi

rfi−e

λ2exp(−λ(rL + rfi)) dx dy]

=1− exp(−λe).

(16)

Considering the probabilities of leader’s and follower’s local
decisions satisfy a Gaussian distribution:rL, rfi ∼ N(µ, σ2),
we have

P (rL, rfi) ∼ N(µrL−µrfi
, σ2

rL+σ2
rfi

) =∼ N(0, 2σ2). (17)

Combining eq. 1, we have

PCFC =Φ(µrL − µrfi
, σ2

rL + σ2
rfi

; e)

− Φ(µrL − µrfi
, σ2

rL + σ2
rfi

; 0)

+ Φ(µrfi
− µrL , σ

2
rL + σ2

rfi
; e)

− Φ(µrfi
− µrL , σ

2
rL + σ2

rfi
; 0)

=
1

2
(1 + erf(

e− (µrL − µrfi
)√

σ2
rL + σ2

rfi

))

− 1

2
(1 + erf(

e− (µrL − µrfi
)√

σ2
rL + σ2

rfi

))

+
1

2
(1 + erf(

e− (µrfi
− µrr )√

σ2
rL + σ2

rfi

))

− 1

2
(1 + erf(

e− (µrfi
− µrr )√

σ2
rL + σ2

rfi

))

=1 + erf(
e√
2σ

)− (1 + erf(
0√
2σ

))

=erf(
e√
2σ

).

(18)

The “erf” in eq.18 represents the error function in mathemat-
ics, which is also called the Gauss error function. The function
is defined as:

erfz =
2√
π

∫ z

0

e−t2dt (19)
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