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ABSTRACT
Beamforming, an integral component of modern mobile networks, enables spatial selectivity and improves network quality. However,
many beamforming techniques are iterative, introducing unwanted latency to the system. In recent times, there has been a growing inter-
est in leveraging mobile users’ location information to expedite beamforming processes. This paper explores the concept of contextual
beamforming, discussing its advantages, disadvantages, and implications. Notably, we demonstrate an impressive 53% improvement in the
signal-to-interference-plus-noise ratio by implementing the adaptive beamforming maximum ratio transmission (MRT) algorithm compared
to scenarios without beamforming. It further elucidates how MRT contributes to contextual beamforming. The importance of localization
in implementing contextual beamforming is also examined. Additionally, the paper delves into the use of artificial intelligence (AI) schemes,
including machine learning and deep learning, in implementing contextual beamforming techniques that leverage user location information.
Based on the comprehensive review, the results suggest that the combination of MRT and zero-forcing techniques, alongside deep neural
networks employing Bayesian optimization, represents the most promising approach for contextual beamforming. Furthermore, the study
discusses the future potential of programmable switches, such as Tofino—an innovative switch developed by Barefoot Networks (now a part
of Intel)—in enabling location-aware beamforming. This paper highlights the significance of contextual beamforming for improving wireless
telecommunications performance. By capitalizing on location information and employing advanced AI techniques, the field can overcome
challenges and unlock new possibilities for delivering reliable and efficient mobile networks.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0176422

I. INTRODUCTION

Every subsequent generation of cellular communication has
brought advancements in data speeds and capabilities, with each
generation offering significant improvements over its predecessor.1
The first-generation (1G) introduced the concept of cell phones,
while the second-generation (2G) enabled text messaging services.
The advent of the third-generation (3G) brought about Internet

streaming capabilities, and the fourth-generation (4G) revolution-
ized the mobile landscape with broadband Internet coverage. How-
ever, as user demands continue to escalate rapidly, 4G networks have
reached their capacity limits, necessitating the need for more data to
cater to the growing number of smartphones and smart devices.

The arrival of fifth-generation (5G) cellular technology
promises to address these challenges by providing networks capa-
ble of carrying significantly higher traffic volumes than the currently
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available networks.2 With 5G networks already under way, their
evolution is outpacing the long-term development of 4G (LTE)
by a factor of ten. This rapid advancement holds the promise
of catalyzing breakthroughs in technologies like augmented real-
ity (AR), autonomous vehicles, and the Internet of Things (IoT)
citegohar2021role. At the core of 5G technology, there are five
key advancements: full-duplex, massive multi-input multi-output
(MIMO), millimeter wave (mmWave), smart cell, and BF. Smart-
phones and electronic devices operate within the radio frequency
(RF) range, typically less than 6 GHz.3–5 This spectral range is
becoming increasingly congested due to the proliferation of com-
munication technologies and multiple mobile carriers. The limited
RF spectrum available in the industrial, scientific, and medical (ISM)
band poses challenges for accommodating the growing demand for
data transmission, resulting in slower services and more frequent
lost connections.6,7

To address this issue, researchers have been exploring higher
frequency bands ranging from 30 to 300 GHz.6,7 Although mmWave
have been utilized in satellite communication for some time, their
use in mobile communications is a fairly recent development. While
offering a wider frequency spectrum, mmWave faces a major chal-
lenge due to its limited ability to penetrate obstacles such as built
infrastructure. This characteristic leads to signal loss or absorp-
tion when mmWave encounters environmental obstacles.8 Subse-
quently, smart cell networks provide a solution to overcome this
problem. Unlike traditional cell connections that rely on large high-
power cell towers that transmit signals over long distances, smart
cell networks leverage thousands of small low-power access points
(APs).9,10 These APs are strategically placed in close proximity and
grouped spatially to relay signals around obstructions. By elim-
inating reliance on the line of sight (LoS), smart cell networks
ensure uninterrupted cellular service, even when users move behind
obstacles. When user equipment (UE) travels behind an obstruc-
tion, it seamlessly switches to a new AP, maintaining a consistent
connection.11,12

Another significant advancement in 5G technology is the use of
massive MIMO (multi-input multi-output), which involves deploy-
ing a higher number of antennas compared to traditional MIMO
systems. Massive MIMO leverages BF techniques to direct wireless
signals toward their intended receivers and enables spatial multi-
plexing of multiple data streams over the same frequency band. BF
is a signal processing technique that manipulates radio waves to
focus them toward specific locations using electromagnetic beams.
This eliminates the need for physical movements and reduces depen-
dence on the physical structure of antennas. By utilizing BF, massive
MIMO significantly enhances communication performance and can
multiply the capacity of a mobile ad hoc network by a factor of
22 or more.1,13 In a time-division multiplexing system, user equip-
ment (UE) needs to alternate between transmitting and receiving,
which can introduce delays and reduce communication efficiency. In
traditional cellular base stations (BSs), antennas can only broadcast
or receive signals at a given time. Multiplexing can improve perfor-
mance, but transmitted and received signals are typically propagated
at different frequencies.14 Conventional cellular antennas broad-
cast signals in all directions simultaneously, leading to potential
interference.15 Advancements in signal processing techniques have
made it possible to manipulate radio waves and focus them using
electromagnetic beams. Figure 1 illustrates the BF process (broad-

FIG. 1. Illustration of BF according to the scenario (rural, semi-urban, urban,
highway).

casting signals in a specific direction) in rural, semi-urban, urban,
and highway areas.

BF offers several advantages in cellular communication. It
enables more reliable and faster data transmission by establish-
ing a more direct connection between transmitters and receivers.
BF has become an essential technology in various applications,
including the 5G standard for cellular networks and radar-detection
systems.16 However, implementing BF requires significant pro-
cessing resources, which can pose challenges related to cost,
hardware, and energy consumption. In the past, radar systems
relied on mechanically moving and steering antennas to direct
signals.17

The development of antenna systems for 5G networks must
meet the requirements of compact size and low power consumption.
To enhance spectrum efficiency and throughput, antenna arrays
with larger dimensions, such as 64 × 64 MIMO and beyond, are
being utilized. However, the accuracy of these antenna arrays sig-
nificantly affects the performance of BF. As wavelengths decrease,
component sizes, including those of RF transceivers with features
like analog-to-digital converters (ADCs), also decrease. Explor-
ing new materials, such as 40 nm Complementary Metal-Oxide-
Semiconductor (CMOS), is helping to reduce the size and power
consumption of essential components in 5G networks. Traditional
RF power amplifiers made with materials like gallium arsenide
(GaAs) and other III–V semiconductors are not power-efficient
and do not integrate well with other capabilities. This is where
advancements in 40 nm CMOS technology can play a role in further
reducing the size and power consumption of these critical com-
ponents. Moreover, as the number of beams created by individual
next-generation node B (gNB) increases, more advanced signal pro-
cessing techniques are required. This pushes power budgets and
space restrictions even further. Despite these challenges, BF holds
a promising future in various application areas.18

Cont-BF is a promising technique for enhancing the perfor-
mance of 5G communication systems. It enables the use of mmWave
frequencies and massive MIMO technologies to achieve high data
rates and low latency. Cont-BF adapts BF parameters in real time
based on environmental conditions and user requirements. This
is achieved through feedback from the network and user devices,
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as well as the utilization of machine learning (ML) algorithms to
optimize the BF process. Cont-BF has applications in mobile edge
computing (MEC), where low-latency computing and networking
services are provided to mobile users. By dynamically adjusting the
BF parameters based on the location, movement, and traffic condi-
tions of the users, the quality of wireless links between user devices
and MEC servers can be improved. In VR/AR, cont-BF can improve
the quality of audio and video streams used in VR/AR applications
by selectively enhancing relevant signals and suppressing irrelevant
or distracting ones.

Moreover, in this line, location-assisted BF is a BF technique
that takes advantage of spatial information about the positions
of user devices or antennas to enhance wireless communication
performance. Unlike conventional BF, which typically relies on pre-
defined patterns or fixed configurations, location-assisted BF uses
the knowledge of user locations to dynamically adjust the direc-
tionality of transmitted signals. This adjustment aims to optimize
signal reception at the intended devices while minimizing inter-
ference and improving the overall signal quality. In comparison to
cont-BF, which considers various factors beyond just user locations
(such as environmental conditions, interference sources, and net-
work load), location-assisted BF specifically emphasizes the role of
physical positioning. It focuses on leveraging the geometric arrange-
ment of user devices and antennas to improve communication
efficiency. In other words, location-assisted BF is a subset of cont-BF
placing particular emphasis on utilizing user location information
to enhance the efficiency of wireless communication systems. It
utilizes the geometric arrangement of devices to optimize signal
transmission, ultimately improving user experience and network
performance.

Apart from this, artificial intelligence (AI) is used in 5G tech-
nology to optimize BF.19 AI and ML are terms that refer to the sim-
ulation of human intelligence processes by machines, particularly
computer systems. AI encompasses a wide range of technologies that
enable machines to perform tasks that typically require human intel-
ligence, such as problem-solving, learning from experience, speech
recognition, and decision-making. ML, a subset of AI, involves the
development of algorithms and statistical models that allow comput-
ers to learn from and make predictions or decisions based on data.
Deep learning (DL) is a specific subfield of ML that involves neural
networks with multiple layers, enabling them to automatically learn
patterns from data.

Conventional BF techniques in cellular communication involve
using predefined models or fixed configurations to direct sig-
nals from antennas in specific directions. These techniques are
often based on mathematical formulas and linear optimization
methods. While they can provide satisfactory performance in
certain scenarios, they might struggle to adapt to complex and
dynamic wireless environments with multiple users and interference
sources.

In contrast, AI-, ML-, and DL-assisted BF involves integrating
advanced AI and ML techniques into the BF process. AI-, ML- and
DL-assisted BF leverages the capabilities of AI and ML to improve
the efficiency, adaptability, and performance of BF processes in wire-
less communication systems, especially in dynamic and complex
scenarios. This is in contrast to conventional techniques that are
often more static and less adaptable.

A. Contribution to the literature
In our paper, we analyzed the role of BF in the field of mobile

communication. We conducted a review of the applications of BF
in the algorithms, antenna fabrication, and the discovery of new
AI approaches. Our article is an effort to provide a review of cont-BF.
The following are the major contributions of this article:

1. We shortlisted research articles related to BF techniques that
can help in cont-BF.

2. We reviewed the literature on BF types, both standard and
using ML and AI techniques.

3. We presented various ML techniques that facilitated the
estimation of user location and beam management in the
study.

4. We investigated the techniques used for the optimization of
BF with the help of ML.

5. We highlighted the challenges associated with using ML
techniques for cont-BF.

B. State of the art
The field of cont-BF in 5G technology is in a constant state of

evolution, with ongoing research and development efforts aimed at
improving its efficiency and effectiveness. Pioneering work in this
domain can be traced back to the seminal paper by the authors
of the work of Islam et al., which laid the foundation for subse-
quent investigations.20 Recent advancements are highlighted in the
work of Chen et al., whose paper provides insight into the latest
breakthroughs.21

In recent years, there has been a surge in the use of conven-
tional, ML, and AI techniques for BF. Notable contributions include
the study of ElHalawany et al., demonstrating the growing interest
and applicability of these approaches in the context of cont-BF.22

By considering location-unaware systems with benchmark-
ing techniques,23 a location-aware system can be developed and
make location estimation more accurate. Additionally, opportunis-
tic BF, as used in this context, refers to a technique where
smart antennas utilize channel delay information to optimize their
BF strategies based on the prevailing conditions. The study of Cheng
et al. explores leveraging channel delay information as feedback
to enhance the effectiveness of smart antennas dynamically and
adaptively.24

In Ref. 25, the authors proposed a recursive matrix shrinkage
method to estimate the interference-plus-noise covariance matrix
along with the desired signal steering vector mismatch. A two-stage
design approach was utilized in Ref. 26, with the first stage dealing
with BF, and the second with adaptive power allocation and modu-
lation. Another recent study by Ref. 27 proposed a novel and general
approach for deriving the statistical distribution of the signal-to-
noise ratio (SNR) by exploiting the array structure, BF type, and
slow fading channel coefficients. This approach was used to design
power and modulation adaptation strategies. Reference 28 presented
the scheme that uses coordinated beam search from a small beam
dataset within the error offset, and then the selected beams are used
to guide the search for beam prediction.

Additionally, Ref. 29 proposes an end-to-end DL technique
to design a structured compressed sensing (CS) matrix that is
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well-suited for the underlying channel distribution. This technique
leverages sparsity and the spatial structure that appears in vehicular
channels. In contrast, in Ref. 30, it was noted that current mmWave
beam training and channel estimation techniques do not typically
make use of prior beam training or channel estimation observations.
Moreover, Ref. 31 shows that determining the optimal BF vectors in
large antenna array mmWave systems necessitates significant train-
ing overhead, which can have a significant impact on the efficiency
of these mobile systems.

As various ML techniques have been adopted for BF, this paper
aims to provide a detailed review of different ML-based BF tech-
niques. These ML techniques include the procedure to preprocess
the input data and various ML algorithms in any environment.
Our study goes beyond existing literature, showcasing how vari-
ous ML techniques can be used to screen large numbers of BF
approaches for potential location estimation applications and to
optimize the approaches using high computational power. Accord-
ingly, the following sections will describe the in-depth analysis of
currently popular BF techniques and how AI can improve their
overall performance by mitigating their limitations.

C. Organization of the study
The rest of this paper is organized depending on finding the

gap from the state of the art in the recent literature review and
is described as follows: The adopted methodology is presented in
Sec. II, followed by the discussion of results and analysis of the study
in Sec. III. In addition, Sec. IV elaborates on the challenges associ-
ated with using the recent AI, ML, and DL techniques for cont-BF.
Moreover, Sec. V incorporates the potential applications of cont-BF.
Subsequently, Sec. VI concludes the article.

II. REVIEW METHODOLOGY
This section presents our methodology depending on the

defined research objectives and questions that were used for short-
listing the relevant research articles on ML algorithms for cont-BF
techniques.

A. Research objectives
The four key objectives of our article are as follows:

O1: To review the range of BF techniques and ML-based BF using
priori user data.

O2: To identify the ML techniques used specifically for cont-BF.
O3: From a practical perspective, identify the specific ML and

optimization techniques used for real-time implementation.
O4: To identify ML algorithms specifically used for the BF for low

latency, high throughput, and signal-to-interference-plus-noise
ratio (SINR).

B. Research questions
Our study aims to answer the following four research questions:

RQ1: What are the main BF techniques that use location
information?

RQ2: What are the different types of ML and AI techniques used for
cont-BF?

RQ3: What are the datasets required for classifying the cont-BF?

RQ4: How can the cont-BF models be optimized for real-time
processing?

C. Review protocol
For structuring our study, we instigated a review protocol, and

the following are the perquisites of the adopted analogy. In this
section, we discuss the search strategy, inclusion criteria, exclusion
criteria, analysis, and screening mechanisms for selecting relevant
research papers.

1. Search strategy
The most recent research papers from renowned publishing

houses like IET, Science Direct, Nature, AIP, Wiley, IEEE Xplore,
IoP Science, ACS publications, and MDPI were taken into account
during our study. We also included preprint papers from arXiv in
our search. As a result, we evaluated and critically analyzed the
gray literature (research and publications produced by organiza-
tions not usually linked with academic or commercial publishing
organizations) using the AACODS (Authority, Accuracy, Coverage,
Objectivity, Date, Significance) criteria.32

We commence by querying every database that contains vari-
ous study items. To compile our study articles, we defined keywords
like “ML,” “DL,” “BF,” “location,” “context information,” “5G,” and
“vehicular communication.” Based on the article’s title and abstract,
as well as a full-text read of the papers, the articles were scanned. To
link these keywords, we also created search strings using the Boolean
operators AND and OR.

2. Inclusion criteria
The following are the parameters used in the inclusion criteria:

1. We included only English-language articles involving the
data-driven approaches of BF using conventional and ML
techniques that were pertinent to the study issues, such as poor
data quantity and data quality.

2. We included the pertinent articles facilitating the discovery
of only low-latency BF algorithms using ML methods before
determining their eligibility.

3. We included comparative studies involving the optimization
and robustness of BF techniques designed from ML services.

4. We targeted only articles that discussed ML for BF, loca-
tion information, and publications on ML integration on
cont-BF.

3. Exclusion criteria
The following is a list of the exclusion criteria for shortlist-

ing research papers based on our research objectives and targeted
research questions.

1. English-language research articles released in other languages.
2. Research papers without a complete text version.
3. Editorials, review articles of surveys, abstracts, and short

papers concerning secondary studies are not accepted.
4. Articles that did not discuss how to combine ML techniques

with BF.
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4. Screening phase
The articles underwent a two-phase screening process. Initially,

we assessed the title and abstract of each research article to deter-
mine whether they met our inclusion criteria. In the subsequent
phase, we refined our selection based on the full text of the articles.
It is noteworthy that identical content often appeared in different
publications, such as conference papers also being present in jour-
nals. Throughout screening stage two, we considered the original
writing of each item. Survey and review papers were excluded from
our study. Ultimately, each article underwent thorough thematic
classification and evaluation.

III. RESULTS AND ANALYSIS OF THE REVIEW
This section of the paper summarizes the research articles that

are shortlisted using the defined research objectives as well as aims
to answer the predefined research questions.

A. What are the main BF techniques that use location
information [RQ:1]

With an extensive utilization of global navigation satellite sys-
tems (GNSSs), such as global positioning systems (GPS), Galileo,
and BeiDou, various BF techniques that use user location are becom-
ing exponentially important. Adaptive BF, cont-BF, and location-
assisted BF are techniques used in signal processing to improve the
quality of transmitted or received signals. Adaptive BF refers to using
real-time feedback from the received signal to continuously adjust
the BF algorithm to improve the quality of the signal. This is partic-
ularly useful in dynamic environments where the signal sources or
environmental conditions may change over time. On the other hand,
cont-BF refers to using prior knowledge about the environment to
design a BF algorithm that optimizes the signal quality in that spe-
cific environment. This prior knowledge can include information
about the location and number of signal sources, the electromag-
netic or RF properties of the environment, and other factors that can
affect the quality of the received signal. Whereas, location-assisted
BF primarily utilizes the spatial positions of user devices or anten-
nas to dynamically adjust signal directionality, aiming to optimize
signal strength and quality based on geometric relationships. These
techniques have their strengths and weaknesses.

1. Adaptive BF
An adaptive beamformer is a tool for performing adaptive spa-

tial signal processing using an array of transmitters or receivers.
The resulting electromagnetic waves add up in a way that the signal
intensity to and from a specific direction is increased. Signals from
and to other directions are combined constructively or destructively,
resulting in degradation of the signal from and to the undesired
direction. This method is utilized in both RF arrays to achieve
directional sensitivity without physically changing the receivers or
transmitters.33–35

Adaptive BF was first developed in the 1960s for military sonar
and radar applications. There are various modern applications for
BF, with commercial wireless networks such as long-term evolution
(LTE) being one of the most popular. Adaptive BF’s first applications
in the military were primarily focused on radar and electronic coun-
termeasures to counteract the effects of signal jamming. In phased

array radars, BF can be seen. These radar applications use either
static or dynamic/scanning BF; however, they are not truly adaptive.
Adaptive BF is used in commercial wireless standards such as 3GPP
LTE and IEEE 802.16 WiMAX to enable important services within
each standard.36 The concepts of wave transmission and phase rela-
tions are used in an adaptive BF system. A greater or lower amplitude
wave is formed, for example, by delaying and balancing the received
signal, using the concepts of superimposing waves.

The adaptive BF system is adaptive in real time to maximize
or minimize desirable parameters, including the SINR. There are
numerous approaches to BF design, the first of which was achieved
by Applebaum in 1965 by increasing the SNR.37 This method
adjusts the system parameters to maximize the power of the received
signal while reducing noise (jamming or interference). Widrow’s
least mean squares (LMS) error method38 and Capon’s maximum
likelihood method (MLM)39 introduced in 1969 are two further
approaches. The Applebaum and Widrow algorithms are quite sim-
ilar in that they both converge on the best option. However, these
strategies have difficulties in terms of implementation. Reed demon-
strated a technique called sample matrix inversion (SMI) in 1974.40

Unlike Applebaum and Widrow’s approach, SMI determines the
adaptive antenna weights directly.33–35

The Wiener solution41 can be used to create statistically opti-
mal weight vectors for adaptive BF in data-independent BF design
methods. On the other hand, the asymptotic second order statis-
tics of SINR were assumed. Statistics fluctuate over time in cellular
networks where the target is mobile and interferes with the cell area.
An iterative update of weights is required to follow a mobile user
in a time-varying signal propagation environment.42 This enables
the spatial filtering beam to adjust to the time-varying direction of
arrival (DoA) of the target mobile user and to provide the desired
signal to the user. To address the challenge of statistics (which can
vary over time), adaptive algorithms that adapt to changing envi-
ronments are frequently used to determine weight vectors. The
functional block diagram of an adaptive array of n elements includes
an antenna array of n elements and a digital signal processor with a
feedback and/or control loop algorithm. The signal processing unit
receives the data stream gathered by an array and computes the
weight vector using a specific control method.

On the contrary, the adaptive antenna array is divided into
two categories: (a) steady-state and (b) transient state. These two
categories are determined according to the array weights of the
stationary environment and the time-varying environment. If the
reference signal for the adaptive method is known from prior
information, the system can update the weights adaptively through
feedback.43 To change the weights of the time-varying environ-
ment at every instance, several adaptive algorithms (mentioned in
the further section) can be utilized. Figure 2 shows the block dia-
gram for adaptive BF, which consists of a digital signal processor
(DSP), RF chain, splitter, and N-phase shifter, followed by antenna
assembly along with an adaptive system providing feedback to
shifters.

2. Contextual beamforming (cont-BF)
The ability to forecast the next location of the receiver, which

is based on tracking previous movements, can be useful for cre-
ating intelligent applications like automobiles, robotics, AR/VR,
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FIG. 2. Basic block diagram of adaptive BF.

etc. The advancement of location prediction apps and services is
enabled by the growth of methodologies for predicting and pro-
jecting the receiver’s position in the future.44 A wireless system, in
general, controls a location-predicting framework by capturing and
communicating critical data before application. The sender must
be able to determine the receiver’s location at any given time to
interact effectively with them. ML methods have already been used
to predict the receiver’s location. Context is created by recording,
processing, and transcribing the receiver’s status data at a certain
time.

The majority of the existing mmWave beam tracking research
focuses on communication-only protocols. The usual beam track-
ing technique requires the transmitter to send information to the
receiver, which then determines the angular position and sends it
back to the transmitter. It is worth noting that in high-mobility com-
munication circumstances, such as the one depicted in Fig. 3, it is
not enough to merely track the beam. To meet the crucial latency
requirement, the transmitter should be capable of predicting the
beam.45 An example design with such state prediction and track-
ing using the classic Kalman filtering process is demonstrated in
Fig. 4. The antenna array at the base station is capable of adjusting
the direction of the transmitted or received beam. The mobile user
is located at a certain range (r), with specific polar (ϕ) and azimuth
(θ) angles. These angles are crucial for directing the beam toward
the user.

The Kalman filter is a recursive algorithm that estimates the
state of a dynamic system based on a series of noisy measure-
ments. In the context of beam tracking, the state we are interested
in, includes the range r and angles ϕ (polar angle) and θ (azimuth
angle), denoted as x, which we want to estimate over time.

The Kalman filter equations for a simple 2D system (tracking
ϕ and θ) can be represented as follows:

1. State Prediction:

x̂k∣k−1 = F ⋅ x̂k−1,

FIG. 4. A standard procedure of user tracking based on the Kalman filter.

2. Error Covariance Prediction:

Pk∣k−1 = F ⋅ Pk−1 ⋅ F
T
+Q,

3. Estimation:

Kk = Pk∣k−1 ⋅H
T
⋅ (H ⋅ Pk∣k−1 ⋅H

T
+ R)

−1
,

4. State Update:

x̂k = x̂k∣k−1 + Kk ⋅ (zk −H ⋅ x̂k∣k−1),

5. Error Covariance Update:

Pk = (I − Kk ⋅H) ⋅ Pk∣k−1.

Here, x̂k is the state estimate at time k (includes ϕ, θ, and
r), F is the state transition matrix, Pk∣k−1 is the predicted state
covariance, Q is the process noise covariance, Kk is the Kalman
gain, H is the measurement matrix, zk is the measurement at
time k (includes ϕ, θ, and r), and R is the measurement noise
covariance.

Some potential applications of cont-BF for 5G technology
include the following:

1. Improved coverage: cont-BF can help extend the coverage of
5G networks by focusing the transmission beam toward the

FIG. 3. Base station to vehicle scenario.
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receiver. This can help overcome obstacles such as buildings
and trees that may obstruct the signal.

2. Higher data rates: By directing the signal toward the receiver,
cont-BF can help increase the data rates of 5G networks. This
can enable faster downloads and uploads, as well as smoother
streaming of high-definition content.

3. Reduced interference: cont-BF can help reduce interference
from other devices or networks by steering the transmission
beam away from sources of interference. This can improve the
reliability and quality of 5G connections.

4. Energy efficiency: By directing the transmission beam toward
the receiver, cont-BF can reduce the amount of energy
required to transmit the signal. This can help improve the
energy efficiency of 5G networks, which is an important
consideration for mobile devices that rely on battery power.

3. Location-assisted BF
A priori information on the location of the user can enable

the system to work more efficiently. The sorting of prior infor-
mation can reduce energy footprints. As an example, the branch
predictor46 in computer architectures can improve the flow in the
instruction pipeline to achieve highly effective performance. In the
case of location-aided or location-aware BF, a similar concept has
been seen. Figure 5 shows the block diagram for predictive or
location-assisted BF consisting of a digital signal processor (DSP),
RF chain, splitter, and N-phase shifter followed by antenna assembly
along with a feedback loop providing current target user loca-
tion to shifters. Line of sight (LoS) communication in mmWave
transmission systems provides multi-gigabit data transmission with
BF toward the user direction to mitigate the substantial propagation
loss. However, abrupt performance degradation caused by human
obstruction remains a major issue; thus, using possible reflected
pathways when blocking occurs should be considered.47

The usage of location-aware BF and interference mitigation
techniques in ultradense 5G networks composed of densely scat-
tered access nodes (ANs) has been investigated in the literature.
The development of user environment area networks (UEANs) with
short distances in a packed environment results in higher levels of
signal interference, but network densification enhances the chance
of LoS and, as a result, leads to more accurate UE placement. This
enables the use of spatial dimensions by BF and interference reduc-
tion. The accuracy of radio network positioning systems currently
available is inferior to that of fiber optic communication systems in
radar stations and atomic clock-based satellite navigation systems.
Future 5G networks are expected to provide positioning accuracy
on the order of 1 m. The authors of the work of Sand et al.23 pro-
posed approaches such as weighted centroid geometric (WCG) and

FIG. 5. Basic block diagram of location-assisted BF.

a joint positioning and tracking framework based on the extended
Kalman filter (EKF) to achieve accurate and reliable 3D positioning
for industrial IoT systems where anchor locations are not precisely
known. They also suggested a position-aided BF (PABF) approach
that outperforms conventional BF in terms of initial access latency
and spectral efficiency, especially for UE moving at a speed greater
than 0.6 m/s.

The authors of the work of Sellami et al.48 proposed a neighbor-
aided localization algorithm for outdoor UEs operating in challeng-
ing channel conditions. The algorithm selects two neighbors based
on reference signal power measurement, and the BS performs BF
over an angular interval determined by the calculated distance and
angle of arrival (AoA) of the first neighbor to discover two candi-
dates for the UE post.49 The work provided location assistance (LA)
direction of departure (DoD)-based BF technique that is appro-
priate for wireless communication in high-speed rail (HSR). The
algorithm’s goal is to modify the phase at the transmitter to increase
the output SNR at the receiver. The performance of both ideal DOD
BF and approximated DOD with location error-related variation is
assessed.

The study described in Ref. 50 suggests LAMA (Location
Assisted Medium Access), a Medium Access Control (MAC) pro-
tocol based on locally shared position data for position awareness
beaconing. Their contention-free method manages to effectively
minimize interference, especially hidden-terminal type, through
coordinated spatial reuse and scales effectively with high neigh-
bor numbers. In Ref. 51, the authors implemented location-aware
BF and interference mitigation techniques in 5G ultradense radio
networks to improve the use of space. They also estimated the
positioning accuracy limitations of the user equipment using the
direction of arrival measurement processing in three-dimensional
space with metrics of the Cramer–Rao lower bound ellipsoid.

Similarly, Ref. 52 proposed a location-aware BF design for the
reconfigurable intelligent surface (RIS)-aided mmWave communi-
cation system without the channel estimation process, which took
into account the limitations of conventional channel state informa-
tion (CSI) acquisition techniques for the RIS-aided communication
system. They also created a worst-case robust BF optimization prob-
lem to counteract the impact of location inaccuracy on the BF
design.

The likelihood of positioning-aided BF systems experiencing
an outage has been investigated in Ref. 53. The authors took into
consideration the positioning error, link distance, and beamwidth to
generate closed-form outage probability constraints. They demon-
strated that the beamwidth should be maximized with the transmit
power and connection distance to reduce the likelihood of an out-
age. In Ref. 54, a DL-based location-aware predictive BF technique
was proposed to follow the beam for unmanned aerial vehicle
(UAV) communications in a dynamic environment. They developed
a long short-term memory (LSTM)-based recurrent neural network
(LRNet) to predict the UAV’s expected location, which could be
used to calculate a forecast angle between the UAV and the base
station for efficient and quick beam alignment.

In a multicell, MIMO communication system aided by opti-
cal positioning,49 a location-based energy-efficient optimization
approach for the BF matrix has been proposed. The authors
increased the system’s achievable ergodic rate by estimating the
channel coefficient matrix based on the location data. In Ref. 55,
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position-aided BF (PABF) architecture was proposed for improved
downlink communications in a cloud-oriented mmWave mobile
network. The authors demonstrated that the proposed PABF out-
performed the traditional codebook-based BF in terms of effective
transmit ratio and initial access latency, demonstrating its potential
to accommodate high-velocity mobile users.

Finally, Ref. 56 proposed an effective beam alignment solu-
tion for mmWave band communications by utilizing the mobile
user’s location data and potential reflectors. The suggested method
enabled the base station and mobile user to jointly search
a small number of beams within the error bounds of noisy
location information. Additionally, Ref. 57 proposed a method
for BF that tracked the spatial correlation of strong pathways
that were currently accessible between the transmitter and the
receiver. They demonstrated the robustness of their approach
to position information uncertainty and how it could reliably
maintain a connection with a user who was traveling along a
trajectory.

In summary, all the above-mentioned research shows the effec-
tiveness of knowing the user location, either static or on the move,
to leverage the existing cellular communications. The location infor-
mation can assist in predicting the precoding weights accurately and
eventually steering the beam in the direction of the user with low
latency and high throughput.

B. AI, ML, and DL approaches for cont-BF [RQ:2]
AI is a term that encompasses a vast array of techniques

and technologies that grant machines the ability to perform tasks
that would usually demand human intelligence, such as learning,
problem-solving, and decision-making. Within AI, there are two
primary categories: narrow or weak AI and general or strong AI.
Narrow or weak AI machines are designed to accomplish specific
tasks, while general or strong AI strives to create machines capa-
ble of performing any cognitive task a human can do. In contrast,
ML is a subfield of AI that specializes in the development of algo-
rithms and statistical models that enable machines to improve their
performance on a task over time by learning from data. ML algo-
rithms can be classified into three primary categories: supervised
learning, unsupervised learning, and reinforcement learning (RL).
In supervised learning, the algorithm is trained on labeled data,
where the correct output is already known, to forecast new out-
puts for unseen data. In unsupervised learning, the algorithm is
trained on unlabeled data to identify patterns or structures in the
data. In reinforcement learning, the algorithm learns through trial
and error, receiving feedback in the form of rewards or penalties
based on its actions. AI finds application in various domains, includ-
ing natural language processing (NLP), image recognition, and
robotics.58

Regarding BF, AI can refer to any technique that allows
machines to enhance the quality or efficiency of BF by learning
from data, making predictions or decisions based on that data,
and adapting to changing conditions. The amalgamation of BF and
AI represents a compelling advancement in signal processing and
communication systems. BF, a technique used in radio communica-
tions and signal processing, involves the direction of a signal toward
a particular location or direction. By integrating signals from mul-
tiple antennas, BF amplifies signals in the desired direction while
suppressing interference from other directions. On the other hand,

AI employs computational algorithms and computer programs that
can learn from existing data to make decisions or predictions.

By combining BF and AI, communication systems can wit-
ness remarkable improvements in their performance. AI algorithms
can scrutinize signals received by multiple antennas and determine
the optimal BF configuration for a given situation. This can result
in enhanced signal quality and reduced interference. Additionally,
AI can dynamically adjust BF parameters in response to current
environmental and signal characteristics using reinforcement learn-
ing or other AI techniques, which is particularly useful in complex
and dynamic environments where traditional BF techniques may
struggle to adapt. AI is also beneficial for optimizing BF algorithms
themselves by adjusting the parameters employed to combine signals
from different antennas. This can enhance the accuracy and effi-
ciency of the BF process, leading to more reliable communication.
Furthermore, BF and AI can significantly improve the performance
of communication systems in various applications, from cellular
networks to satellite communication systems.

Recent research has delved into AI-assisted cont-BF, which can
be optimized using AI algorithms to filter out unwanted noise from
the signal or to automatically identify the location of a sound source.
This can be accomplished by training models on datasets of sound
signals and corresponding locations and using the models to pre-
dict the location of new sound sources or to identify and remove
noise from new signals. By pointing the microphone array toward
the predicted location, sound can be captured more effectively. In
multiuser multiple-input-single-output (MISO) systems, BF is a use-
ful way to improve the quality of incoming signals. Traditionally,
finding the best BF solution has relied on iterative techniques, which
have significant processing delays and are unsuitable for real-time
applications.59 With recent advancements in DL algorithms, iden-
tifying the best BF solution in real time while taking into account
both performance and computational delay has become possible.59

This is accomplished by offline training of neural networks before
online optimization, allowing the trained neural network to identify
the optimal BF solution. This approach reduces computational com-
plexity during online optimization, requiring only simple linear and
nonlinear operations.59

Figure 6 illustrates the neural network architecture for BF,
which comprises input, hidden layers, and output to extract fea-
tures for further processing. The architecture comprises two primary
modules: the Neural Network Module and the BF Recovery Module.
The former encompasses layers such as the input layer, convolu-
tional (CL) layers, batch normalization (BN) layers, activation (AC)
layers, a flattened layer, a fully connected (FC) layer, and an out-
put layer. The latter, the BF Recovery Module, has the design of
its functional layers based on expert knowledge of BF optimization,
aiming to map the output key features from the previous module
to the BF matrix. Note that such expertise is problem-specific and
lacks a standardized form while proven to be highly useful in signif-
icantly reducing the number of variables to be predicted. A typical
example of this expert knowledge for BF is the uplink–downlink
duality.59

In complex indoor or outdoor contexts with multiple path-
ways, propagation loss, noise, and Doppler effects create additional
issues. Liu’s approach involves employing an ML regression method
based on efficient BF transmission patterns to predict the position
of users on the move, following the collection of large volumes of
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FIG. 6. Basic architecture of a deep neural network that consists of input (extracted features), hidden layers (as per required framework), output (desired results), and a feed
for postprocessing.

LoS and non-line-of-sight (NLoS) data.60 In the domain of loca-
tion estimation, the authors of the work of Bhattacharjee et al.
presented two distinct approaches for training neural networks,
one using channel parameters as features and the other using a
channel response vector, and evaluated the results using prelim-
inary computer simulations.61,62 The same group also conducted
experimental work on the localization of drones and other appli-
cation areas using different approaches.63 The authors of the work
of Wang et al. proposed a weighted loss function to enhance the
performance of localization with sparse sensor layouts, achieving an
accuracy boost of over 50%.64 We also presented results for future
location estimation of mobile users using a deep neural network
in Ref. 65.

As a typical application scenario, 5G vehicular communication
has seen cont-BF implementation using various ML and AI tech-
niques. The performance and precision of BF systems, which are
essential for efficient communication in moving situations, are to be
improved by these techniques. ML has the potential to significantly
advance 5G technology, as evidenced by the growing complexity
of constructing cellular networks. DL has demonstrated effective-
ness in ML tasks like speech recognition and computer vision, with
performance growing as more data are accessible. The prolifera-
tion of DL applications in wireless communications is constrained
by the scarcity of huge datasets. To create channel realizations
that accurately depict 5G scenarios with mobile transceivers and
objects, this study describes an approach that combines a car traf-
fic simulator with a ray-tracing simulator. Section III B 1 offers
a unique dataset along with various ML as well as AI techniques
used for examining millimeter wave beam selection methods for
car-to-infrastructure communication. The application of datasets
produced with the suggested methodology is demonstrated by
experiments including DL in classification, regression, and rein-
forcement learning problems.66 Moreover, Table I shows the perfor-
mance of different cont-BF techniques based on results from various
studies.

1. Deep learning
The extraction of valuable characteristics from input signals

and the provision of more precise predictions have been accom-
plished using DL techniques like convolutional neural networks
(CNNs) and recurrent neural networks (RNNs).67

For instance, the authors of the work of Wang et al. used DL
to simplify BF weight estimation in 5G systems.64 They developed a
channel model and trained convolutional neural networks on gen-
erated data. The networks predicted BF weights based on channel
data, reducing complexity. Results show the potential of DL for dig-
ital and hybrid BF, and performance comparison with conventional
techniques was presented.68 Moreover, Ref. 69 proposed a method
that aims to improve the performance of Random Forest, Multi-
layer Perceptron, and k-Nearest Neighbors classification models by
increasing the amount of data through synthetic data inclusion.
Their experimental results showed that the inclusion of synthetic
data improved the macro F1 scores of the models. The Random
Forest, Multilayer Perceptron, and k-Nearest Neighbors achieved
macro F1 scores of 0.9341, 0.9241, and 0.9456, respectively, which
are higher than those obtained with the original data only, thus
indicating better performances.

Reference 70 proposed a DL-based fast-BF design method
for sum rate maximization under a total power constraint. The
method was trained offline using a two-step training strategy. Sim-
ulation results demonstrated that the proposed method is fast while
obtaining comparable performance to the state-of-the-art method.
They derived a heuristic solution structure of the downlink BF
through the virtual equivalent uplink channel based on the optimum
MMSE receiver. BPNet is designed to perform joint optimization
of power allocation and virtual uplink BF (VUB) design and is
trained offline using a two-step training strategy. A DL-enabled
BF neural network (BFNN) is proposed, which can optimize the
beamformer to attain better spectral efficiency. Simulation find-
ings reveal that the proposed BFNN achieves significant perfor-
mance gain and high robustness to imperfect CSI. The proposed
BFNN greatly decreases the computational complexity compared
to conventional BF algorithms. Spectral efficiency, performance
gain, robustness to imperfect CSI, and computational complexity
(measured in floating point operations) are the main outcomes
of BFNN.71

Reference 59 proposed a BF neural network (BNN) for the
power minimization problem in multi-antenna communication sys-
tems. The BNN was based on convolutional neural networks and
the exploitation of expert knowledge. It achieved satisfactory perfor-
mance with a low computational delay. A deep fully convolutional
neural network (CNN) was used for BF, providing considerable
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TABLE I. Performance comparison of different cont-BF techniques based on results from various studies.

Technique name Description Advantages Limitations Type of data required

Geometric-based Determines the location ●Low computational cost ●Limited accuracy in ●Antenna array data
of the user using indoor environments

the arrival times of signals ●Vulnerable to multipath fading ●User location data
from multiple antennas

Channel state Uses CSI data from ●High accuracy ●Requires high-quality CSI data ●CSI data from multiple
information multiple antennas
(CSI)-based antennas to estimate ●Robustness to ●Complex algorithms ●User location data

the user’s location multipath fading
Hybrid-based Combines geometric and ●High accuracy ●Requires complex algorithms ●Antenna array data

CSI-based techniques ●Robustness to multipath ●May have high ●CSI data from multiple
to improve computational cost antennas

accuracy and robustness fading and noise ●User location data
ML-based Uses ML algorithms ●High accuracy ●Requires large amounts ●Antenna array data

to learn the relationship of training data
between antenna ●Can adapt to changing ●May have high computational ●User location data for

array data and user location environments cost during training training
DL-based Uses DL algorithms to learn ●High accuracy ●Requires even larger ●Antenna array data

amounts of training
the relationship ●Can adapt to changing ●May have high computational ●User location data for

between antenna environments cost during training data training
array data and user location ●Can handle large than ML-based techniques

amounts of data

performance gains. The CNN was trained in a supervised manner,
considering both uplink and downlink transmissions, with a loss
function based on UE receiver performance. The neural network
predicted the channel evolution between uplink and downlink slots
and learned to handle inefficiencies and errors in the whole chain,
including the actual BF phase.72 A DL model is employed to learn
how to use these signatures for predicting the BF vectors at the
base stations.31 Additionally, Ref. 31 discussed a novel integrated
ML and coordinated BF solution to support highly mobile mmWave
applications. The solution used a DL model to learn how to use sig-
natures to predict BF vectors at the base stations. This rendered
a comprehensive solution that supports highly mobile mmWave
applications with reliable coverage, low latency, and negligible
training overhead.

Reference 73 proposed a DL-based energy BF scheme for a
multi-antenna wireless powered communication network (WPCN).
We used offline training for the deep neural network (DNN) to
provide a faster solution to the real-time resource allocation opti-
mization problem. Simulation results showed that the proposed
DNN scheme provided a fair approximation of the traditional
sequential parametric convex approximation (SPCA) method with
low computational and time complexity.

2. Supervised learning
Different kinds of RF environments have been classified and

predicted using supervised learning methods like the support vector
machine (SVM) and decision trees. A modified SVM technique is

proposed for 3D MIMO BF in 5G networks. The Advanced Encryp-
tion Standard algorithm is employed for more security, and inter-
ference is reduced in two stages. The suggested ML-3DIM method
outperforms existing methods in terms of throughput, SINR, and
SNR by up to 20%, 30%, and 35%, respectively, according to simu-
lation results.74 Reference 75 investigated the ML-based BF design
in two-user MISO interference channels. It proposed an ML struc-
ture that takes transmit power and channel vectors as input and then
recommends two users’ choices between maximum ratio transmis-
sion (MRT) and zero-forcing (ZF) as output. The numerical results
showed that our proposed ML-based BF design found the best BF
combination and achieved a sum rate of more than 99.9% of the best
BF combination.

Reference 76 introduced an SVM-based approach for linear
array processing and BF. It showed how the new minimization
approach can be applied to the problem of linear BF with BER
performances of the adopted LS and SVM for various noise levels
ranging from 0 to 15 dB.

ML BF approach based on the k-nearest neighbors (k-NN)
approximation has been considered, which was trained to generate
the appropriate BF configurations according to the spatial distribu-
tion of throughput demand. Performance was evaluated statistically
via a system-level simulator that executes Monte Carlo simulations
in parallel. The ML-assisted BF framework achieved up to 5 Mbits/J
and 36 bps/Hz in terms of energy efficiency (EE) and spectral effi-
ciency (SE), respectively, with reduced hardware and algorithmic
complexity.77 BeamMaP was a BF-based ML model for position-
ing in massive MIMO systems.78 Simulation results showed that
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BeamMaP achieved Reduced Root-Mean-Squared Estimation Error
(RMSE) performance with an increasing volume of training data.
BeamMaP was more efficient and steady in the positioning system
compared with k-NN and SVM.78

Reference 79 discussed an ML method for BF at the receiver
side antennas for deploying LoS communication in satellite com-
munication (Satcom). It described how the antenna array weights
are pre-calculated for a number of beam directions and kept as a
database. The signal weights that were calculated for each array ele-
ment by using their progressive measured phase difference were due
to the arriving signal, which was given as input to a linear regres-
sion ML model, and the DoA of the signal is predicted. A method
for determining an appropriate precoder based on knowledge of
the user’s location was proposed. The proposed method involved a
neural network with a specific structure based on random Fourier
features, allowing us to learn functions containing high spatial fre-
quencies. The proposed method was able to handle both LoS and
NLoS channels.80

3. Unsupervised learning
Unsupervised learning methods like clustering and principal

component analysis (PCA) have been used to spot trends and put
related data points in one category. For instance, Ref. 81 proposes a
BF algorithm for fifth-generation and later communication systems.
The approach combines the benefits of conventional optimization-
based BF techniques with DL-based techniques. To create the initial
BF, a novel architecture is proposed, and performance is increased
by building a deep unfolding module. The entire algorithm is unsu-
pervised and trained, and simulation results demonstrate enhanced
performance and reduced computing complexity when compared to
current approaches.

Reference 82 proposed a novel unsupervised learning approach
to design the hybrid BF for any subarray structure while support-
ing quantized phase shifters and noisy CSI. No-BF codebook was
required, and the neural network was trained to take into account
the phase-shifter quantization. Simulation results showed that the
proposed DL solutions can achieve higher sum rates than existing
methods.

4. Reinforcement learning (RL)
The performance of cont-BF systems has been enhanced using

reinforcement learning techniques like Q-learning and policy gra-
dient methods.83 For instance, to make network design and main-
tenance more straightforward, a brand new intelligent algorithm
for massive MIMO BF performance optimization is proposed in
this research. To produce accurate user mobility patterns, pertinent
antenna designs, and an estimate of the effectiveness of the generated
antenna diagrams, the system uses three neural networks that apply
a deep adversarial reinforcement learning workflow. This method
has the advantage of learning independently and without requiring
big training datasets.84

The authors of the work of Sun et al. investigated the use of
deep reinforcement learning to predict coordinated BF strategy in
an ultradense network and found that the optimal solution is a bal-
anced combination of selfish and altruistic BF.85 The BF vectors
were obtained efficiently through the learned balancing coefficients.
RL-based algorithm for cognitive BF was proposed for multi-target
detection in massive MIMO (MMIMO) cognitive radars (MMIMO

CRs). The proposed RL-based algorithm outperformed the con-
ventional omnidirectional approach with equal power allocation in
terms of target detection performance. The performance improve-
ment was even more remarkable under environmentally harsh
conditions such as low SNR, heavy-tailed disturbance and rapidly
changing scenarios.86

Reference 87 proposed a blind beam alignment method based
on RF fingerprints of user equipment obtained from base stations.
They used deep reinforcement learning on a multiple-base station
cellular environment with multiple mobile users and achieved a data
rate of up to four times the data rate of the traditional method
without any overheads. Reference 88 proposed a novel multiagent
reinforcement learning (MARL) formulation for codebook-based
BF control. It took advantage of the inherently distributed structure
in a wirelessly powered network and laid the groundwork for fully
locally computed beam control algorithms. A cognitive BF algorithm
based on the RL framework is proposed for colocated MIMO radars.
The proposed RL-based BF algorithm is able to iteratively sense the
unknown environment and synthesize a set of transmitted wave-
forms tailored to the acquired knowledge. The performance of the
proposed RL-based BF algorithm is assessed in terms of probability
of detection (PD).89

Reference 90 proposed an RL approach called the com-
binatorial multi-armed bandit (CMAB) framework to maximize
the overall network throughput for multi-vehicular communica-
tions. They proposed an adaptive combinatorial Thompson sam-
pling algorithm, namely adaptive CTS, and a sequential Thomp-
son sampling (TS) algorithm for the appropriate selection of
simultaneous beams in a high-mobility vehicular environment.
Simulation results showed that both of their proposed strategies
approach the optimal achievable rate achieved by the genie-aided
solution.

5. Hybrid learning
The performance of cont-BF systems has also been improved

using hybrid methods that incorporate several ML and AI tech-
niques, such as deep reinforcement learning. To address the hybrid
BF issue in huge MIMO systems, deep reinforcement learning is
suggested. The suggested techniques reduce computing complex-
ity while achieving spectral efficiency performance that is close
to ideal.91 Hybrid BF, combining digital baseband precoders and
analog RF phase shifters, is an effective technique for mmWave
communications and massive multi-input multi-output (MIMO)
systems. ML techniques can be used to improve the achievable
spectral efficiency of hybrid BF systems. The proposed two-step
algorithm can attain almost the same efficiency as that achieved by
fully digital architectures.92

Reference 93 described the design of ML-based hybrid BF
for multiple users in systems that use mmWaves and massive
MIMO architectures. The simulation results showed that the ML-
based hybrid BF architecture can achieve the same spectral effi-
ciency (bits/sec/Hz) as the fully digital BF designs with negligible
error for both single-user and multiuser massive MIMO scenarios.
Reference 94 proposed a novel received signal strength indicator
(RSSI)-based unsupervised DL method to design the hybrid BF in
massive MIMO systems. They proposed a method to design the
synchronization signal (SS) in initial access (IA) and a method to
design the codebook for the analog precoder. They showed that the
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proposed method not only greatly increases the spectral efficiency,
especially in frequency-division duplex (FDD) communication, by
using partial CSI feedback, but also has a near-optimal sum rate and
outperforms other state-of-the-art full-CSI solutions.

Deep neural networks (DNNs) can be used to approximate
the singular value decomposition (SVD) and design hybrid beam-
formers. DNN-based hybrid BF improved rates by up to 50%–70%
compared to conventional hybrid BF algorithms and achieved a
10%–30% gain in rates compared with the state-of-the-art ML-
aided hybrid BF algorithms. The proposed approach had low time
complexity and memory requirements.95

Table II summarizes the advantages and disadvantages of
different types of ML and AI techniques used in cont-BF.

C. Datasets for cont-BF classification [RQ:3]
Researchers often need datasets that contain location data,

RF signals, and other pertinent elements to identify cont-BF
approaches. The following are a few examples of datasets that have
been applied in earlier research.

1. Vehicular networks dataset (VeND)
The University of California, Los Angeles (UCLA), created this

dataset,96 which includes observations from a vehicular network
testbed. The dataset contains data about the cars and their move-
ments in addition to details about the wireless channel, such as
the signal-to-noise ratio (SNR) and the channel impulse response
(CIR).97

Reference 98 presented a realistic synthetic dataset, covering
24 h of car traffic in a 400 km2 region around the city of Koln, in

Germany. The dataset captures both the macroscopic and micro-
scopic dynamics of road traffic over a large urban region. Incomplete
representations of vehicular mobility may result in over-optimistic
network connectivity and protocol performance.

2. 5G-VICTORI
This is a project financed by the European Union that aims to

create 5G technologies for a range of applications, including vehic-
ular communication. With regard to vehicular communication, the
project has created a number of datasets, including assessments of
the RF channel and network performance in practical settings.99

Reference 100 discusses how the new 5G network technol-
ogy would impact the digitalization of various industries, includ-
ing modern railway transportation. The Future Railway Mobile
Communication System (FRMCS) service requirements and sys-
tem principles were well-mapped to 5G concepts, but deployment
paradigms needed to be established to prove their effectiveness. The
5G-VICTORI project aimed to deliver a complete 5G solution for
railway environments and FRMCS services, and this paper discusses
the key performance indicators and technical requirements for an
experimental deployment in an operational railway environment in
Greece.

3. 5G-EmPOWER
This EU project aims to develop 5G technology for a range

of applications, including vehicular communication. With regard
to vehicular communication, the project has created a number of
datasets, including assessments of the RF channel and network
performance in practical settings.101

TABLE II. Table summarizing the different types of ML and AI techniques used in cont-BF.

Technique name Description Advantages Limitations

Supervised learning algorithm
Support vector machines that learns a decision boundary ●Can handle high-dimensional data ●May overfit with noisy or
(SVM) between classes ●Effective in binary classification tasks imbalanced data

Ensemble learning method that ●Can handle high-dimensional data
combines multiple decision trees ●Can handle missing or noisy data ●May overfit with noisy or

Random forest to improve performance ●Can provide feature importance measures imbalanced data

●May require large amounts of
Neural network architecture ●Highly effective for image and signal training data

Convolutional neural that uses convolutional layers to processing tasks ●Maybe computationally
networks (CNN) extract features from input data ●Can learn complex spatial patterns expensive

Neural network architecture that ●May be prone to vanishing or
can process sequential data by ●Effective for time-series data and natural exploding gradients

Recurrent neural maintaining a memory of past language processing tasks ●May require large amounts of
networks (RNNs) input ●Can handle variable-length inputs training data

Learning paradigm in which an ●May require significant
agent learns to make decisions ●Can adapt to changing environments computational resources

Reinforcement learning through trial and error in an ●Can handle complex decision-making ●May require careful tuning
(RL) environment tasks of hyperparameters
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3GPP is embracing the concept of Control-User Plane Separa-
tion, a cornerstone concept in software-defined network (SDN) in
the 5G core and the Radio Access Network (RAN). An open-source
SDN platform for heterogeneous 5G RANs has been introduced,
which builds on an open protocol that abstracts the technology-
dependent aspects of the radio access elements. The effectiveness of
the platform has been assessed through three reference use cases:
active network slicing, mobility management, and load-balancing.101

4. Network simulator 3 (ns-3)
Network Simulator 3 (ns-3) is an open-source network simula-

tor that is useful for simulating and modeling vehicular communica-
tion in 5G networks. In addition to mobility models for simulating
the movement of vehicles, ns-3 has various built-in modules for
modeling the wireless channel.102

Reference 103 presents a framework for the ns-3 network sim-
ulator for capturing data from inside an experiment, subjecting it
to mathematical transformations and ultimately marshalling it into
various output formats. The application of this functionality is illus-
trated and analyzed via a study of common use cases. The design
presented provides lessons transferrable to other platforms.

5. Connected automobiles and cities
The National Renewable Energy Laboratory (NREL) created

this dataset, which contains information from a field investigation
of connected automobiles in a smart city setting. The dataset con-
tains details about, among other things, network performance, traffic
flow, and vehicle trajectories.104

In Ref. 105, big data from the cellular network of the Voda-
fone Italy Telco operator can be used to compute mobility patterns
for smart cities. Five innovative mobility patterns have been exper-
imentally validated in a real industrial setting and for the Milan
metropolitan city. These mobility patterns can be used by policy-
makers to improve mobility in a city, or by Navigation Systems and
Journey Planners to provide final users with accurate travel plans.

6. DeepSense6G
DeepSense 6G is a collection of data that includes different

types of sensing and communication information, such as wireless
communication, GPS, images, LiDAR, and radar. These data were
gathered in real-life wireless environments and represent the world’s
first large-scale dataset of this kind. The dataset contains over one
million samples of this multimodal sensing-communication data
and was collected in over 30 different scenarios to target various
applications. The collection of data was done at several indoor and
outdoor locations with high diversity and during different times of
the day and weather conditions. Additionally, there are tens of thou-
sands of data samples that have been labeled both manually and
automatically.

The authors of Ref. 106, present the DeepSense 6G dataset,
which is a large-scale dataset based on real-world measurements
of co-existing multimodal sensing and communication data. The
DeepSense dataset structure, adopted testbeds, data collection and
processing methodology, deployment scenarios, and example appli-
cations are detailed in the paper. The paper aims to facilitate the
adoption and reproducibility of multimodal sensing and communi-
cation datasets. The researchers107 had a 400 GB dataset containing
hundreds of thousands of WiFi transmissions collected “in the wild”

with different signal-to-noise ratio (SNR) conditions and over dif-
ferent days. They also had a dataset of transmissions collected using
their software-defined radio testbed, and a synthetic dataset of LTE
transmissions under controlled SNR conditions.

7. SUMO
The Simulation of Urban MObility (SUMO) is an open-source

traffic simulation software that allows modeling and simulating
traffic flow in urban areas. It can simulate individual vehicles, pedes-
trians, public transportation, and various road networks. SUMO has
a variety of applications, including traffic planning, intelligent trans-
portation systems, and autonomous driving. A synthetic dataset
generator was developed to support research activities in mobile
wireless networks. The generator uses traces from the SUMO sim-
ulator and matches them with empirical radio signal quality and
diverse traffic models. A dataset was created in an urban scenario
in the city of Berlin with more than 6 h of duration, containing more
than 40 000 UEs served by 21 cells.108

D. Miscellaneous datasets
1. 5G3E dataset

Reference 109 introduced the 5G3E dataset, designed to con-
tain thousands of time series related to the observation of multiple
resources involved in 5G network operation. This dataset was specif-
ically created to support 5G network automation, encompassing a
variety of collected features ranging from radio front-end metrics
to physical server operating system and network function metrics.
The testbed associated with the dataset was deployed to facilitate the
generation of traffic, starting from real traffic traces of a commercial
network operator.

2. 5G trace dataset
Another dataset is the 5G trace dataset from a significant

Irish mobile operator introduced by Ref. 110. This paper presents
a 5G trace dataset collected from a major Irish mobile opera-
tor. The dataset was generated from two mobility patterns (static
and car) and across two application patterns (video streaming
and file download). The dataset was composed of client-side cel-
lular key performance indicators (KPIs) comprised of channel-
related metrics, context-related metrics, cell-related metrics, and
throughput information. Additionally, the authors provided a 5G
large-scale multicell ns-3 simulation framework to supplement our
real-time 5G production network dataset. This framework allowed
other researchers to investigate the interaction between users con-
nected to the same cell through the generation of their synthetic
datasets.

3. SPEC5G dataset
Reference 111 curated SPEC5G, the first publicly accessible

5G dataset for natural language processing (NLP) research. The
dataset contains 134 × 106 words in 3 547 587 phrases taken from
13 online websites and 13 094 cellular network specs. The authors
utilized this dataset for security-related text categorization and sum-
marization by utilizing large-scale pre-trained language models.
For protocol testing, pertinent security-related attributes were also
extracted using text classification techniques. Additionally, Ref. 112
presented a novel mobility dataset generation method for 5G net-
works based on users’ GPS trajectory data. It aggregated the user’s
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GPS trajectories and modeled his location history by a mobility
graph representing the cell base stations he passed through. The gen-
erated dataset contained the mobility graph records of 128 users. The
user mobility dataset for 5G networks based on GPS geolocation is
valuable for predicting user mobility patterns.

4. Labeled dataset for 5G network
In another study, Ref. 113 discussed a methodology for collect-

ing a labeled dataset for a 5G network. It described how to build a
5G testbed and use it to collect data. This dataset can then be used
to construct a 5G-based labeled dataset. A 5G testbed was built to
observe 5G network features by replaying the collected data. A spe-
cialized network collector system was implemented to collect 5G
edge network traffic data. A re-collecting methodology using the
proposed 5G testbed and network collector can be used to construct
a 5G-based labeled dataset for supervised learning methods.

5. 5G users measurement campaign
Moreover, Ref. 114 utilized the results from a publicly available

measurement campaign of 5G users and analyzed various figures of
merit. The findings indicated that the downlink and uplink rates for
static and mobile users can be represented by either a lognormal or
a generalized Pareto distribution. Moreover, the time spent in the
same cell by a mobile (driving) user was observed to be best captured
by a generalized Pareto distribution. Additionally, the prediction of
the number of active users in the cell was found to be feasible.

6. 5G tracker
Furthermore, Ref. 115 discusses a crowdsourced platform

called 5G Tracker that includes an Android app to record passive
and active measurements tailored to 5G networks and research. It
has been used for over 8 months and has collected over 4 × 106

data points. The platform is useful for building the first-of-a-kind,
interactive 5G coverage mapping application. 5G Tracker is a crowd-
sourced platform to enable research using commercial 5G services.
5G performance is affected by several user-side contextual factors,
such as user mobility level, orientation, weather, location dynamics,
and environmental features. 5G Tracker has been used to collect over
4 × 106 data points, consuming over 50 TB of cellular data across
multiple 5G carriers in the United States.

7. Mobile edge computing in 5G
Moreover, bringing computational and storage technologies

closer to end users with strategically deployed and opportunis-
tic processing and storage resources, mobile edge computing in
the 5G network was developed by Ref. 116 as a very attractive
computation architecture. This paper used data mining and statis-
tical methods to analyze Baidu website data. The analysis results
gave suggestions to improve the design and development of 5G
services. Data mining and statistical analysis of Baidu cloud ser-
vices in the 5G network revealed that clustering, outlier detec-
tion, prediction, and statistical methods can be used to eval-
uate smart city services. The analysis results provided insights
into the design and development of 5G services (API website).
The findings suggested that mobile edge computing in 5G net-
works can be used to improve the performance of smart city
services.

8. 5G+ industrial Internet
Finally, Ref. 117 discusses a project to collect “three-level” edge

layer data from equipment manufacturers, equipment users, and
spare parts manufacturers. The goal was to establish a unified data
standard and help companies build general services around equip-
ment data. 5G+ Industrial Internet is used to collect data from three
levels of edge layers: spare parts manufacturers, equipment manu-
facturers, and equipment users. Data are assimilated and unified into
a single standard. A large-scale and shallow informatization project
of incremental equipment is implemented in the Yangtze River Delta
in a short period of time.

Moreover, Table III lists a few 5G datasets consisting of channel
state information (CSI), phase, received power, etc., that can be used
for user localization.

E. Optimization techniques for cont-BF [RQ:4]
While using AI-based techniques, system optimization is a cru-

cial step. AI-based cont-BF models can be optimized using various
strategies to ensure real-time processing. One method to accelerate
computations is through hardware acceleration techniques like GPU
processing. Additionally, by using pre-trained models or reducing
the number of parameters in the model design, the model can be

TABLE III. Table listing datasets related to user location.

Dataset name Source Characteristics

IEEE 802.11n channel measurement IEEE 802.11n working group Channel state information (CSI) from multiple antennas

KTH localization dataset KTH Royal Institute of Technology Received signal strength (RSS) and angle of arrival (AoA)
from multiple antennas ground truth location data

CSI-hotel dataset University of California, Santa Barbara CSI data from multiple antennas in an indoor environment

DeepMIMO dataset New York University Synthetic data generated by a ray-tracing tool for a variety of
scenarios, including urban and indoor environments

iNEMO dataset STMicroelectronics Acceleration, magnetic field, and angular velocity data, along
with ground truth location data
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optimized. To decrease the model size and boost computational
effectiveness, techniques like pruning, quantization, and knowledge
distillation can be applied. Improving the feature extraction and
input data preprocessing phases can also help with real-time pro-
cessing. Creating specialized algorithms and optimization strategies
adapted for certain hardware and deployment conditions can also
enhance the performance of cont-BF models.

Figure 7 shows some of the possible ways to optimize cont-BF
models for real-time processing, which are explained in detail below.

1. Model simplification
Simplifying the model architecture, such as reducing the num-

ber of layers or the number of neurons in each layer, can improve
computational efficiency and reduce processing time. For instance,
research suggests a strategy that uses ML and hardware performance
counter data to optimize power and performance for GPU-based
systems. The model can accurately detect power-performance bot-
tlenecks and provide optimization techniques for a variety of sophis-
ticated compute and memory access patterns. The model, which has
been validated on NVIDIA Fermi C2075 and M2090 GPUs as well
as the Keeneland supercomputer at Georgia Tech, is more reliable
and accurate than existing GPU power models.118

2. Hardware acceleration
Dedicated hardware, such as graphics processing units (GPUs),

field-programmable gate arrays, or application-specific integrated
circuits, can speed up the processing of cont-BF models by perform-
ing parallel computations. To determine the direction of incoming
signals, BF is a signal processing technique that combines signals
from a number of receivers. Although it overcomes noise interfer-
ence, adaptive BF (ABF) is computationally expensive. In current
GPUs, ABF can be implemented in parallel. ABF can be parallelized

FIG. 7. Optimization techniques for cont-BF.

on an NVIDIA GPU using the author’s method, which has a lower
throughput than serial implementation but can still be improved.119

3. Optimization techniques
Various optimization techniques, such as weight pruning,

quantization, and knowledge distillation, can be applied to cont-BF
models to reduce their computational complexity and memory foot-
print without significant loss in accuracy. This research120 explores
the use of the deep neural network (DNN) model as the teacher
to train recurrent neural networks (RNNs), specifically long short-
term memory (LSTM), for automated voice recognition (ASR).
The method successfully trains RNNs without the use of addi-
tional learning methods, even with a small amount of training
data.

4. Preprocessing and postprocessing
Preprocessing the input data to reduce its dimensionality or

complexity, and postprocessing the output data to refine the results
or reduce noise can help improve the performance and efficiency
of cont-BF models. With the use of DL, a low-complexity precod-
ing design approach for multiuser MIMO systems is suggested in
Ref. 121. The suggested method uses methods such as input dimen-
sionality reduction, network pruning, and recovery module com-
pression to produce a performance that is comparable to the con-
ventional WMMSE algorithm with relatively little computational
cost.

5. Real-time learning
Using online or incremental learning algorithms instead of

offline or batch learning can enable cont-BF models to adapt to
changing conditions in real time and reduce the need for frequent
retraining. In Ref. 122, two adaptive learning approaches such as
ADAM and RAL are proposed for the real-time detection of network
assaults in Internet network traffic. These methods achieve excellent
detection accuracy even in the presence of idea drifts by dynami-
cally learning from and adapting to nonstationary data streams while
lowering the demand for labeled data.

6. Model parallelism
Breaking the model into smaller sub-models and processing

them in parallel can improve the overall processing speed of cont-BF
models. This can be done using techniques such as data paral-
lelism or model parallelism. This approach focuses on model and
data parallelization, which addresses distributed ML architecture
and topology, analyses ML algorithms, and provides suggestions for
parallelization.123 The specific needs and demands of communica-
tions networks, such as resource allocation and trade-offs between
privacy and security, are not addressed.

7. Early termination
Stopping the model’s processing early when a certain thresh-

old is reached can reduce unnecessary computation, especially in
cases where the output has already converged. Reference 124 pro-
motes early pausing before convergence to prevent overfitting and
suggests the use of cross-validation to detect overfitting during neu-
ral network training. The study uses multilayer perceptrons with
resilient backpropagation (RPROP) training to assess the effective-
ness and efficiency of 14 distinct automatic stopping criteria from

APL Mach. Learn. 2, 016113 (2024); doi: 10.1063/5.0176422 2, 016113-15

© Author(s) 2024

 15 April 2024 08:59:29

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

three classes for a variety of activities. The findings indicate that
slower stopping criteria slightly improve generalization, although
the training time often increases by a factor of four.

The choice of optimization techniques will depend on the spe-
cific requirements of the application and the constraints of the
hardware platform. A combination of these techniques can be used
to achieve the best balance between performance and efficiency for
the real-time processing of cont-BF models.

IV. CHALLENGES ASSOCIATED WITH USING AI, ML
AND DL TECHNIQUES FOR CONT-BF

Cont-BF is a technique used in signal processing and communi-
cation systems to improve the quality of sound or data transmission
by focusing the transmitted or received signals in a specific direc-
tion or area of interest. ML techniques have been increasingly used
to optimize the performance of cont-BF systems. However, there
are several challenges associated with using ML techniques for
cont-BF:

1. Lack of training data: ML techniques require a large amount
of data to be trained effectively. However, in cont-BF, it may
be difficult to collect enough data that accurately represent the
various environments and scenarios in which the system will
be used. This can result in underfitting or overfitting of the
model, leading to poor performance.

2. Complexity of the models: ML models used for cont-BF
can be quite complex, with many parameters that need to
be tuned. This can make the training process difficult and
time-consuming and can also increase the risk of overfitting.

3. Robustness to environmental changes: Cont-BF systems
need to be robust to changes in the environment, such as
changes in noise levels or the location of sound sources. ML
models may not be able to adapt to these changes quickly
enough, resulting in reduced performance.

4. Limited interpretability: ML models can be difficult to inter-
pret, which can make it hard to understand why the system is
behaving in a certain way or to diagnose problems when they
occur.

5. Limited generalizability: ML models trained on one set
of data may not generalize well to other datasets or envi-
ronments. This can limit the applicability of the system in
real-world scenarios.

Table IV compares the computational complexity and process-
ing time of different cont-BF models. To address these challenges,
researchers are exploring new techniques such as transfer learning,
which involves pretraining models on large datasets and then fine-
tuning them on smaller, task-specific datasets. They are also working
on developing more interpretable ML models and incorporating
robustness and adaptability into the models.

These challenges have been discussed in several research
papers, including the following:

Reference 125 proposes a novel approach to enhance the fea-
ture engineering and selection (eFES) optimization process in ML.
eFES was built using a unique scheme to regulate error bounds
and parallelize the addition and removal of a feature during train-
ing. Results showed the promising state of eFES as compared to
the traditional feature selection process. A weak convolutional net-
work can be used to provide rough label maps over the neigh-
borhood of a pixel. Incorporating this weak learner in a bigger
network can improve the accuracy of state-of-the-art architec-
tures. The approach in Ref. 126 is generic and can be applied to
similar networks where contextual cues are available at training
time.

A multicriteria technique has been developed that allows for
the control of feature effects on the model’s output. Knowledge
functions have been integrated to accommodate for more complex
effects and local lack of information. A DL training process that
was both interpretable and compliant with modern legislation has

TABLE IV. Table comparing the computational complexity and processing time of different cont-BF models.

Model
Computational

complexity
Processing

time Advantages Limitations

Linear BF Low Fast ●Simple to implement Cannot perform well in non-line-of-sight
●Low computational complexity environments

Maximum ratio transmis- Low Fast ●Simple to implement Cannot perform well in interference-limited
sion (MRT) ●Low computational complexity environments

Minimum variance distor High Slow ●Provide better performance in Computationally intensivetionless response (MVDR) non-line-of-sight environments

Neural network-based BF High Slow
●Learn complex nonlinear rela-
tionships between inputs and Require significant computational resources
outputs for training

High Slow
●Adapt to changing environ-

Reinforcement ments and optimize performance Require significant computational resources
learning-based BF through trial and error and careful tuning of hyperparameters
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been developed by Ref. 127. Reference 128 proposed a technique to
improve the interpretability in transfer learning tasks by defining
interpretable features. They examined the interpretability of trans-
fer learning by applying a pre-trained model with defined features
to Korean character classification. Feature Network (FN) consists
of a Feature Extraction Layer and a single mapping layer that con-
nects the features extracted from the source domain to the target
domain.

Reference 129 proposed an actor-critic model that allowed bet-
ter generalization across goals and scenes. AI2-THOR framework
enabled agents to take actions and interact with objects, allowing
for efficient collection of training samples. The model converged
faster than state-of-the-art deep reinforcement learning methods,
generalized to real robot scenarios with minimal fine-tuning, and is
end-to-end trainable.

As we forge ahead, it is paramount to establish a symbiotic
relationship between AI, ML, and DL and the practical require-
ments of cont-BF systems. This involves a nuanced understanding
of the limitations and capabilities of these techniques, innovative
research to mitigate challenges, and a continuous quest for adapt-
able, interpretable, and robust solutions. Ultimately, the journey
toward seamless integration of AI-driven cont-BF stands as an excit-
ing endeavor, marked by ongoing research and the promise of
transformational impact across diverse domains.

V. OUR CONTRIBUTIONS TO LOCALIZATION AND BF
In the pursuit of optimizing wireless communication perfor-

mance, our research emphasizes the significance of optimal BF. This
section showcases the high-level contexts of our research and we
invite interested readers to refer to our original publications for
detailed further reading.

The primary objective of BF is to strike a balance, maxi-
mizing the transmit power for individual users while minimizing
interference for others. We specifically explore the effectiveness of
the maximum ratio transmission (MRT) BF technique within a
multiuser multiple-input multi-output (MU-MIMO) system. Our
findings, detailed in Ref. 130, showcase a remarkable enhancement
in signal-to-interference-plus-noise ratio (SINR), reaching up to
28.83 dBm or 53% (shown in Fig. 8), compared to scenarios with-
out BF. This section aims to underscore the effectiveness of BF
techniques, particularly MRT, in elevating wireless communication
performance.

We have also published some of the work in context to local-
ization in Refs. 65 and 130–132. These works show how location
datasets can be extracted through ray-tracing tools and how data can
be utilized for location prediction using deep neural networks (refer
to Fig. 9).

Anticipating the growing demand for wireless communication
in the era of 5G, our research delves into the BF performance for
mobile users in large cells with effective channel throughput. Uti-
lizing the Glasgow University campus model, we estimate channel
properties under various BF techniques, including maximum ratio
transmission (MRT) for the transmitter and Equal Gain Combin-
ing (EGC), Selection Combining (SC), and Max Ratio Combining
(MRC) for the receiver in 3GPP long-term evolution (LTE). The
implementation of these BF techniques yields an average through-
put improvement from 9 Mbps to 14 Mbps. Notably, MRT-MRC

FIG. 8. SINR comparison of MRT with No-BF in university campus scenario.

demonstrates the best throughput/SINR in comparison to scenarios
without BF.130

Addressing the need for precise user localization in the context
of accelerated data transmission, our study introduces an accurate

FIG. 9. Location estimation and error between the true location and estimated
location.
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localization algorithm for mobile users. Leveraging deep neural net-
works with Bayesian optimization and a communication channel
operating at a frequency of 3.75 GHz, our model accelerates the
localization process. In computer simulations, our method achieves
localization accuracy of less than 1-m error for LoS users, with
potential further improvement through higher-rate datasets.65 This
paper introduces a methodology for implementing deep neural
networks (DNNs) in localization. The precise estimation of the
position of a user’s equipment (UE) is achieved through the utiliza-
tion of channel information and 25 multipath components (MPCs).
In this investigation, the DNN is trained using supervised learn-
ing approaches, facilitated by synthetic data. The study focuses on
a static case, and future research endeavors will delve into more
dynamic scenarios, encompassing elements such as foliage and
water bodies, for a more comprehensive and realistic environmental
analysis.

Furthermore, in the evolving landscape of next-generation
wireless networks, we explore the potential use of unmanned
aerial vehicles (UAVs) as aerial base stations. Our objective is to
assess the feasibility of UAVs as flying base stations, particularly
in scenarios with fixed base stations at the University of Glas-
gow, UK. Ray-tracing simulations indicate the potential benefits
of UAV-aided base stations (UAV-BSs) for 5G network commu-
nication, including capacity expansion in metropolitan regions,
improved coverage in rural areas, and network densification.132 In
this research, we employed ray-tracing simulations to assess the
performance of UAV-aided wireless communications. Our study
showcased the advantages of utilizing UAV-assisted networks for
enhanced coverage compared to fixed base stations (BSs). Addi-
tionally, we simulated a more densely populated scenario and
presented the effectiveness of our proposed framework. The eval-
uation incorporates performance parameters, specifically received
power, to gauge the utility of UAVs in wireless communication.
Similarly, our findings reveal a substantial 70% overall increase in
throughput when employing BF techniques compared to scenarios
without BF.

A distinctive aspect of our research involves the integration
of programming protocol-independent packet processors (P4) for
in-network computing, coupled with programmable data planes.
P4 is a domain-specific programming language designed to spec-
ify the behavior of packet processing devices, enabling the creation
of programmable and flexible network devices. This emerging net-
work paradigm presents significant opportunities to reduce both
complexity and latency in network operations.

In our paper, recognizing the crucial role of BF in modern
wireless communication systems, we propose a novel user-assisted
in-network method to optimally approximate the angle of arrival.
This approach is implemented in P4 and runs on a Tofino ASIC, tak-
ing advantage of programmable data planes and their match-action
table (MAT) logic.

Our method operates by expecting periodic location messages
reported by the user equipment, processing them within the net-
work, and dynamically reconfiguring base station antennas accord-
ingly. This introduces a user-assisted in-network beam control
mechanism, optimizing the angle of arrival approximation. We have
conducted extensive evaluations to establish a theoretical bound on
the absolute error of the proposed MAT-based angle approximation,
aligning well with empirical error distributions.

FIG. 10. System architecture of location-assisted BF.133

Importantly, our proposed method demonstrates minimal
impact on errors attributed to control cycle times and user move-
ment speeds. This ensures effective resource usage without imposing
significant per-stage resource overhead on the data plane pipeline.
The detailed findings and methodology are discussed in our paper,
and more in-depth information can be found in the work of
Mallouhi et al.133

Figure 10 illustrates the segmented network scenario under
consideration in this study. Mobile users are connected to the 5G
network and indirectly linked to switches within the access aggre-
gation network through core network protocols. Certain switches
within this network are assumed to be P4-programmable. In this
setup, the mobile user periodically transmits its GPS location to a P4
switch. Subsequently, the P4-switch calculates the angle of the user
equipment (UE) concerning the corresponding base station and dis-
patches a configuration message to the base station, instructing it to
adjust the beam toward the UE. We believe that this user-assisted in-
network method has the potential to diminish control latency and
enhance beam steering more seamlessly and rapidly compared to
conventional approaches.

VI. CONCLUSION AND FUTURE WORK
A. Conclusion

In this study, we have provided an overview of advanced
adaptive BF, incorporating AI techniques such as DL. Importantly,
we have demonstrated that with access to contextual information,
such as prior user location, DL techniques can enhance a wire-
less network’s performance. As exciting new technologies continue
to develop, we anticipate that the next generation of mobile net-
works will unlock new opportunities. Communication systems are
poised to evolve into closed-loop systems, where data extracted
from observing a mobile user will be exploited to improve connec-
tivity and network performance. We have touched upon ongoing
studies that aim to harness a user’s location and develop a
DL-enabled cont-BF strategy, projecting future improvement.
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Our work not only contributes to the field of adaptive BF and
AI applications but also has implications for the broader research
community. Integration of DL techniques into communication sys-
tems opens avenues for interdisciplinary collaboration between
researchers in telecommunications and artificial intelligence. This
cross-disciplinary approach is essential for addressing the complex
challenges posed by evolving mobile networks.

B. Limitations and future work
While the research surveyed here and the demonstration of

our study presented promising results, it is essential to acknowl-
edge potential limitations. The effectiveness of DL-enabled cont-BF
strategies may be influenced by factors such as network hetero-
geneity, varying user mobility patterns, and dynamic environmental
conditions. Addressing these challenges will be crucial for the suc-
cessful implementation of such strategies in real-world scenarios.
Consequently, our work sets the stage for future research, with a
focus on the following aspects combining the analysis provided in
previous sections.

1. DL-enabled cont-BF development: We propose further
research to develop DL-enabled cont-BF strategies, with a
future aim to improve SINR beyond the scope presented in
this paper.

2. Real-world validation: Future studies should explore real-
world deployments and extensive field trials to validate the
effectiveness of DL-based approaches in dynamic and diverse
operational environments.

3. Adaptation to emerging technologies: As technologies con-
tinue to evolve, future work should address the integra-
tion of DL approaches with emerging technologies, ensuring
adaptability and enhanced performance.

4. Privacy-preserving techniques: Recognizing the importance
of user privacy, future research should delve into the devel-
opment of robust privacy-preserving techniques within DL-
enabled cont-BF.

By pursuing these future research directions, we invite the
research community to aim to contribute to the ongoing evolution
of mobile networks, fostering innovation and advancements in the
realm of adaptive BF and AI applications.
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