

Alasmari, O. A., Singer, J. and Bikanga Ada, M. (2024) Do Current Online
Coding Tutorial Systems Address Novice Programmer Difficulties? In: 15th
International Conference on Education Technology and Computers (ICETC '23),
Barcelona, Spain, 26-28 Sep 2023, pp. 242-248. ISBN
9798400709111 (doi: 10.1145/3629296.3629333)

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

© 2023 Copyright held by the owner/author(s). This is the author's version of the
work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in ICETC '23: Proceedings of the 15th
International Conference on Education Technology and Computers
https://doi.org/10.1145/3629296.3629333

https://eprints.gla.ac.uk/317293/

Deposited on: 16 February 2024

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/52943.html
http://eprints.gla.ac.uk/view/author/15034.html
http://eprints.gla.ac.uk/view/author/48626.html
https://doi.org/10.1145/3629296.3629333
https://doi.org/10.1145/3629296.3629333
https://eprints.gla.ac.uk/317293/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Do Current Online Coding Tutorial Systems Address Novice
Programmer Difficulties?

Ohud Alasmari
School of Computing Science,

University of Glasgow
Glasgow, United Kingdom
o.alasmari.1@research.gla.ac.uk

Jeremy Singer
School of Computing Science,

University of Glasgow
Glasgow, United Kingdom
jeremy.singer@glasgow.ac.uk

Mireilla Bikanga Ada
School of Computing Science,

University of Glasgow
Glasgow, United Kingdom

mireilla.bikangaada@glasgow.ac.uk

ABSTRACT
Mastering programming skills is a multifaceted challenge, partic-
ularly for novice learners. While abundant existing literature ex-
amines students’ learning obstacles and proposes potential reso-
lutions—predominantly through questionnaire-based methodolo-
gies—this study presents a fresh perspective. This paper focuses
on identifying programming learning impediments as presented in
the literature, paired with an exploration of the supportive features
intrinsic to online coding platforms that could potentially mitigate
these difficulties. The findings reveal that several of these online
coding systems lack crucial features that could effectively address
the learning difficulties experienced by novice programmers. This
lack stresses an urgent call to create more robust and learner-centric
environments that better facilitate the acquisition of programming
skills for beginners, thus bridging the identified gap in the existing
pedagogical tools.

CCS CONCEPTS
• Applied computing→ Interactive learning environments.

KEYWORDS
computer programming, difficulties, learning, online coding tool.
ACM Reference Format:
Ohud Alasmari, Jeremy Singer, and Mireilla Bikanga Ada. 2023. Do Current
Online Coding Tutorial Systems Address Novice Programmer Difficulties? .
In The 15th International Conference on Education Technology and Computers
(ICETC 2023), September 26–28, 2023, Barcelona, Spain. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3629296.3629333

1 INTRODUCTION
Learning to program is a complex task. Learners from diverse ed-
ucational backgrounds face considerable difficulties learning how
to code [5]. Recently, various web-based online systems have been
developed to introduce novices to programming concepts, helping
to overcome learning difficulties through a range of pedagogical
methods [16]. Generally, learners benefit from programming and
problem-solving in easy, accessible, and appropriate online systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICETC 2023, September 26–28, 2023, Barcelona, Spain
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0911-1/23/09. . . $15.00
https://doi.org/10.1145/3629296.3629333

that support effective learning approaches [24]. Kim and Ko [16]
classify online programming learning environments into five cate-
gories: interactive platform; web reference platform; educational
games system; creative platform; and, massive open online course.
Many people use these platforms to learn, whether independently
or as part of an organized study group. However, few studies focus
on understanding the effectiveness of such learning environments.
This research focuses entirely on Online Coding Tutorial Systems.
These systems adopt many of the features that have been identified
in Kim and Ko’s first category of interactive platforms, along with
some aspects of their creative platforms and MOOCs [16]. In detail,
online coding tutorial systems are web-hosted, browser-mediated
systems that enable learners to explore coding content through a
series of structured coding tutorials [9] with an embedded, inter-
active interpreter shell known as a Read-Eval-Print loop (REPL),
where learners can practice coding by typing fragments of source
code into the browser window, running the code, seeing the output,
and inspecting error messages as appropriate. There is an intuitive
appeal to online coding relative to more traditional software devel-
opment environments like Visual Studio. In an online setting, there
are no requirements for local installation and no platform com-
patibility issues. All execution takes place either server-side or in
the local browser JavaScript runtime, with appropriate sandboxing.
Online interpreters are easily embedded in programming language
websites, MOOCs, and other learning resources. This builds on
the recent trend of programming playgrounds as popularized by
Apple’s Swift language.

The current work aims to identify system features that assist
learners in overcoming programming learning difficulties and to
investigate whether current online coding tutorial systems provide
these features. To summarize the findings of this research: (1) There
are a set of challenges that have been faced by novices who are
learning to code; (2) In programming education research, several
possible solutions have been suggested to overcome the identified
problems; (3) The current online coding tutorial systems provide
some recognized novice support features, but many such features
(e.g., underlining syntax errors, visual maps, code auto-completion)
are missing from all the selected systems.

2 RELATEDWORK
Several literature reviews related to investigating programming
learning challenges, identifying supportive features, and analyzing
online coding learning platforms have been previously published.

o.alasmari.1@research.gla.ac.uk
jeremy.singer@glasgow.ac.uk
mireilla.bikangaada@glasgow.ac.uk
https://doi.org/10.1145/3629296.3629333
https://doi.org/10.1145/3629296.3629333

ICETC 2023, September 26–28, 2023, Barcelona, Spain Ohud Alasmari, Jeremy Singer, and Mireilla Bikanga Ada

2.1 Systematic surveys of programming
challenges to learners and solutions

Kader et al. [15] published an article related to difficulties in teach-
ing and learning programming. The aim of this paper is to identify
the factors that lead to difficulties and challenges in learning com-
puter programming for novice students and suggest strategies for
addressing these issues. The main contribution of this paper was
assisting computer science educators to improve their teaching
approaches for basic programming courses, enhance students’ in-
terest, and increase students’ performance in programming subjects.
In addition, Quian et al. [28] published a review of students’ mis-
conceptions and other difficulties in introductory programming.
The focus of this paper was to review relevant literature on general
definitions of misconceptions and studies about students’ miscon-
ceptions and other difficulties in introductory programming. This
review aimed to explore the factors that contribute to the difficulties,
and strategies and tools to address them, including misconceptions,
were discussed.

Ahmad et al. [1] also published a review of literature focusing on
programming teaching and learning by addressing issues and chal-
lenges in the context of introductory programming at the tertiary
level. The main objective of this article was to propose a catego-
rization of programming challenges and highlight the key issues
in programming teaching and learning in higher education for fur-
ther research and improvement. Moreover, Paul and Simon [25]
published an article that discusses some programming learning
challenges. In addition, their article focuses on student understand-
ing and use of a mix of programming environments (in particular,
Python IDLE for offline programming and CodeRunner for pro-
gramming quizzes) and code fragment problems. The purpose of
this study was to examine the challenges that first-year distance
learning students face when learning a procedural programming
language such as Python over the course of a 21-week computing
and IT course, which includes six weeks on problem-solving and
programming with Python.

In summary, the reviewed four articles only discuss program-
ming, learning, and teaching challenges; no investigations into
possible solutions for these identified problems have been done.
Therefore, this current systematic review distinguishes itself from
the earlier systematic reviews by suggesting a list of possible solu-
tions to assist novice programmers in overcoming programming
learning challenges.

2.2 Surveys on online programming learning
systems

In the computing education literature, few studies were conducted
to analyze or investigate online interactive coding systems. For
instance, Zinovieva et al. [42] published an article that discusses
a comparative analysis of different online programming learning
platforms for teaching programming according to specific crite-
ria. However, they only analyzed some platforms; online coding
tutorial platforms or interactive coding systems were not analyzed.
Moreover, Sim et al.[35] reviewed research on supporting novice
programming, focusing on the implementation of programming
environments that might be solutions for programming learning
problems. Their study specifically focused on tools that support

block programming and intelligent tutoring systems. However,
when Sim et al.[35] conducted a general analysis of intelligent tu-
toring systems, they did not consider most of the systems’ features.
Also, Kim and Ko [16] published an article related to online pro-
gramming learning systems. They analyzed and categorized online
programming learning systems into several categories. However,
they did not analyze the systems based on supporting learners to
overcome programming learning problems.

To conclude, in the reviewed articles, the authors did not con-
sider in their analysis any supportive features that might support
learners to overcome the programming learning challenges. There-
fore, in the current work, the online coding tutorial systems compar-
ative analysis distinguishes itself from the earlier systems analysis
by examining current online coding tutorial systems to determine
whether they offer supportive features to assist novices.

3 RESEARCH QUESTIONS AND
METHODOLOGIES

3.1 Research Questions
Despite abundant literature on programming, teaching, and learn-
ing difficulties, we observed that the majority of relevant research
predominantly relied on quantitative, questionnaire-based method-
ology. Although such work has uncovered novice learners’ difficul-
ties, an in-depth understanding of the supportive system features
that can overcome these challenges is limited. Thus, a key contribu-
tion of this work is to identify a set of supportive features for online
coding platforms. The current deployed online coding tutorial sys-
tems were analyzed, asking whether they provide any of these
supportive features for learners. The main research question that
has been addressed is, Do Current Online Coding Tutorial Sys-
tems Address Novice Programmers Difficulties?, by elucidating
sub-questions as follows:

RQ1:What are common programming learning difficulties for
novices?

RQ2:Which supportive features are potential solutions for these
identified difficulties?

RQ3: Do these identified supportive features exist in currently
deployed online coding tutorial systems?

3.2 Research Design and Methods
To answer the three RQs, two studies were conducted. Firstly, a
systematic review was conducted on programming education liter-
ature to identify the common programming teaching and learning
difficulties for novices and propose solutions to address such issues
(Section 4). Secondly, a case study was conducted to investigate
whether online coding tutorial systems provide the identified solu-
tions (Section 5).

4 NOVICE PROBLEMS AND SOLUTIONS
This section presents the first study that addresses the first two
research questions in this paper; RQ1 (identification of novice
learning difficulties, Section 4.1) andRQ2 (identification of potential
solutions, Section 4.2). In this study, two distinct literature reviews
were conducted to answer these two research questions.

Do Current Online Coding Tutorial Systems Address Novice Programmer Difficulties? ICETC 2023, September 26–28, 2023, Barcelona, Spain

4.1 Novice Learning Difficulties
Educators often encounter problems when teaching students to
programme [36] since coding is dynamic and abstract. Several
researchers have identified difficulties in learning programming
[21, 39]. Programming novices might fail to recognize their own
deficiencies due to a lack of high-level understanding of the prob-
lems [18, 22]. Therefore, in this work, a systematic literature review
was conducted to explore some of these programming learning
challenges.

4.1.1 Study method. Below are the systematic review strategies
used in this study: Search databases: The databases searched are
mainly from the Association for Computing Machinery (ACM) and
the Institute of Electrical and Electronics Engineers (IEEE). The rea-
son for focusing only on these two databases is that most research
related to computing education can be found in the ACM and IEEE
databases, where most of the well-known computing education
conference proceedings and journals can be found. For instance,
Koli Calling, ICER, UKICER, and SIGCSE. Search terms: A nar-
row search was done in order to select and review the papers that
only focused on identifying programming learning problems. In
addition, the strategy that has been used is to search the papers
only with the titles of programming, teaching, or learning problems.
Therefore, the keywords used were boolean combinators, as follows:
"Programming" OR "Coding" OR "Computer Programming"
AND "Learning" AND "Difficulties" OR "Issues" OR "Chal-
lenges" OR "Problems". Search process: The search process
was done by selecting the "Title" option in both databases in the
advanced search. Therefore, the number of returned papers seems
to be small. Publication date: The initial search was for articles
published between 1980 and 2023. This selected period of time has
been chosen in order to include most of the published studies in the
programming education field. Inclusion and exclusion criteria:
52 relevant articles were found. Then, an initial inclusion screening
was done based on title and abstract to get a subset of candidate
studies that only focus on programming learning challenges, and
the article numbers were filtered to 25 after removing duplicates
and out-of-focus papers. From these 25 remaining articles, further
screening was performed by considering full-text content, exclud-
ing articles that did not discuss programming learning difficulties,
and removing duplicate and non-English articles. The final number
of selected articles was 7.

4.1.2 Study findings. The seven selected publications discuss
programming learning challenges using different methods. For in-
stance, Milne and Rowe [22] conducted a web-based questionnaire
on the various concepts and topics of object-oriented programming
that students in introductory courses found most difficult to cope
with. Also, Hashim et al.[13] distributed questionnaire to 226 un-
dergraduate students to identify the programming problems they
are facing. Moreover, Piteira and Costa [24] conducted a case study
to obtain teachers’ and students’ opinions to identify programming
challenges. In addition, Tan et al. [39] conducted a case study to
investigate the factors that lead to undergraduates’ learning diffi-
culties in programming courses and also their perceptions of which
teaching methodologies could be implemented to create a richer
and more interesting learning process. On the other hand, Gomes

Table 1: List of programming learning difficulties identified
in the literature answering RQ1

Programming Learning
Difficulties

[22] [5] [29] [24] [12] [13] [39]

Syntax of programming
languages
Structure of code
Understanding basic
concepts
Debugging
Dividing functionality
into procedures
Transferring algorithm
to concrete implementa-
tion

and Mendes [12] conducted several interviews with teachers and
students to identify programming challenges. Bosse and Gerosa [5]
conducted a systematic literature review and empirical study to
identify programming learning problems. similar to Qian et al. [29],
who investigated students’ difficulties in learning to program in
Python by conducting an empirical study. Six programming learn-
ing difficulties were found in these selected publications, as shown
in Table 1. The rows are ordered from the highest number of papers
mentioning a problem to the lowest number, with the requirement
that at least two papers must corroborate a difficulty before includ-
ing it in the provided list. Three problems were observed (syntax,
structure, and basic concept understanding) that are inherent in
reading and understanding code. The remaining three problems (de-
bugging, proceduralization, and algorithm implementation) involve
writing and executing code. As shown in Table 1, understanding
the syntax of any programming language was considered a main
programming learning challenge for novice programmers. [5] [29]
[24] [12] [13] [39]. Similar to understanding syntax, understanding
the code structure is also considered a common problem for pro-
gramming learners [22] [5] [29] [24] [13] [39]. On the other hand,
the less common programming learning challenge is transferring
algorithms to concrete implementation [12] [39].

4.2 Potential Solutions
4.2.1 Study method. To address the second research question,
RQ2: Which supportive features can potentially mitigate the identi-
fied learning difficulties?, a snowballing technique was employed
to uncover features of supportive systems that could potentially
serve as solutions for the common programming learning difficul-
ties identified in Section 4.1 [40]. The snowballing procedure began
with a review of the potential solutions outlined in the selected
articles from the previous section. This initial review facilitated
the identification of a number of supportive features designed to
assist novice programmers based on the insights from these arti-
cles. Subsequently, these identified difficulties were employed as
keywords to guide a more focused literature search in the ACM
and IEEE databases.

ICETC 2023, September 26–28, 2023, Barcelona, Spain Ohud Alasmari, Jeremy Singer, and Mireilla Bikanga Ada

4.2.2 Study findings. This section catalogs the supportive fea-
tures presented in the literature as possible solutions for the identi-
fied difficulties. Features were grouped according to the problem
they addressed, and only features that could be incorporated into a
software-based programming environment were considered.

Syntax of programming languages According to [17], syntax
difficulties are the overhead of learning the syntax and semantics
of a language at the same time. In addition, [33] mentioned that
understanding syntax problems is simply a challenge that is faced by
not only novices but also by learners who have adequate problem-
solving skills and manage to phrase a solution to a programming
problem in terms of understanding the syntax of a code but find
it difficult to turn the code into a syntactically correct computer
program. Moreover, according to [33], syntax understanding is not
the main difficulty. Learners may know the syntax and semantics of
individual statements, but they do not know how to combine those
elements in order to produce valid programs. However, three helpful
supportive features have been discussed in previous studies. These
features are: syntax error messages, underlining syntax errors, and
syntax source code highlighting or coloring.

• Syntax error messages: Reporting syntax errors in a pro-
gramming environment helps learners reduce mistakes in
spelling, punctuation, and the order of keywords in their
programs[14]. For instance, SyntaxTrain parses a student’s
source code and, if it detects a syntax error, displays an error
message and a diagram illustrating the required syntax [23].
Moreover, [14] mentioned that syntax error messages do not
necessarily point the learners in the right direction needed
to fix the code, but providing this technique in programming
environments helps learners understand syntax and seman-
tic errors in their codes. Providing comprehensible syntax
error messages is often motivated by the need to better serve
novice programmers [34].

• Underlining syntax errors: Source code errors in modern
integrated development environments are highlighted inter-
actively with red underlines below problematic lines of code
[4]. This is often accompanied by hints or error-messaging
pop ups.

• Syntax highlighting: Highlighting helps learners identify
keywords and become familiar with language-specific con-
crete syntax. Researchers have examined the influence of
syntax highlighting on novice comprehension of source code
[28].

Structure of code Learners struggle to understand how to build
blocks of code, syntax constructs, and commands that perform
actions[21]. However, a supportive feature has been identified; this
feature is a visual map.

• Visual map: Natural visual learners are recommended to
begin by learning a graphical programming language, which
provides a visual map as a bridge to learning textual pro-
gramming languages [37]. In general, program visualization
systems are developed to help beginners understand fun-
damental programming concepts, structure, and execution.
[38].

Understanding basic conceptsAccording to [13] [24]most novice
programmers have problems understanding basic concepts. Learn-
ers must understand the basic concepts at the beginning of their
learning journey. For instance, variables, arrays, and loops How-
ever, four supportive features have been identified as helpful for
understanding the basic concept of programming languages: lesson
content, reference materials, worked solutions, and quizzes.

• Lesson content: Programming learning environments can
provide contextually relevant, structured lesson content that
teaches different concepts [8].

• Reference materials: These authoritative resources can
promote an understanding of programming concepts since
learners can browse and request them at any time. Such ref-
erence information might be organized as a digital textbook
[8].

• Worked solutions: The availability of complete example
programs and worked solutions was used in some program-
ming learning environments to demonstrate programming
concepts [8].

• Quizzes: Basic assessment activities and quizzes allow learn-
ers to test their understanding. In addition, providing ques-
tions along with interactive exercises can help reinforce
concepts and measure learners’ achievement [8].

Debugging Novice programmers need to know how to test and
analyze their code to identify and correct problems, and this is
called debugging [10]. In addition, learners face some difficulties
in understanding the problem domain, finding bugs and errors,
and resolving bugs [21] [39] [10]. To help learners overcome this
difficulty, three supportive features have been identified: detailed
error messages, identifying error locations, and customized hints.

• Detailed error messages: Raw error messages are often
uninformative and sometimes misleading for novices [28].
Researchers have created tools to provide enhanced error
messages. For instance, CS1 students who saw detailed error
messages made significantly fewer errors than those who
only saw raw Java error messages; more detailed error mes-
sages helped students debug their programs [3].

• Identifying error locations: Novice programmers get frus-
trated by errors, and they try to debug their code in the
hope that they discover the location of the error to make
debugging easier [6, 34]. Therefore, novices persistently seek
assistance for problemswith basic syntactic details and iden-
tifying error locations that can help learners debug their code
[6].

• Customized hints: Providing specific hints based on learner
errors is a beneficial addition to any teaching programming
platform [2][20]. When a novice types a segment of code
and the editor shows an error, the interactive hints feature
should provide some guidance to help the developer find and
fix the bug [2, 28].

Dividing functionality into procedures
• Auto-completion: The code editor should predict what the
programmer wants to type. In addition, auto-completion is
considered a helpful feature for supporting users in making
procedure calls and developing additional procedures that
can be used exactly the same way as the built-in library

Do Current Online Coding Tutorial Systems Address Novice Programmer Difficulties? ICETC 2023, September 26–28, 2023, Barcelona, Spain

functions [41]. Moreover, this technique saves programmers
time by helping them complete keywords rather than typing
every character.

Transferring an algorithm to a concrete implementation
• Syntax-directed editor: To help novice programmers use a
programming language to implement an algorithm for solv-
ing a specific problem without concern for syntactic detail,
some programming learning tools support templates and
menus with syntactically correct choices for every incom-
plete part of a program. Such templates can be based on
textual or graphical representations.

5 CURRENTLY DEPLOYED SYSTEMS
A survey of popular online coding tutorial platforms was conducted
to address RQ3:Do these identified supportive features exist in cur-
rently deployed online coding tutorial systems?

5.1 Study Method
Several current systems were selected and analyzed for the pres-
ence or absence of the identified supportive features. The system-
atic basis for selecting the systems involves looking at the top
ten languages by popularity on GitHub (Python, JavaScript, Java,
TypeScript, Go, C++, Ruby, PHP, C#, C). Attention to high-level
interpretive and scripting languages was restricted, since compiler-
based toolchains are not particularly suitable for deployment in
online coding environments. From the remaining languages on
the list, Python, JavaScript, Java, TypeScript, Go, Ruby, and PHP
were selected since they are appropriate for novice programmers.
The search for ‘interactive tutorial X’ on Google was done, with X
in turn being each language. The highest ranked links on Google
were followed, which led to online coding tools. Based on this
method, for the software survey, LearnPython [32], TryJavaScript
[26], LearnJava [30], Codecademy LearnTypeScript [7], Tour of Go
[11], RubyMonk [27] and LearnPHP [31] were selected.

6 FINDINGS AND DISCUSSION
Table 2 summarizes the analysis of the seven selected online coding
tutorial systems across the identified supportive features. The rows
are ordered from the most common supportive features that exist
in all the selected current online coding tutorial systems to the least
common supportive features. The main observation noticed in this
comparative analysis study is that most of the identified supportive
features exist in more than three of the selected systems, such as
lesson content, detailed error messages, a syntax-directed editor,
syntax error messages, syntax highlighting, reference materials,
and identified error locations. On the other hand, grey rows in
Table 2 indicate that three supportive features are not provided
by any of the studied systems, such as underlining syntax errors,
visual mapping, and auto-completion. In addition, it is noticed
that the three features—worked solutions, customized hints, and
quizzes—are only provided by three or fewer online coding tutorial
systems under study.

To conclude, the findings indicate that all seven selected online
coding tutorial systems are missing important supportive features
that could serve as potential solutions to the identified program-
ming learning challenges. As shown in Table 2, the findings provide

supporting evidence that current online coding tutorial systems do
not fully address novice programming difficulties and are therefore
not ideal for novice learners since they lack significant supportive
features that have proven to be helpful for novice programmers to
overcome specific programming learning difficulties. These findings
reinforce an important point that might be the reason behind this
lack of supportive features in online coding tutorial systems: that
they are created by programming language developers (whether
original language designers or enthusiastic advocates) with mini-
mal input from computing education experts [19]. One implication
of these findings is the urgent need for enhanced support for novice
programmers through a more considerate design process for online
coding tutorial systems that takes learners’ needs into considera-
tion.

7 LIMITATIONS AND FUTUREWORK
The main limitation might this study has is the number of returned
papers that seems to be small. The listed search terms in this study
should return hundreds of papers. However, the returned number
of papers was 52 because the advanced search options were selected
to search only through the titles of the papers to narrow the huge
number of returned papers in both databases. One fruitful future
avenue of research could be a more wide-ranging review of papers
and a list of more common and specific programming learning
difficulties. Moreover, certain limitations of the software survey
in this paper could be addressed in future research. For example,
only seven current online coding tutorial systems that cover seven
programming languages were examined. A fruitful future avenue
of research might include building an online coding tutorial system
prototype that incorporates all the identified supportive features in
this paper, along with a large-scale user study. Further longitudi-
nal work will be valuable in seeing how programming educators’
perspectives alter as web technology evolves.

8 CONCLUSION
This study investigated whether or not current popular online cod-
ing tutorial systems address novice programmers’ difficulties. A
systematic literature review revealed a range of challenges specif-
ically related to the learning of computer programming. A list of
supportive features was identified from programming education
literature. This set of supportive features was used as a baseline to
analyze the selected current online coding tutorial systems. The
findings indicate that while many of the identified problems might
be partially mitigated by current online systems, there is evidence
that some of the identified supportive features are not provided by
current systems. It might be speculated that the reason for these
deficiencies, which do not appear to be technological in nature, is
that the developers of these systems are not informed by pedagogi-
cal principles or perspectives. Therefore, the next steps are to raise
awareness regarding these supportive features in developing online
coding tutorial systems.

REFERENCES
[1] S Ahmad and Juzlinda Ghazali. 2020. Programming Teaching and Learning:

Issues and Challenges. Fstm. Kuis. Edu. My 16, 1 (2020), 724–398.

ICETC 2023, September 26–28, 2023, Barcelona, Spain Ohud Alasmari, Jeremy Singer, and Mireilla Bikanga Ada

Table 2: Comparative analysis of the inclusion of supportive features across seven tutorial systems (the grey row indicates the
complete absence of features in all systems

Supportive Features Lea
rnP

yth
on

Try
Jav
aSc

rip
t

Lea
rnJ
ava

Lea
rn-
Typ

eSc
rip
t

Tou
r o
f G
o

Ru
byM

onk

Lea
rnP

HP

Lesson content
Detailed error messages
Syntax-directed editor
Syntax error messages
Syntax highlighting
Reference materials

Identifying error locations
Worked solutions
Customized hints

Quizzes
Underlining syntax errors

Visual map
Auto-completion

[2] Paolo Antonucci, Christian Estler, Durica Nikolić, Marco Piccioni, and Bertrand
Meyer. 2015. An incremental hint system for automated programming assign-
ments. In Proceedings of the 2015 ACM Conference on Innovation and Technology
in Computer Science Education. 320–325. https://doi.org/10.1145/2729094.2742607

[3] Brett A Becker. 2016. An effective approach to enhancing compiler error mes-
sages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. 126–131. https://doi.org/10.1145/2839509.2844584

[4] Brett A Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, et al. 2019. Compiler error messages considered unhelpful: The landscape
of text-based programming error message research. In Proceedings of the Working
Group Reports on Innovation and Technology in Computer Science Education. 177–
210. https://doi.org/10.1145/3344429.3372508

[5] Yorah Bosse and Marco Aurélio Gerosa. 2017. Why is programming so difficult
to learn? Patterns of Difficulties Related to Programming Learning Mid-Stage.
ACM SIGSOFT Software Engineering Notes 41, 6 (2017), 1–6. https://doi.org/10.
1145/3011286.3011301

[6] Joshua Charles Campbell, Abram Hindle, and José Nelson Amaral. 2014. Syntax
errors just aren’t natural: Improving error reporting with language models. In
Proceedings of the 11th Working Conference on Mining Software Repositories. 252–
261. https://doi.org/10.1145/2597073.2597102

[7] Codecademy. 2022. LearnTypeScript. https://www.codecademy.com/learn/learn-
typescript.

[8] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent
tutoring systems for programming education: a systematic review. In Proceedings
of the 20th Australasian Computing Education Conference. 53–62. https://doi.org/
10.1145/3160489.3160492

[9] Tao Dong and Gale Yang. 2020. Towards a pattern language for interactive
coding tutorials. In Conference Companion of the 4th International Conference on
Art, Science, and Engineering of Programming. 102–105. https://doi.org/10.1145/
3397537.3397558

[10] Sue Fitzgerald, Renée McCauley, Brian Hanks, Laurie Murphy, Beth Simon, and
Carol Zander. 2009. Debugging from the student perspective. IEEE Transactions
on Education 53, 3 (2009), 390–396. https://doi.org/10.1109/TE.2009.2025266

[11] Andrew Gerrand et al. 2022. A Tour of Go. https://go.dev/tour.
[12] Anabela Gomes and Antonio Mendes. 2014. A teacher’s view about introductory

programming teaching and learning: Difficulties, strategies and motivations. In
Proceedings of the IEEE Frontiers in Education Conference. 1–8. https://doi.org/10.
1109/FIE.2014.7044086

[13] Ahmad Sobri Hashim, Rohiza Ahmad, and Muhammad Shafiq Shahrul Amar.
2017. Difficulties in Learning Structured Programming: A Case Study in UTP. In
7th World Engineering Education Forum. 210–215. https://doi.org/10.1109/WEEF.
2017.8467151

[14] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. Identi-
fying and correcting Java programming errors for introductory computer science
students. ACM SIGCSE Bulletin 35, 1 (2003), 153–156. https://doi.org/10.1145/
792548.611956

[15] Rozita Kadar, Naemah Abdul Wahab, Jamal Othman, Maisurah Shamsuddin,
and Siti Balqis Mahlan. 2021. A study of difficulties in teaching and learning

programming: a systematic literature review. International Journal of Academic
Research in Progressive Education and Development 10, 3 (2021), 591–605.

[16] Ada S Kim and Andrew J Ko. 2017. A pedagogical analysis of online coding
tutorials. In Proceedings of the ACM SIGCSE Technical Symposium on Computer
Science Education. 321–326. https://doi.org/10.1145/3017680.3017728

[17] Theodora Koulouri, Stanislao Lauria, and Robert D Macredie. 2014. Teaching
introductory programming: A quantitative evaluation of different approaches.
ACM Transactions on Computing Education 14, 4 (2014), 1–28. https://doi.org/10.
1145/2662412

[18] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of
the difficulties of novice programmers. ACM SIGCSE Bulletin 37, 3 (2005), 14–18.
https://doi.org/10.1145/1151954.1067453

[19] Lauri Malmi, Ian Utting, and Amy J. Ko. 2019. Tools and Environments. In The
Cambridge Handbook of Computing Education Research, Sally A. Fincher and
Anthony V.Editors Robins (Eds.). Cambridge University Press, 639–662. https:
//doi.org/10.1017/9781108654555.022

[20] Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An evaluation of
the impact of automated programming hints on performance and learning. In
Proceedings of the 2019 ACM Conference on International Computing Education
Research. 61–70. https://doi.org/10.1145/3291279.3339420

[21] Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and Taciana Pontual Falcão.
2018. A systematic literature review on teaching and learning introductory
programming in higher education. IEEE Transactions on Education 62, 2 (2018),
77–90. https://doi.org/10.1109/TE.2018.2864133

[22] Iain Milne and Glenn Rowe. 2002. Difficulties in learning and teaching program-
ming—views of students and tutors. Education and Information technologies 7, 1
(2002), 55–66. https://doi.org/10.1023/A:1015362608943

[23] Andreas Leon Aagaard Moth, Joergen Villadsen, and Mordechai Ben-Ari. 2011.
SyntaxTrain: relieving the pain of learning syntax. In Proceedings of the 16th An-
nual Joint Conference on Innovation and Technology in Computer Science Education.
387–387. https://doi.org/10.1145/1999747.1999900

[24] Martinha Piteira and Carlos Costa. 2013. Learning computer programming: study
of difficulties in learning programming. In Proceedings of the 2013 International
Conference on Information Systems and Design of Communication. 75–80. https:
//doi.org/10.1145/2503859.2503871

[25] Paul Piwek and Simon Savage. 2020. Challenges with learning to program
and problem solve: an analysis of student online discussions. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education. 494–499.
https://doi.org/10.1145/3328778.3366838

[26] PluralSight. 2022. TryJavaScript. https://www.javascript.com/try.
[27] Sidu Ponnappa and Jasim A Basheer. 2022. Ruby Monk. http://rubymonk.com.
[28] Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other

difficulties in introductory programming: A literature review. ACM Transactions
on Computing Education 18, 1 (2017), 1–24. https://doi.org/10.1145/3077618

[29] Yizhou Qian, Peilin Yan, and Mingke Zhou. 2019. Using data to understand
difficulties of learning to program: A study with Chinese middle school students.
In Proceedings of the ACM Conference on Global Computing Education. 185–191.
https://doi.org/10.1145/3300115.3309521

[30] Ron Reiter. 2022. LearnJava. https://www.learnjavaonline.org/.

https://doi.org/10.1145/2729094.2742607
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3011286.3011301
https://doi.org/10.1145/3011286.3011301
https://doi.org/10.1145/2597073.2597102
https://www.codecademy.com/learn/learn-typescript
https://www.codecademy.com/learn/learn-typescript
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/3397537.3397558
https://doi.org/10.1145/3397537.3397558
https://doi.org/10.1109/TE.2009.2025266
https://go.dev/tour
https://doi.org/10.1109/FIE.2014.7044086
https://doi.org/10.1109/FIE.2014.7044086
https://doi.org/10.1109/WEEF.2017.8467151
https://doi.org/10.1109/WEEF.2017.8467151
https://doi.org/10.1145/792548.611956
https://doi.org/10.1145/792548.611956
https://doi.org/10.1145/3017680.3017728
https://doi.org/10.1145/2662412
https://doi.org/10.1145/2662412
https://doi.org/10.1145/1151954.1067453
https://doi.org/10.1017/9781108654555.022
https://doi.org/10.1017/9781108654555.022
https://doi.org/10.1145/3291279.3339420
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1023/A:1015362608943
https://doi.org/10.1145/1999747.1999900
https://doi.org/10.1145/2503859.2503871
https://doi.org/10.1145/2503859.2503871
https://doi.org/10.1145/3328778.3366838
https://www.javascript.com/try
http://rubymonk.com
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3300115.3309521
https://www.learnjavaonline.org/

Do Current Online Coding Tutorial Systems Address Novice Programmer Difficulties? ICETC 2023, September 26–28, 2023, Barcelona, Spain

[31] Ron Reiter. 2022. LearnPHP. https://www.learn-php.org/.
[32] Ron Reiter. 2022. LearnPython. https://www.learnpython.org.
[33] Robert S Rist. 1996. Teaching Eiffel as a first language. Journal of object-oriented

programming 9, 1 (1996), 30–41.
[34] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle,

and José Nelson Amaral. 2018. Syntax and sensibility: Using language models
to detect and correct syntax errors. In Proceedings of the IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering. 311–322. https:
//doi.org/10.1109/SANER.2018.8330219

[35] Tze Ying Sim and Sian Lun Lau. 2018. Online tools to support novice program-
ming: A systematic review. In 2018 IEEE Conference on e-Learning, e-Management
and e-Services (IC3e). IEEE, 91–96.

[36] Derek Sleeman. 1986. The challenges of teaching computer programming. Com-
mun. ACM 29, 9 (1986), 840–841. https://doi.org/10.1145/6592.214913

[37] Bryan J Smith. 2009. Conceptual graphs as a visual programming language for
teaching programming. In Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing. 258–259. https://doi.org/10.1109/VLHCC.2009.
5295242

[38] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A review of generic program
visualization systems for introductory programming education. ACM Transac-
tions on Computing Education 13, 4 (2013), 1–64. https://doi.org/10.1145/2490822

[39] Phit-Huan Tan, Choo-Yee Ting, and Siew-Woei Ling. 2009. Learning difficulties
in programming courses: undergraduates’ perspective and perception. In Pro-
ceedings of the International Conference on Computer Technology and Development.
42–46. https://doi.org/10.1109/ICCTD.2009.188

[40] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software engineering. 1–10.

[41] Stelios Xinogalos. 2013. Using flowchart-based programming environments for
simplifying programming and software engineering processes. In Proceedings of
the IEEE Global Engineering Education Conference. 1313–1322. https://doi.org/10.
1109/EduCon.2013.6530276

[42] IS Zinovieva, VO Artemchuk, Anna V Iatsyshyn, OO Popov, VO Kovach, Andrii V
Iatsyshyn, YO Romanenko, and OV Radchenko. 2021. The use of online coding
platforms as additional distance tools in programming education. In Journal of
physics: Conference series, Vol. 1840. IOP Publishing, 012029. Issue 1.

https://www.learn-php.org/
https://www.learnpython.org
https://doi.org/10.1109/SANER.2018.8330219
https://doi.org/10.1109/SANER.2018.8330219
https://doi.org/10.1145/6592.214913
https://doi.org/10.1109/VLHCC.2009.5295242
https://doi.org/10.1109/VLHCC.2009.5295242
https://doi.org/10.1145/2490822
https://doi.org/10.1109/ICCTD.2009.188
https://doi.org/10.1109/EduCon.2013.6530276
https://doi.org/10.1109/EduCon.2013.6530276

	Enlighten Accepted coversheet (ACM Statement)
	317293
	Abstract
	1 Introduction
	2 Related Work
	2.1 Systematic surveys of programming challenges to learners and solutions
	2.2 Surveys on online programming learning systems

	3 Research Questions and Methodologies
	3.1 Research Questions
	3.2 Research Design and Methods

	4 Novice Problems and Solutions
	4.1 Novice Learning Difficulties
	4.2 Potential Solutions

	5 Currently Deployed Systems
	5.1 Study Method

	6 Findings and Discussion
	7 Limitations and Future Work
	8 Conclusion
	References

