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Abstract
Contemporary spatial statistics studies often underesti-
mate the complexity of road networks, thereby inhibiting 
the strategic development of effective interventions for 
car accidents. In response to this limitation, the primary 
objective of this study is to enhance the spatiotemporal 
analysis of urban crash data. We introduce an innovative 
spatial- temporal weight matrix (STWM) for this purpose. 
The STWM integrates external covariates, including road 
network topological measurements and economic vari-
ables, offering a more comprehensive view of the spati-
otemporal dependence of road accidents. To evaluate the 
functionality of the presented STWM, random effect ei-
genvector spatial filtering analysis is employed on Boston's 
traffic accident data from January to March 2016. The 
STWM improves analysis, surpassing distance- based SWM 
with a lower residual standard error of 0.209 and a higher 
adjusted R2 of 0.417. Furthermore, the study emphasizes 
the influence of road length on crash incidents, spatially 
and temporally, with random standard errors of 0.002 for 
spatial effects and 0.026 for non- spatial effects. This is par-
ticularly evident in the north and center of the study area 
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1  | INTRODUC TION

Traffic accidents are a critical global issue, causing approximately 1.3 million deaths and 20 to 50 million injuries 
annually. Despite various safety measures, the complexity of urban traffic networks and the dynamic nature 
of accidents pose a significant challenge in reducing accident rates. Recognizing the severity of this issue, the 
United Nations General Assembly aims to reduce the global death and injury rate from traffic accidents by 2030 
(WHO, 2016). In alignment with this global endeavor, scholarly research has increasingly concentrated on the 
spatial aspect of urban car accidents. Several studies (Guo et al., 2010; Sun et al., 2016; Wang et al., 2016; Wang, 
Yuan, et al., 2019; Xie et al., 2013) have explored spatial dependence in urban car accidents. They state that spatial 
statistics could be employed to identify the most effective approach to reducing the crash rate. Current spatial 
statistical methods enable the identification of geographical patterns and structures in crash data, providing in-
sights into traffic accident dynamics. These methods depend on constructing a spatial weight matrix (SWM) that 
captures the intensity of spatial relationships among observations in a vicinity. The challenge lies in creating an 
SWM that accurately reflects the real- world structure of traffic phenomena.

While various SWMs have been proposed, many studies (Getis & Aldstadt, 2004; Mawarni & Machdi, 2016) 
rely solely on exogenous geographical factors, such as proximity or distance between samples. However, this ap-
proach neglects the influence of time- varying economic variables that are often endogenous to the spatial system. 
To bridge this gap, recent studies suggest combining geographical factors with regional economic or social vari-
ables to define time variables and endogenous matrices (Qu et al., 2017, 2021). This approach acknowledges that 
the degree of spatial dependence may also depend on these dynamic economic variables, which are intertwined 
with the outcome variables. Zhang et al. (2021) demonstrate that integrating endogenous economic variables in 
SWM definitions enriches the depiction of diverse influence modes, encompassing geographic, socioeconomic, 
and cultural effects. Furthermore, Kelejian and Piras (2014) argue that exclusively relying on exogenous SWMs 
for estimating economic systems is insufficient, as it leads to oversimplification by presuming the weighting matrix 
to be exogenous.

Studies by Olubusoye and Salisu (2016), Pljakić et al. (2019), Wang, Chen, et al. (2019), and Sandoval- Pineda 
et al. (2022) have utilized endogenous variables to generate SWM and analyze crash data at a macro- scale traffic 
analysis zone (TAZ). These SWMs are uniformly weighted for all neighboring TAZ units. This uniform weighting ap-
proach might be sensible for regular lattices but is not suitable for mapping difficulties in complex metropolitan road 
networks, according to Raftery and Banfield (1991) and Corpas- Burgos and Martinez- Beneito (2020). Urban road 
networks are comprised of various geographical and temporal components and interactions (Shang et al., 2020). To 
address this complexity, Zhang and Wang (2017) and Corpas- Burgos and Martinez- Beneito (2020) proposed SWMs 
based on endogenous economic variables to model the unequal spillover effect of spatial dependence. These SWMs 
are typically designed for regionally scattered data and are unsuitable for evaluating phenomena distributed across 
a road network. The utilization of the distance function to establish these endogenous SWMs is unsuitable for de-
termining the attributes of neighboring entities in the road network, primarily due to significant disparities in road 
lengths. Additionally, these SWMs overlook the road network structure's impact on the phenomenon distributed on 
the road network. The necessity to integrate endogenous variables into the SWM is clear, as this is crucial for accu-
rately estimating spatial dependence in traffic accident data. Our study aims to enhance the SWM by integrating these 
endogenous factors, thereby providing a more comprehensive model for spatiotemporal analysis of traffic accidents.

during specific periods. This information can help decision- 
makers develop more effective urban development models 
and reduce future crash risks.
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370  |    MOHAMMADI et al.

The primary objective of this research is to advance spatiotemporal analysis and improve the understanding 
of urban crash incidents at the micro- level, with a focused case study on the Roxbury neighborhood in Boston. 
This study focuses on the development and application of a spatial- temporal weight matrix (STWM). This STWM, 
distinct from traditional distance- based Spatial Weight Matrices (SWMs), integrates endogenous socioeconomic 
factors and road network topology to provide a nuanced spatiotemporal analysis of crash data. It is designed to 
reveal the most hazardous streets by capturing the unequal spillover effect in both spatial and temporal dimen-
sions, thereby refining the autocorrelation of crash data. This enhanced modeling approach aims to yield a more 
precise depiction of the spatiotemporal structure of crash incidents. Employing ESRI's best practices for spatial 
relationship conceptualization, this study utilizes auxiliary crash data to identify high- risk streets. These streets 
are then used to weigh the impact of neighboring streets on the target street, depending on the defined topolog-
ical properties of the road network. Furthermore, economic variables such as road type, land use, speed limit, and 
weather data are employed to determine an endogenous STWM for modeling the time variation of crash data.

Moreover, as a secondary objective, this research marks the first effort to employ three advanced models: 
Eigenvector Spatial Filtering (ESF), Random Effect Eigenvector Spatial Filtering (RE- ESF), and spatially and non- 
spatially varying coefficients (SNVC) in the analysis of crash data. The ESF and RE- ESF models demonstrate su-
perior capability in capturing the spatiotemporal patterns of crash data compared to traditional measures such as 
Moran's I. Since crash data do not necessarily follow a normal distribution, these models are appropriate for anal-
ysis. Additionally, the SNVC is utilized to estimate coefficients that vary both spatially and non- spatially, thereby 
accounting for the residual spatial dependence structure not adequately captured by the RE- ESF method. The 
knowledge uncovered by this proposed spatiotemporal analysis can help traffic police agencies conduct compre-
hensive analyses and research on the traffic situation in specific locations. Moreover, the analysis provides traffic 
police agencies with a better understanding of geographical and temporal variations in collision hotspots.

State- of- the- art studies are reviewed in the next section. The theory of the proposed spatiotemporal model is 
described in Section 4. Section 5 explains the presented STWM, followed by a description of Boston's crash data-
set in Section 6. Section 7 presents the results of employing STWM for the spatiotemporal analysis of urban crash 
data. Moreover, to assess the performance of the proposed model, ESF, RE- ESF, and SNVC are used to evaluate 
the proposed STWM against the traditional distance- based SWM. Finally, the article's conclusion is discussed in 
Section 7.

2  | LITER ATURE RE VIE W

In this section, we will provide an overview of the current state of research on various types of endogenous and 
exogenous SWMs. Additionally, we will conduct a review of the crucial features of car accident analysis.

2.1 | Literature on SWM in car accident analysis

Moran (1950) was one of the first researchers to introduce the term “spatial correlation” (Getis, 2008). This foun-
dation was later expanded by Whittle (1954) in a geographical framework. The concept of “spatial autocorrelation” 
found its academic roots in the conference presentation of Cliff and Ord (1968). The seminal work of Tobler (1970) 
was a pivotal moment, underlining the importance of exploring spatial dependence in neighboring regions or enti-
ties. This concept is a fundamental principle in spatial analysis and has influenced subsequent research, including 
the development of Spatial Weight Matrices (SWMs). The 1990s marked significant growth in spatial analysis, 
notably with the introduction of Spatial Lag Models (SLMs) by Anselin (1995). SLMs evaluate spatial relationships 
between observations and neighboring entities by defining an SWM. While Anselin's contribution was instru-
mental in understanding spatial dependencies, it also opened avenues for further methodologies, particularly in 
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economic and environmental contexts. Malczewski (2000) provided an early review of studies on SWMs, empha-
sizing the growing importance of SWMs. Cohn and Jackman (2011) utilized an SWM and the local Moran's I statis-
tic to investigate the impact of the Modifiable Areal Unit Problem (MAUP) on income segregation. Furthermore, 
Guo and Wang (2011) used SWMs and Empirical Bayes smoothing to identify spatial patterns of cancer prevalence 
across various regions. Moreover, the scope of SWMs was further broadened by Halleck Vega and Elhorst (2015). 
They extended the application of SWMs to various economic phenomena, thus significantly enriching the scope 
and applicability of spatial econometric models.

In addition to more contemporary research, we focus on recent developments in SWM in the context of car 
accident analysis. A comprehensive literature review conducted by Ziakopoulos and Yannis (2020), prior to 2019, 
examined the application of different areal unit levels, such as street and zonal levels, in spatial road safety studies. 
However, the review did not address the incorporation of endogenous parameters in defining SWM and spatial–
temporal analysis. Table 1 provides an overview of the current literature on SWMs in car accident analysis. The 
exploration of SWM in crash data analysis has evolved through various stages. Exogenous SWMs, an early approach, 
are typically determined based on the distance or contiguity of samples. Distance- based conceptualization considers 
neighborhood features impacting a target feature based on inverse distance. Halleck Vega and Elhorst (2015) added 
a theoretical dimension by raising concerns about the lack of a specific rule governing the decrease of spatial de-
pendence with increasing distance, although they acknowledged that distance- based effects are intrinsically linked 
to spatial interactions. Harizi et al. (2016) advanced the field by concentrating on distance- based conceptualization, 
which is suitable for point- type features. However, they acknowledged that this approach is unsuitable for more 
complex geometries, such as polygons or line features. For region- based spatial analysis, a contiguity (or adjacency)- 
based SWM is preferred, indicating whether polygons are adjacent to one another through an edge or corner, with 
zero denoting no relationship, as outlined by Alarifi et al. (2018) and Abokifa and Sela (2019). Following this concept, 
Alkahtani et al. (2019) and Wang, Yuan, et al. (2019) employed rook and queen contiguity SWMs at the TAZ level to 
assess the spatial dependency of car accidents between TAZs. These studies also utilized a Bayesian spatial Poisson- 
lognormal model and linear regression to investigate risk factors associated with urban traffic accidents. Recent 
studies have expanded this concept to street- level crash data analysis. Wen et al. (2019) incorporated a first- order 
adjacency concept to construct a contiguity- based SWM and employed Conditional Autoregressive (CAR) models 
to examine spatial autocorrelation and spillover effects. Similarly, Almasi and Behnood (2022) reevaluated the rele-
vance of distance- based SWMs, particularly for point- type features. More recently, Gilardi et al. (2023) developed a 
contiguity- based SWM and utilized a Bayesian Hierarchical Model for crash analysis. Xiong et al. (2023) developed 
an SWM based on the distances between census areas and applied a spatial Durbin model to extract the spatial 
relationship between traffic accidents and low- income and minority communities. Wu et al. (2024) utilized a decay 
function to define an exogenous SWM within a macro- level Middle- Super- Output- Area (MSOA), which is delineated 
as a spatial unit averaging 8000 inhabitants and used a spatial Random Forest to predict crash incidents.

Several researchers have utilized exogenous time- varying variables to define SWMs. Starting in 2016, 
Huang et al. (2016) laid the groundwork at the TAZ level by using time- varying first- order adjacent TAZs to 
define a contiguity- based SWM. They employed a Bayesian spatial joint model for zonal crash data analy-
sis. In the subsequent year, Liu et al. (2017) focused on the street level and generated an SWM using a dis-
tance function that accounts for both spatial and temporal dimensions of crashes. They used Geographically 
Weighted Negative Binomial Regression in their analysis. Concurrently, Soltani and Askari (2017) utilized an 
inverse distance function at the TAZ level to construct an SWM and then employed global Moran's I and local 
Moran's Getis- Ord Gi* to identify crash hotspots across spatial and temporal dimensions. Meanwhile, Ma 
et al. (2017) developed an exogenous time- variant SWM based on the first- order contiguity concept at the 
street level. They then applied a Bayesian multivariate space–time model for space–time modeling of crash 
data. Building on this, Blazquez et al. (2018) used a similar distance function approach as Liu et al. (2017) but 
employed Moran's I and the Getis- Ord Gi* index to identify crash hotspots. Advancing the concept further, 
Song et al. (2020) utilized an inverse distance squared function to create an exogenous time- varying SWM 
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372  |    MOHAMMADI et al.

TA B L E  1 A review of SWMs in spatial analysis of car accident data.

Author(s) and publication 
year SWM type and category Scale Spatial analysis model

Exogenous time- invariant SWM

Harizi et al. (2016) Distance between 
crashes

Street level Global Moran's I and local Moran's 
Getis- Ord Gi*

Alarifi et al. (2018) Contiguity and distance- 
based SWM

Street level Hierarchical Poisson- lognormal 
joint model with spatial effects

Alkahtani et al. (2019) Contiguity SWM TAZ level Moran's I and a Bayesian spatial 
Poisson- lognormal model

Wang, Yuan, et al. (2019) Rook and queen 
contiguity of TAZs

TAZ level Linear regression model

Wen et al. (2019) Contiguity SWM Street level Conditional autoregressive (CAR)

Almasi and 
Behnood (2022)

Distance between TAZs TAZ level Geographic weighted Poisson 
regression

Gilardi et al. (2023) Contiguity SWM Street level Bayesian hierarchical model

Xiong et al. (2023) Distance between 
censuses

Census level Spatial Durbin model

Wu et al. (2024) Distance decay function 
between MSOAs

Middle- Super- 
Output- Area 
(MSOA)

Spatial random forest

Exogenous time- variant SWM

Huang et al. (2016) Contiguity SWM TAZ level Bayesian spatial joint model

Liu et al. (2017) Inverse distance function 
in spatial and 
temporal dimensions 
of crashes

Street level Geographically weighted negative 
binomial regression

Soltani and Askari (2017) Inverse distance function 
in spatial and 
temporal dimensions 
of TAZs

TAZ level Global Moran's I and local Moran's 
Getis- Ord Gi*

Ma et al. (2017) Contiguity SWM Street level Bayesian multivariate space–time 
model

Blazquez et al. (2018) Inverse distance function 
in spatial and 
temporal dimensions 
of crashes

Street level Global Moran's I and local Moran's 
Getis- Ord Gi*

Song et al. (2020) Inverse distance function 
of defined space–time 
cubes

Street level A hierarchical Bayesian random- 
effects model

Feizizadeh et al. (2022) Distance between 
crashes

Street level Kernel density estimation method

Gilardi et al. (2022) Contiguity SWM Street level Bayesian multivariate space–time 
model

Exogenous SWM and endogenous variables regression model

Wang, Chen, et al. (2019) Hybrid of continuity and 
Euclidean distance of 
exogenous variables

TAZ level Used endogenous variable in 
spatial regression models
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    |  373MOHAMMADI et al.

based on a space–time cube, with each cube representing a specific distance and time interval within the 
study area. They used a hierarchical Bayesian random- effects model to investigate the factors contributing to 
crashes. More recently, Feizizadeh et al. (2022) employed the distances between crash records to define an 
SWM and applied a Kernel Density Estimation method to identify the risk of traffic accident hotspots. Finally, 
Gilardi et al. (2022) returned to the first- order contiguity concept at the street level, incorporating a Bayesian 
multivariate space–time model similar to that used by Ma et al. (2017).

Since economic systems are dynamic, exogenous SWMs may produce inaccurate results in static spatial mod-
els. Although geographical locations are time- invariant, the strength of spatial dependence may vary depending 
on time- varying economic variables. When geographical factors are combined with regional economic or so-
cial factors, the relationship becomes time variable and, more importantly, endogenous (Qu et al., 2017, 2021). 
According to Zhang et al. (2021), incorporating endogenous economic variables into the SWM definition helps 
to describe different modes of influence, including geographical, economic, and cultural effects, as emphasized. 
Instead of using a low- order weight matrix (exogenous variables), the endogenous SWM approach provides a more 

Author(s) and publication 
year SWM type and category Scale Spatial analysis model

Pljakić et al. (2019) Euclidean distance of 
exogenous variables

TAZ level Used endogenous variable in 
spatial regression models

Alves et al. (2021) Euclidean distance of 
exogenous variables

Street level Used endogenous variable in 
difference- in- differences 
approach

Sandoval- Pineda 
et al. (2022)

Euclidean distance of 
exogenous variables

Territorial units Used endogenous variables in 
a support vector regression 
model

Endogenous variables in SWM and spatial–temporal model of crash analysis

Olubusoye and 
Salisu (2016)

Euclidean distance of 
endogenous variables

Local government 
area

Used endogenous variables in 
spatial autoregressive (SAR) 
model

Endogenous variables in time- variant SWM and spatial–temporal model in non- crash applications

Qu et al. (2017) Hybrid of contiguity and 
distance

Not available Used quasi- maximum- likelihood 
(QML) to model the spatial 
dynamic of panel data

Merk and Otto (2020) Inverse distance Location of 
monitoring 
sites

Used spatial autoregressive to 
model the effect of daily wind 
direction and speed on PM2.5 
data

Billé et al. (2020) Negative exponential 
distance function

Country level Used spatial autoregressive 
models to model house prices

Zhou et al. (2022) A combination of a 
gravity model 
incorporating 
endogenous 
socioeconomic 
variables and 
Euclidean 
geographical distance 
for exogenous 
variables

TAZ level Used spatial autoregressive binary 
model to investigate the travel 
flow differences between 
morning and evening peaks

TA B L E  1  (Continued)
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374  |    MOHAMMADI et al.

comprehensive understanding of complex relationships among variables. Therefore, using an exogenous SWM to 
estimate economic systems is likely to be invalid.

Several researchers have explored the use of exogenous SWMs while incorporating the influence of endoge-
nous variables into their model estimates. Wang, Chen, et al. (2019) developed an exogenous SWM that considers 
both contiguity and Euclidean distance. Utilizing this SWM, they employed various spatial regression models, 
such as Ordinary Least Squares (OLS), Spatial Lag Model (SLM), Spatial Error Model (SEM), and Spatial Durbin 
Model (SDM), to analyze spatial correlations among TAZs in Tianjin, China. Similarly, Pljakić et al. (2019) designed 
an exogenous SWM using contiguity and Euclidean distance and integrated endogenous variables into spatial 
regression models, aiming to examine the relationship between several variables and traffic crashes at the macro- 
level TAZ. Alves et al. (2021) utilized the Euclidean distances of exogenous variables to construct an SWM at the 
street level. Armed with endogenous variables such as population, weather data, and temperature, they applied 
a difference- in- differences approach to explore the impact of highway concessions on road crashes. Sandoval- 
Pineda et al. (2022) used the mean distance within the TAZ area to analyze the impact of socioeconomic, land use, 
and mobility factors on traffic accidents using vector support regression models.

To the best of the author's knowledge, there is limited research on the development of an SWM based on en-
dogenous variables, particularly in the context of utilizing these endogenous variables in regression models to an-
alyze urban crashes. Olubusoye and Salisu (2016) constructed an SWM incorporating endogenous variables such 
as travel density, land area, road length, and population. They subsequently applied these endogenous variables 
within a spatial autoregressive (SAR) model to identify hotspots and explore the influence of crashes in nearby 
local government areas on the crash frequency in other areas. The formulated SWM model uniformly distributed 
weights to adjacent road segments. However, this approach overlooks the potential contribution of hazardous 
streets in adjacent areas. These hazardous streets may play a significant role in the occurrence of crashes on the 
target street. This observation aligns with the findings of Raftery and Banfield (1991) and Corpas- Burgos and 
Martinez- Beneito (2020), which argued that while equal weighting may be suitable for regular lattices, it proves 
inadequate for complex systems such as urban road networks.

The application of SWMs with varied weights for car accident analysis remains underexplored, despite some 
research having been conducted in other domains. Addressing this gap, Zhang and Wang (2017) developed an 
SWM that accounts for both geographical and economic distances, aiming to capture the unequal spillover ef-
fects of spatial dependence among housing market units in China. While this method is designed for regionally 
dispersed data, it is not suitable for analyzing road network phenomena. Building on this concept, Corpas- Burgos 
and Martinez- Beneito (2020) proposed an SWM tailored for the spatial analysis of disease mapping that assigns 
random weights to adjacent areas. Although this approach was innovative in the health sector, it was not designed 
to address the complexities of urban road networks. In addition to these issues, Shang et al. (2020) explicitly noted 
that the urban road network encompasses numerous spatial and temporal components and interactions, thereby 
posing several challenges to the development of SWMs for such complex systems.

Furthermore, significant research has been conducted on utilizing endogenous parameters in time- varying 
SWMs and spatial–temporal analysis models, extending beyond accident applications. Exploring these studies 
provides a more comprehensive understanding of how exogenous variables are incorporated into generating 
SWMs and spatial–temporal models. One notable example is the study by Qu et al. (2017), which employed a 
time- invariant SWM utilizing endogenous variables of contiguity and distance. In a Monte Carlo experiment, they 
applied the quasi maximum- likelihood (QML) method to analyze panel data spatial dynamics. Additionally, Merk 
and Otto (2020) developed a time- varying SWM by incorporating endogenous variables such as inverse distance, 
wind direction, and bearing. Their study utilized spatial autoregressive techniques to model the daily effects of 
wind direction and speed on particulate matter (PM2.5) in panel data. In another study, Billé et al. (2020) con-
structed a dynamic SWM model using negative exponential functions of endogenous variables. This model was 
specifically designed to analyze the spatial and temporal structures of house prices in regional areas of the United 
Kingdom. Recently, Zhou et al. (2022) employed a spatial autoregressive binary model with an endogenous SWM 

 14679671, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tgis.13138 by T

est, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  375MOHAMMADI et al.

to examine the variances in travel flow between morning and evening peak times on weekdays and weekends. 
They developed an SWM that quantifies the relative weights among all TAZ pairs based on endogenous variables. 
This SWM was constructed by integrating a gravity model—which accounts for endogenous socioeconomic fac-
tors—with exogenous factors measured by Euclidean geographical distance.

2.2 | Literature on the important features in car accident analysis

Table 2 summarizes four types of characteristics that significantly contribute to urban car accidents at both the street 
level (micro- scale) and the TAZ level (macro- scale). Traffic characteristics play a significant role in car accidents. 

TA B L E  2 Contributing factors to car accidents in urban areas.

Feature category Features, author(s) & publication year Scale

Traffic characteristics • Average Annual Daily Traffic (AADT) (Alarifi 
et al., 2018; Huang et al., 2016; Liu et al., 2017; 
Mahmud et al., 2019; Xiong et al., 2023)

• Vehicle Miles Traveled (VMT) (Xu et al., 2019)
• Running red lights (Retting et al., 1999)

• Street level (Alarifi et al., 2018)
• Zonal level (Huang et al., 2016; Liu 

et al., 2017; Mahmud et al., 2019; 
Retting et al., 1999; Xiong 
et al., 2023; Xu et al., 2019)

Road characteristics • One- way streets, bus and bike lanes, road quality 
(WHO, 2018)

• Speed limit (Almasi & Behnood, 2022; Huang 
et al., 2016; Liu et al., 2017; Ma et al., 2017; 
Mahmud et al., 2019; Rahman et al., 2023)

• Road length [m] (Alarifi et al., 2018; Huang 
et al., 2016; Liu et al., 2017; Xie & Yan, 2008)

• Proximity to intersections (Li et al., 2019)
• Number of intersections (Hasan et al., 2022; 

Shariat- Mohaymany et al., 2015)
• Road type (Hasan et al., 2022; Huang et al., 2016; 

Li et al., 2019; Wu et al., 2024)
• Number of road lanes (Alarifi et al., 2018; Huang 

et al., 2016; Ma et al., 2017)
• Presence of a median on roads (Alarifi et al., 2018; 

Huang et al., 2016)
• Vertical grade, curvature of roads (Wen 

et al., 2019)
• Pavement condition (Huang et al., 2016; Ma 

et al., 2017)

• Street level (Alarifi et al., 2018; 
Huang et al., 2016; Li et al., 2019; 
Liu et al., 2017; Ma et al., 2017; 
Wen et al., 2019)

• Zonal level (Almasi & 
Behnood, 2022; Hasan 
et al., 2022; Mahmud et al., 2019; 
Rahman et al., 2023; Shariat- 
Mohaymany et al., 2015; Wu 
et al., 2024; Xie & Yan, 2008)

Socioeconomic 
characteristics

• Population (Almasi & Behnood, 2022; Alves 
et al., 2021; Feizizadeh et al., 2022; Huang 
et al., 2016; Mahmud et al., 2019; Wu et al., 2024; 
Zhou et al., 2022)

• Median household income (Huang et al., 2019)
• Land use (Almasi & Behnood, 2022; Feizizadeh 

et al., 2022; Sandoval- Pineda et al., 2022; Wang, 
Yuan, et al., 2019)

• POI (Almasi & Behnood, 2022; Sandoval- Pineda 
et al., 2022; Wang, Yuan, et al., 2019; Zhou 
et al., 2022)

• Street level (Alves et al., 2021; 
Feizizadeh et al., 2022; Huang 
et al., 2016)

• Zonal level (Almasi & 
Behnood, 2022; Huang 
et al., 2016, 2019; Mahmud 
et al., 2019; Sandoval- Pineda 
et al., 2022; Wang, Yuan, 
et al., 2019; Wu et al., 2024; Zhou 
et al., 2022)

Weather data • Precipitation, snow depth, temperature, wind 
speed, visibility, cloud cover (Alves et al., 2021; 
Hasan et al., 2022)

• Street level (Alves et al., 2021)
• Zonal level (Hasan et al., 2022)
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376  |    MOHAMMADI et al.

According to Retting et al. (1999), over one million crashes occur annually at traffic signals in the United States. Alarifi 
et al. (2018), Huang et al. (2016), Liu et al. (2017), Mahmud et al. (2019), Xu et al. (2019) and Xiong et al. (2023) found 
that both Average Annual Daily Traffic (AADT) and Vehicle Miles Traveled (VMT) are statistically significant predic-
tors of crashes. AADT represents the average number of vehicles that pass through a specific road segment in a year, 
while VMT measures the total miles driven by vehicles within a particular area or over a specific period. Furthermore, 
running red lights, by either drivers or pedestrians (Retting et al., 1999), can increase crash rates.

Furthermore, road characteristics have been identified as significant factors in the analysis of urban car acci-
dents over the years. According to the World Health Organization's report (WHO, 2018), one- way streets, bus and 
bike lanes, and poor road quality (i.e., potholes) can confuse drivers who are unfamiliar with local street directions. 
Several studies have established relationships between crashes and various factors, such as speed limits (Almasi 
& Behnood, 2022; Huang et al., 2016; Liu et al., 2017; Ma et al., 2017; Mahmud et al., 2019; Rahman et al., 2023), 
road length (Alarifi et al., 2018; Huang et al., 2016; Liu et al., 2017; Xie & Yan, 2008), proximity to intersections 
(Li et al., 2019), the number of intersections (Hasan et al., 2022; Shariat- Mohaymany et al., 2015), and road type 
(Hasan et al., 2022; Huang et al., 2016; Li et al., 2019; Wu et al., 2024). Additionally, relationships have been re-
ported between crashes and the number of road lanes (Alarifi et al., 2018; Huang et al., 2016; Ma et al., 2017), the 
presence of a median on roads (Alarifi et al., 2018; Huang et al., 2016), vertical grade, the curvature of segments 
(Wen et al., 2019), and pavement condition (Huang et al., 2016; Ma et al., 2017).

Socioeconomic factors are also critical to understanding the causes of car accidents. Prior research has revealed 
that population, employment rates, and the number of uneducated residents (Almasi & Behnood, 2022; Alves 
et al., 2021; Feizizadeh et al., 2022; Huang et al., 2016; Mahmud et al., 2019; Wu et al., 2024; Zhou et al., 2022), 
as well as median household income (Huang et al., 2019), correlate with pedestrian accidents. In addition, spe-
cific land use and points of interest, such as hospitals and schools, have been shown to affect traffic accidents in 
TAZs, according to studies conducted by Almasi and Behnood (2022), Feizizadeh et al. (2022), Sandoval- Pineda 
et al. (2022), Wang, Yuan, et al. (2019) and Zhou et al. (2022). Hasan et al. (2022) and Alves et al. (2021) have also 
suggested that weather conditions like rain, snow, frost, and fog can negatively impact accidents due to decreased 
visibility and difficulty controlling a vehicle.

Some studies mentioned in Table 2 focus on constructing models for macro- scale accident prediction, using 
TAZ as the unit of analysis. However, our study aims to conduct a micro- level safety analysis at the street level. 
Therefore, we will utilize the significant factors identified in both TAZ and street- level analyses and subsequently 
employ feature selection techniques to determine the most crucial factors for street- level microanalysis. This 
approach will allow us to gain a more comprehensive understanding of the characteristics affecting car accidents 
at the street level.

3  | THEORY CONCEPT OF SPATIOTEMPOR AL ANALYSIS

Spatial autocorrelation refers to the relationship between attributes at a specific location and surrounding loca-
tions (Barua et al., 2015; De Knegt et al., 2010; Huang et al., 2019). Positive spatial autocorrelation occurs when 
adjacent observations have similar values, while negative spatial autocorrelation occurs when neighboring obser-
vations have different values. By analyzing spatial autocorrelation, we can identify consistent groups of objects 
based on their attributes (Mohamed et al., 2013).

Moran's I is a statistical measure used to evaluate whether a spatial pattern of STRs is clustered, dispersed, or 
random (Rodriguez Rangel & Sanchez Rivero, 2020). This is accomplished by defining two hypotheses. The null hy-
pothesis (H0) represents no spatial structure of the values associated with the geographical features in the study 
area. The alternative hypothesis (H1) refers to the data being more spatially clustered than randomly distributed. 
Moran's I test (Moran, 1950) assesses whether the observed spatial autocorrelation significantly differs from the 
expected value under the null hypothesis. Moran's I test is given by
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    |  377MOHAMMADI et al.

where wij represents the specific element of the SWM corresponding to pair i and j, wii = 0 for all i, y is the average 
value of the variable, N is the total number of observations, and S0 is the number of all positive spatial weights. Since 
Moran's I is a weighted Pearson correlation, z- score and p- values are used to interpret the spatial autocorrelation 
result. The z- score is calculated based on the data standard deviations. If the p- value is sufficiently small, and the 
absolute value of the z- score exceeds the threshold necessary to lie outside the specified confidence interval, it is 
justifiable to reject the null hypothesis. The estimated z- score provides a basis for the statistical assumption about 
a standard normal distribution. The expected value used to separate positive and negative spatial autocorrelation is 
based on the null hypothesis of a normal distribution (Jacquez & Oden, 1994). However, count data, such as crash 
incidents, are rarely expected to follow a normal distribution (Chun, 2014). Therefore, the spatial filtering method is a 
better measurement to describe the count data spatiotemporal pattern.

3.1 | Eigenvector spatial filtering (ESF)

The objective of spatial filtering is to characterize spatial data by considering three primary components: mean 
trends, spatially structured random components, and random noise (Griffith & Chun, 2012). To achieve this, the 
analysis separates spatially structured random components from the overall trend and random noise. Eigenvector 
Spatial Filtering (ESF) is one of the most well- known spatial filtering variations that utilizes eigenvectors derived 
from a SWM (Griffith, 2003). Eigenvectors are obtained from eigenfunctions. These eigenfunctions serve as syn-
thetic covariates and are used to compute non- zero spatial autocorrelation in regression residuals (Griffith, 2021). 
They are given by

where W represents a generic n × n SWM, where the main diagonal is comprised of zeros. Moreover, I denotes the n × n 
identity matrix, 1 is an n × 1 vector that contains 1, and T represents the matrix transpose operator.

ESF utilizes eigenvectors derived from a doubly centered SWM to capture spatial autocorrelation in regression 
residuals (Griffith & Chun, 2012). ESF decomposes the explained variable yi, measured at the ith sample site, into 
three components: a regression component 

∑k

k=1
xi,k�k, a spatial process fMC(F)

(
Si
)
, which depends on location Si, 

and the noise term �i. For all i = 1, …, n, the equation is:

The spatial process in ESF serves to eliminate remaining spatial dependence in the residuals and to accurately esti-
mate the regression coefficients �k. Specifically, the ESF calculates fMC(F)

(
Si
)
 using the Moran coefficient spatial process 

to efficiently reduce residual spatial dependence (Murakami, 2020). More precisely, fMC(F)

(
Si
)
 is defined as follows:

where L represents the number of positive eigenvalues of SWM, el
(
Si
)
 is the ith element of the lth eigenvector el, and 

� l(F) is a fixed coefficient to model the spatial process. By considering spatial dependence via fMC(F)

(
Si
)
, statistical sig-

nificance can be prevented from being overestimated.

(1)
I =

N

S0

∑N

i=1

∑N

j=1
wij

�
yi − y

��
yj − y

�
∑N

i=1

�
yi − y

� ,

(2)
(
I −

11T

n

)
W

(
I −

11T

n

)
,

(3)yi =

k∑
k=1

xi,k�k + fMC(F)

(
Si
)
+ �i , with �i ∼ N

(
0, �2

)
.

(4)fMC(F)

(
Si
)
=

L∑
l=1

el
(
Si
)
� l(F),
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378  |    MOHAMMADI et al.

Random Effect Eigenvector Spatial Filtering (RE- ESF) is a recent enhancement of ESF that accounts for 
spatial autocorrelation in both the response and predictor variables. According to Murakami (2017), RE- ESF 
results may be more reliable than those of ESF due to its superior performance in accurately estimating the 
standard errors of regression coefficients, especially when predictors exhibit spatial autocorrelation. RE- ESF 
utilizes a Moran coefficient- based spatial random process to eliminate any remaining spatial dependence by 
specifying fMC(F)

(
Si
)
.

3.2 | Theory of spatially and non- spatially varying coefficient model (SNVC)

Although RE- ESF accounts for spatial dependence in the dependent variable, residual spatial dependence 
may still exist in the model residuals. This suggests the presence of additional spatial patterns in the data 
that the RE- ESF method does not capture. To overcome this limitation, the spatially and non- spatially varying 
coefficient (SNVC) model (Murakami & Griffith, 2020) has been introduced. This model can estimate spatially 
varying coefficients that change according to the residual spatial dependence structure. For example, it may 
identify that the impact of road type on crashes varies depending on the surrounding land use or population 
density. The SNVC model can capture these complex relationships by estimating different coefficients for dif-
ferent locations in the study area.

Furthermore, RE- ESF only estimates the coefficients of filtered variables and does not directly estimate 
non- spatially varying coefficients that may vary based on independent variables. The SNVC model can address 
this by allowing the estimation of non- spatially varying coefficients that vary based on independent variables. 
In this study, the SNVC can help determine the effect of independent variables (such as road type, land use, 
population density, and weather data) on crash risk while accounting for the possibility that the effect may 
vary depending on other variables. For example, we can estimate the impact of road type on crash risk sep-
arately for different land use types. This would enable the capture of any variation in road type's effect on 
crash risk depending on the surrounding land use. In addition, it would estimate a single coefficient for road 
type across the entire study area.

The SNVC model estimates residual spatial dependence, constant coefficients, spatially varying coefficients, 
and non- spatially varying coefficients, which are defined as (Murakami & Griffith, 2020), i.e.,

where � i,k represents the kth regression coefficient at the ith site, bk denotes constant the coefficients, fMC,k

(
Si
)
 rep-

resents spatially varying coefficients, and f
(
xi,k

)
 represents the non- spatially varying coefficient term. Combining 

both spatial and non- spatial aspects of the coefficients has prevented this method from suffering from any possible 
spurious correlations among spatially varying coefficients (Murakami, 2017).

3.3 | Spatial- temporal weight matrix (STWM)

Spatiotemporal panel data analysis relies on accurately defining the spatial relationships between features. One 
crucial aspect of spatiotemporal analysis is determining the most suitable SWM to accurately analyze the data 
(Mawarni & Machdi, 2016). There are two main methods for generating SWM: distance- band and contiguity- based. 
The distance- band SWM assigns weights to features based on their inverse proportionality to their distance from 
the target feature. Closer features have a greater impact on the target feature (Mawarni & Machdi, 2016). The 

(5)
yi =

k∑
k=1

xi,k� i,k+ fMC

(
Si
)
+�i ,

� i,k =bk+ fMC,k

(
Si
)
+ f

(
xi,k

)
with �i ∼N

(
0, �2

)
.
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    |  379MOHAMMADI et al.

K- nearest neighbor weight matrix is a well- known distance- band SWM. In this approach, the k closest features to 
the target feature are considered its neighbors.

On the contrary, contiguity- based SWM comes in two types: queen and rook contiguity. Queen contiguity 
is the simplest form, which defines neighbor relationships based on shared edges. A shared edge is repre-
sented by 1, while no relationship is represented by 0 (Abokifa & Sela, 2019). Similarly, in the rook contiguity 
weight matrix, two features are considered neighbors if they share a corner point. These SWM, known as 
first- order contiguity, only consider direct neighbors when defining the spatial relationships between units. 
In contrast, higher order contiguity SWM incorporates additional levels of proximity, including secondary, 
tertiary, or more distant relationships.

Contiguity- based or distance- band SWMs are often customized in spatiotemporal datasets by incorporating a 
time window. The relationships between features in STWM are defined based on whether a feature falls within a 
predefined distance and time window.

4  | INTEGR ATING TOPOLOGY AND ECONOMIC VARIABLES IN 
ENDOGENOUS ST WM

We propose an endogenous STWM and employ spatiotemporal analysis to analyze urban road crashes to 
identify high- risk areas and vulnerable times. Figure 1 illustrates the multiple steps involved in the proposed 

F I G U R E  1 Workflow for integrating topological and economic factors to generate STWM and perform 
spatiotemporal analysis of urban road crashes.
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380  |    MOHAMMADI et al.

STWM method. First, we collect and store input data—comprising road network, crash, and economic data—
in a spatiotemporal database. Next, feature selection is applied to identify the most crucial variables for 
spatiotemporal analysis. Subsequently, we define candidate spatial–temporal streets (STRs) based on the 
spatiotemporal connectivity relationships within the road network. We then estimate the weight of each 
STR, represented as stri,t (stri,t ∈ STRs), by considering its topological factors (wtop) and economic character-
istics (wecon).

The topological weight (wtop) is determined through three key metrics: spatial eigenvector centrality, 
spatiotemporal closeness centrality, and betweenness centrality. For this purpose, we calculate spatial ei-
genvector centrality for the road network and improve the results by spatial dissimilarity- based centrality. 
The spatial dissimilarity- based centrality factor helps to determine the STRs with a higher degree that rep-
resents the most critical STRs in the road network. Afterward, we calculate the spatiotemporal betweenness 
and closeness centrality to identify the network's streets (hubs) that contribute to the transfer of accident 
effects within the road network. To achieve this, we identify crash- prone areas by analyzing Vision Zero data 
and non- emergency 311 reports. These datasets contain essential information, including date, time, and 
precise latitude and longitude coordinates of each crash incident and report. Finally, we calculate the weight 
wtop using the determined values of spatial eigenvector centrality, spatiotemporal betweenness centrality, 
and closeness centrality.

In the second step, economic variables are incorporated into the analysis to model their effect on crashes. 
Endogenous economic variables, including road type, road width, road length, speed limit, land use, population 
density, and weather data, are employed to determine the economic weight of STRs, denoted as wecon. This is 
achieved through the application of an inverse distance function.

Finally, the STWM is generated by combining the weight of STRs based on its topological factors wtopo and its 
economic characteristics wecon. Afterward, RE- ESF and SNVC techniques are applied to the STWM to generate an 
accident vulnerability spatiotemporal map. The results can help inform policymakers and transportation profes-
sionals in developing targeted interventions to improve road safety and reduce the number of crashes on urban 
roadways.

4.1 | The structure of STWM

This study utilizes the concept of high- order contiguity weight to develop the STWM that considers the spatial 
and temporal relationships between streets' neighbors. By considering high- order contiguity, the STWM captures 
spatial and temporal interactions that extend beyond immediate neighbors. This expanded perspective enables 
a more comprehensive analysis of spatial and temporal relationships, revealing patterns that may not be evident 
when only first- order neighbors are considered.

Considering n as the number of streets in the study area, the elements of the SWM, represented by an n × n 
matrix, indicate the influence of crashes that occurred on one street on the estimation of crashes on the target 
street. To model the temporal dimension of accident data in the STWM, we consider the streets on an hourly 
temporal scale (denoted by STRs). Note that the location of streets does not change over time. More precisely, 
stri,t ∈ STRs is a mapping of the individual street i to its spatial and temporal dimensions using function f(i, 
t), where streets i: {1, 2, … , n} → i ⊆ R + = {x| x > 0} and time variable t: {1, 2, … , T} → t ⊆ R + = {x| x > 0}. To 
consider the self- prediction effect of street i at time t at time t + 1 (wii,tt+1 ≠ 0), we define the STWM matrix as 
a 2nT × 2nT non- negative element. However, to prevent self- prediction of street i at the same time t, STWM 
is a zero- diagonal matrix (wii,tt = 0). Therefore, the element on the ith row and jth column of STWM is denoted 
as wij,tt, which signifies the magnitude of the link between street i and j at the same time t. On the contrary, 
wij,tt+1 represents the effect of street i at time t on street j at time t + 1. The higher value of SWM elements is 
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    |  381MOHAMMADI et al.

related to observations which have greater importance in estimating the target individual. Therefore, STWM 
could be defined as:

where t: {1, 2, … , T} and,

To gain a better understanding of the generated STWM, consider a scenario where street i is spatially connected 
to street j, and street k is also connected to street j. Furthermore, assume that street k is the second- order near-
est neighbor to street i. It is important to note that accidents occurring on streets n (where n ≠ i, j, k) at time t 
and t + 1 will not impact street i at time t and t + 1. This is reflected in the elements win,tt,win,tt+1,wni,tt andwni,tt+1

, which are all set to 0.
Additionally, we assume that accident situations in the future are unaffected by accident events in the past. 

Specifically, for street i, the accident data that occurs on streets j and k at time t + 1 will not affect the situation 
at time t. Consequently, the elements wii,t+1t, wij,t+1t, wji,t+1t, wik,t+1t, and wki,t+1t are all set to 0.

Furthermore, to prevent self- prediction of accidents on street i at the same time t, we utilize a zero- diagonal 
matrix represented by wt. This ensures that the elements wii,tt, wii,t+1t+1, wjj,tt, wjj,t+1t+1,wkk,tt and wkk,t+1t+1 are all set 
to 0. Hence, the weight matrix can be written as:

In the following sections, we will provide a detailed explanation of the values assigned to the elements of the 
STWM.

(6)STWM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 0 … 0 0

0 w2 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 … wT−1 0

0 0 … 0 wT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)wt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w11,tt w11,tt+1 w12,tt w12,tt+1 … wij,tt wij,tt+1

w11,t+1t w11,t+1t+1 w12,t+1t w12,t+1t+1 … wij,t+1t wij,t+1t+1

⋮ ⋮ ⋮ ⋮ … ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ … ⋮ ⋮

wn1,tt wn1,tt+1 wn2,tt wn2,tt+1 … wnn,tt wnn,tt+1

wn1,t+1t wn1,t+1t+1 wn2,t+1t wn2,t+1t+1 … wnn,t+1t wnn,t+1t+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

wt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 wii,tt+1 wij,tt wij,tt+1 wik,tt wik,tt+1 0 … 0

0 0 0 wij,t+1t+1 0 wik,t+1t+1 0 … 0

wji,tt wji,tt+1 0 wjj,tt+1 wjk,tt wjk,tt+1 0 … 0

0 wji,t+1t+1 0 0 0 wjk,t+1t+1 0 … 0

wki,tt wki,tt+1 wkj,tt wkj,tt+1 0 wkk,tt+1 0 … 0

0 wki,t+1t+1 0 wkj,t+1t+1 0 0 0 … 0

0 0 0 0 0 0 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ⋱ 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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382  |    MOHAMMADI et al.

4.2 | Calculate weights from topological network variables

4.2.1 | Spatiotemporal connectivity relationship

Connectivity is a geometric property that characterizes the linkages between line features such as road networks. 
It refers to the degree of links between nodes (Bamford & Robinson, 1978), with nodes having higher degrees 
being more critical in a road network.

Definition 1. To operationalize this concept, we define the spatiotemporal Connectivity Relationship, 
which identifies the neighbors (NIDi) of a given spatial–temporal road (stri,t). The Connectivity index of 
each stri,t is determined by the average Connectivity of its neighbors, which are nodes that are spa-
tially and temporally connected to stri,t. Formally, this can be represented as a graph G = (V, STRs) with 
vertices V and edges STRs connecting them. Each edge stri,t links vertex vk to vertex vz at time t. To 
calculate the number of neighbors of a node vk, we use the formula NID (vk) = (t × (ns + 1)) – 1, where t is 
the temporal scale (in this study, we use one hour as the temporal scale) and ns represents the number 
of spatially connected nodes to vk. To avoid considering vk as its own neighbor at the same time t, we 
subtract 1 from the result of t times ns + 1. Simplifying the equation, we get NID (vk) = (2 × (ns + 1)) – 1. 
Consequently, the spatiotemporal Connectivity of the node vk is given by

where NID (vk) represents the total number of spatiotemporal neighbors of the node vk, and rkz indi-
cates the relation of nodes vk and vz. The value of rkz is 1 if nodes vk and vz are connected, indicating 
the presence of a connection between them. Conversely, if vk and vz are not connected, the value of 
rkz is 0, indicating the absence of a connection. Finally, the spatiotemporal Connectivity Index (SCI) 
of stri,t can be calculated as:

where SCI
(
vk,t

)
 and SCI

(
vz,t

)
 are the spatiotemporal Connectivity Index of nodes vk and vz at time t, 

respectively.

4.2.2 | Spatial eigenvector centrality

Eigenvector Centrality is a method for measuring a node's centrality in a network by considering the centrality 
of its neighbors (Bonacich, 1987; Rings et al., 2022). Specifically, eigenvector Centrality is based on the idea that 
connections to highly central nodes contribute more to a node's centrality score than connections to fewer cen-
tral nodes. Therefore, nodes with high Eigenvector Centrality scores are those connected to other highly central 
nodes in the network. In this study, we use Eigenvector Centrality to identify clusters of highly central nodes in 
the road network. These clusters represent areas where the network is most vulnerable to disruptions or failures.

Definition 2. The Eigenvector Centrality for node k (k ∈ V) is determined by solving the linear 
system of equations as shown below:

(8)K
(
vk
)
=

NID(vk)∑
z=1

rkz,

(9)SCI
(
stri,t

)
=

SCI
(
vk,t

)
+ SCI

(
vz,t

)
2

,

(10)AX = �X,
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where A represents the adjacency matrix of graph G, and λ is the eigenvalue obtained using the 
Perron- Frobenius theorem. The solution X to this system is unique, and its entries are positive if λ 
is the largest eigenvalue of A (Newman, 2008).

4.2.3 | Spatial dissimilarity- based centrality

Dissimilarity- based Centrality allows for the quantification of each node's topological contribution to the cen-
trality of a given node (Alvarez- Socorro et al., 2015). To improve the ranking of nodes in a network, we employ 
Dissimilarity- based Centrality with the Spatial Eigenvector Centrality measure.

Definition 3. Dissimilarity- based Centrality measures the difference between the neighborhoods 
of two nodes, vk and vz, by defining a distance metric. In this study, we utilize the Jaccard index 
(Jaccard, 1912) as the dissimilarity measure, which is calculated using Equation (11). In the Jaccard 
index, two nodes, vk and vz, are considered close if they share common neighbors. Therefore, the 
Dissimilarity- based Centrality of node vk is given by

Hence, we can calculate the contribution made by node vz in the neighborhood of node vk by assign-
ing a weight, denoted as Wkz, which is expressed by the following equation:

where Dkz refers to the dissimilarity matrix and Akz is the adjacency matrix. This approach allows us to account for 
the relative importance of each node in the neighborhood of the node vk. The spatiotemporal Dissimilarity- based 
Centrality index for node vk is calculated based on the centrality of its neighboring nodes, weighted by their contri-
butions. The centrality of a node is proportional to the total cumulative centrality of its neighbors. Therefore, the 
spatiotemporal Dissimilarity- based Centrality index for node vk is given by

where n is the number of nodes in the network and ECk is the spatial Eigenvector Centrality of the node vk. The largest 
eigenvalue of the adjacency matrix A (see Equation 10) is denoted as �max. Finally, to calculate the spatial Dissimilarity- 
based Centrality index of a street stri,t, the average of its relevant nodes vk and vz is taken into consideration.

4.2.4 | Spatiotemporal betweenness centrality

The Eigenvector Centrality and Dissimilarity- based Centrality measurements vary depending on the geometric 
structure of the road network and remain constant over time. To address this issue, we incorporated time vari-
ables into the weight calculation of STRs' neighborhoods by utilizing the betweenness centrality properties of 
the road network. The betweenness centrality metric identifies nodes that contribute to the transfer of accident 
effects within the road network. It can also be used to obtain the edge betweenness, which helps identify the 
community structure of networks (Cardillo et al., 2006). Essentially, the betweenness centrality metric measures 
how often a node falls on the shortest path between other nodes (Freeman, 2002). Nodes with high betweenness 
centrality values are typically crucial and likely to be used by drivers (Shang et al., 2020), making them vulnerable 
parts of the road network system.

(11)Dkz = 1 −
||vk ∩ vz

||
||vk ∪ vz

||
.

(12)Wkz = Akz Dkz,

(13)DCk =
1

�max

n∑
k=1

Wkz ECk , k = 1, 2, … n,
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Definition 4. To determine the betweenness centrality of stri,t, we calculate the shortest path 
between vulnerable areas by considering 311 reports and Vision Zero reports as vulnerable ac-
cident areas. A higher betweenness centrality value for a given stri,t indicates a greater level of 
significance. Consequently, these STRs represent the most vulnerable parts of the entire network 
system. They have the potential to exert a larger influence on neighboring STRs compared to other 
STRs. Given the vulnerable areas as origins O and destinations D, the betweenness centrality for 
stri,t is the shortest path that passes through street i at time t and can be calculated as follows:

where nOD refers to the total number of available shortest paths from the origin vulnerable area O 
to the destination vulnerable area D at time t. Meanwhile, nOD

(
stri,t

)
 denotes the number of paths 

that traverse a street i at time t.

4.2.5 | Spatiotemporal closeness centrality

The Closeness Centrality measure is used to determine how close a node is to all other nodes in a network. This is 
done by calculating the sum of the distances between a node and all other nodes in the network using the short-
est paths between all pairs of nodes. The nodes with high Closeness Centrality scores are those with the shortest 
distances to all other nodes in the network.

Definition 5. We propose a method for calculating the Closeness Centrality of each node based 
on the 311 non- emergency reports and Vision Zero reports, which serve as indicators of vulnerable 
areas. The Closeness Centrality of each node vk is the average shortest path between the node vk 
and the vulnerable areas. In other words, it measures how close a node is to the vulnerable areas at 
time t. The formula for calculating the Closeness Centrality of a node vk,t is given by

where d(vk, x, t) represents the shortest path distance between node vk and vulnerable area x at time 
t, and n is the number of vulnerable areas that can be reached by node vk at time t. The spatiotem-
poral Closeness Centrality of stri,t is calculated by the average of Closeness Centrality value of its 
relevant nodes vk and vz at time t.

4.2.6 | Combine topological measurements

The weight of strj,t on stri,t, based on the topological variables, is calculated as the Euclidean Distance of each topo-
logical factor of streets i and j at the same time t,

where DC
(
strij

)
, BC

(
strij,t

)
, and CC

(
strij,t

)
 are time- invariant spatial eigenvector centrality (improved by dissimilarity- 

based centrality), spatiotemporal betweenness centrality, and closeness centrality, respectively, and the impact of 
street i at time t 

(
stri,t

)
 on street j at time t + 1 (strj,t+1) is defined as:

(14)BC
(
stri,t

)
=

∑
O≠D

nOD
(
stri,t

)
nOD

,

(15)CC
�
vk,t

�
=

n − 1∑n−1

k=1
d
�
vk , x, t

� ,

(16)Wtop ij,tt =

√(
DC

(
strj

)
−DC

(
stri

))2
+
(
BC

(
strj,t

)
−BC

(
stri,t

))2
+
(
CC

(
strj,t

)
−CC

(
stri,t

))2
,
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4.3 | Calculate weights from economic variables

The weight between two observations from the point of economic variables can be calculated using the inverse 
distance function introduced by Hines and Rosen (1993). This function incorporates economic variables and as-
signs decreasing weight values (Wecon ij,tt) to pairs of observations with increasing economic distance. Specifically, 
the weight assigned to a pair of observations decreases in proportion to their economic distance. This function is 
defined as:

where Wecon ij,tt represents the magnitude of the connection of street i at time t and street j at the same time t for 
economic purposes. Additionally, the intensity of the effect of street i at time t on street j at time t + 1 is defined as:

where zi,t and zj,t represent the economic variable of interest for street i and street j at time t, respectively. The eco-
nomic distance between streets i and j at time t is calculated as the absolute difference between zj,t and zi,t, denoted 
as |||zj,t − zi,t

|||. Furthermore, zj,t+1 represents the economic variable of interest for street j at time t + 1, and |||zj,t+1 − zi,t
||| 

represents the economic distance between street i at time t and street j at time t + 1.

4.4 | Integrating topological network and economic variables to calculate weights

Sun et al. (2016) suggested two methods for combining the weights of endogenous and exogenous variables. 
One of these methods, initially proposed by Case et al. (1993), employs an additive spatial weight function, 
denoted as w(aij, bij), where aij and bij represent the geographical and economic distances between street i 
and street j, respectively. Another approach proposed by Qu and Lee (2015) involves a multiplicative spa-
tial weight function expressed as w(aij, bij) = w1(aij) w2(bij). This function uses the exogenous geographical 
distance aij and the endogenous economic variable bij to calculate the SWM. Notably, an additive spatial 
weight function may still produce non- zero spatial weights even if one of the spatial covariates is irrelevant. 
For instance, if w2(bij) = 0, w(aij, bij) may not be equal to zero, but w1(aij) is not equal to zero for certain i and 
j. In contrast, a multiplicative spatial weight function will yield a zero weight if either w1(aij) = 0 or w2(bij) = 0 
occurs for certain i and j.

In this study, we utilize the exponential version of the multiplicative weight function. The exponential weight 
function allows for the combination of weights in a manner that emphasizes larger values while downplaying 
smaller values. This function is beneficial when dealing with weights that vary extensively, as it helps balance the 
effects of extreme values. Specifically, in this study, using the exponential function helps to focus on the relation-
ship of streets with their nearest neighbors. Therefore, we calculate the magnitude of the spillover effect of a 
crash incident on street i, on street j at the same time t, as follows:

(17)Wtop ij,tt+1 =
((
DC

(
strj

)
−DC

(
stri

))2
+
(
BC

(
strj,t+1

)
−BC

(
stri,t

))2
+
(
CC

(
strj,t+1

)
−CC

(
stri,t

))2)−1∕2

.

(18)Wecon ij,tt =
1

|||zj,t − zi,t
|||
,

(19)Wecon ij,tt+1 =
1

|||zj,t+1 − zi,t
|||
,

(20)wij,tt = ewtop ij,tt × ewecon ij,tt .
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386  |    MOHAMMADI et al.

We also calculate the magnitude of the spillover effect of a crash incident on street i at time t, on street j at time t + 1, 
as follows:

where wtop represents the weight derived from the topological factors of the road network, including the Spatiotemporal 
Connectivity relationship, Spatial Dissimilarity- based Centrality, and Spatiotemporal Betweenness Centrality. On the 
contrary, wecon indicates the weight obtained from the economic variables by utilizing the economic distance.

Finally, the STWM is computed using Equations (20) and (21). For further analysis, a normalized version of the 
STWM is typically employed, which is achieved by rescaling the STWM using the min- max function.

4.5 | Feature selection

In machine learning, feature selection is crucial since using all features may not be desirable to build an accu-
rate predictor model. Several measures have been proposed to identify the most important features. Kuhn and 
Johnson (2019) and Zheng and Casari (2018) suggest using Pearson's and Kendall's rank coefficients, respectively, 
to calculate the correlation between numerical and categorical variables. Specifically, Pearson's correlation coef-
ficient is the ratio of the covariance of two variables to the product of their standard deviations (Lee Rodgers & 
Nicewander, 1988). Pearson's correlation coefficient is denoted as rxy and is defined as:

where n represents the number of observations, and xi and yi are the values of x and y for ith observation. The value 
of Pearson's correlation coefficient ranges between −1 and 1.

On the contrary, Kendall's rank coefficient, also known as the Tau- b statistic, is a non- parametric measure that 
does not rely on assumptions about the distributions of two features (Corder & Foreman, 2011). Kendall's rank 
coefficient can be computed as:

where n0 =
n(n− 1)

2
, n1 =

∑
i

ti(ti − 1)
2

, n2 =
∑

j

ui(ui − 1)
2

, and nc represent the number of concordant pairs, and nd denotes 
the number of discordant pairs. In addition, ti indicates the number of tied values in the ith group of ties for the first 
quantity, and uj represents the number of tied values in the jth group of ties for the second quantity.

5  | C A SE STUDY: CR A SH INCIDENT, 311 REPORTS,  AND 
SOCIOECONOMIC DATA IN BOSTON

Boston, with a population of <700,000, serves as Massachusetts' industrial and commercial center. This research 
focuses on the Roxbury neighborhood of Boston during the winter of 2016 (January, February, and March). The 
study utilizes a crash dataset collected by the Vision Zero project to analyze traffic safety in the Roxbury neigh-
borhood. Figure 2 illustrates the study area along with Vision Zero crash and Vision Zero- entry data. Vision Zero 
crash is a multinational road traffic safety initiative that aims to eliminate traffic crashes by allocating city re-
sources to established strategies. The Vision Zero crash dataset consists of records of incidents requiring public 
safety response due to injuries or fatalities. This dataset contains information, including the date, time, and precise 

(21)wij,tt+1 = ewtop ij,tt+1 × ewecon ij,tt+1 ,

(22)rxy =
n
∑

xiyi −
∑

xi
∑

yi�
n
∑

xi
2 −

�∑
xi
�2�

n
∑

yi
2 −

�∑
yi
�2 ,

(23)
�B =

nc − nd√(
n0 − n1

)(
n0 − n2

) ,
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    |  387MOHAMMADI et al.

latitude and longitude coordinates of each crash incident. During the winter of 2016, a total of 163 crash incidents 
were reported in Roxbury. Henceforth, we shall utilize the term “crash” in lieu of “Vision Zero crash” for conci-
sion. Additionally, the Vision Zero- entry dataset, collected by citizens, reports accident- prone areas. It provides 
information on the date, time, status, and location of each observation. The “status” attribute indicates whether 
the reported issue has been resolved or not. For this study, any Vision Zero- entry data that remains unresolved 
is considered a vulnerable area. A total of 123 Vision Zero- entry data points were gathered for the Roxbury 
Neighborhood case study.

Table 3 presents descriptive statistics of the explanatory variables used in this study. The 311 non- emergency 
request service is a North American municipal hotline that enables citizens to provide feedback to their municipal 
governments regarding the performance of urban services. The 311 data comprise essential details, including the 
date, time, subject, latitude, and longitude coordinates of each report. Reports are classified into 11 general topics 
and referred to the relevant departments. This study analyzed 311 reports related to accident- related topics.

In addition, road network properties, including road type, road width, road length, and speed limit, are incor-
porated into the model. These properties vary in the spatial dimension but are constant in the temporal dimen-
sion. Socioeconomic characteristics, such as dominant land use, which varies in the spatial dimension but remains 
constant in the temporal dimension, are also included. The model also incorporates normalized population density 
for STRs, which is calculated by dividing the population count by the road length. Population density data vary 
spatially and remain constant temporally, as they are reported annually.

F I G U R E  2 Case study and dataset.
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388  |    MOHAMMADI et al.

TA B L E  3 Descriptive statistics of data.

Variable
Descriptive statistical 
value SD Description

Vision zero- crash 
data

[0.00 < 0.00038 < 1] 0.02 The number of crashes on STRs. This variable is 
temporally and spatially varying. Source: https:// data. 
boston. gov/ organ izati on/ visio n-  zero-  bosto n-  program

Vision zero- entry 
data

[0 < 0.0002 < 3] 0.018 The number of vision zero- entry on STRs. Accessed from 
https:// data. boston. gov/ datas et/ visio n-  zero-  entry 

311 request 
service

[0 < 0.0005 < 10] 0.03 The number of non- emergency 311 request services on 
STRs. Accessed from https:// data. boston. gov/ datas 
et/ 311-  servi ce-  requests

Road type Accessed from https:// koord inates. com/ layer/  96131 -  bosto n-  massa chuse tts-  stree t-  edges/  

Residential road 80.58% The ratio of residential roads on STRs. Residential roads 
indicate the proportion of roads specifically intended 
for accessing residential areas

Secondary road 4.637% The ratio of secondary roads in streets refers to the 
proportion of roads that are classified as secondary, 
which typically have two lanes and a central line that 
separates traffic from both directions (https:// wiki. 
opens treet map. org/ wiki/ Tag: highw ay% 3Dsec ondary)

Tertiary road 14.78% The ratio of tertiary roads in streets represents. 
Tertiary roads serve as connections between 
small settlements and link local centers to larger 
settlements. Additionally, tertiary roads often connect 
minor streets to more prominent roads, facilitating 
transportation and access within the street network 
(https:// wiki. opens treet map. org/ wiki/ Tag: highw ay% 
3Dter tiary )

Road width [m] [0 < 3.69 < 8.47] 1.2306 Road width varies in the spatial dimension but remains 
constant in the temporal dimension

Road length [m] [16.71 < 331.36 < 5106] 491.39 Road length varies in the spatial dimension but remains 
constant over time

Speed limit 
[mph/h]

[15 < 21 < 35] 3.1176 The speed limit varies across different spatial locations 
but remains constant over time

Dominant land use Dominant land- use variables exhibit spatial variation while remaining constant over time. 
Accessed from https:// data. boston. gov/ datas et/ parce ls-  2016-  data-  full

Residential 56.52% The ratio of residential- dominant land use for STRs

Exempt 33.04% The ratio of exempt dominant land use for STRs

Commercial 8.98% The ratio of commercial dominant land use for STRs

Mixed 
residential 
and 
commercial

0.87% The ratio of mixed residential and commercial dominant 
land use for STRs

Industrial 0.58% The ratio of industrial dominant land use for STRs

Population density [0 < 0.68 < 11.23] 0.84 The normalized population density for STRs is calculated 
by dividing the population count by the road length. 
Population density data exhibit spatial variation while 
remaining constant over time
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Finally, weather data, including precipitation, snow depth, temperature, wind speed, visibility, and percentage 
of cloud cover, are used in the spatiotemporal analysis of crash data. The weather data is collected from one 
weather monitoring station and thus varies in the temporal dimension but is constant over the spatial dimension 
of the case study.

The spatiotemporal database utilized in this study consists of street- level data known as Streets for an Hour 
of a Day (STRs) from January to March 2016. The dataset is stored in a PostgreSQL database. The spatiotempo-
ral analysis of the data is conducted using R software, employing the ESF, RE- ESF, and SNVC analysis methods, 
which are implemented through the spdep and spmoran packages. Before spatiotemporal analysis, the data are 
pre- processed using PyCharm in a Python 3.6 environment.

Variable
Descriptive statistical 
value SD Description

Traffic lights [0 < 0.258 < 1] 0.4375 The count of traffic lights in STRs varies spatially and 
remains constant over time. The data for traffic lights 
can be accessed from the following source: https:// 
data. boston. gov/ datas et/ traff ic-  signals

Weather data The weather data vary in the temporal dimension and remain constant in the spatial dimension. 
The weather data can be accessed from the following source: Accessed from https:// visua 
l-  cross ing-  weath er.p. rapid api. com/ history

Clear 16.66% The ratio of clear weather conditions in STRs refers to 
the proportion of instances when the sky is free from 
clouds. Clear weather is characterized by the absence 
of clouds in the sky

Overcast 58.33% The ratio of overcast weather conditions in STRs 
indicates the proportion of instances when the sky is 
predominantly covered by clouds, typically accounting 
for over 95% of the sky

Clear overcast 8.33% The ratio of clear overcast weather conditions in STRs 
refers to the proportion of instances when the sky 
is predominantly covered by clouds, with no rain or 
other precipitation

Cloudy 16.66% The ratio of cloudy weather conditions in STRs refers 
to the proportion of instances when the sky is 
predominantly covered by clouds, resulting in less 
sunshine

Precipitation 0 0 The amount of recorded precipitation in STRs is 
measured in millimeters (mm)

Temperature [−4 < 34.76 < 63] 10.702 The recorded temperature for STRs is measured in 
degrees celsius (°C)

Wind speed [0.1 < 11.38 < 23.8] 5.145 The wind speed for STRs is measured in kilometers per 
hour (km/h)

Visibility [1.9 < 9.29 < 9.9] 1.8251 The visibility for STRs is measured in meters

Snow depth [0 < 0.72 < 5.68] 1.428 The snow depth in STRs is measured in millimeters (mm)

Cloud cover [0 < 59.6 < 100] 42.164 The cloud cover percentage represents the extent of 
the sky covered by clouds. It is measured on a scale 
from 0 to 100, where higher values indicate a greater 
amount of cloud cover

Note: [Min < Mean < Max].

TA B L E  3  (Continued)
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6  | RESULTS AND DISCUSSION

6.1 | Temporal window tuning

According to Antczak (2018) and Kooijman (1976), the optimal spatiotemporal window size for STWM can be 
achieved by maximizing the spatiotemporal structure value. In this study, we determined the most suitable tem-
poral window for the spatiotemporal database by evaluating the STWM matrix, which was calculated based on 
crash count data with a one- hour temporal scale. Since there is no autocorrelation in the crash count data at a one- 
hour temporal scale, we looked for the temporal window that exhibits the highest spatiotemporal structure in the 
data. To accomplish this, we first mapped STRs to a time series while holding the spatial dimension constant. The 
values in the time series represent crash counts from January to March 2016. Afterward, we used the Augmented 
Dickey- Fuller test (ADF) (Cheung & Lai, 1995) to check the stationarity of the time series. The test results indicate 
an ADF statistic of −5.3256 with a p- value of 0.000007 and a critical value of −3.51 at 1%. The more negative 
the ADF statistic, the more confidence we have in rejecting the null hypothesis. In this case, the test statistic is 
lower than the critical value, and the p- value is below the significance level of 0.05. As a result, we reject the null 
hypothesis and conclude that the time series database is stationary.

As depicted in Figure 3, the parameter tuning of the Fuzzy Time Series (FTS) model reveals that the minimum 
root mean square error (RMSE) values of 2.05 and 2.72 are achieved when the number of fuzzy sets and the time 
window parameters are set to 10 and 7 days, respectively. This indicates that a seven- day temporal window is 
optimal for conducting ESF, RE- ESF, and SNVC analyses.

Figure 4 illustrates the daily time series of crash data for streets (STRs) from January 2016 to March 2016. The 
plot includes a red line representing the seasonal decomposition based on a four- day moving average. Figure 4 
shows that crash values increased in the first week of February, decreased on February 3, and then increased 
again in the first week of March 2016. Additionally, the seasonal decomposition indicated in Figure 4 reveals that 
there is no repeating short- term cycle in the series.

To understand the temporal dependencies within the time series, we employed the autocorrelation function 
(ACF) to identify lags with significant correlations and discern patterns. The ACF plot illustrates the similarity 
between crash data at a specific time lag and the crash data point at zero lag. The autocorrelation coefficient can 
vary between −1 and 1, where −1 represents a perfect negative correlation, 1 indicates a perfect positive correla-
tion, and 0 indicates no correlation.

Figure 5a represents the ACF plot for the time series, with bars representing the size and direction of cor-
relations. The plot indicates that autocorrelations for all lags significantly differ from zero for at least one lag, 
implying that the time series data do not exhibit white noise (i.e., crash accident samples are not purely random). 
Consequently, a time series analysis is necessary to appropriately model the pattern in the data.

F I G U R E  3 Results of parameters tuning for fuzzy time series.

 14679671, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tgis.13138 by T

est, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  391MOHAMMADI et al.

Figure 5b examines the partial autocorrelations of the time series. The partial autocorrelation at a specific lag 
measures the degree of correlation between data points at that lag while controlling for the influence of shorter lags. 
In other words, it quantifies the unique correlation between observations at a given lag after accounting for correla-
tions at shorter lags. The results reveal that the partial autocorrelation for lag 2 is statistically significant. This suggests 
that the value at time t is influenced by the value at time t − 2. However, the statistical significance of the influence 
decreases with subsequent lags. Therefore, these findings suggest applying a second- order autoregressive model.

6.2 | Correlation between non- emergency 311 reports and crash data

The collected data from non- emergency 311 reports are classified into seven categories. Utilizing Pearson correla-
tion statistics, we identified reports with a high correlation to crash data and utilized them as economic variables. 
Table 4 presents the Pearson correlation between crash data, 311 reports, and Vision Zero- entry data. The results 

F I G U R E  4 Time series of the number of crashes from January to March 2016.

F I G U R E  5  (a) The autocorrelation and (b) partial autocorrelation plot for the time series data.

 14679671, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tgis.13138 by T

est, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



392  |    MOHAMMADI et al.

demonstrate a strong positive linear correlation between Vision Zero- entry and crash data with a value of 0.71. 
Additionally, the categories “Public Works Department” and “Transportation Traffic Division” in the 311 reports 
exhibit positive linear correlations with crash data, with values of 0.54 and 0.50, respectively. Consequently, the 
“Public Works Department” and “Transportation Traffic Division” reports, along with Vision Zero- entry data, were 
employed to investigate high- risk areas on the road network.

6.3 | The results of feature selection

Before conducting spatiotemporal analysis, it is crucial to apply feature selection to eliminate irrelevant features 
from the regression model. Table 5 presents the results of the feature selection based on Pearson's and Kendall's 
rank coefficients. To assess the correlation between numerical features such as crash number, topological vari-
ables, road width, road length, and speed limit, a p- value <0.05 indicates a significant correlation. A Pearson 
correlation coefficient value close to +1 suggests a strong positive relationship, while a value close to −1 sug-
gests a strong negative relationship. A value of zero indicates no association between the features. The results 
show that Dissimilarity- based Centrality is positively correlated with crash data, with a Pearson value of 0.564. 
Furthermore, the results reveal that betweenness centrality has a moderate correlation with crash data, while 
Closeness Centrality has the weakest correlation (Pearson = 0.460). Additionally, concerning economic variables, 
road length exhibits the strongest positive correlation (Pearson = 0.401) with crash numbers.

Regarding the numerical- categorical feature correlation (crash number, road type, dominant land use, and 
weather condition), Kendall's correlation coefficient is examined if the p- value <0.05. Kendall's correlation coef-
ficient results can be interpreted similarly to the Pearson coefficient. The findings of the feature selection show 
that the Residential Road type feature has a slightly negative correlation (−0.180) with crash numbers, suggesting 
that fewer crashes occurred on roads with the Residential Road type. As for precipitation data, no rainfall was 
recorded for more than 90% of the days; hence, it is not statistically possible to calculate the relationship between 
precipitation and crash data.

To prevent singularity in spatiotemporal analysis, it is crucial to investigate the correlations between indepen-
dent feature variables before applying the analysis. Highly correlated features can be more dependent and have 
a similar effect on the dependent variable. In such cases, it is necessary to eliminate one of the features. Figure 6 
presents the correlation results between independent variables. The analysis reveals a significant correlation 
(0.78) between the properties “Road Width” and “Lanes.” However, based on the correlation values presented in 
Table 5, “Road Width” has a higher correlation with crash data (0.173) than “Lanes” (0.059). Therefore, it is nec-
essary to eliminate the “Lanes” attribute before further analysis. This step is crucial to ensuring the accuracy and 
validity of the analysis results.

6.4 | Spatial regression random effect eigenvector spatial filtering (RE- ESF)

Understanding the spatial and temporal structure of crash data is crucial, and this requires an investigation of 
Moran's eigenvectors (MEs). MEs play a vital role in filtering spatial autocorrelation within the data, enabling 

TA B L E  4 Pearson correlation between crashes and 311 reports and vision zero- entry data.

Dependent 
variables

Vision 
zero- 
entry

Animal 
control

Public works 
department

Mayor's 
24- h 
hotline

Property 
management

Parks 
recreation 
department

Inspectional 
services

Transportation 
traffic division

Crash 0.71 0.04 0.54 0.28 0.22 0.25 0.36 0.50
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    |  393MOHAMMADI et al.

RE- ESF to estimate the true relationship between the dependent variable (the number of crashes) and independ-
ent variables such as road type, road length, land use, population, and weather.

Each eigenvector represents a distinct spatial scale or pattern found within the data. After analyzing the MEs 
using the provided STWM, we identified the first ME (e1), which corresponds to the largest eigenvalue (λ1) that 
captures the most dominant spatial autocorrelation pattern within the data. This eigenvector describes a large- 
scale map pattern exhibiting the highest positive Moran coefficient (Cliff & Ord, 1972). Additionally, we extracted 

TA B L E  5 Feature selection results (dependent variable: crash number numerical variable).

Independent features Type

Pearson's rank 
coefficient

Kendall's rank 
coefficient

RelationPearson p- value Kendall p- value

Topological network variables

Dissimilarity- based centrality Numerical 0.564 0.000 Correlated

Betweenness centrality Numerical 0.512 0.000 Correlated

Closeness centrality Numerical 0.460 0.000 Correlated

Economic variables

Road type Categorical

Tertiary 0.114 0.000 Correlated

Residential −0.180 0.000 Correlated

Secondary 0.146 0.000 Correlated

Road width [m] Numerical 0.173 0.000 Correlated

Lanes Numerical 0.059 0.000 Correlated

Road length [m] Numerical 0.401 0.000 Correlated

Speed limit [mph] Numerical 0.208 0.000 Correlated

Dominant land use Categorical

Commercial 0.076 0.000 Correlated

Exempt 0.075 0.000 Correlated

Industrial −0.018 0.245

Mixed residential commercial 0.001 0.955

Residential −0.112 0.000 Correlated

Traffic lights Categorical 0.209 0.000 Correlated

Population density Numerical −0.006 0.704

Weather condition Categorical

Clear −0.039 0.011 Correlated

Clear overcast 0.026 0.091

Overcast 0.012 0.421

Partially cloudy 0.003 0.826

Precipitation [mm] Numerical

Temperature [°C] Numerical −0.003 0.859

Wind speed [km/h] Numerical 0.034 0.030 Correlated

Visibility [m] Numerical −0.017 0.048 Correlated

Snow depth [m] Numerical 0.008 0.629

Cloud cover [0–10] Numerical 0.013 0.390
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394  |    MOHAMMADI et al.

e10 and e100 eigenvectors that are orthogonal and uncorrelated with the previously identified eigenvectors, max-
imizing the Moran coefficient. While the initial eigenvectors captured the most dominant spatial patterns, the 
subsequent eigenvectors revealed more subtle spatial patterns and maximized the negative Moran coefficient. 
Therefore, it is crucial to investigate a multi- scale analysis of crash data in spatial and temporal structures.

Figure 7a–c illustrate the spatial distribution of the 1st, 10th, and 100th largest MEs, respectively. The spatial 
pattern depicted by e1 (Figure 7a) suggests significant large- scale autocorrelation, with a strong concentration in 
the central and western regions of the study area. This finding indicates a higher likelihood of accidents on high-
ways in these regions. Several factors, such as major traffic routes and major commercial and residential hubs, 
may be responsible for this finding. Identifying these zones is crucial for implementing large- scale strategies, 
such as significant infrastructure developments and wide- ranging traffic management plans. Figure 7b represents 
intermediate- scale spatial autocorrelation in the northern and southwestern areas of the study area. Notably, 
this intermediate- scale autocorrelation could not be captured by e1 alone. According to these findings, while the 
broader region has its patterns, certain areas within the study area have unique characteristics that influence 
crash data. Possible explanations for these nuances might derive from regional factors like road designs and spe-
cific intersections. Furthermore, Figure 7c displays the spatial pattern of e100, which reveals low- scale autocor-
relation primarily in the southwest. The occurrence of low- scale spatial autocorrelation patterns might arise from 
localized phenomena such as specific intersections, particular road conditions, or potentially transient factors like 
construction zones. By comparing the spatial patterns of e1, e10, and e100, we gain insight into the dynamic spatial 
structure inherent in crash data at different scales. This analysis underscores the importance of examining crash 
data at various scales to identify potential high- risk zones, thereby enhancing road safety initiatives.

In Figure 7d, the cumulative sum of all MEs is presented. This cumulative sum serves as a model encapsulating 
spatial autocorrelation across various scales. The RE- ESF and SNVC utilize the cumulative sum of MEs for further 
analysis. This cumulative sum enhances the accuracy and reliability of spatial analysis by capturing both large 
and small- scale spatial patterns. Practically, interventions can be tailored to specific scales. For example, while 

F I G U R E  6 The results of correlation between independent variables.
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    |  395MOHAMMADI et al.

large- scale patterns might require policy changes, micro- level patterns could be addressed with local engineering 
solutions. As a result of this integrated approach, effective crash prevention strategies can be developed and 
implemented, which is the primary objective of this study.

Figure 8 illustrates the temporal distribution of the 1st, 10th, and 100th largest MEs, as well as the cumulative 
sum of all MEs from January to March 2016. Notably, during the period from January 1 to February 19, 2016, e1, 
e10, e100, and the cumulative sum of all MEs exhibited negative values. These negative eigenvectors indicate that 
the crash distribution deviated from the expected clustering pattern during the timeframe. Conversely, the period 

F I G U R E S  7 Spatial distribution of the (a) 1st, (b) 10th, and (c) 100th largest MEs, and (d) all MEs.
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396  |    MOHAMMADI et al.

following February 19th saw these eigenvectors predominantly shift to positive values. The transition from neg-
ative to positive suggests that crash patterns are stabilizing. This might infer that the crash temporal distribution 
adopted a more predictable pattern after an initial unstable period. Recognizing periods of stability versus volatil-
ity in crash patterns provides valuable insights for road safety authorities. A stable pattern might support broader 
safety interventions, whereas volatile periods might require targeted interventions based on the specific reasons 
for the observed changes.

The negative eigenvectors observed during the initial period can aid in identifying potential spatial and tem-
poral clustering of crashes that may have occurred during that time. In contrast, the positive eigenvectors in the 
subsequent period indicate a more predictable and stable pattern, offering valuable insights for future crash 
prevention efforts. These findings hold relevance for RE- ESF and SNVC analyses, as they consider the spatial and 
temporal structure of the data.

By presenting the temporal distribution of MEs and analyzing the signs of eigenvectors, this study unveils 
crucial information about changing patterns in crash occurrences. It provides valuable guidance for understanding 
and mitigating crash risks.

Table 6 presents the estimated coefficients and statistical significance for the different independent vari-
ables in the RE- ESF model. The results reveal interesting findings about the relationships between these variables 
and crash numbers. There is a positive correlation between crashes and the topological variables, specifically 
betweenness centrality (0.5406) and closeness centrality (0.1605), at the 0.5% significance level. Regarding be-
tweenness centrality, the finding suggests that areas serving as major transition or connection points (higher 
betweenness centrality) in the traffic network are prone to a higher number of crashes. This could be due to the 
convergence of different traffic flows, creating more potential conflict points. Regarding closeness centrality, the 
positive correlation at the 0.5% significance level suggests that more central areas within the network, which 
are accessible and often frequented, experience a higher number of crashes. Regarding economic variables, the 
results demonstrate a positive relationship between Commercial land use (+0.063) and the number of crashes, as 
well as a negative correlation between Residential Road type (−0.0431) and the number of crashes, both at the 
0.1% significance level. Areas with commercial land use tend to see more crashes. This could be due to increased 
vehicular and pedestrian activity combined with diverse traffic movements (turns, parking, and stops) in com-
mercial areas. Conversely, residential roads show a lower number of crashes, possibly due to their lower speeds.

F I G U R E  8 The temporal distribution of the 1st, 10th, and 100th largest and all MEs.
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Furthermore, among all the independent variables, road length exhibits the highest t- statistic value of 22.2755 
at the 0.1% significance level. Since the null hypothesis is rejected, this indicates a relationship between the road 
length variable and the crash incidents. However, the small coefficient value of 0.0002 suggests that this correla-
tion is not particularly strong. Therefore, longer roads might not necessarily lead to more crashes.

Furthermore, variables such as speed limit, visibility, wind speed, and road width also correlate with crashes, 
but their significance varies. Lower p- values for speed limit and visibility suggest stronger evidence for their as-
sociation with crash numbers relative to the null hypothesis. Conversely, higher p- values indicate a weaker cor-
relation between traffic signals, clear weather, and dissimilarity- based centrality variables, and crash incidents.

The intercept in the model represents the average expected value of the crash variable when all the indepen-
dent variables are equal to zero. However, it is important to note that interpreting the negative intercept value of 
−0.3710 is not meaningful in this context, as land use and road type variables cannot realistically be zero in the 
real world.

The estimated standard error and scaled Moran coefficient (Moran. I/max (Moran. I)) of the RE- ESF spatiotem-
poral process fMC(F)

(
Si
)
 are 0.1078 and 0.3871, respectively. These results suggest the existence of residual spatial 

and temporal dependence in crash data analysis. Moreover, the value of the scaled Moran coefficient (0.3871) 
indicates that there is moderate- scale residual spatiotemporal dependence present in the estimation, implying the 
potential for clustering of accidents in certain regions.

In Figure 9a, we can observe the spatial distribution of the estimated spatially dependent component. The 
results indicate that the northeast and central parts of the study area (region 25) exhibit the strongest spatial de-
pendence and are more prone to accidents. This spatial concentration underscores the necessity of understanding 
regional specifics, as certain areas might present unique risk factors that cause higher accident rates. Specifically, 
approximately 41% of the roads with high spatial dependence are tertiary roads, while residential roads account 
for about 36%. Tertiary roads serve as a connection between major and minor roads, accommodating a combi-
nation of traffic of both types. The nature of combined traffic may contribute to spatial dependence. In addition, 
given the domestic nature of residential roads, a high accident rate could indicate speeding or a lack of proper 

TA B L E  6 The estimated coefficients on independent variables, standard errors, t- values, and p- values for RE- 
ESF (dependent variable: crash number).

Estimated coefficients Standard errors t- value p- value

(Intercept) −0.3710 0.0887 −4.1841 0.0000

Speed limit 0.0059 0.0016 3.6191 0.0003

Road length 0.0002 0.0000 22.2755 0.0000

Visibility 0.0282 0.0083 3.4077 0.0007

Wind speed −0.0024 0.0028 −0.8616 0.0890

Road width 0.0002 0.0012 0.1941 0.0461

Traffic signal −0.0016 0.0108 −0.1462 0.1837

Commercial land use 0.0630 0.0345 1.8239 0.0083

Exempt land use 0.0264 0.0314 0.8410 0.0404

Residential land use 0.0240 0.0314 0.7644 0.0447

Clear weather −0.0147 0.0114 −1.2827 0.1997

Residential road −0.0431 0.0139 −3.1072 0.0564

Secondary road 0.0045 0.0240 0.1888 0.0019

Dissimilarity- based centrality 0.0529 0.1791 0.2955 0.0803

Betweenness centrality 0.5406 0.1118 0.7781 0.0476

Closeness centrality 0.1605 0.1346 0.5437 0.0365
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398  |    MOHAMMADI et al.

signage. These findings suggest that accidents are more likely to happen on tertiary and residential roads in the 
northern and central parts of the study area. Moreover, most roads with a higher degree of spatial dependence are 
in areas dominated by exempt land use (57%), or by commercial dominance (25%). This may suggest a correlation 
between land use and accident susceptibility.

Figure 9b,c present the predicted crash incident values and the standard error of the prediction, respectively. 
Figure 9b suggests that highways in the center, northeast, and southwest of the study area are more susceptible 

F I G U R E  9  (a) Spatial distribution of estimated spatial dependent component, (b) the predicted crash incident 
values, (c) the standard error of the predicted values, and (d) residual.
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    |  399MOHAMMADI et al.

to accidents. The highlighted variability in accident susceptibility across different regions underscores the hetero-
geneity of factors affecting accidents. Moreover, Figure 9c shows that residential roads in the central area have 
high standard error predictions, indicating lower accuracy in predicting accidents on these roads. Combining these 
results indicates that while some areas, like highways in the northeast, show high susceptibility, residential roads 
in the central region are difficult to predict accurately. Notably, more than 90% of streets with high standard pre-
diction errors are associated with residential- dominant land use. Consequently, it is crucial to implement appro-
priate strategies to enhance safety in these areas. Additionally, the high standard error predictions for residential 
roads in the central area underscore a potential limitation of the RE- ESF model in these areas. Besides, most high 
prediction errors are related to streets with residential land use, suggesting the need for model refinement in 
these contexts.

Figure 9d depicts the spatial distribution of residuals, representing the disparities between the actual ob-
served crash values and the predicted values. Notably, higher residual values are observed in the center of region 
25, indicating the model's limitations. This shows a significant discrepancy between the predicted and actual num-
bers of accidents. In other words, the RE- ESF model fails to capture the real accident count accurately in these 
areas. This discrepancy suggests the presence of additional factors or variables not considered in the model. Such 
discrepancies are not merely statistical but have real- world implications. High residuals indicate areas potentially 
more hazardous than the model predicts, underscoring the need for increased safety measures and interventions. 
This limitation highlights the importance of dynamic model validation and updating. Consequently, this informa-
tion is crucial for identifying areas that require additional attention and resources to enhance road safety.

Figure 10 presents the average temporal (spatially constant) statistical results of the RE- ESF from January to 
March 2016. In Figure 10a, a negative temporal structure of the estimated spatiotemporal dependent variable is 
observed. These negative values were predominantly observed during the first week of January and the second 
and third weeks of March. Notably, there was a 72% cloud cover during these weeks, which indicated overcast 
weather conditions. Additionally, the highest negative values were associated with an average maximum wind 

F I G U R E  1 0 The temporal average (spatially constant) statistical results of RE- ESF. (a) estimated spatial 
dependent, (b) predicted value, (c) SE of predicted value, and (d) residual.

(a) (b)

(c) (d)
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400  |    MOHAMMADI et al.

speed of 11.1 km/h. These findings suggest that adverse weather conditions, such as overcast skies and high wind 
speeds, may act as deterrents to accidents, thus contributing to the observed negative correlation.

The negative temporal correlation has significant implications for decision- making regarding traffic safety 
policies and resource allocation. Understanding periods when lower accident rates are observed, such as the first 
week of January and the second and third weeks of March, can help prioritize resources and interventions during 
other high- risk periods or locations. By focusing efforts on times or areas with higher accident rates, authorities 
can allocate resources effectively and implement targeted interventions to reduce accidents and enhance road 
safety.

Furthermore, Figure 10b illustrates the predicted values, highlighting the last week of February and the first 
week of March as particularly vulnerable periods with average predicted values of 0.095 and 0.091, respectively. 
Conversely, the first week of January and the second and third weeks of March appear to be safer periods. The 
presence of larger standard errors in the regression during these weeks, which denote lower accuracy in the 
model's predictions, supports this observation (see Figure 10c). The larger standard errors observed during spe-
cific weeks suggest increased uncertainty in the model predictions for those periods. Such large standard errors 
could result from various factors, including unaccounted variables or outliers, potentially influencing accident 
rates during that time.

Additionally, Figure 10d presents the average of residuals, reflecting the disparity between the predicted 
and actual number of accidents. The third week of March exhibits the lowest average of residuals, suggesting a 
better alignment between the model's predictions and the actual data for that week. In contrast, the third week 
of January and the last week of February show the highest average of residuals, indicating a large discrepancy 
between predicted and observed accident counts. There are several reasons for such high residuals. It is possible 
that some factors not included in the model (e.g., traffic flow) had a significant impact on accident counts during 
these periods. Furthermore, unforeseen temporary events may have affected accident rates during these weeks, 
which were not factored into the model.

In summary, as demonstrated in the last week of February and the first week of March, periods of heightened 
accident risk are critical for decision- making. Recognizing these vulnerable periods can guide traffic safety poli-
cies, and public advisories can warn of increased traffic.

In conclusion, the RE- ESF model provides significant insights into the spatial and temporal dependence of 
crash incidents. The spatial results of the RE- ESF underscore the significance of Land use in analyzing accident 
probability. Additionally, the negative temporal correlation suggests safer time zones and helps prioritize re-
sources for other higher- risk periods. However, despite these advantages, the RE- ESF model reveals limitations 
in predictive accuracy for specific locations within the study area and during certain periods, as evidenced by 
large standard errors and residuals. These limitations suggest the need to incorporate additional variables into 
the model to enhance its predictive capability. The findings underscore the necessity for developing dynamic and 
adaptive strategies to enhance road safety.

6.5 | Spatially and non- spatially varying coefficients (SNVC)

In contrast to RE- ESF, SNVC offers the ability to estimate spatially varying coefficients that change based on the 
residual spatial dependence structure. This means different coefficients can be estimated for different locations 
within the study area. The adoption of SNVC in this research highlighted spatial heterogeneity in the influence of 
independent variables on crash risk. Moreover, SNVC is valuable for determining the impact of independent vari-
ables such as road type, land use, population density, and weather data on crash risk in different spatial and non- 
spatial variations. For example, a busy intersection in an urban area might present a high risk due to factors such as 
traffic volume and complexity. However, a similar intersection in a suburban area could have a different risk profile 
due to varying factors such as speed limits or pedestrian activity. Additionally, SNVC acknowledges that the 
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impact of these variables might change based on other factors. In this study, we employed SNVC while assuming 
spatially and non- spatially varying coefficients for the independent variables. The coefficients of constant vari-
ables were assumed to be fixed by default. As weather- related data was collected from a single station, we treated 
variables like Visibility, Wind Speed, and Clear weather as constants in spatial dimensions. This is crucial because, 
while certain factors might vary across locations, some remain constant and uniformly influence the entire study 
area. Recognizing these factors strengthens model reliability. With these assumptions, we aim to identify factors 
that contribute to the likelihood of accidents, considering both spatially and non- spatially varying factors.

Table 7 highlights the influence of both spatially and non- spatially varying factors on the estimated coeffi-
cients between the dependent variable (crash data) and the independent variables (Traffic Signal, land use, Road 
Type, Dissimilarity- based Centrality, Betweenness Centrality, and Closeness Centrality). Notably, the coefficient 
of road length exhibits both spatially and non- spatially varying characteristics, with random standard errors (SEs) 
of 0.002 and 0.026 for the spatial and non- spatial effects, respectively. These results suggest that the impact of 
road length on the dependent variable can change across different spatial and non- spatial contexts. This could be 
attributed to various factors, such as different traffic densities, the presence of intersections, or other geograph-
ical constraints that may influence its relationship with the dependent variable. Furthermore, the coefficients 
of speed limit and Commercial land use are identified as spatially varying coefficients with random SEs of 0.004 
and 0.311, respectively. This indicates that their effect on the dependent variable varies depending on the spatial 
location but is constant across different non- spatial contexts. A wide range of factors can affect these spatial 
variations. For example, the effect of the speed limit on crash data might be influenced by land uses, road charac-
teristics, or regional traffic policies in the vicinity. Similarly, commercial land use in a densely populated urban area 
might have a different risk profile than in a suburban area. This is due to variations in traffic volume, pedestrian 
activities, and accessibility. Overall, the results indicate that while the coefficients of the road length variable can 
be estimated as spatial and non- spatial coefficients, the remaining independent variables exert influence on the 
dependent variable, which remains consistent irrespective of the spatial and non- spatial context. This indicates 
that their influence on crash data is relatively stable and does not exhibit heterogeneity based on location or other 
non- spatial factors.

TA B L E  7 The results of estimated spatially and non- spatially varying coefficients.

Spatial effects (coefficients on x) Non- spatial effects

Random SE Moran I/max (Moran I) Random SE

(Intercept) 0.000 0.648 0

Speed limit 0.004 0.762 0

Road length 0.002 0.659 0.026

Road width 0.000 NA 0

Traffic signal 0.000 NA 0

Commercial land use 0.311 0.662 0

Exempt land use 0.000 NA 0

Residential land use 0.000 NA 0

Residential road type 0.000 NA 0

Secondary road type 0.000 NA 0

Dissimilarity- based 
centrality

0.000 NA 0

Betweenness centrality 0.000 NA 0

Closeness centrality 0.000 NA 0
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Figure 11 displays the spatial patterns of the SNVC coefficients for road length, Commercial land use, and 
speed limit. Figure 11a shows that road length exerts a strong influence on crash incidents, particularly in the 
northern and central parts of the study area. This suggests that these regions might have longer roads, leading 
to increased crash occurrences. Contributing factors could be higher speeds, longer distances between intersec-
tions, or even road characteristics unique to these areas. Similarly, Figure 11b highlights the significant impact of 
Commercial Land use on crash incidents in the southern and central parts of the study area. Commercial areas 

F I G U R E S  11  (a) The spatial distribution of SNVC on road length and (b) spatially varying coefficients on 
commercial land use, and (c) speed limit.
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typically have higher traffic volumes, frequent stop- and- go traffic, increased pedestrian movement, and parking 
activities, which contribute to increased accident risk. In addition, commercial areas might exhibit large inter-
sections, multiple entry and exit points, and varied land use in proximity, leading to complex traffic patterns. 
Furthermore, Figure 11c illustrates the positive effect of speed limit in the southern region of the study area. 
These results suggest a potential correlation between higher speed limits or more frequent changes in speed limits 
and an increased number of crashes in the southern region. Higher speeds can reduce the reaction time of drivers, 
resulting in more severe crashes. Alternatively, it might suggest that roads in the southern area are designed for 
higher speeds, possibly resulting in riskier driving behavior. In conclusion, these findings emphasize the varying 
impacts of road length, commercial land- use, and speed limit on crashes across different areas of the study. By 
leveraging this information, policymakers and urban planners can develop targeted interventions to enhance road 
safety in specific locations where these factors have the greatest influence. For example, in regions influenced 
by commercial Land use, urban planners might consider redesigning intersections, enhancing pedestrian safety 
measures, or diverting heavy traffic away from commercial hubs.

Figure 12 depicts the temporal distribution of SNVC coefficients on road length from January to March 2016. 
The findings indicate that road length has a significant impact on crash incidents during the second week of 
February and the last week of March 2016. The degree of road length's coefficient is generally assumed to be 
constant over time, but the SNVC model indicates spatial and temporal variation. Specifically, the positive effect 
of road length on increasing crash incidents was most pronounced during the second week of February and the 
last week of March 2016. This could be attributed to several factors, including seasonal variations, road mainte-
nance or construction activities, large events causing increased traffic, or other temporal phenomena. These find-
ings imply the importance of policymakers and urban planners implementing time- adaptive strategies to enhance 
urban traffic safety and effectively plan construction activities. While temporal insights are crucial, it is imperative 
to interpret them in conjunction with spatial distributions, as shown in Figure 11a. The significant influence of 
road length on accidents was previously emphasized in region 25, particularly in its northern and central sections. 
When combined with the temporal insights from Figure 12, it becomes evident that during those two peak peri-
ods, the risk associated with longer roads in these areas might significantly increase.

F I G U R E S  1 2 The temporal distribution of SNVC on road length.
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The SNVC analysis underscores the importance of considering spatial and temporal variability in factors influ-
encing crash incidents. By understanding these dynamics, policymakers and urban planners can develop spatio-
temporal adaptive safety interventions that address specific conditions and risk factors. However, the SNVC also 
acknowledges its limitations, including the presumption of static coefficients for certain variables and potential 
oversight of local variations in weather conditions. These assumptions may overlook subtle, yet impactful, micro-
climatic differences or localized weather phenomena, which can significantly affect crash incidences. The findings 
from the SNVC analysis emphasize the need for localized, data- driven road safety interventions and highlight the 
critical role of accounting for spatial variability in traffic safety analysis.

Furthermore, while the STWM offers considerable advantages in refining spatial–temporal analysis, it exhibits 
certain limitations. The current version of STWM is designed to facilitate micro- level spatial analysis, utilizing 
hourly temporal scales and street- level spatial resolution. Consequently, applying the STWM to broader temporal 
scopes and larger urban extents may increase its complexity. Therefore, the model's intricacies may limit its appli-
cability to expansive datasets, particularly those encompassing extensive urban areas over long- term durations, 
such as periods exceeding 1 year. Additionally, the scope of the analysis results is limited by the dataset from 
January to March 2016, which may not capture long- term trends or seasonal variations.

6.6 | Model evaluation and comparison

To demonstrate the effectiveness of the proposed STWM, we utilized the ESF, RE- ESF, and SNVC models for a com-
prehensive evaluation against the conventional distance- based SWM. The models' performance was quantitatively 
assessed using several statistical metrics: residual standard error (RSE), adjusted R2 (adj R2), log- likelihood (logLik), 
akaike information criterion (AIC), and Bayesian information criterion (BIC). These metrics were selected for their ca-
pacity to provide a comprehensive evaluation of model performance from various statistical perspectives. Specifically:

• RSE is an indicator of model precision, measuring the standard deviation of prediction errors. Lower RSE values 
for the STWM suggest a more precise fit to the data, underscoring its predictive strength.

• adj R2 provides insight into the explained variability of the dependent variable, accounting for the number of 
predictors. Higher adj R2 values indicate a robust goodness of fit for the STWM, highlighting the model's ex-
planatory power.

• logLik measures the likelihood of the model having produced the observed dataset. Higher logLik scores for 
the STWM imply a greater probability that the model accurately represents the underlying processes, thus 
confirming its statistical validity.

• AIC and BIC serve as tools for model selection by balancing goodness of fit with model complexity. Lower AIC 
and BIC values for the STWM indicate an optimal balance, suggesting a model that effectively captures the 
essence of the data.

In conclusion, the model exhibiting lower RSE, AIC, and BIC alongside higher adj R2 and logLik values is con-
sidered superior.

Table 8 presents a comparison between the results obtained using the proposed STWM and the traditional 
distance- based SWM across the ESF, RE- ESF, and SNVC analysis models. The superiority of STWM is quanti-
tatively demonstrated through several critical statistical measures. Notably, the STWM's performance exhibits 
significantly lower RSE values of 0.209, 0.1943, and 0.1998 for the ESF, RE- ESF, and SNVC models, respectively. 
This reduction in RSE suggests a substantial increase in the prediction accuracy of the STWM, as a lower RSE 
represents a closer fit of the model to the observed data. The adj R2 values also show a marked improvement, 
with the STWM achieving 0.417, 0.4034, and 0.4689 for the respective models. These values indicate a stronger 
explanatory power of the STWM in accounting for the variance in the data after adjusting for the number of 
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predictors. This is a crucial factor in spatial and temporal analyses, where the complexity of the models can often 
obscure their interpretability. Furthermore, the logLik values are substantially higher for the STWM (1509.204, 
87.7341, and 305.3551), implying that the probability of the STWM producing the observed data is significantly 
greater than that of the conventional distance- based SWM. This aligns with a better model fit and provides sig-
nificant evidence for the STWM's methodological robustness. In terms of information criteria, ESF, RE- ESF, and 
SNVC models utilizing the STWM reflect lower AIC and BIC values, which are −74.409, −141.228, and −568.709 
for AIC, and 9241.070, −33.5314, and −435.819 for BIC, respectively. These lower AIC and BIC values show that 
using the STWM in ESF, RE- ESF and SNVC models achieves a preferable balance between model accuracy and 
complexity. This balance is essential for the effective modeling of spatial–temporal phenomena.

Interestingly, the comparative analysis of the ESF, RE- ESF, and SNVC models emphasizes the importance of 
the selected weight matrix—be it distance- based SWM or STWM—in the efficacy of the analysis model. The 
results indicate that the ESF model yields a lower RSE and AIC and higher adj R2 and logLik in contrast to the RE- 
ESF model when utilizing the distance- based SWM, suggesting a tighter fit to the observed data. However, when 
utilizing the STWM, there is a notably high BIC value (9241.070) for the STWM's ESF model, compared to the 
substantial negative value found with the RE- ESF model. This warrants further investigation, as it may indicate an 
area where the ESF model's complexity is not sufficiently offset by its explanatory power when using the STWM. 
The RE- ESF model emerges as more effective, with lower RSE, AIC, and BIC values. This finding is confirmed by 
Murakami (2017), who states that RE- ESF generally outperforms the ESF in estimating regression coefficients. 
These results underscore the significance of selecting an appropriate weight matrix for spatial and temporal eco-
nomic analysis to enhance the accuracy and reliability of research findings.

7  | CONCLUSIONS AND FUTURE WORKS

In this study, we utilized topological and economic variables of the urban road network to develop STWM for 
analyzing crash data in Boston. To address the limitations of previous studies, we incorporated road network 
topological measurements and economic variables instead of relying solely on a distance function to define 
spatial weight. By considering these variables, we aimed to model the impact of high- risk crash areas on streets.

The results of the feature selection indicate that Dissimilarity- based Centrality exhibits a strong positive cor-
relation with crash numbers (Pearson = 0.564), while Closeness Centrality demonstrates the weakest correlation 
among the topological measurements (Pearson = 0.460). Additionally, when considering economic factors, road 
length shows the strongest positive correlation (Pearson = 0.401) with crash numbers, whereas residential road 
type demonstrates a slightly negative correlation (Kendall = −0.180).

RE- ESF analysis offers a quantitative indicator for identifying periods and locations more prone to crash 
accidents. It provides valuable insights for decision- makers to implement appropriate strategies to enhance 
urban road safety in high- risk areas and during critical times. For example, the results of the RE- ESF model indi-
cate a significant positive correlation between crashes and the topological variables of betweenness centrality 

TA B L E  8 The statistics comparison results of the STWM performance.

Weight matrix Analysis model RSE Adj R2 logLik AIC BIC

Distance- based SWM ESF 0.241 0.223 69.189 111.622 9802.678

RE- ESF 0.245 0.203 −12,980 25,994 26,102

SNVC 0.242 0.217 −177.707 393.416 513.656

STWM ESF 0.209 0.417 1509.204 −74.409 9241.070

RE- ESF 0.1943 0.4034 87.7341 −141.228 −33.5314

SNVC 0.1998 0.4689 305.3551 −568.709 −435.819
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(0.5406) and closeness centrality (0.1605) at a significance level of 0.5%. Regarding economic variables, the 
findings demonstrate a positive relationship between commercial land use (+0.063) and the number of crashes.

Moreover, the SNVC analysis reveals spatial variability in the coefficients of road length and commercial land 
use, indicating that their impact on crash data varies across different locations. Specifically, road length strongly 
influences crash incidents in the north and center of the study area. Commercial land use exhibits a significant ef-
fect in the south and center of the region. A subsequent analysis of the SNVC data indicates that the coefficients 
related to road length vary over time and indicate a strong impact on road length during the second week of 
February and the last week of March 2016. Therefore, considering the spatiotemporal variation of these factors, 
decision- makers can propose more suitable urban development models to reduce crash risk in the future.

Finally, to assess the functionality of the presented STWM compared to the traditional distance- based SWM, 
we conducted ESF, RE- ESF, and SNVC analyses. Measurements including Residual Standard Error, adjusted R2, 
log- likelihood, AIC, and BIC suggest that employing STWM for estimating regression coefficients yields more 
reliable results than relying on distance- based SWM.

However, despite these advantages, the RE- ESF and SNVC models exhibit limitations in their predictive accu-
racy for specific locations and during certain periods. These limitations are due to their assumptions of fixed co-
efficients for certain factors and the potential oversight of local weather variations. These limitations necessitate 
the incorporation of additional variables to improve crash prediction functionality. Moreover, while the STWM 
is developed for micro- level analysis, it faces challenges when scaling up to broader temporal scopes and larger 
urban areas. Additionally, the scope of the data utilized in this study encompasses January to March 2016, which 
may overlook long- term trends or seasonal variations.

For future research, we recommend expanding and refining the analysis performed in this study. This will en-
hance our comprehension of spatiotemporal crash data patterns in urban areas. Firstly, incorporating additional vari-
ables like Average Annual Daily Traffic (AADT) and Vehicle Miles Traveled (VMT) can offer a more comprehensive 
understanding of factors affecting crash occurrences. This augmented dataset will enable a more robust analysis and 
the identification of additional significant variables contributing to crash incidents. Secondly, integrating advanced 
machine learning techniques, such as ensemble methods, can improve the accuracy and predictive capability of the 
developed STWM. These techniques capture complex nonlinear relationships and interactions between variables 
that may exist in the crash data. By leveraging these advanced methods, we can enhance the model's ability to pre-
dict crash incidents and assess associated risks accurately. Furthermore, exploring the adaptability of the developed 
STWM to other urban areas or different transportation modes, like pedestrian or bicycle networks, can expand its 
applicability. By conducting these proposed investigations, we can advance the field of spatiotemporal crash data 
analysis and provide valuable insights for guiding effective strategies to enhance urban road safety.
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