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A B S T R A C T   

The combination of solar and biomass energy systems is regarded as a highly promising technology for tackling 
the challenges related to greenhouse gas emissions from energy generation and the increasing costs of energy 
production. This research centers on an integrated solar-bioenergy system, which includes a concentrated solar 
tower, thermal energy storage, and a combined cycle gas turbine. The system was evaluated using a multi- 
objective optimization approach considering life cycle assessment and cost-benefit analysis. The long short- 
term memory recurrent neural network algorithm with 5.1 % average error had been employed to capture the 
intricate temporal dependencies and dynamics of the system. The scenarios are expanded by using the Monte 
Carlo approach to address the challenges of limited specialized models and experiments for the system. The 
optimal solution is determined through the technique for order preference by similarity to ideal solution method. 
Carbon tax significantly influenced the results of the multi-objective optimization. The optimal configuration of 
the system could avoid the trade-off phenomenon when treating the carbon tax as revenue. The best scenario of 
the system with the cumulative reduction in global warming potential amounted to 415,960 tons of CO2-eq and a 
30-year net present worth of €4,298 million. Without considering the carbon tax as revenue, the trade-off is 
present. The best scenario of the system with the cumulative reduction in global warming potential amounted to 
132,615 tons of CO2-eq and net present worth of €3,042 million. The findings highlight the robust prospects of 
the system across environmental and economic dimensions.   

1. Introduction 

Faced with the global challenges of fossil fuel depletion and 
increasing greenhouse gas (GHG) emissions, the concentrated solar 
thermal gasification of biomass (CSTGB) system, as an innovative 
renewable energy technology, has shown tremendous potential [1]. 
Fang et al. [2] showed that CSTGB systems could enhance the utilization 
efficiency of biomass feedstock by 25–50 % and achieve significant 
reduction in the emission of pollutants (i.e., NOx, PM10, and VOCs) 
compared to other conventional bioenergy processes. 

The in-depth analysis of the CSTGB system based on the approaches, 
e.g., life cycle assessment (LCA) [3] and techno-economic assessment 
(TEA), is desired for evaluating the feasibility of CSTGB development, 

with the highlighting of its potential environmental and economic 
benefits. A recent LCA and TEA study [4] introduced a thermal energy 
storage (TES) system in CSTGB and implemented a strategy of com-
busting a portion of the feedstock during nighttime or periods of low 
solar radiation to address the intermittency of solar energy. This strategy 
allows the CSTGB system to utilize the solar thermal energy collected 
during the day for gasification reaction even at night, leading to a sig-
nificant reduction in carbon emissions. It was shown that the CSTGB 
system equipped with a carbon capture and storage (CCS) could reduce 
CO2 emission by 787.7 kg of CO2-eq/tonwaste-wood, while also generating 
about 0.8 million MWh of electricity annually. The computed net pre-
sent worth (NPW) for the system was about €–0.7 billion. This eco-
nomics of the CSTGB development was closely linked to the constraints 
imposed by existing environmental emission regulations (i.e., carbon 
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tax) and electricity prices. 
The approaches of multi-objective optimization (MOO) can be uti-

lized to delicately balance between environmental sustainability and 
economic viability [5]. The pareto optimal solution is obtained based on 
MOO, which can be combined with the technique for order of preference 
by similarity to ideal solution (TOPSIS) methods to choose the best so-
lution [6]. The integrated framework aids in identifying the best 
compromise solutions among multiple objectives, thereby enhancing the 
efficiency and effectiveness of decision making. 

The application of advanced data analysis and modelling techniques 
can facilitate the making of complex decisions. Complex energy systems 
like CSTGB integrated with TES and CCS, sophisticated data processing 
and pattern recognition approaches are desirable. Among existing ap-
proaches, long short-term memory (LSTM) - recurrent neural networks 
(RNN) represents a promising option in modelling the complex in-
teractions within the CSTGB system. In particular, the LSTM-RNN model 
is proficient at capturing the dynamic and temporal patterns in energy 
systems, favoring more precise and effective optimizing of the system 
[7]. For example, Bouktif et al. [8] explored the use of LSTM-RNN 
modelling for energy yield forecasting in solar thermal energy system. 
Their study aimed to find the balance between performance, cost, and 
environmental impacts and highlighted that the importance of optimal 
LSTM configuration for capturing energy consumption patterns and 
revealing time-series dynamics (i.e., DNI). Pravin et al. [9] expanded the 
application scope of LSTM-RNN modelling to study an integrated energy 
system. This system integrates solar energy with waste-to-energy pro-
duction for enhanced electricity generation. Their study emphasized the 
necessity of identifying the optimal hyperparameter configuration based 
on the dual criteria of minimum validation mean squared error (MSE) 
and computational efficiency (epochs). 

The application of LSTM-RNN model as a data-driven tool has been 
demonstrated, albeit limited to system modeling [10]. The persistent 
challenge on the application of LSTM-RNN to model CSTGB lies in the 
data availability as there are limited data, especially experimental data 
about the development of CSTGB. In this case, the Monte Carlo simu-
lation approach can be applied to enrich the dataset, with the potential 
to enhance the robustness of MOO in the analysis of the CSTGB system. 
The effectiveness of the use of Monte Carlo simulation on supporting the 
development of LSTM-RNN modelling for CSTGB awaits to be examined. 

This study introduced an approach to address the challenge sur-
rounding the optimisation of CSTGB system incorporating LCA and TEA: 
a data-driven MOO approach that encompassed both environmental and 

economic considerations was proposed and tested to optimize the design 
and operation of CSTGB. The LSTM-RNN model was utilized to capture 
the intricate temporal dependencies and dynamics associated with the 
development of a CSTGB system while Monte Carlo simulation was 
applied to expand the dataset for model training. The optimal compro-
mise solutions that strike a balance between conflicting objectives, 
namely, minimizing environmental impacts and maximizing economic 
benefits were revealed. Overall, a comprehensive framework was pro-
posed to holistically optimize the CSTGB system, offering insights into 
its feasibility, sustainability, and potential for the best implementation. 

2. Methodology 

The schematic diagram of the illustration of the methodology is 
depicted in Fig. 1, including CSTGB system performance evaluation, 
LCA, TEA, the integration of the LSTM-RNN model with Monte Carlo 
approach, and MOO with pareto optimal solution and TOPSIS methods. 
This optimization framework comprehensively addressed various facets, 
including electricity generation, carbon capture efficiency, environ-
mental feasibility, and economic viability. 

Initiating the system design phase, a preliminary thermodynamic 
analysis was conducted to ascertain crucial gasifier specifications, 
encompassing parameters such as reaction temperature, thermal energy 
demand, and air-to-feedstock ratio (it refers to the ratio between the 
mass of air and that of the feedstock (i.e., biomass waste) supplied to the 
gasifier). Concurrently, the SolarPILOT software [11] was applied in 
defining parameters for solar heliostats, including the layout and area, 
specifications of the CST receiver, and encompassing factors (e.g., 
receiver surface area and tower height). Building upon these founda-
tional design parameters in our previous study [4], the optimal process 
conditions for achieving maximum electricity generation in a single 
scenario and life cycle inventory (LCI) data were determined through 
single-objective optimization (SOO). 

The LSTM-RNN model was seamlessly integrated into the method-
ology, infusing a heightened level of effective decision-making capa-
bility [12]. The LSTM-RNN model was trained on operational data and 
patterns from 125 scenarios. Each scenario encompassed variations in 
biomass feedstocks, geographical locations, and reaction temperatures. 
Subsequently, we established a dynamic data augmentation by syner-
gizing the predictive ability of the LSTM-RNN model with the stochastic 
nature of the Monte Carlo approach. This was achieved by stochastically 
selecting feature parameters within pre-defined ranges (as mentioned in 

Nomenclature 

kW Kilowatt 
kWh Kilowatt-hour 
MWh Megawatt-hour 
Nm3 Normal cubic meter 
N Operation years 

Abbreviation 
AW Annual Worth 
CAPEX Capital Expenditure 
CCS Carbon Capture and Storage 
CCGT Combined Cycle Gas Turbine 
CO2-eq Carbon Dioxide Equivalent 
CST Concentrated Solar Tower 
CSTGB Concentrated Solar Thermal Gasification of Biomass 
CT Carbon Tax 
DNI Direct Normal Irradiation 
ES Electricity Selling 
GHG Greenhouse Gas 

GWP Global Warming Potential 
LCA Life Cycle Assessment 
LCI Life Cycle Inventory 
LCIA Life Cycle Impact Assessment 
LHV Low Heating Value 
LSTM Long Short-Term Memory 
MOO Multi-Objective Optimization 
MSE Mean Squared Error 
NPW Net Present Worth 
O&M Operational and Maintenance 
PW Present Worth 
RNN Recurrent Neural Network 
SOO Single-Objective Optimization 
STM Screw Transfer Machine 
TEA Techno-Economic Analysis 
TES Thermal Energy Storage 
TOPSIS Technique for Order Preference by Similarity to Ideal 

Solution  
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Section 2.4). The introduction of this stochastic element led to the 
generation of new instances rooted in the inherent system dynamics 
while considering a broader spectrum of potential scenarios. It was 
noteworthy that this integrated approach swiftly broadens the dataset, 
transforming it from the initial set of 125 scenarios into an extensive 
collection comprising 280,000 scenarios. 

The operational parameters and system configurations (i.e., LCI) 
obtained from the extensive collection of generated scenarios were 
merged and utilized as inputs for both LCA and TEA. These evaluations 
not only encompassed the assessment of the GWP but also rigorously 
evaluated the economic feasibility (i.e., NPW) of CSTGB system. The 
pareto optimal solution and TOPSIS approaches ensure that the out-
comes of the MOO satisfy both environmental and economic objectives, 
thus fostering a well-informed decision-making framework at the 
confluence of green technology and economic viability. 

2.1. Overview of the CSTGB system 

The specific parameter design of the CSTGB system was provided in 
the previous study [4]. The CSTGB system employs a synergistic thermal 
energy approach, in which thermal energy derived from the combustion 
of feedstock, the solar thermal energy from the CST subsystem, and the 
thermal energy stored within the TES subsystem are complementing 
each other. The deliberate integration is to mitigate the adverse impact 
of severe weather conditions or intermittent solar thermal conditions (i. 
e., limited solar radiation during nighttime and winter and the insuffi-
ciency of nocturnal solar irradiance) on the system’s performance. 
Implementing this strategy enhances the system’s ability to adapt and 
maintain consistent performance. 

Fig. 2 presents a schematic illustration of the CSTGB system. The size 
of the heliostat field, the dimensions of the CST receiver, and the 

capacity of the TES subsystem in the CSTGB system (as shown in 
Table 3) were decided according to the regional DNI and the specific 
temperature (i.e. thermal energy) demands of the gasifier. These de-
mands involve consideration such as the temperature and heat necessary 
to maintain the gasification process, which converts feedstock into 
producer gas. A screw transfer machine (STM) was employed for 
conveying thermally charged quartz sand to both the TES subsystem and 
the internal heat exchanger of the fixed bed gasifier (details regarding 
the electricity consumption of the STM is shown in Table 3). This gasifier 
employs air as its gasifying agent, based on its lower cost. The design of 
CSTGB follows an indirect reactor approach, where the quartz sand and 
feedstock particles are kept separate and a 5 % gas leakage between the 
gasifier and the STM equipment is considered [13]. The high-quality 
producer gas, characterized by a notably elevated low heating value 
(LHV) by the solar thermal heating, is the principal output of the CSTGB 
system. This producer gas comprises a specific mix of combustible gases 
including carbon monoxide (CO), hydrogen (H2), and methane (CH4). 
The LHV of the producer gas is calculated as (CO× LHVCO + H2 ×

LHVH2 + CH4 × LHVCH4 ), where CO, H2, and CH4 are the volume frac-
tions of the producer gas [14]. The presence of these components in 
significant amounts results in a gas mixture with a suitably high energy 
content, making it an fuel suitable for various energy generation ap-
plications [15]. Following the removal of tar and fine particles via a gas 
cleaning unit, the producer gas is subsequently fed into a combined cycle 
gas turbine (CCGT) subsystem for electricity generation. Furthermore, 
the by-product (i.e., CO2) produced from the CSTGB system is captured 
and stored by a CCS subsystem, effectively minimizing on-site CO2 
emissions. 

The performance evaluation of the CSTGB system incorporates 
hourly TMY data to estimate annual electricity generation and CO2 
capture. By utilizing TMY data, the analysis captures the dynamic nature 

Fig. 1. Schematic illustration of the proposed methodology. CSTGB: concentrated solar thermal gasification of biomass; CST: concentrated solar tower; TES: thermal 
energy storage; CCGT: combined cycle gas turbine; CCS: carbon captured system; SOO: single-objective optimization; MOO: multi-objective optimization; TOPSIS: 
technique for order of preference by similarity to ideal solution; LSTM-RNN: long short-term memory recurrent neural network; MSE: mean squared error. 

Fig. 2. The schematic diagram of the proposed CSTGB system.  
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of system performance under a wide range of operational and environ-
mental conditions typical of the geographical area considered. The 
overall system efficiency is used to assess the energy conversion per-
formance of the system (i.e., from biomass and solar energy to elec-
tricity). The annual electricity generation and CO2 capture are 
quantified through the summation of hourly data over a year. 

2.2. Dataset and features description 

The study initially considered 125 scenarios which were derived 
based on our previous research [4] which focused on the environmental 
and economic evaluation of the CSTGB system. Specifically, a stochastic 
kinetic model for the gasification process that combines a single particle 
shrinkage core model and Monte Carlo simulation was applied to predict 
the maximum producer gas yield [16]. The modelling encompassed a 
wide range of variables, including 5 types of biomass waste (namely 
wood, sawdust, pinus pruning, olive pruning, and grapevine pruning), 5 
locations (labeled as A, B, C, D, and E), and 5 different gasification re-
action temperatures (678 ◦C, 808 ◦C, 909 ◦C, 1,070 ◦C, and 1,200 ◦C). 
Table 1 illustrates the ultimate compositions of biomass waste that are 
widely available in the areas considered [17]. To ensure efficient CSTGB 
system operation, critical steps such as biomass waste pretreatment to 
maintain a moisture content below 10 % and proper sorting before 
transportation were considered. Table 1 also summarized the 
geographical characteristics (i.e., latitudes, longitudes, elevations, and 
average DNI) of the selected locations for the development. Fig. 3 lists 
the TMY with hourly temporal DNI data for each location from the 
PVGIS database [18]. Furthermore, the distances from these locations to 
Seville, Spain were measured in kilometers based on the actual trans-
portation routes marked on Google Maps. This measurement approach 
was incorporated into the analysis to assess the impact of the trans-
portation distance variations on the results of LCA and TEA. 

2.3. LSTM-RNN model 

2.3.1. LSTM-RNN model architecture 
The LSTM-RNN model is a type of deep learning architecture spe-

cifically designed to capture temporal dependencies in time series data 
(e.g., DNI) and other selected linear features (i.e., feedstock compositions 
and reaction temperature) and non-linear features (i.e., locations) using 
the LSTM unit (as mentioned in Section 1). In this study, we allocated 80 
% of the datasets from 125 scenarios (as mentioned in Section 2.2) for 
training and 20 % for testing. The model was trained using an appro-
priate evaluation metric (i.e., MSE) to minimize the prediction errors 

and enhance the performance. Fig. 4 displayed the main steps of the 
proposed LSTM-RNN model. The tuning essential hyperparameters were 
set as a learning rate of 2, a batch size of 100, a number of training it-
erations of 75, and 8 hidden layers, to control the convergence rate, 
balance memory usage, and training efficiency, and ensure that the 
model adequately learned the underlying data patterns. The optimiza-
tion algorithms (e.g., stochastic gradient descent) were used to effec-
tively adjust the model’s parameters to improve its fit to the training 
data. The accuracy of the LSTM-RNN model was evaluated using the 
MSE metric, which provided a quantitative assessment of its perfor-
mance and prediction reliability. Python 3.11.4 was used as the pro-
gramming environment. A virtual environment was created to run the 
LSTM-RNN model for this study. In this virtual environment, the pack-
ages (Tensorflow, Keras, Pandas, Sklearn, Numpy, and Matplotlib) were 
installed. 

2.3.2. Evaluation of LSTM-RNN model performance 
To assess the performance of the LSTM-RNN model, two pivotal 

metrics were utilized: MSE for model training (training-MSE) and MSE 
for model validation (validation-MSE) [19]. The training-MSE gauges 
the degree of model fit to the training dataset, and quantified through 
the computation of the average squared difference between the model 
prediction and the actual value [20]. In contrast, the validation-MSE 
serves as a measure of the model’s generalization prowess, addressing 
its performance on previously unseen data instances [21]. The 
validation-MSE is meticulously calculated at the culmination of each 
training epoch, thereby facilitating the timely detection of potential 
overfitting or underfitting tendencies within the model [22]. These two 
MSE metrics [23] were computed by 

MSE =
1
N
∑

yi
(ypredict − yactual)

2 (1)  

2.4. Monte Carlo simulation 

The minimum and maximum percentage values for each composition 
component (i.e., carbon (C), hydrogen (H), and oxygen (O)) were chosen 
as the lower and upper bounds of uniform distributions used for Monte 
Carlo simulation. The percentage value of N is calculated by subtracting 
the sum of C, H, and O from 100 % (represents as N =

100% − (C + H + O), where C, H, and O are mass fractions of carbon, 
hydrogen, and oxygen, respectively). Within the specific ranges (as 
shown in Table 2) and 5 locations, a uniform distribution was selected 
for random allocation. This choice guarantees an equal likelihood across 
the defined value range of the selected decision variables under 
consideration [24]. The utilization of this augmented dataset facilitates 
a more profound exploration of the optimization process, fostering an 
enhanced comprehension of the intricate relationship between the 
selected decision variables (input) and objective (outputs). 

2.5. Life cycle assessment 

The international standards series ISO 14000 offers a comprehensive 
structure for conducting LCA, covering essential elements including 
principles and framework (ISO 14040), goal and scope definition and 
inventory analysis (ISO 14043), and requirements and guidelines (ISO 
14044) [25]. The primary aim of this LCA is to evaluate the GWP 
associated with the CSTGB system intended for establish in Spain. 

Fig. 5 delineates the boundary of the LCA, which encompasses all 
relevant processes within the CSTGB system. Within this LCA system 
boundary, several critical sub-processes are included (i.e., CO2 emission 
stemming from diesel refinery, onsite CO2 emission, the carbon capture 
performance by the CCS subsystem, the transportation of biomass 
wastes, and the electricity generation realized by the proposed CSTGB 
system. This delineation provides a robust foundation for the systematic 
evaluation of the environmental impacts and sustainability 

Table 1 
Feedstock compositions (dry ash free basis) and locations.  

Feedstocks selection 

Component Wood Sawdust Pinus 
pruning 

Olive 
pruning 

Grapevine 
pruning 

C (wt.%) 50.31 50.26 50.55 47.50 46.97 
H (wt.%) 7.82 6.14 6.12 6.00 5.80 
O (wt.%) 41.77 42.20 40.2 43.66 44.49 
N (wt.%) 0.10 0.07 0.45 1.06 0.67 
FC (wt.%) 16.30 16.27 15.13 13.98 19.78 
LHV (kJ/kg) 18.70 20.47 19.99 19.99 17.91  

Location selection  

A B C D E 
Latitude 37.5 36.6 39.9 39.2 38.7 
Longitude –5.3 –5.8 –5.7 –3.3 –0.9 
Elevation (m) 137.0 107.0 272.0 648.0 544.0 
Distance to 

Seville (km) 
85 130 365 450 620 

Average DNI 
(W/m2) 

641.4 562.7 535.7 542.3 553.7  
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consideration across the entirety of the system. 
The findings of this assessment will be instrumental in planning 

biomass feedstocks treatment and facilitating renewable energy 

generation. The functional unit established for treating 1 tonbiomass-waste. 
Point 1 represents the diesel consumption required for transporting the 
biomass waste (ranging from 8 to 62 L), contingent on transportation 
distance (as mentioned in Section 2.2). Point 2 corresponds to the TES 
subsystem (storing 0.08–0.10 MWh of thermal energy) with variations 
based on the local DNI. Point 3 signifies electricity usage in the screw 
machine (a consumption of 1.0–1.1 kWh) dependent on the pipeline 
distance in the CSTGB system in different location. Points 4 and 5 rep-
resents the gasifier yielding 2,388–5,101 Nm3 of producer gas, while 
also producing 2.2–4.6 kg of ash. The quantities of the producer gas and 
ash were considered to depend on multiple factors, such as the chemical 
composition of the feedstock and gasification process condition (i.e., 
temperature), technical characteristics of the gasifier, and DNI. Points 6, 
7, 8, and 9 encompass various aspects of the system, including captured 
CO2 (547.5–1,169.8 kg) and electricity usage in the CCS subsystem 

Fig. 3. Hourly DNI data profiles for locations A, B, C, D, and E.  

Fig. 4. Main steps of the proposed LSTM-RNN model.  

Table 2 
The lower and upper bounds of selected decision variables for the CSTGB system.  

Variable Lower bound Upper bound 

C (wt.%) 46.97 50.55 
H (wt.%) 5.80 7.82 
O (wt.%) 40.20 44.49 
N (wt.%) 0.07 1.06 
FC (wt.%) 13.98 19.78 
LHV (kJ/kg) 17.91 20.47 
Reaction temperature (Â◦C) 678 1,200  
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Table 3 
Design parameters of the CSTGB system in each location.  

Location Location A Location B Location C Location D Location E Unit Adapted based on data 
from existing studies or 
calculated  

Lat: 37.5, Lon: 
–5.3 

Lat: 36.6, Lon: 
–5.8 

Lat: 39.9, Lon: 
–5.7 

Lat: 39.2, Lon: 
–3.3 

Lat: 38.7, Lon: 
–0.9   

Elevation 137 107 272 648 544 m [18] 
Average DNI 641.4 562.7 535.7 542.3 553.7 W/m2 [18] 
Average solar duration 11.2 10.7 10.6 10.8 10.6 hr [18] 
Average ambient 

temperature 
19.1 18.2 15.8 15.6 15.4 ◦C [18]  

CST receiver specification 
Receiver type External 

cylindrical 
External 
cylindrical 

External 
cylindrical 

External 
cylindrical 

External 
cylindrical  

[29] 

Receiver height 4.8 4.8 4.8 4.8 4.8 m [29] 
Receiver diameter 4.7 4.7 4.7 4.7 4.7 m [29] 
Receiver area 30 30 30 30 30 m2 [29] 
Tower height 80 85 85 85 85 m calculated 
Optical efficiency (at 

receiver) 
71.7 70.2 69.8 65.7 73.8 % calculated 

Designed solar receiver 
needed temperature 

941.6–1,666.5 941.6–1,666.5 941.6–1,666.5 941.6–1,666.5 941.6–1,666.5 ◦C calculated 

Solar flux 
concentration ratio 

687.7–13,516.6 783.8–15,407.1 823.4–16,183.6 813.3–15,986.7 796.6–15,657.5  calculated  

Heliostat specification 
Single heliostat width 12 12 12 12 12 m [30] 
Single heliostat height 10 10 10 10 10 m [30] 
Single heliostat area 120 120 120 120 120 m2 [30] 
Number of single 

heliostats 
240–4,712 274–5,371 288–5,642 284–5,573 278–5,458 unit calculated  

TES specification 
Number of tanks 1 1 1 1 1 Integrated 

tank 
[31,32] 

Tank type External 
cylindrical 

External 
cylindrical 

External 
cylindrical 

External 
cylindrical 

External 
cylindrical  

[31,32] 

Tank height 20 19 18.5 18.5 19 m calculated 
Tank diameter (with 

0.1 m insulation 
layer) 

10.5 9.5 9.5 10.0 10.0 m calculated 

TES duration 12.8 13.3 13.4 13.2 13.4 hr calculated 
Capacity of the TES 300 265 250 255 260 MWth calculated 
TES heat loss 10 10 10 10 10 % [33] 
Designed Temperature 

of TES 
450 395 375 380 390 ◦C calculated 

HSM of TES Quartz sand Quartz sand Quartz sand Quartz sand Quartz sand  [34] 
Total sand weight 1,250 1,100 1,040 1,060 1,080 ton calculated 
Total sand volume 1,660 1,470 1,385 1,415 1,440 m3 calculated  

Gasifier specification 
Gasifier type Fixed bed Fixed bed Fixed bed Fixed bed Fixed bed  [31,35] 
Gasifier agent Air (O2:21 %, 

N2:79 %) 
Air (O2:21 %, 
N2:79 %) 

Air (O2:21 %, 
N2:79 %) 

Air (O2:21 %, 
N2:79 %) 

Air (O2:21 %, 
N2:79 %)   

Pressure Atmospheric Atmospheric Atmospheric Atmospheric Atmospheric   
Gasifier heat lose 10 10 10 10 10 % [33] 
Air to feedstock ratio 0.05–0.30 0.05–0.30 0.05–0.30 0.05–0.30 0.05–0.30  calculated 
Inlet temperature of 

quartz sand 
856–1,515 856–1,515 856–1,515 856–1,515 856–1,515 ◦C calculated 

Gasification 
temperature 

678–1,200 678–1,200 678–1,200 678–1,200 678–1,200 ◦C calculated 

Output temperature of 
quartz sand 

637–1,125 637–1,125 637–1,125 637–1,125 637–1,125 ◦C calculated  

CCGT specification 
Electricity conversion 

efficiencya 
40 40 40 40 40 % [27] 

Efficiency of the CO2 

capture unit 
90 90 90 90 90 % [27,31,36] 

Pressure ratio of GT 
compressor 

19 19 19 19 19  [27,31,36] 

Turbine inlet 
temperature 

1,288 1,288 1,288 1,288 1,288 ◦C [27,31,36] 

(continued on next page) 
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(0.18–0.25 MWh), electricity generation from CCGT subsystem 
(0.92–1.97 MWh), and the subsequent transfer of generated electricity 
to the grid (0.91–1.96 MWh), with all values subject to LHV and yield of 
producer gas, the efficiency of the CCGT and CCS subsystem. Lastly, 
point 10 represents the diesel consumption (4.6–73.6 L) required for 
transporting captured carbon and ash back to the recycling center. This 
interconnected system considers various factors to ensure an efficient 
approach to biomass waste treatment. The entire LCA procedure strictly 
adheres to the guidelines outlined in ISO 14040 and is executed using 
the GaBi commercial LCA software [26]. 

2.5.1. Life cycle inventory 
Biomass wastes underwent a drying-pretreatment process and was 

subsequently transported to the CSTGB system location via trucks. The 
chemical composition of the biomass waste is detailed in Section 2.2, 
and it was assumed that the CSTGB system had a processing capacity of 
1,700 tons per day. Table 3 shows the specifications of the CSTGB sys-
tem determined based on factors such as gasification reaction temper-
ature and the local average DNI (as mentioned in Section 2.2). The CST 
subsystem parameters, including the heliostat field area, receiver area, 
receiver tower height, and solar thermal efficiency, was optimized using 

Table 3 (continued ) 

Location Location A Location B Location C Location D Location E Unit Adapted based on data 
from existing studies or 
calculated  

Lat: 37.5, Lon: 
–5.3 

Lat: 36.6, Lon: 
–5.8 

Lat: 39.9, Lon: 
–5.7 

Lat: 39.2, Lon: 
–3.3 

Lat: 38.7, Lon: 
–0.9   

Turbine exhaust 
temperature 

544.2 544.2 544.2 544.2 544.2 ◦C [27,31,36] 

High-pressure steam 521.2 521.2 521.2 521.2 521.2 ◦C/55 bar [27,31,36] 
Low-pressure steam 260.2 260.2 260.2 260.2 260.2 ◦C/6.9 bar [27,31,36]  

Screw machine specification 
Machine-1 for feedstock input 
Screw diameter 1 1 1 1 1 m [37] 
Screw pitch 0.6 0.6 0.6 0.6 0.6 m [37] 
Rotational speed 50 50 50 50 50 rpm [37] 
Conveying capacity 608 608 608 608 608 m3/h calculated 
Power 96 96 96 96 96 kW calculated  

Machine-2 for sand transfer 
Screw diameter 0.6 0.6 0.6 0.6 0.6 m [37] 
Screw pitch 0.5 0.5 0.5 0.5 0.5 m [37] 
Rotational speed 50 50 50 50 50 rpm [37] 
Conveying capacity 160 160 160 160 160 m3/h calculated 
Power 159.7 159.7 159.7 159.7 159.7 kW calculated  

Screw pipe specification 
Screw pipe heat loss 10 10 10 10 10 % [33]  

Pipe-1 for feedstock input 
Screw diameter 1 1 1 1 1 m [37] 
Length 30 30 30 30 30 m calculated  

Pipe-2 for sand transfer 
Screw diameter (0.025 

m insulation) 
0.7 0.7 0.7 0.7 0.7 m [37] 

Length 285 295 295 295 295 m calculated  

a Electricity conversion efficiency refers to the CCGT subsystem’s capability to convert producer gas into electricity. 

Fig. 5. LCA boundary of the CSTGB system.  
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the SolarPILOT software with default environmental parameters (i.e., 
incidence angle, ambient humidity, and cloud thickness). The individual 
heliostat area in the CST subsystem was set at 120 m2, and the capacity 
of the TES subsystem was established based on the required peak ther-
mal energy storage for each specific location (as outlined in Section 2.2). 

The assumed heat transfer efficiency from quartz sand to the feed-
stock within the gasifier was set at 100 %. This assumption was made to 
ensure that the reactions taking place inside the gasifier were in thermal 
equilibrium, thereby maximizing energy conversion efficiency. The heat 
transfer efficiency from quartz sand to the feedstock inside the gasifier 
was assumed to be 100 %. The reactions within the gasifier were in 
thermal equilibrium, ensuring maximum energy conversion. This 
resulted in an input temperature range of 856–1,515 ◦C and an output 
temperature of 637–1,125 ◦C for the quartz sand when the gasification 

reaction temperature was between 678 and 1,200 ◦C. To convert the 
producer gas into electricity, a CCGT subsystem with a 40 % electricity 
conversion efficiency was employed (as mentioned in Table 3) [27]. The 
CCS equipment consumed 30 % of the gross power output [28]. 

The CSTGB system incorporated two distinct STMs. Machine I 
(designed for a transportation distance of 10 m) was responsible for 
delivering biomass waste to the gasifier. Machine II (designed for a 
transportation distance of 285, 295, 295, 295, and 295 m for the CSTGB 
system in location A, B, C, D, and E, respectively) facilitated the 
movement of quartz sand between the CST, TES, and gasifier sub-
systems. All subsystems and screw pipelines were assumed that heat 
losses amounted to 10 % [4]. 

Table 4 provided a comprehensive breakdown of the material usage 
for each subsystem of the CSTGB system. To withstand the operational 

Table 4 
LCI for the construction stage of the CSTGB system is normalized based on the functional unit (i.e., 1 tonbiomass-waste) in each location.  

Construction materials 

Material type Component Location A Location B Location C Location D Location E Unit 

Installation of CST ¡ 120 m2 heliostat 
Flat glass coated, RER Flat glass coated, RER 8.1× 10− 2 9.3× 10− 2 9.7× 10− 2 9.6× 10− 2 9.4× 10− 2 kg/tonbiomass-waste 

Reinforcing steel, RER Reinforcing steel, RER 2.9× 10− 1 3.3× 10− 1 3.4× 10− 1 3.4× 10− 1 3.3× 10− 1 kg/tonbiomass-waste 

Concrete, sole plate and foundation, CH Concrete foundation 2.1× 10− 4 2.4× 10− 4 2.5× 10− 4 2.5× 10− 4 2.5× 10− 4 m3/ tonbiomass-waste  

Receiver 
Chromium steel 18/8, RER Receiver surface 3.2× 10− 4 3.2× 10− 4 3.2× 10− 4 3.2× 10− 4 3.2× 10− 4 kg/tonbiomass-waste  

CST tower 
Tower height  80 85 85 85 85 m 
Concrete, sole plate and foundation, CH Tower concrete 3.3× 10− 4 3.5× 10− 4 3.5× 10− 4 3.5× 10− 4 3.5× 10− 4 m3/ tonbiomass-waste 

Excavation, hydraulic digger, RER Tower excavation 2.3× 10− 4 2.4× 10− 4 2.4× 10− 4 2.4× 10− 4 2.4× 10− 4 m3/ tonbiomass-waste 

Reinforcing steel, RER Tower steel 6.5× 10− 5 6.9× 10− 5 6.9× 10− 5 6.9× 10− 5 6.9× 10− 5 kg/tonbiomass-waste  

Installation of TES 
Steel, chromium steel 18/8, hot rolled TES structure 3.1× 10− 2 3.1× 10− 2 3.1× 10− 2 3.1× 10− 2 3.1× 10− 2 kg/tonbiomass-waste 

Stone wool TES insulation material 1.4× 10− 2 1.4× 10− 2 1.4× 10− 2 1.4× 10− 2 1.4× 10− 2 kg/tonbiomass-waste  

Installation of gasifier 
Reinforcing steel, RER Steel structure 5.4× 10− 1 5.4× 10− 1 5.4× 10− 1 5.4× 10− 1 5.4× 10− 1 kg/tonbiomass-waste 

Steel, low-alloyed, RER Steel structure 3.2× 10− 1 3.2× 10− 1 3.2× 10− 1 3.2× 10− 1 3.2× 10− 1 kg/tonbiomass-waste 

Steel, electric, n-and low-alloyed, RER Steel structure 1.3× 10− 2 1.3× 10− 2 1.3× 10− 2 1.3× 10− 2 1.3× 10− 2 kg/tonbiomass-waste 

Chromium steel 18/8, RER Steel structure 8.8× 10− 1 8.8× 10− 1 8.8× 10− 1 8.8× 10− 1 8.8× 10− 1 kg/tonbiomass-waste 

Concrete, normal, CH Concrete foundation 5.1× 10− 3 5.1× 10− 3 5.1× 10− 3 5.1× 10− 3 5.1× 10− 3 m3/tonbiomass-waste 

Aluminum, secondary, from new scrap, RER Aluminum structure 5.6× 10− 3 5.6× 10− 3 5.6× 10− 3 5.6× 10− 3 5.6× 10− 3 kg/tonbiomass-waste 

Aluminum, secondary, from old scrap, RER Aluminum structure 2.8× 10− 3 2.8× 10− 3 2.8× 10− 3 2.8× 10− 3 2.8× 10− 3 kg/tonbiomass-waste 

Aluminum, primary, RER Aluminum structure 4.8× 10− 2 4.8× 10− 2 4.8× 10− 2 4.8× 10− 2 4.8× 10− 2 kg/tonbiomass-waste 

Brass, CH Plant material 5.8× 10− 3 5.8× 10− 3 5.8× 10− 3 5.8× 10− 3 5.8× 10− 3 kg/tonbiomass-waste 

Stone wool, CH Insulation material 9.3× 10− 2 9.3× 10− 2 9.3× 10− 2 9.3× 10− 2 9.3× 10− 2 kg/tonbiomass-waste 

Glass fiber, RER Plant material 1.3× 10− 2 1.3× 10− 2 1.3× 10− 2 1.3× 10− 2 1.3× 10− 2 kg/tonbiomass-waste 

Polyvinyl, HDPE, granulate, RER Plant material 3.7× 10− 3 3.7× 10− 3 3.7× 10− 3 3.7× 10− 3 3.7× 10− 3 kg/tonbiomass-waste 

Polypropylene, granulate, RER Plant material 1.9× 10− 3 1.9× 10− 3 1.9× 10− 3 1.9× 10− 3 1.9× 10− 3 kg/tonbiomass-waste 

Styrene-acrylonitrile copolymer, RER Plant material 6.2× 10− 4 6.2× 10− 4 6.2× 10− 4 6.2× 10− 4 6.2× 10− 4 kg/tonbiomass-waste 

Flat glass, uncoated, RER Plant material 6.3× 10− 4 6.3× 10− 4 6.3× 10− 4 6.3× 10− 4 6.3× 10− 4 kg/tonbiomass-waste 

Cast iron, RER Plant material 2.3× 10− 2 2.3× 10− 2 2.3× 10− 2 2.3× 10− 2 2.3× 10− 2 kg/tonbiomass-waste 

Epoxy resin, liquid, RER Plant material 4.9× 10− 3 4.9× 10− 3 4.9× 10− 3 4.9× 10− 3 4.9× 10− 3 kg/tonbiomass-waste 

Lubricating oil, RER Plant material 2.1× 10− 2 2.1× 10− 2 2.1× 10− 2 2.1× 10− 2 2.1× 10− 2 kg/tonbiomass-waste 

Synthetic rubber, RER Producer gas pipe 2.8× 10− 3 2.8× 10− 3 2.8× 10− 3 2.8× 10− 3 2.8× 10− 3 kg/tonbiomass-waste  

Installation of CCGT 
Reinforcing steel, RER Steel structure 6.8 6.8 6.8 6.8 6.8 kg/tonbiomass-waste 

Chromium steel 18/8, RER Steel structure 8.7× 10− 3 8.7× 10− 3 8.7× 10− 3 8.7× 10− 3 8.7× 10− 3 kg/tonbiomass-waste 

Aluminum, RER Aluminum structure 4.4× 10− 3 4.4× 10− 3 4.4× 10− 3 4.4× 10− 3 4.4× 10− 3 kg/tonbiomass-waste 

Concrete, sole plate and foundation, CH Concrete foundation building 2.1 2.1 2.1 2.1 2.1 kg/tonbiomass-waste  

Installation of pipes 
Pipe length  315 325 325 325 325 m 
Reinforcing steel, RER Steel pipe 1.0× 10− 2 1.1× 10− 2 1.1× 10− 2 1.1× 10− 2 1.1× 10− 2 kg/tonbiomass-waste 

Stone wool, RER Insulation material 9.6× 10− 6 9.6× 10− 6 9.6× 10− 6 9.6× 10− 6 9.6× 10− 6 kg/tonbiomass-waste  
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temperature of 637–1,515 ◦C in the CST receiver and CCGT subsystem, 
chromium steel (with melting point of 1,860 ◦C) was applied as the 
construction material. The TES subsystem, gasifier, and screw pipe were 
meticulously fabricated by using reinforcing steel (it has high melting 
point of 1,370 ◦C). Material losses during construction, power con-
sumption during assembling, and emissions and energy consumption 
associated with demolition of the CSTGB system were omitted. Research 
has shown that their influence on emissions and energy is minimal 
compared to the operation phase [38]. 

2.5.2. Life cycle impact assessment 
A life cycle impact assessment (LCIA) was carried out to calculate the 

selected environmental impact indictors. The LCIA process involved the 
organization of LCI data into specific impact categories and corre-
sponding indicators, which provide insight into the cause-and-effect 
relationship between the system’s activities and environmental conse-
quences. To calculate the overall GWP of the CSTGB system, i.e., GHG 
emissions associated with the system over a 100-year period (referred to 
as GWP 100 horizon), the ReCiPe Midpoint V1.08 methodology was 
employed [4]. 

2.6. Techno-economic analysis 

The economic feasibility of the proposed CSTGB system was evalu-
ated using the NPW approach. This process entailed a detailed exami-
nation of all financial transactions linked to the CSTGB system proposal 
over a 30-year duration, where each cash flow was converted into its 
equivalent present worth (PW). Positive cash flows were attributed to 
revenues, while negative cash flows were associated with costs [39]. The 
net present worth (NPW) of the system was calculated by 

NPW = CAPEX +PW(O&M)+PW(T) − PW(ES) − PW(CT) (2) 

where CAPEX represents the capital cost, which covers the initial 
investment required for establishing the CSTGB system. O&M represents 
the operational and maintenance costs, while T accounts for the ex-
penses associated with transporting feedstock from Sevilla to the CSTGB 
system site. ES is the notation for the revenue obtained through the sale 
of renewable electricity, and CT denotes the income generated from 

carbon tax. The calculation of the PW is determined by annual worth 
(AW): 

PW = AW
(1 + i)N

− 1
i(1 + i)N (3) 

where i represents the interest rate with a rate of 6 % utilized in 
accordance with literature [39]. N signifies the assumed operation years, 
which was set at 30 years for this study. Furthermore, the currency 
exchange rate was 1.13 euros to US dollar and 0.85 British pounds to US 
dollars as the year 2019. 

The process costing method was employed to compute the CAPEX for 
each subsystem within the proposed CSTGB system, specifically the CST, 
gasifier, and CCGT. These individual CAPEX values were then aggre-
gated to determine the total CAPEX [4]. To standardize the CAPEX of 
each subsystem to the reference year 2019 (with a CEPCI index of 556.8 
[40]), the Chemical Engineering Plant Cost Index (CEPCI) data were 
used and implemented Eq. (4). 

Costref = Costbase(
CEPCIref

CEPCIbase
) (4) 

Table 5 presents a comprehensive consolidation of the CAPEX, which 
includes costs related to truck acquisitions (determined by the trans-
portation distances), along with the O&M cost and revenues generation 
for the CSTGB system at different locations. The CAPEX for a single 
heliostat was calculated as €103 it was referred by a cost of €112.4 [30] 
at the year 2015 (with a CEPCI index of 556.8 [40]). The calculation of 
the O&M cost for the CST subsystem is based on the data from 100 MW- 
scale system published by International Renewable Energy Agency 
(IRENA) in 2018 (with a CEPCI index of 603.1 [40]). It encompasses 
costs related to the receiver, tower, TES, and indirect expense (i.e., 
owner costs, contingency, and site preparation). These costs are summed 
and then divided by the total electricity generation capacity of the sys-
tem to determine the annual O&M cost of the CST subsystem as 17.8 
€/MWh. The CAPEX for the gasifier and CCGT subsystem was calculated 
based on the 2008 (with a CEPCI index of 575 [40]) report from the 
National Renewable Energy Laboratory (NREL) [41]. The CAPEX in-
cludes the costs for gas clean-up facilities, engineering expenses, con-
tingencies, and carbon capture cost. The O&M cost for the integrated 

Table 5 
CAPEX, O&M, and transportation costs for the CSTGB system at each location.   

Location A Location B Location C Location D Location E Unit Ref(s) 

CAPEX 
CST subsystem 
Heliostat field 0.02–0.5 0.03–0.55 0.03–0.58 0.03–0.57 0.03–0.56 million € [30] 
Receiver 52.9 52.9 52.9 52.9 52.9 million € [46] 
Receiver tower 26.9 28.5 28.5 28.5 28.5 million € [47] 
TES 74.6 65.9 62.2 63.4 64.7 million € [47]  

Gasifier + CCGT subsystems 
Gasifier 60.2 60.2 60.2 60.2 60.2 million € [41] 
CCGT 111.8 111.8 111.8 111.8 111.8 million € [41] 
Site preparation 4.3–83.5 4.9–95.2 5.1–100.0 5.0–98.7 4.9–96.7 million € [41] 
Indirect costs 21.3–417.5 24.3–475.9 25.5–499.8 25.2–493.8 24.6–483.6 million € [41]  

O&M costs 
CST subsystem 17.8 17.8 17.8 17.8 17.8 €/MWh [41,48,49] 
Gasifier + CCGT subsystem 12.7 12.7 12.7 12.7 12.7 €/MWh [41,48,49] 
CCS device 23.7 23.7 23.7 23.7 23.7 €/MWh [41,48,49]  

Transportation costs 
Number of trucks 17 34 136 136 136 unit calculated 
Number of staffs 51 102 408 408 408 unit calculated 
CAPEX of trucks (10 years) 3.9 7.9 31.7 31.7 31.7 million € [39,43] 
O&M cost of trucks 7 13 52 52 52 €/hour [39,43] 
Diesel cost 1785 3570 14,280 14,280 14,280 €/hour calculated 
Staff cost 6120 12,240 48,960 48,960 48,960 €/hour calculated  
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gasifier and CCGT as 36.4 €/MWh was referred from [42] for the year 
2019. The total O&M cost for the entire CSTGB system accounted for the 
CST, gasifier, and CCGT subsystem and was equal to 54.2 €/MWh. 
Transportation costs encompass the acquisition of trucks (233,335 
€/truck with a 10-year lifespan with an annual O&M cost is 3,335 
€/truck [39]), diesel cost as 1.26 €/L [4], and the wages of truck oper-
ator (15.0 €/h/person working 8 h/day [43]) in the 2019. The ES price 
in Spain was determined at 50 €/MWh, following the Feed-in Tariff 
(FiT). It incorporated taxes for electricity generated from renewable 
sources [44]. Additionally, the CT in Spain is established at 49 €/tCO2 
[45] and used in the TEA of the proposed CSTGB system. 

2.7. Multi-objective optimization 

One of the most crucial and prevalent challenges lies in addressing 
multiple conflicting objectives in designing the CSTGB system, which 
requires simultaneous resolution. The pursuit of a more efficient energy 
system invariably results in augmented costs for both system compo-
nents and the entirety of the system. Within the domain of MOO tech-
niques, this study leveraged the LSTM-RNN model in conjunction with 
the LCA and TEA methodologies to derive and compile a comprehensive 
set of 280,000 scenarios in this study. These scenarios collectively 
embody values related to system performance, GWP, and NPW. The 
identification of the best scenario possessing such attributes substan-
tially facilitates the design of the CSTGB system, enabling its operation 
in a state that optimizes efficiency, environmental viability, and eco-
nomic feasibility to the utmost degree. 

Two antagonistic objectives are postulated for optimization: to 
minimize GWP as a representative of the carbon footprint metric, and to 
simultaneously maximize NPW as an economic indicator that also en-
compasses the performance metric of electricity generation. In pursuit of 
these goals, this study deployed the pareto optimality and the TOPSIS 
method. The pareto optimality method identified scenarios where NPW 
can be elevated without detriment to GWP. Meanwhile, the TOPSIS 
method comprehensively assesses the divergence between pareto 

optimal solutions and the ideal best solution. It could provide a ranked 
selection avenue for multi-objective decision-making. This combination 
of techniques holistically explores trade-offs across manifold objectives 
within the CSTGB system design, thereby identifying optimal scenario 
design parameters, and associated GWP and NPW values. 

3. Results and discussion 

3.1. Forecasting of electricity generation and carbon saving by CSTGB 
system 

The kinetic model of CSTGB exhibited a simulation error rate below 
12 % and reasonably characterize the thermochemical process of gasi-
fication as highlighted in the previous paper [4,16]. As this work focuses 
on system optimization based on the comparison of different scenarios 
predicted based on the same model, it is believed the absolute accuracy 
of the model should have a limited impact on the selection of optimal 
solutions. These input variables can be subject to external influences (i. 
e., location), which not only adds complexity and uncertainty to the 
resulting outcomes but also hinders the training of the LSTM-RNN 
model. Therefore, we have chosen to use intermediate variables (i.e., 
electricity generation and CO2 captured) as the output results for the 
LSTM-RNN model. This decision aims to better capture critical aspects of 
system performance and mitigate the impact of external factors on the 
analysis. Moreover, sensitivity analysis demonstrated that the electricity 
generation and CO2 captured have a substantial impact on the outcomes 
of LCA and TEA [4]. Higher levels of electricity generation are inher-
ently linked to greater energy output and revenue generation, while 
increased carbon capture contributes to reducing CO2 emissions and 
potential carbon saving. 

Fig. 6 serves as an illustrative representation of mean values per-
taining to annual electricity generation and carbon capture across 
various biomass waste types, temperature gradations, and geographical 
locales. The length of each bar correlates directly to mean values within 
specific parameter combinations. Analysis of mean values shows a 

Fig. 6. 125 scenarios set descriptive statistics.  
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consistent trend, revealing that sawdust waste yields the highest annual 
electricity generation, closely trailed by grapevine pruning waste, pinus 
pruning waste, wood waste, and olive pruning waste. This observation 
suggests that sawdust and grapevine pruning waste promise as potent 
options for electricity generation within the considered waste types (as 
detailed in Section 2.2 outlining feedstock composition) in the CSTGB 
system. 

Further analysis extends to the impact of varying operating tem-
peratures on energy generation and CO2 capture efficacy. With 
increasing temperatures, annual electricity generation demonstrates an 
ascending trajectory, whereas carbon capture exhibits a descent, irre-
spective of the biomass waste type. Importantly, this trend maintains 
consistency across all evaluated biomass waste types. 

Expanding the analysis to encompass geographical location, 
discernible fluctuations in annual electricity generation were found. 
Location A consistently emerges as the lead in mean electricity gener-
ation, followed by Location B, Location C, Location D, and Location E. 
The fundamental reason or factor of this divergence can be traced to the 
superior local climate conditions prevalent at Location A. These condi-
tions, typified by the highest average DNI of 641.4 W/m2, minimal 
average wind speed of 3 km/h, lowest average precipitation of 53.4 
mm/month, and elevated environmental temperatures 19 ◦C, collec-
tively contribute to its higher electricity generation. In summary, the 
zenith of the system performance is attained through the utilization of 
sawdust waste as the feedstock, operation at 1,200 ◦C, and positioning at 
location A within the scope of 125 scenarios. Within these scenarios, the 
overall system efficiency (a metric for assessing the energy conversion 
efficiency from biomass and solar energy to electricity) exhibits a range 
from 9.10 % to 51.59 %. This variation underscores the system’s 
adaptability and the impact of operational conditions on the overall 
energy conversion efficiency. 

3.2. Performance evaluation of LSTM-RNN model 

Fig. 7A represented the evaluation of the LSTM-RNN model, and a 

distinct trend was observed whereby the MSE exhibited rapid reduction 
within the 1st to 5th epochs. This signifies the model’s ability to 
assimilate underlying data patterns and features during its learning 
phase. After the 10th epoch, the MSE stabilizes at values of 29.4 and 9.2 
for the training and validation processes, respectively. 

In assessing the performance of the model, the LSTM-RNN model was 
employed to predict electricity generation (Fig. 7B) and carbon savings, 
(Fig. 7C) and the resultant predictions were validated against the cor-
responding test data. The predictive outcomes closely matched the 
testing data, as indicated by an average error of 5.16 %. 

3.3. Evaluation of MOO results 

A comprehensive exploration of 280,000 scenarios was undertaken 
using the MOO method. It is essential to emphasize that negative values 
were employed for the GWP metric in Fig. 8. A lower GWP signified a 
higher level of CO2 capture in the CSTGB system, indicative of a 
decreased efficiency of the CSTB system and a greater emission of CO2. 
The inclusion of the CT in the analysis had a significant impact on the 
MOO results. Due to the CSTGB system was maintained under an 
assumption that does not account for market supply and demand in-
teractions (refers to the availability of electricity in response to market 
demand) on calculating the NPW. This circumstance might have led to a 
greater influence of the CT on the system revenue. This phenomenon 
aligns with the findings of research regarding the CT by [50], where they 
asserted that the CT tend to amplify the revenue of relevant systems. 

Fig. 8A illustrated the influence of incorporating the CT in the TEA 
on the MOO outcomes of the CSTGB system. This incorporation led to 
the absence of trade-off in the MOO results. Consequently, this enabled 
the swift determination of the best scenario, even in the absence of using 
the pareto optimality and TOPSIS methods. In the parameter configu-
ration of the best scenario, the feedstock composition played a crucial 
role in the system efficiency: C (49.3 wt%), H (7.3 wt%), O (42.4 wt%), 
N (0.9 wt%), FC (18.1 wt%), and the feedstock LHV (18.5 kJ/kg). The 
optimal conditions converged at Location C, and the CSTGB system with 

Fig. 7. (A). the proposed LSTM-RNN model evaluation, (B). comparison of predict and actual annual electricity generation, (C). comparison of predict and actual 
annual carbon captured. 
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2091 heliostats operated at a gasification temperature condition of 
825.8 ◦C. Over the span of 30 years, the cumulative GWP reduction 
amounted to 415,960 tons CO2-eq. TEA presented promising cost- 
effective results with NPW of €4,298 million. A key correlation 
emerged between the CT revenue and the extent of CO2 captured, 
creating a symbiotic relationship: increasing CO2 captured capacity led 
to increased CT revenue. The optimal process correspond to the opera-
tion at lower reaction temperatures and established at Location C 
(characterized by the lowest average DNI of 535.7 W/m2 and a longer 
transportation distance of 365 km). 

Fig. 8B illustrated the impact of incorporating CT in the TEA on the 
MOO results of the CSTGB system. Optimal scenarios were determined 
by using the pareto optimality and the TOPSIS method was used to make 
a decision of the most preferred system scenario. The best system sce-
nario was determined as: C (48.4 wt%), H (7.3 wt%), O (43.8 wt%), FC 
(19.7 wt%), the feedstock LHV (20.1 kJ/kg), and location A, which is 
attributed to that location A has the shortest transportation distance (85 
km) and the highest average DNI (641.4 W/m2). This location choice 
integrates the transport efficiency and the availability of solar energy 
resources, aligning with system objectives (e.g., specifically the maxi-
mization of NPW and the minimization of GWP). The optimal number of 
heliostats was 1,789, associated with a gasification temperature of 
947.2 ◦C. Over a 30-year lifecycle, the cumulative reduction in GWP 
amounted to 132,615 tons CO2-eq. This aligns closely with the pressing 
global environmental imperatives, underscoring the system’s potential 
role in carbon emission mitigation. The TEA also demonstrated pros-
pects, as reflected by the substantial NPW of €3,042 million. 

4. Conclusion 

In the pursuit of optimizing the economics and carbon saving po-
tential of CSTGB systems, an analysis of diverse influencing factors has 
been undertaken. This has revealed insights that pave the way for effi-
cient and sustainable energy production strategies. The data associated 
with 125 scenarios were gathered for training the LSTM-RNN model that 
predicts electricity generation and carbon captured with an error of 5.1 
%. Subsequently, the LSTM-RNN model was utilized to extend these 125 
scenarios to create 280,000 datasets using the Monte Carlo simulation 
approach for MOO. Within the MOO framework, the influences of 
various parameters of the CSTGB system, such as the feedstock 
composition, operating temperature, and location of the CSTGB system 
towards GWP and NPW were examined. This study not only underscored 
the system’s potential for enhanced efficiency and emissions reduction 
but also emphasized its economic potential. Particularly significant was 
the impact of the CT on MOO results. The optimal configuration of the 
system could avoid the trade-off phenomenon when treating the CT as a 
revenue. The most favorable scenario demonstrated a significant 

reduction in GWP, achieving a cumulative saving of 415,960 tons of 
CO2-eq and NPW of €4,298 million over a 30-year lifespan when CT was 
accounted for as a revenue. A scenario excluding CT corresponded to a 
reduction of 132,615 tons of CO2-eq and an NPW of €3,042 million. This 
finding demonstrates the significance in the consideration of multifac-
eted factors in decision-making, synergizing technological innovation, 
economic benefits, and environmental impacts. 
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