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A B S T R A C T

We study stochastic dynamic programming with recursive utility in settings where multiplicity of values is only
attributed to unbounded returns. That is, we consider Koopmans aggregators that, when artificially restricted to
be bounded, satisfy the traditional Blackwell’s discounting condition (as it certainly happens with time-additive
aggregators). We argue that, when the truncation is removed, the sequence of truncated values converges to
the relevant fixed point of the untruncated Bellman operator, whenever it exists, and diverges otherwise. The
experiment provides a natural selection criterion, corresponding to an extension of the recursive utility from
bounded to unbounded returns.
. Introduction

A large body of work in macroeconomics and finance models agents’
ehavior on a recursive utility foundation, instead of using the more
estrictive time-additive separable objective. Inspired by the axiomatic
ontribution of Koopmans (1960), the approach postulates an aggre-
ator function as a primitive representing preferences for current and
uture utility, as well as the attitude towards uncertainty, and recovers
ntertemporal utility recursively. Recursive utility broadens the scope
f the analysis, encompassing behavioral features such as increasing
arginal impatience (Lucas and Stokey, 1984), the distinction of risk

ttitudes from intertemporal substitution (Epstein and Zin, 1989), pref-
rence for early resolution of uncertainty (Kreps and Porteus, 1978),
mbiguity aversion (Klibanoff et al., 2009), risk sensitivity and robust-
ess (Hansen and Sargent, 1995, 2001). The wide range of economic
pplications is manifested in standard textbooks and survey articles
see, among others, Backus et al., 2005; Becker and Boyd, 1997; Hansen
nd Sargent, 2008; Hansen et al., 2007; Miao, 2014; Skiadas, 2009).

Dynamic programming provides important tools for studying eco-
omic models with recursive preferences. At the most fundamental
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1 Examples of aggregators at risk of multiplicity appear in Becker and Rincón-Zapatero (2021, 2023), Bloise and Vailakis (2018) and Christensen (2022).

level, the center of attention is on the existence and uniqueness of
solutions to Bellman equation. When the value of the recursive program
solves this functional equation, the associated policy characterizes the
paths that are optimal in the associated sequential program. An impor-
tant step amounts to show that Bellman’s operator has a unique fixed
point in a certain class of functions.

The use of general Koopmans aggregators to generate an intertem-
poral utility complicates the correspondence between sequential and
recursive values of a planning program. In traditional dynamic pro-
gramming, the sequential planning objective is explicitly given as the
discounted sum of expected returns, and recursive methods serve to de-
termine this value. With non-linear Koopmans aggregators, instead, the
sequential planning objective is only implicitly identified as generated
by the aggregator recursively. In principle, without further restrictions,
there could be multiple recursively generated utility functions for a
given Koopmans aggregator, all of them legitimate planning objectives
consistent with the primitives.1 As recently argued by Bloise et al.
(2024), the Bellman operator might be returning this multiplicity and,
in fact, this is the only source of multiplicity of fixed points of the
vailable online 2 February 2024
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Bellman operator, a reflection of multiple planning objectives implied
by the Koopmans operator.

This general framework also accommodates discounted expected
utility with unbounded returns. Whenever multiplicity occurs, multi-
ple values of the Bellman operator necessarily lie in an excessively
large space in which the time-additive Koopmans operator itself yields
multiple utilities. Though generated by the Koopmans operator, these
other utilities are obviously spurious, as they do not correspond to the
discounted sum of expected returns postulated in the related sequential
program. Consequently, the associated fixed points of the Bellman
operator can be disregarded because are inconsistent with the primi-
tive objective of the planner. An analogous selection criterion is not
immediately available for general recursive utility.

The purpose of this paper is to disentangle unbounded returns as
a distinct source of multiplicity by means of a natural counterfac-
tual experiment. More precisely, we restrict attention to Koopmans
aggregators that, when artificially restricted to be bounded, satisfy
the traditional Blackwell’s discounting condition. In this sense we
single out all situations in which the multiplicity of values can only
be attributed to unbounded returns. Standard techniques, including
the Contraction Mapping Theorem, ensure that the fixed point of the
Bellman operator is unique for the truncation of the utility aggregator.
We prove that, when the artificial truncation is removed, the sequence
of truncated values converges to the relevant value of the unbounded
recursive program. This experiment provides a natural selection crite-
rion. For time-additive aggregators, in fact, it yields the exact value
corresponding to the discounted expected utility.

We study aggregators that are either unbounded from above or
unbounded from below, leaving a treatment of fully unbounded ag-
gregators to future research.2 Perhaps counterintuitively, unbounded-
rom-below aggregators behave more regularly: we are able to establish
he existence of a stationary optimal policy. On the contrary, in general,
e do not succeed in proving that the value generated by unbounded-

rom-above aggregators is upper semicontinuous and that an associated
tationary optimal policy exists. However, under further regularity
onditions, the discontinuity (if any) occurs for finite-horizon versions
f the program and is not intrinsically related to the infinite horizon.

In Bloise et al. (2024) we argue that, whenever all the utilities
enerated by the Koopmans aggregator are legitimate planning ob-
ectives, the greatest fixed point of the Bellman operator should be
rivileged. In this paper, instead, we ostensively select the least fixed

point for unbounded-from-above aggregators. The inconsistency is only
apparent: our selection criterion in this paper implicitly regards all
the other utilities generated by the unbounded Koopmans operator
as spurious and, hence, as illegitimate planning objectives, because
are unapproachable via truncations. For time-additive aggregators, for
instance, the only acceptable utility is the discounted sum of expected
returns. A similar selection is impracticable for more general recursive
utilities studied in Bloise et al. (2024), as the risk of multiplicity persists
even after truncating the aggregator (e.g., with Epstein–Zin utility).

The paper is organized as follows. In Section 2, we briefly discuss
the related literature. In Section 3, we introduce an abstract recursive
program and argue that any value of this program corresponds to a
recursively generated utility function. In Section 4, we illustrate, by
means of a canonical example, how multiple values to the recursive pro-
gram obtain under conventional discounting and unbounded returns. In
Section 5, we present our major results. In Section 6, we show how our
approach applies to programs with quadratic returns and risk-sensitive
preferences. Finally, in Section 7, we compare our approach to some
recent contributions in the literature.

2 Notice that the discounted expected utility might be undefined when
eturns are fully unbounded, because the series might be neither converging
or diverging (or the integral might not exist).
2

2. Related literature

A well-developed literature has used refinements of the Contraction
Mapping Theorem to deal with unbounded Blackwell aggregators. Boyd
(1990) introduces the Weighted Contraction approach to economic ap-
plications, a method further developed by Alvarez and Stokey (1998),
Durán (2000, 2003), Jaśkiewisz and Nowak (2011), Matkowski and
Nowak (2011) and more recently by Rincón-Zapatero (2024). An alter-
native Local Contraction approach is presented by Rincón-Zapatero and
Rodríguez-Palmero (2003) and Martins-da-Rocha and Vailakis (2010)
to deal with aggregators that allow −∞ as a value. Another method
followed by Le Van and Morhaim (2002), Le Van and Vailakis (2005),
Kamihigashi (2014) and Wiszniewska-Matyszkiel and Singh (2021)
abandons the contraction approach and looks directly for solutions to
the Bellman’s equation in a suitable space of functions satisfying a
sort of transversality condition. Finally, a recent paper by Ma et al.
(2022) exploits a transformation of Bellman’s operator, along with
boundedness of the expected reward, to turn unbounded into bounded
programs so that conventional contraction techniques apply.

Dynamic programming with recursive utility was initially
approached by Streufert (1990) and Ozaki and Streufert (1996). They
introduced the notion of biconvergence, a limiting condition ensuring
that returns of any feasible path are sufficiently discounted from
above and from below. Further developments along this line appear
in Bich et al. (2018) who study deterministic recursive programs under
minimal assumptions on primitives. Though foundational, all these
biconvergence criteria are not fully operational.

Recent contributions by Balbus (2020), Bloise and Vailakis (2018)
and Ren and Stachurski (2021) study dynamic programming with
aggregators that fail the conventional sup-norm contractivity prop-
erty. The approach builds instead around the monotonicity and value
concavity properties of the Koopmans aggregator. Marinacci and Mon-
trucchio (2010, 2019), Christensen (2022), Becker and Rincón-Zapatero
(2021) and Becker and Rincón-Zapatero (2023) show that these prop-
erties are shared by many relevant aggregators.

3. Recursive program

Let 𝑋 and 𝑍 be complete separable metric spaces, and let 𝐺 be a cor-
espondence from 𝑋 to 𝑍. We interpret 𝑋 as the state space, whereas

is the action space. Feasibility is embedded in the correspondence
∶ 𝑋 ↠ 𝑍, that is, 𝐺 (𝑥) ⊂ 𝑍 is the set of admissible actions at

tate 𝑥 in 𝑋. We use 𝛤 ⊂ 𝑋 × 𝑍 to denote the graph of the feasibility
orrespondence. If needed, we also consider a (measurable) Markov
ransition 𝛱 ∶ 𝛤 → 𝛥 (𝑋) governing the evolution of the state over
ime, that is, 𝛱 (𝑥, 𝑧) is a probability measure on the state space 𝑋,
ndowed with its Borel algebra.

We let  be the space of all extended real maps 𝑓 ∶ 𝑋 → R,
endowed with the product topology and the natural ordering, where R
is the field of extended reals. We also let  be the class of measurable
maps 𝑣 ∶ 𝑋 → R in  , that is,

 = {𝑣 ∈  ∶ 𝑣 is (Borel) measurable} .

The objective of the planner is given as a bounded-from-below aggrega-
tor 𝑊 ∶ 𝛤 × → R

+
or a bounded-from-above aggregator 𝑊 ∶ 𝛤 × →

R
−
. The nature of this aggregator will depend on the application of the

theory. The most traditional example is given by

𝑊 (𝑥, 𝑧, 𝑣) = (1 − 𝛿) 𝑢 (𝑥, 𝑧) + 𝛿 ∫ 𝑣 (𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦) ,

here 𝛿 in (0, 1) ⊂ R+ is the discount factor and 𝑢 ∶ 𝛤 → R is the return,
or reward, function. Our abstract formulation, inspired by Bertsekas
(2018), encompasses many other instances of recursive preferences.

We impose restrictions on fundamentals that are satisfied in typical

applications. Assumption 3.1 ensures the applicability of the Maximum
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Theorem when values are bounded. In addition, it requires monotonic-
ity. These restrictions will deliver a well-behaved recursive program
when values are bounded. Assumption 3.2 reproduces the logic of Levi’s
Convergence Theorem. This continuity property will be helpful for the
limit argument.

Assumption 3.1 (Basic Properties). (a) The feasible correspondence 𝐺 ∶
𝑋 ↠ 𝑍 is upper hemicontinuous with nonempty compact values. (b)
For any 𝑣 in  , the map (𝑥, 𝑧) ↦ 𝑊 (𝑥, 𝑧, 𝑣) is measurable on 𝛤 . (c)
For any 𝑣 in  that is bounded and upper semicontinuous, the map
(𝑥, 𝑧) ↦ 𝑊 (𝑥, 𝑧, 𝑣) is upper semicontinuous on 𝛤 . (d) The aggregator is
monotone in  , that is,

𝑣′ ≥ 𝑣′′ implies 𝑊
(

𝑥, 𝑧, 𝑣′
)

≥ 𝑊
(

𝑥, 𝑧, 𝑣′′
)

.

Assumption 3.2 (Monotone Convergence). For any sequence
(

𝑣𝑛
)

𝑛∈N in
 monotonically converging to 𝑣 in  ,

lim
𝑛→∞

𝑊
(

𝑥, 𝑧, 𝑣𝑛
)

= 𝑊 (𝑥, 𝑧, 𝑣) .

The value of the recursive program is given by

𝑣 (𝑥) = sup
𝑧∈𝐺(𝑥)

𝑊 (𝑥, 𝑧, 𝑣) .

Values of the recursive program obtain as fixed points of the Bellman
operator 𝑇 ∶  →  , given by

(𝑇 𝑣) (𝑥) = sup
𝑧∈𝐺(𝑥)

𝑊 (𝑥, 𝑧, 𝑣) .

Notice that, due to well-known issues of measurability, the Bellman
operator returns values in the extended space  , though we only
consider fixed points which are elements of the allowed space  .

A policy is a measurable map 𝑔 ∶ 𝑋 → 𝑍 such that 𝑔 (𝑥) lies in 𝐺 (𝑥).
Let  be the space of all such policies. Given a policy 𝑔 in , Koopmans
perator 𝑇𝑔 ∶  →  is given by

𝑇𝑔𝑣
)

(𝑥) = 𝑊 (𝑥, 𝑔 (𝑥) , 𝑣) .

utility function 𝑈 ∶  × 𝑋 → R specifies the utility value 𝑈𝑔 (𝑥) in
R of a policy 𝑔 in  beginning from state 𝑥 in 𝑋. A utility function is
ecursively generated by the given aggregator whenever

𝑔 (𝑥) =
(

𝑇𝑔𝑈𝑔
)

(𝑥) .

In principle, without further restrictions, there could be multiple recur-
sively generated utility functions for a given aggregator.3

We shall devote attention to the least recursively generated util-
ity function, when the aggregator is unbounded-from-above, and the
greatest recursively generated utility function, when the aggregator is

3 The proposed formulation is sufficiently permissive to parsimoniously
ncompass the more traditional treatments of recursive utility in the literature.
onsider, for instance, a deterministic framework with a utility defined on
equences of consumptions. We let 𝑋 = T = {0, 1, 2,… , 𝑡,…} be the infinite

space of periods and 𝑍 = R+ the consumption space. A policy 𝑔 in  is thus a
consumption plan, with 𝑔 (𝑡) in R+ being the consumption level in period 𝑡 in
T. Adapting our notation, a recursive utility satisfies

𝑈𝑔 (𝑡) = 𝑊
(

𝑡, 𝑔 (𝑡) , 𝑈𝑔
)

= 𝑉
(

𝑔 (𝑡) , 𝑈𝑔 (𝑡 + 1)
)

,

where 𝑉 ∶ R+ × R+ → R+ is the conventional aggregator and 𝑈𝑔 (𝑡) in R+ is
the utility value from consumption sequence 𝑔 in  beginning from period 𝑡
n T. Defining 𝑔◦𝜎 (𝑡) = 𝑔 (𝑡 + 1), this is equivalent to

𝑔 (0) = 𝑉
(

𝑔 (0) , 𝑈𝑔◦𝜎 (0)
)

,

o that 𝑈 (0) ∶  → R+ is the intertemporal utility defined on the space of
onsumption sequences. More generally, by an expansion of the state space
rom 𝑋 to 𝑋 × T, or even 𝑋T, we can accommodate nonstationary policies
nd history dependence in our analysis.
3

i

nbounded-from-below. These selections mimic the logic of the con-
entional discounted expected utility. In fact, the least and the greatest
ecursively generated utilities, in both cases, are determined as

𝑔 (𝑥) = lim
𝑛→∞

(

𝑇 𝑛
𝑔 0

)

(𝑥) .

his formula reproduces the idea of a discounted utility,

𝑔
(

𝑥0
)

= lim
𝑛→∞

E0

𝑛
∑

𝑡=0
𝛿𝑡𝑢

(

𝑥𝑡, 𝑔
(

𝑥𝑡
))

,

here 𝑥𝑡+1 in 𝑋 is conditionally distributed according to the probability
(

𝑥𝑡, 𝑔
(

𝑥𝑡
))

.
Given a utility function 𝑈 ∶  × 𝑋 → R, the value of the sequential

program is given by

𝑣(𝑥) = sup
𝑔∈

𝑈𝑔 (𝑥) .

otice that the value of the sequential program is uniquely determined,
hough it depends on the given utility function. The value of the
ecursive program, instead, only reflects the aggregator. We shall argue
hat the value of the sequential program for the chosen utility function
an be computed by means of approximations of unbounded aggrega-
ors whenever appropriate truncations satisfy the canonical discounting
roperty.

As we extensively argue in Bloise et al. (2024), a multiplicity of
ixed points of the Bellman operator is the reflection of a multiplicity
f utilities generated by the Koopmans operator on the relevant space.
n certain circumstances, some of these utilities are clearly artificial and
an be ruled out by an appropriate restriction of the underlying space,
s clarified by our example in Section 4. In general, however, many
ecursively generated utilities are legitimate objectives of the planning
rogram. This feature is annotated in the next proposition.

roposition 3.1 (Principle of Optimality). Any fixed point 𝑣̃ in  of
ellman operator 𝑇 ∶  →  , admitting a policy 𝑔 in , is the sequential
alue of some recursively generated utility 𝑈̃ ∶  ×𝑋 → R.

4. A leading example

Notwithstanding a large literature on value-uniqueness in dynamic
programming with economic applications, we find an unexpected
paucity of examples of multiplicity. We here present a simple frame-
work with conventional discounting and unbounded returns for which
the related Bellman operator admits multiple fixed points. We explain
the source of this multiplicity and the emergence of spurious utilities
when the underlying space is excessively permissive. We also verify that
the fixed point is unique on a suitable space enforcing discounting.

Let 𝑋 = 𝑍 = R+ and 𝐺 (𝑥) = [0, 𝑥] ⊂ R+. Given 𝛿 in (0, 1) ⊂ R+, the
tility aggregator is given by

(𝑥, 𝑧, 𝑣) = 𝑢 (𝑥, 𝑧) + 𝛿𝑣
(𝑥 − 𝑧

𝛿

)

,

where

𝑢 (𝑥, 𝑧) =
√

𝑧 + 1 − 1.

Given these primitives, the induced recursive program is

𝑣 (𝑥) = max
0≤𝑧≤𝑥

√

𝑧 + 1 − 1 + 𝛿𝑣
(𝑥 − 𝑧

𝛿

)

.

We shall argue that, when unrestricted, the Bellman operator admits
multiple fixed points.

The peculiarity of this aggregator is that it induces a natural utility
function, namely,

̄
𝑈𝑔

(

𝑥0
)

=
∞
∑

𝑡=0
𝛿𝑡𝑢

(

𝑥𝑡, 𝑔
(

𝑥𝑡
))

,

here 𝑥𝑡+1 = 𝛿−1
(

𝑥𝑡 − 𝑔
(

𝑥𝑡
))

. The Koopmans aggregator, however,

s consistent with other spurious utility functions if its domain is not
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satisfy the recursive condition

𝑈𝑔 (𝑥) − ̄
𝑈𝑔 (𝑥) = 𝛿

(

𝑈𝑔

(

𝑥 − 𝑔 (𝑥)
𝛿

)

−
̄
𝑈𝑔

(

𝑥 − 𝑔 (𝑥)
𝛿

))

.

hus, the excess utility value will be inflating over time, remaining
onstant in discounted terms.

It turns out that the value corresponding to the natural utility is

̄
(𝑥) =

√

(1 − 𝛿) 𝑥 + 1 − 1
1 − 𝛿

.

o verify this, notice that the recursive program becomes

max
≤𝑧≤𝑥

√

𝑧 + 1 − 1 + 𝛿

√

(1 − 𝛿) 𝛿−1 (𝑥 − 𝑧) + 1 − 1
1 − 𝛿

.

simple first-order condition requires
1

2
√

𝑧 + 1
= 1

2
√

(1 − 𝛿) 𝛿−1 (𝑥 − 𝑧) + 1
.

his yields 𝑧 = (1 − 𝛿) 𝑥 and 𝑥 − 𝑧 = 𝛿𝑥, thus confirming our claim.
We now argue that 𝑣 (𝑥) = 𝛾𝑥 is also a fixed point of the Bellman

operator whenever 1 ≤ 2𝛾. Indeed, the recursive program reduces to

max
0≤𝑧≤𝑥

√

𝑧 + 1 − 1 + 𝛾 (𝑥 − 𝑧) .

otice that the first-order condition requires
1

2
√

𝑧 + 1
− 𝛾 ≤ 0, with the equality if 𝑧 > 0.

The maximizer is 𝑧 = 0, thus establishing our claim. All these additional
fixed points are the artifact of corresponding spurious utilities gener-
ated by the Koopmans operator, because

̄
𝑈𝑔 (𝑥) = 0 whenever 𝑔 (𝑥) = 0

permanently.
The spurious values can be ruled out by means of an appropriate

upper bound. Introducing a bounding function 𝜑 (𝑥) =
√

𝑥, notice that

max
∈𝐺(𝑥)

𝑢 (𝑥, 𝑧) =
√

𝑥 + 1 − 1 ≤
√

𝑥 = 𝜑 (𝑥) .

Thus, this bounding function is consistent with the growth rate of
returns. As a consequence, it also provides an upper bound to the value
of the recursive program for the natural utility, as

̄
𝑣 (𝑥) =

√

(1 − 𝛿) 𝑥 + 1 − 1
1 − 𝛿

≤
√

𝑥
1 − 𝛿

=
( 1
1 − 𝛿

)

𝜑 (𝑥) .

owever, all spurious fixed points are precluded by this bound. Indeed,
ssume the existence of 𝜆 in R+ such that

(𝑥) = 𝛾𝑥 ≤ 𝜆
√

𝑥 ≤ 𝜆𝜑 (𝑥) .

his yields

lim
→∞

𝑣 (𝑥)
𝜑 (𝑥)

= lim
𝑥→∞

𝛾
√

𝑥 ≤ 𝜆,

which clearly implies a contradiction.
The relevant properties of the bounding function are that (a) it

provides an upper bound on returns and (b) it involves some sort
of discounting of values over time, thus ruling out the bubbly excess
utility. To see the latter property, notice that

𝛿 sup
𝑧∈𝐺(𝑥)

𝜑
(𝑥 − 𝑧

𝛿

)

≤ 𝛿
√

𝑥
𝛿
=
√

𝛿𝜑 (𝑥) .

The left hand-side evaluates, given the bounding function, the maxi-
mum discounted value growth permitted by the feasible set, whereas
the right hand-side ensures that this value declines over time at ge-
ometric rate

√

𝛿 in (0, 1) ⊂ R+. As explained by Bloise et al. (2024,
roposition 5.1), this discounting property for general aggregators is
aptured by the existence of a monotone sublinear gradient to the
ellman operator whose spectral radius is less than unity.
4

5. Approximate discounting

5.1. Selection criterion

We develop a selection criterion for situations in which unbounded
returns are the only source of potential multiplicity. In particular, to
single out such circumstances, we consider aggregators satisfying a
traditional Blackwell’s discounting property for some bounded approx-
imation. Conventional techniques, including the Contraction Mapping
Theorem, ensure that the fixed point of the truncated Bellman operator
is unique. We argue that, removing the truncation, values converge to
the relevant fixed point of the untruncated Bellman operator.

It is worth noticing that restrictions on primitives postulated in
Assumption 3.1 are prevalently on bounded values, and serve to es-
tablish existence of a fixed point for the bounded approximation of
the program, as in conventional dynamic programming. The limit will
only exploit a fairly permissive assumption of monotone convergence
(Assumption 3.2). In particular, our approach avoids the well-studied
issues related to the Feller property for unbounded values. As a matter
of fact, we only require a weaker form of Feller property for bounded
values.

Our approach separates unbounded from above and unbounded
from below aggregators, leaving a full treatment of unbounded returns
to future research. The treatment is not symmetric. The theory applies
satisfactorily to values that are unbounded from below, permitting to
prove the existence of an optimal policy for the untruncated program.
Differently, when values are unbounded from above, we only succeed
in verifying the existence of an approximate policy. Further restrictions
in terms of discounting reveal that a potential failure of existence of the
policy occurs in the corresponding finite-horizon programs, rather than
to fully expanded infinite-horizon version.

The theory requires the existence of a suitable upper (lower) bound
when returns are unbounded from above (below). For the truncated
program these bounds are created artificially. For the untruncated
program, however, we still need to assume the presence of suitable
bounds in order to ensure the convergence of values when the trun-
cation is progressively removed. As a matter of fact, when convergence
fails, the original program is misspecified and yields an infinite value.
Hence, as a combined effect of all our restrictions, the requirement of
bounds is equivalent to the assumption of existence of a finite value
for the untruncated program. As an alternative, we could abstain from
imposing bounds at all and state all of our results conditional on the
existence of a finite value of the underlying program.

5.2. Unbounded-from-above aggregators

We maintain Assumptions 3.1 and 3.2 and restrict attention to
positive aggregators, that is, to aggregators of the form 𝑊 ∶ 𝛤 ×  →

R
+
. Furthermore, we assume the existence of a finite upper bound 𝑓 in

 such that

sup
𝑧∈𝐺(𝑥)

𝑊
(

𝑥, 𝑧, 𝑓
)

≤ 𝑓 (𝑥) .

The only role of this bound is to ensure convergence of the truncated
values. We allow 𝑓 in  to fail upper semicontinuity and even mea-
surability. The class of all such unbounded-from-above aggregators is
denoted by  . Finally, we interpret  as the space of maps with values
in R

+
.

We say that an aggregator 𝑊 in  exhibits the property of discount-
ing by increasing truncations if it is the (pointwise) limit of an increasing
sequence of truncated aggregators

(

𝑊𝑛
)

𝑛∈N in  satisfying:

D-1) each truncated aggregator maps bounded values into bounded
values, that is, given a bounded 𝑣 in  ,

sup |

|

𝑊𝑛 (𝑥, 𝑧, 𝑣)|| is finite;

(𝑥,𝑧)∈𝛤
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D-2) each truncated aggregator satisfies the property of discounting,
that is, for some 𝛿𝑛 in (0, 1) ⊂ R+, given bounded 𝑣′ and 𝑣′′ in  ,

𝑊𝑛
(

𝑥, 𝑧, 𝑣′
)

−𝑊𝑛
(

𝑥, 𝑧, 𝑣′′
)

≤ 𝛿𝑛 sup
𝑥∈𝑋

|

|

𝑣′ (𝑥) − 𝑣′′ (𝑥)|
|

.

As a matter of fact, we postulate that the aggregator can be arbitrar-
ily approximated by truncated aggregators fulfilling the conventional
Blackwell’s condition. By canonical dynamic programming, this as-
sumption ensures that the truncated Bellman operator admits a unique
fixed point 𝑣𝑛 in  . Furthermore, as the truncation is relaxed, values
increase and, hence, 𝑣𝑛 ≤ 𝑣𝑛+1. Since 𝑣𝑛 ≤ 𝑓 , the sequence converges
to 𝑣∗ in  because it is the pointwise limit of an increasing sequence
of measurable maps. We argue that the limit is the least fixed point of
the Bellman operator for the untruncated recursive program.

Proposition 5.1 (Limit). Under the maintained Assumptions 3.1–3.2, if
the aggregator satisfies the property of discounting by increasing truncations,
the induced limit 𝑣∗ in  is the least fixed point of the untruncated Bellman
operator 𝑇 ∶  →  .

The limit value of truncated recursive programs is indeed the se-
quential value for the least utility function 𝑈 ∶  ×𝑋 → R

+
generated

y the aggregator, which is determined as

𝑔 (𝑥) = lim
𝑗→∞

(

𝑇 𝑗
𝑔 0

)

(𝑥) .

or time-additive aggregators, this utility corresponds to the discounted
um of expected returns over the infinite horizon. Thus, our method
aturally extends the traditional approach to discounted expected util-
ty with unbounded-from-above returns.

roposition 5.2 (Principle of Optimality). Under the maintained
ssumptions 3.1–3.2, if the aggregator satisfies the property of discounting
y increasing truncations, the induced limit 𝑣∗ in  satisfies

𝑣∗ (𝑥) = sup
𝑔∈

𝑈𝑔 (𝑥) ,

where 𝑈 ∶  ×𝑋 → R
+

is the least utility function recursively generated by
he aggregator.

In general, we cannot establish the existence of a policy, unless we
urther restrict the fundamentals. Here is a practicable set of additional
estrictions. Thought it is admittedly far from the weakest set of re-
trictions, it is an acceptable compromise in practice. In addition to an
ppropriate form of discounting, we require a well-behaved program
ver any finite horizon, that is, the value of the program over a finite
orizon of length 𝑛 in N, (𝑇 𝑛0), is upper semicontinuous. With the
urpose of capturing discounting on the relevant space, we introduce
he space 

(

𝑓
)

defined as
(

𝑓
)

=
{

𝑣 ∈  ∶ |𝑣| ≤ 𝑓
}

.

his is the space of all values involving a growth rate bounded by 𝑓 in
.

ssumption 5.1 (Discounting). There exists a monotone sublinear op-
rator 𝐷 ∶ 

(

𝑓
)

→ 
(

𝑓
)

such that, for every 𝑣′ and 𝑣′′ in  ∩
(

𝑓
)

,
(

𝑥, 𝑧, 𝑣′
)

−𝑊
(

𝑥, 𝑧, 𝑣′′
)

≤ 𝐷
(

𝑣′ − 𝑣′′
)

(𝑥) .

Furthermore, each 𝐷𝑛 (𝑓
)

in 
(

𝑓
)

is upper semicontinuous and, for
very 𝑥 in 𝑋,

lim
→∞

𝐷𝑛 (𝑓
)

(𝑥) = 0.

roposition 5.3 (Limit Strengthened). Under the maintained Assump-
ions 3.1–3.2–5.1, if the aggregator satisfies the property of discounting by
ncreasing truncations, the induced limit 𝑣∗ in  is the only fixed point of
the untruncated Bellman operator 𝑇 ∶  →  in the relevant space 

(

𝑓
)

.
Furthermore, a policy 𝑔 in  exists, provided that, for every 𝑛 in N, (𝑇 𝑛0)
n  is upper semicontinuous.
5

.3. Unbounded-from-below aggregators

We now reverse the logic of the truncation approach in order to
ncompass unbounded-from-below aggregators. We maintain Assump-
ions 3.1 and 3.2 and restrict attention to negative aggregators, that is,
o aggregators of the form 𝑊 ∶ 𝛤 ×  → R

−
. Furthermore, we assume

the existence of a finite lower bound
̄
𝑓 in  such that

sup
𝑧∈𝐺(𝑥)

𝑊
(

𝑥, 𝑧,
̄
𝑓
)

≥
̄
𝑓 (𝑥) .

The only role of this bound is to ensure convergence of the truncated
values. We allow

̄
𝑓 in  to fail upper semicontinuity and even mea-

surability. The class of all such unbounded-from-below aggregators is
denoted by  . Finally, we interpret  as the space of maps with values
in 𝑅

−
.

We say that an aggregator 𝑊 in  exhibits the property of discount-
ing by decreasing truncations if it is the (pointwise) limit of a decreasing
sequence of truncated aggregators

(

𝑊𝑛
)

𝑛∈N in  satisfying:

D-1) each truncated aggregator maps bounded values into bounded
values, that is, given a bounded 𝑣 in  ,

sup
(𝑥,𝑧)∈𝛤

|

|

𝑊𝑛 (𝑥, 𝑧, 𝑣)|| is finite;

D-2) each truncated aggregator satisfies the property of discounting,
that is, for some 𝛿𝑛 in (0, 1) ⊂ R+, given bounded 𝑣′ and 𝑣′′ in  ,

𝑊𝑛
(

𝑥, 𝑧, 𝑣′
)

−𝑊𝑛
(

𝑥, 𝑧, 𝑣′′
)

≤ 𝛿𝑛 sup
𝑥∈𝑋

|

|

𝑣′ (𝑥) − 𝑣′′ (𝑥)|
|

.

As in our previous analysis, by canonical dynamic programming,
his assumption ensures that the truncated Bellman operator admits a
nique fixed point 𝑣𝑛 in  . Furthermore, as the truncation is relaxed,
alues decrease and, hence, 𝑣𝑛 ≥ 𝑣𝑛+1. Since 𝑣𝑛 ≥

̄
𝑓 , the sequence

onverges to 𝑣∗ in  because it is the pointwise limit of a decreasing
equence of measurable maps. We argue that the limit is the greatest
ixed point of the Bellman operator of the untruncated program.

Unbounded-from-below aggregators behave more regularly than
hose which are unbounded from above. Indeed, they preserve upper
emicontinuity even when values are unbounded. We establish this
elevant property in a preliminary lemma.

emma 5.1 (Upper Semicontinuity). Under the maintained
ssumptions 3.1–3.2, for every upper semicontinuous 𝑣 in  , the map
𝑥, 𝑧) ↦ 𝑊 (𝑥, 𝑧, 𝑣) is upper semicontinuous on 𝛤 .

roposition 5.4 (Limit). Under the maintained Assumptions 3.1–3.2, if the
ggregator satisfies the property of discounting by decreasing truncations, the
nduced limit 𝑣∗ in  is the greatest fixed point of the untruncated Bellman
perator 𝑇 ∶  →  . Furthermore, an optimal policy 𝑔 in  exists.

As in our previous analysis, the limit value of truncated recursive
rograms is indeed the sequential value for the greatest utility function
∶  ×𝑋 → R

−
generated by the aggregator, which is determined as

𝑈𝑔 (𝑥) = lim
𝑗→∞

(

𝑇 𝑗
𝑔 0

)

(𝑥) .

This is established in our last proposition.

Proposition 5.5 (Principle of Optimality). Under the maintained Assump-
tions 3.1–3.2, if the aggregator satisfies the property of discounting by
decreasing truncations, the induced limit 𝑣∗ in  satisfies

𝑣∗ (𝑥) = sup
𝑔∈

𝑈𝑔 (𝑥) ,

here 𝑈 ∶  ×𝑋 → R
−

is the greatest utility function recursively generated
by the aggregator.
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5.4. A comparison with Rincón-Zapatero and Rodríguez-Palmero (2003)

Rincón-Zapatero and Rodríguez-Palmero (2003, Section 3.2) also
propose a truncation approach to unbounded returns in deterministic
recursive programs with traditional discounted utility. Under certain
restrictions on the feasible correspondence 𝐺 ∶ 𝑋 ↠ 𝑍, they construct
an increasing sequence of truncated feasible correspondences and prove
the existence of a single fixed point of the Bellman operator along
the sequence of truncations. They so establish that, under additional
assumptions, the limit of such truncated values is the value of the
untruncated program.

Differently from Rincón-Zapatero and Rodríguez-Palmero (2003),
our truncation involves no manipulation of the feasible correspondence,
as it only acts on the planning objective. As a matter of fact, our
assumptions (D-1)–(D-2) are totally innocuous in the case of traditional
discounted utility, as they obtain by a straightforward truncation of the
return (namely, 𝑢𝑛 (𝑥, 𝑧) = 𝑢 (𝑥, 𝑧) ∧ 𝑛 or 𝑢𝑛 (𝑥, 𝑧) = 𝑢 (𝑥, 𝑧) ∨ (−𝑛)). Our al-
ternative truncation seems more convenient operationally, because any
implementation necessarily requires finite bounds for the numerical
computation. Furthermore, we dispense with restrictions (DP3)–(DP4)
in Rincón-Zapatero and Rodríguez-Palmero (2003, Theorem 5) on the
feasible correspondence, and simply rely on more minimal conditions
ensuring the applicability of the Maximum Theorem.

For the unbounded-from-above returns studied in Section 5.2, the
additional requirements guaranteeing convergence in their and our
approaches are basically comparable. In particular, Assumption (i)
in Rincón-Zapatero and Rodríguez-Palmero (2003, Theorem 5), as also
clarified in their Remark 5(ii), would be satisfied by

𝐷 (𝑣) = 𝛿 max
𝑧∈𝐺(𝑥)∫

|𝑣 (𝑦)|𝛱 (𝑥, 𝑧) (𝑑𝑦) ,

provided that the spectral radius of 𝐷 ∶ 
(

𝑓
)

→ 
(

𝑓
)

is such
that 𝜌 (𝐷) < 1. We do not impose Assumption (ii) in Rincón-Zapatero
and Rodríguez-Palmero (2003, Theorem 5) because our aggregator is
bounded-from-below. We remark that, differently from Rincón-Zapatero
and Rodríguez-Palmero (2003, Theorem 5), no further assumptions are
needed for the unbounded-from-below aggregators of Section 5.3.

To complete the comparison, we notice that, in Proposition 5.3, we
also require that (𝑇 𝑛0) in  be upper semicontinuous for every 𝑛 in N.
This is unnecessary in Rincón-Zapatero and Rodríguez-Palmero (2003,
Theorem 5) because their framework is deterministic. In stochastic
applications, instead, a discontinuity might arise because of a failure of
the Feller property due to unbounded returns. Our further requirement
prevents such an occurrence.

6. Applications

6.1. Quadratic returns

We apply our method to quadratic returns under conventional
discounting. Thus, the aggregator is given as

𝑊 (𝑥, 𝑧, 𝑣) = (1 − 𝛿) 𝑢 (𝑥, 𝑧) + 𝛿 ∫ 𝑣 (𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦) ,

where 𝛿 in (0, 1) ⊂ R+ is the discount factor. The return takes the
quadratic form

𝑢 (𝑥, 𝑧) = 𝑥𝛷𝑥𝑥 + 𝑧𝛷𝑧𝑧,

where 𝛷𝑥 is a negative definite matrix on 𝑋 = R𝑛 and 𝛷𝑧 is a negative
definite matrix on 𝑍 = R𝑚. Furthermore, we postulate that the Markov
transition 𝛱 ∶ 𝛤 → 𝛥 (𝑋) satisfies the canonical Feller property, that is,
for every bounded and continuous map 𝑣 in  , the map (𝛱𝑣) ∶ 𝛤 → R
is bounded and continuous, where

(𝛱𝑣) (𝑥, 𝑧) = 𝑣 (𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦) .
6

∫ M
This quadratic program satisfies all the assumptions for unbounded-
from-below returns (Section 5.3). In fact, a natural truncation is given
by 𝑢𝑛 (𝑥, 𝑧) = 𝑢 (𝑥, 𝑧) ∨ (−𝑛) with 𝑛 in N. Therefore, to apply our theory,
we only have to verify the existence of a policy 𝑔 in  yielding a finite
value, that is, such that

lim
𝑛→∞

(

𝑇 𝑛
𝑔 0

)

(𝑥) is finite.

Whenever such a policy does not exist, the corresponding sequential
program admits no finite value.

6.2. Risk-sensitive preferences

Our approach encompasses risk-sensitive preferences. The aggrega-
tor is given by

𝑊 (𝑥, 𝑧, 𝑣) = (1 − 𝛿) 𝑢 (𝑥, 𝑧) − 𝛿
𝜃
log

(

∫ 𝑒−𝜃𝑣(𝑦)
)

𝛱 (𝑥, 𝑧) (𝑑𝑦) ,

here 𝛿 in (0, 1) ⊂ R+ is the discount factor and 𝜃 in R++ is the risk-
ensitive parameter. We assume that the return 𝑢 ∶ 𝛤 → R− is bounded
rom above (and a similar treatment applies to bounded-from-below
eturns).

We naturally gain bounded returns by means of the truncation
𝑛 (𝑥, 𝑧) = 𝑢 (𝑥, 𝑧) ∨ (−𝑛). To verify the discounting property for these
ounded truncations, we exploit a canonical argument (as in Chris-
ensen, 2022). In particular,

𝑛
(

𝑥, 𝑧, 𝑣′
)

−𝑊𝑛
(

𝑥, 𝑧, 𝑣′′
)

− 𝛿
𝜃
log

(

∫ 𝑒−𝜃𝑣′(𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦)
∫ 𝑒−𝜃𝑣′′(𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦)

)

= − 𝛿
𝜃
log

(

∫ 𝑒−𝜃𝑣′′(𝑦)𝑒−𝜃(𝑣′(𝑦)−𝑣′′(𝑦))𝛱 (𝑥, 𝑧) (𝑑𝑦)
∫ 𝑒−𝜃𝑣′′(𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦)

)

− 𝛿
𝜃
log

(

∫ 𝑒−𝜃𝑣′′(𝑦)𝑒−𝜃‖𝑣
′−𝑣′′‖∞𝛱 (𝑥, 𝑧) (𝑑𝑦)

∫ 𝑒−𝜃𝑣′′(𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦)

)

− 𝛿
𝜃
log

(

𝑒−𝜃‖𝑣
′−𝑣′′‖∞

)

= 𝛿 ‖
‖

𝑣′ − 𝑣′′‖
‖∞ ,

thus confirming our claim. Hence, Propositions 5.4–5.5 apply.
In fact, by the same argument, risk-sensitive preferences cannot

sustain distinct fixed points 𝑣′ and 𝑣′′ in  such that ‖
‖

𝑣′ − 𝑣′′‖
‖∞ > 0 is

finite, even though they are unbounded. Indeed, previous inequalities
would deliver

|

|

𝑣′ (𝑥) − 𝑣′′ (𝑥)|
|

≤ |

|

|

(

𝑇 𝑣′
)

(𝑥) −
(

𝑇 𝑣′′
)

(𝑥)||
|

≤ 𝛿 ‖
‖

𝑣′ − 𝑣′′‖
‖∞ ,

hus implying a contradiction. This is consistent with the uniqueness
stablished in Ma et al. (2022, Theorem 5.3) by means of their 𝑄-
ransform. In both cases, however, the existence of other fixed points
ith unbounded uniform distance is not ruled out.

.3. Blackwell nonlinear aggregators

Our approach applies to any nonlinear aggregator satisfying, for
ome 𝛿 in (0, 1) ⊂ R+,
(

𝑥, 𝑧, 𝑣′
)

−𝑊
(

𝑥, 𝑧, 𝑣′′
)

≤ 𝛿 sup
𝑧∈𝐺(𝑥)∫

|

|

𝑣′ (𝑦) − 𝑣′′ (𝑦)|
|

𝛱 (𝑥, 𝑧) (𝑑𝑦) .

xamples of such aggregators are studied by Marinacci and Montruc-
hio (2010). An instance is the KDW aggregator (Koopmans et al.,
964) given by

(𝑥, 𝑧, 𝑣) = 1
𝜃
log

(

1 + 𝑢 (𝑥, 𝑧) + 𝛽 ∫ 𝑣 (𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦)
)

,

here 𝑢 ∶ 𝛤 → R+ is the return and 𝜃 > 𝛽 > 0 (see Marinacci and
ontrucchio, 2010, Example 3).
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Assuming that the aggregator is unbounded from above, 𝑊 ∶ 𝛤 ×
→ R

+
, a natural truncation is given by 𝑊𝑛 (𝑥, 𝑧, 𝑣) = 𝑊 (𝑥, 𝑧, 𝑣) ∧ 𝑛.

It is easy to verify that, for all bounded 𝑣′ and 𝑣′′ in  such that
𝑊𝑛

(

𝑥, 𝑧, 𝑣′′
)

< 𝑊𝑛
(

𝑥, 𝑧, 𝑣′
)

,4

𝑊𝑛
(

𝑥, 𝑧, 𝑣′
)

−𝑊𝑛
(

𝑥, 𝑧, 𝑣′′
)

≤ 𝑊
(

𝑥, 𝑧, 𝑣′
)

−𝑊
(

𝑥, 𝑧, 𝑣′′
)

≤ 𝛿 sup
𝑧∈𝐺(𝑥)∫

|

|

𝑣′ (𝑦) − 𝑣′′ (𝑦)|
|

𝛱 (𝑥, 𝑧) (𝑑𝑦)

≤ 𝛿 sup
𝑥∈𝑋

|

|

𝑣′ (𝑥) − 𝑣′′ (𝑥)|
|

.

Therefore, the property of discounting by increasing truncations is
satisfied.

7. Comments

We compare our findings in this paper with the most recent lit-
erature on unbounded returns with time-additive aggregators of the
form

𝑊 (𝑥, 𝑧, 𝑣) = (1 − 𝛿) 𝑢 (𝑥, 𝑧) + 𝛿 ∫ 𝑣 (𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦) .

Ma et al. (2022) present an innovative approach to unbounded re-
turns based on the idea of a 𝑄-transform. Rincón-Zapatero (2024)
studies unbounded returns under minimal assumptions by means of
a contraction-type method. We begin with a comment on this latter
contribution.

The approach in Rincón-Zapatero (2024) is a slightly more general
version of our discounting assumption (Assumption 5.1). In particular,
his restrictions imply the existence of a finite upper bound 𝑓 in 
satisfying

|𝑢 (𝑥, 𝑧)| ≤ 𝑓 (𝑥) and 𝐷
(

𝑓
)

(𝑥) ≤ 𝑓 (𝑥) ,

where lim𝑛→∞ 𝐷𝑛 (𝑓
)

= 0.5 This ensures that the Bellman operator,
up to measurability, maps 

(

𝑓
)

into itself. In turn, the fixed point
is unique in this space under the maintained assumptions. Further-
more, in addition to the assumption of discounting, and irrespectively
of unbounded returns, Rincón-Zapatero (2024) decomposes the state
space as 𝑋 = 𝑆 × 𝑍 and only considers Markov transitions of the
form 𝛱 ∶ 𝑆 → 𝛥 (𝑆), that is, such that the transition moves from
state 𝑥 = (𝑠−, 𝑧−) into state 𝑦 = (𝑠, 𝑧), given the action 𝑧 in 𝐺 (𝑠−, 𝑧−),
and the probabilities are independent of the current action. This allows
him to substantially weaken the restrictions of upper semicontinuity for
the application of the Maximum Theorem, including the validity of the
Feller property for unbounded values.

The idea in Ma et al. (2022) consists in transforming the aggre-
gator to obtain, under additional restrictions, bounded returns. Their
translation can be understood as

𝑊̃ (𝑥, 𝑧, 𝑣̃) = (1 − 𝛿) 𝑢 (𝑥, 𝑧) − 𝜑 (𝑥) + 𝛿 ∫ (𝜑 (𝑦) + 𝑣̃ (𝑦))𝛱 (𝑥, 𝑧) (𝑑𝑦) ,

where 𝜑 (𝑥) = sup𝑧∈𝐺(𝑥) (1 − 𝛿) 𝑢 (𝑥, 𝑧). This operation preserves bounded
returns as long as there exists a finite 𝜂 in R+ such that

𝛿
|

|

|

|

∫ 𝜑 (𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦)
|

|

|

|

≤ 𝜂.

Indeed, noticing that (1 − 𝛿) 𝑢 (𝑥, 𝑧) ≤ 𝜑 (𝑥),

sup
𝑧∈𝐺(𝑥)

𝑊̃ (𝑥, 𝑧, 𝑣̃) ≤ sup
𝑧∈𝐺(𝑥)

𝛿 ∫ (𝜑 (𝑦) + 𝑣̃ (𝑦))𝛱 (𝑥, 𝑧) (𝑑𝑦) ≤ 𝜂 + 𝛿 ‖𝑣̃‖∞ .

4 In fact, notice that

𝑛
(

𝑥, 𝑧, 𝑣′′
)

< 𝑊𝑛
(

𝑥, 𝑧, 𝑣′
)

implies 𝑊𝑛
(

𝑥, 𝑧, 𝑣′′
)

< 𝑛.

herefore, we obtain 𝑊𝑛
(

𝑥, 𝑧, 𝑣′′
)

= 𝑊
(

𝑥, 𝑧, 𝑣′′
)

and, consequently,

𝑛
(

𝑥, 𝑧, 𝑣′
)

−𝑊𝑛
(

𝑥, 𝑧, 𝑣′′
)

≤ 𝑊
(

𝑥, 𝑧, 𝑣′
)

−𝑊
(

𝑥, 𝑧, 𝑣′′
)

,

s claimed.
5 To properly compare with Rincón-Zapatero (2024, Assumption (B6)), see
7

he Appendix.
nd

sup
∈𝐺(𝑥)

𝑊̃ (𝑥, 𝑧, 𝑣̃) ≥ sup
𝑧∈𝐺(𝑥)

(1 − 𝛿) 𝑢 (𝑥, 𝑧)−𝜑 (𝑥)−𝜂−𝛿 ‖𝑣̃‖∞ ≥ −𝜂−𝛿 ‖𝑣̃‖∞ .

Conventional techniques apply to the transformed aggregator and de-
liver the existence of a unique fixed point.

CRediT authorship contribution statement

G. Bloise: Conceptualization, Formal analysis, Investigation, Method
ology, Writing – original draft, Writing – review & editing. C. Le
Van: Conceptualization, Formal analysis, Investigation, Methodology,
Writing – original draft, Writing – review & editing. Y. Vailakis: Con-
ceptualization, Formal analysis, Investigation, Methodology, Writing –
original draft, Writing – review & editing.

Declaration of competing interest

Declarations of interest: none

Data availability

No data was used for the research described in the article.

Appendix. Proofs

Proof of Proposition 3.1. Notice that, for every policy 𝑔 in ,
(

𝑇𝑔 𝑣̃
)

≤
𝑣̃. Therefore, for every 𝑥 in 𝑋,

((

𝑇 𝑛
𝑔 𝑣̃

)

(𝑥)
)

𝑛∈N
in R is a decreasing

sequence. As a consequence, we can consider the utility

𝑈̃𝑔 (𝑥) = lim
𝑛→∞

(

𝑇 𝑛
𝑔 𝑣̃

)

(𝑥) ≤ 𝑣̃ (𝑥) .

This utility satisfies the Koopmans equation, as

𝑈̃𝑔 (𝑥) = lim
𝑛→∞

(

𝑇 𝑛+1
𝑔 𝑣̃

)

(𝑥) = lim
𝑛→∞

𝑊
(

𝑥, 𝑔 (𝑥) ,
(

𝑇 𝑛
𝑔 𝑣̃

))

= 𝑊
(

𝑥, 𝑔 (𝑥) , 𝑈̃𝑔
)

.

Furthermore, as the fixed point 𝑣̃ in  admits a policy 𝑔 in , we
bviously have

𝑣̃ (𝑥) = sup
𝑔∈

𝑈̃𝑔 (𝑥) .

his establishes our claim. □

roof of Proposition 5.1. For every 𝑛 in N, we let 𝑇𝑛 ∶  → 
e the Bellman operator corresponding to truncated aggregator 𝑊𝑛 in
. Notice that, as the sequence of truncated aggregators is increasing,

𝑇 𝑣) ≥
(

𝑇𝑛𝑣
)

for every 𝑣 in  . We first argue that the limit is indeed a
ixed point of the untruncated Bellman operator.

Obviously, (𝑇 𝑣∗) ≥
(

𝑇 𝑣𝑛
)

≥
(

𝑇𝑛𝑣𝑛
)

= 𝑣𝑛, thus yielding (𝑇 𝑣∗) ≥ 𝑣∗.
uppose that, for some 𝑥 in 𝑋, there exists 𝑧 in 𝐺 (𝑥) such that

(𝑥, 𝑧, 𝑣) > 𝑣∗ (𝑥) .

y monotone convergence (Assumption 3.2), for any sufficiently large
in N,
(

𝑥, 𝑧, 𝑣𝑛
)

> 𝑣∗ (𝑥) .

y monotone convergence of the truncated aggregator, for any suffi-
iently large 𝑛 in N, we also obtain

𝑛
(

𝑥, 𝑧, 𝑣𝑛
)

> 𝑣∗ (𝑥) .

s 𝑣∗ (𝑥) ≥ 𝑣𝑛 (𝑥), this contradicts that
(

𝑇𝑛𝑣𝑛
)

(𝑥) = 𝑣𝑛 (𝑥), thus confirm-
ng our claim.

We now prove that the limit is the least fixed point of the untrun-
ated Bellman operator. Indeed, letting

̄
𝑣 in  be this least fixed point,

or any 𝑗 in N,

𝑇 𝑗
𝑛 0

)

≤
(

𝑇 𝑗
𝑛 ̄
𝑣
)

≤
(

𝑇 𝑗
̄
𝑣
)

=
̄
𝑣.

s the truncated Bellman operator is a contraction,
= lim

(

𝑇 𝑗0
)

≤ 𝑣. This establishes our claim. □
𝑛 𝑗→∞ 𝑛 ̄
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Proof of Proposition 5.2. Given 𝑛 in N, by the Maximum Theorem
(along with the Measurable Selection Theorem in Brown and Purves,
1973, Corollary 1), there exists a policy 𝑔 in  such that

𝑈𝑛,𝑔 (𝑥) = 𝑣𝑛 (𝑥) ,

here 𝑈𝑛,𝑔 in  is the truncated utility, that is, the only bounded fixed
oint of 𝑇𝑛,𝑔 ∶  →  . We conclude that

𝑈𝑔 (𝑥) = lim
𝑗→∞

(

𝑇 𝑗
𝑔 0

)

(𝑥) ≥ lim
𝑗→∞

(

𝑇 𝑗
𝑛,𝑔0

)

(𝑥) = 𝑣𝑛 (𝑥) ,

which suffices to establish that sup𝑔∈ 𝑈𝑔 (𝑥) ≥ 𝑣∗ (𝑥). On the other side,
given any policy 𝑔 in ,
(

𝑇𝑔𝑣
∗) (𝑥) ≤ 𝑣∗ (𝑥) ,

which implies that 𝑈𝑔 (𝑥) ≤ 𝑣∗ (𝑥) because

𝑈𝑔 (𝑥) = lim
𝑗→∞

(

𝑇 𝑗
𝑔 0

)

(𝑥) ≤ lim
𝑗→∞

(

𝑇 𝑗
𝑔 𝑣

∗
)

(𝑥) ≤ 𝑣∗ (𝑥) .

This is sufficient to prove our claim. □

Proof of Proposition 5.3. To the end of establishing uniqueness,
suppose there exists another fixed point 𝑣∗∗ in  ∩ 

(

𝑓
)

. Arguing by
induction, Assumption 5.1 implies

0 ≤ 𝑣∗∗ − 𝑣∗ ≤ lim
𝑛→∞

𝐷𝑛 (𝑓
)

= 0,

where we have assumed that 0 ≤ 𝑣∗∗ − 𝑣∗ ≤ 𝑓 at no loss of generality.
To prove the other claims, notice that, by Assumption 5.1,

𝑣∗ = (𝑇 𝑛0) +
((

𝑇 𝑛𝑣∗
)

− (𝑇 𝑛0)
)

≤ (𝑇 𝑛0) +𝐷𝑛 (𝑣∗
)

≤ (𝑇 𝑛0) +𝐷𝑛 (𝑓
)

.

Therefore, for any sequence
(

𝑥𝑗
)

𝑗∈N in 𝑋 converging to 𝑥 in 𝑋,

lim sup
𝑗→∞

𝑣∗
(

𝑥𝑗
)

≤ lim sup
𝑗→∞

(𝑇 𝑛0)
(

𝑥𝑗
)

+ lim sup
𝑗→∞

𝐷𝑛 (𝑓
) (

𝑥𝑗
)

≤ (𝑇 𝑛0) (𝑥) +𝐷𝑛 (𝑓
)

(𝑥) .

Taking the limit with respect to 𝑛 in N, and exploiting Assumption 5.1,

lim sup
𝑗→∞

𝑣∗
(

𝑥𝑗
)

≤ lim
𝑛→∞

(𝑇 𝑛0) (𝑥) + lim
𝑛→∞

𝐷𝑛 (𝑓
)

(𝑥) = 𝑣∗ (𝑥) ,

thus proving that 𝑣∗ in  is upper semicontinuous. A policy exists
because of Brown and Purves (1973, Corollary 1). □

Proof of Lemma 5.1. Notice that, fixing 𝑛 in N, the map (𝑥, 𝑧) ↦

𝑊 (𝑥, 𝑧, 𝑣 ∨ (−𝑛)) is upper semicontinuous by Assumption 3.1, because
𝑣 ∨ (−𝑛) in  is a bounded and upper semicontinuous map. Taking the
limit with respect to 𝑛 in N, noticing that the sequence of maps is
decreasing by monotonicity and invoking Assumption 3.2 (Monotone
convergence), we prove our claim. □

Proof of Proposition 5.4. Obviously, (𝑇 𝑣∗) ≤
(

𝑇 𝑣𝑛
)

≤ 𝑣𝑛, thus yielding
(𝑇 𝑣∗) ≤ 𝑣∗. Fixing 𝑥 in 𝑋, notice that, for every 𝑛 in N, there exists 𝑧𝑛
in 𝐺 (𝑥) such that

𝑊𝑛
(

𝑥, 𝑧𝑛, 𝑣𝑛
)

= 𝑣𝑛 (𝑥) ≥ 𝑣∗ (𝑥) .

By compactness, we can assume that a subsequence
(

𝑧𝑛(𝑗)
)

𝑗∈N con-
verges to 𝑧 in 𝐺 (𝑥). For large enough 𝑗 in N, by monotonicity, we
have

𝑊𝑚
(

𝑥, 𝑧𝑛(𝑗), 𝑣𝑛
)

≥ 𝑣∗ (𝑥) ,

because 𝑣𝑛 ≥ 𝑣𝑛(𝑗) and 𝑊𝑚 ≥ 𝑊𝑛(𝑗) for fixed 𝑛 and 𝑚 in N when 𝑗 in N
is sufficiently large. By upper semicontinuity, this implies

𝑊𝑚
(

𝑥, 𝑧, 𝑣𝑛
)

≥ 𝑣∗ (𝑥) .

By monotone convergence (Assumption 3.2),

𝑊
(

𝑥, 𝑧, 𝑣∗
)

≥ 𝑣∗ 𝑥 .
8

𝑚 ( )
And, finally, by convergence of the sequence of truncated aggregators,

𝑊
(

𝑥, 𝑧, 𝑣∗
)

≥ 𝑣∗ (𝑥) ,

so proving that (𝑇 𝑣∗) ≥ 𝑣∗. Hence, the limit is a fixed point of the
untruncated Bellman operator.

We now argue that 𝑣∗ ≥ 𝑣̄, where 𝑣̄ in  is the greatest fixed point of
the untruncated Bellman operator, so in fact establishing coincidence.
Indeed, for any 𝑗 in N,
(

𝑇 𝑗
𝑛 0

)

≥
(

𝑇 𝑗
𝑛 𝑣̄

)

≥
(

𝑇 𝑗 𝑣̄
)

= 𝑣̄.

As the truncated Bellman operator is a contraction,
𝑣𝑛 = lim𝑗→∞

(

𝑇 𝑗
𝑛 0

)

≥ 𝑣̄. This establishes our claim.
Notice that 𝑣∗ in  is an upper semicontinuous map, being the limit

of a decreasing sequence of upper semicontinuous maps. To establish
the existence of an optimal policy, we prove that the map (𝑥, 𝑧) ↦
𝑊 (𝑥, 𝑧, 𝑣∗) is upper semicontinuous (and then apply Brown and Purves,
1973, Corollary 1). To this end, apply Lemma 5.1. □

Proof of Proposition 5.5. Given optimal policy 𝑔 in ,

𝑈𝑔 (𝑥) = lim
𝑗→∞

(

𝑇 𝑗
𝑔 0

)

(𝑥) ≥ lim
𝑗→∞

(

𝑇 𝑗
𝑔 𝑣

∗
)

(𝑥) = 𝑣∗ (𝑥) .

This shows that

sup
𝑔∈

𝑈𝑔 (𝑥) ≥ 𝑣∗ (𝑥) .

We now prove the opposite property.
Consider

𝑣̃ (𝑥) = sup
𝑔∈

𝑈𝑔 (𝑥) .

At no loss of generality, we can assume that 𝑣̃ is a upper semicontinuous
map in  (if not, just consider its upper semicontinuous envelope).
Observe that, for any policy 𝑔 in ,

(𝑇 𝑣̃) (𝑥) ≥
(

𝑇𝑔 𝑣̃
)

(𝑥) ≥
(

𝑇𝑔𝑈𝑔
)

(𝑥) = 𝑈𝑔 (𝑥) ,

thus implying

(𝑇 𝑣̃) (𝑥) ≥ sup
𝑔∈

𝑈𝑔 (𝑥) .

As (𝑇 𝑣̃) is upper semicontinuous by the Maximum Theorem, we con-
clude that (𝑇 𝑣̃) ≥ 𝑣̃. Therefore, the interval [𝑣̃, 0] ⊂  is invariant for
Bellman operator 𝑇 ∶  →  and, by Bloise et al. (2024, Proposition
4), the greatest fixed point 𝑣̄ in  fulfills 𝑣̄ ≥ 𝑣̃ ≥ 𝑣∗, contradicting
Proposition 5.4. □

A comparison with Rincón-Zapatero (2024). Consider

𝐷 (𝑓 ) = sup
𝑧∈𝐺(𝑥)∫

𝑓 (𝑦)𝛱 (𝑥, 𝑧) (𝑑𝑦) .

As in Rincón-Zapatero (2024, Assumption (B6)), assuming that 𝑓 in 
is measurable and that the series 𝑓 =

∑∞
𝑛=0 𝐷

𝑛 (𝑓 ) is convergent, this
gives the existence of a measurable 𝑓 in  such that 𝐷

(

𝑓
)

≤ 𝑓 . Indeed,
letting 𝑓𝑛 =

∑𝑛
𝑗=0 𝐷

𝑗 (𝑓 ), by sublinearity,

𝐷
(

𝑓𝑛
)

≤ 𝑓 +𝐷
(

𝑓𝑛
)

≤ 𝑓 +𝐷 (𝑓 ) +⋯ +𝐷𝑛+1 (𝑓 ) = 𝑓𝑛+1 ≤ 𝑓,

which yields 𝐷
(

𝑓
)

≤ 𝑓 . Furthermore, again by sublinearity,

𝑓𝑛 +𝐷𝑛+1 (𝑓𝑚
)

≤ 𝑓𝑛+𝑚+1 ≤ 𝑓,

which, taking the limit with respect to 𝑚 in N, yields

𝐷𝑛+1 (𝑓
)

≤ 𝑓 − 𝑓𝑛,

thus confirming that lim𝑛→∞ 𝐷𝑛 (𝑓
)

= 0 pointwisely, as required in
our Assumption 5.1. It should be noted that Rincón-Zapatero (2024,
Assumption (B6)) postulates a stronger form of convergence of the
series ∑∞

𝑛=0 𝐷
𝑛 (𝑓 ), namely, for every compact set 𝐾 ⊂ 𝑋,

∞
∑

𝑛=0
sup
𝑥∈𝐾

|𝐷𝑛 (𝑓 ) (𝑥)| is finite.

𝑛 ̄
As a consequence, if each 𝐷 (𝑓 ) in  is continuous, so is 𝑓 in  . □
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