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Assessing the feasibility of applying 
machine learning to diagnosing 
non‑effusive feline infectious 
peritonitis
Dawn Dunbar 1*, Simon A. Babayan 1, Sarah Krumrie 1, Hayley Haining 1, Margaret J. Hosie 2 & 
William Weir 1

Feline infectious peritonitis (FIP) is a severe feline coronavirus‑associated syndrome in cats, which is 
invariably fatal without anti‑viral treatment. In the majority of non‑effusive FIP cases encountered in 
practice, confirmatory diagnostic testing is not undertaken and reliance is given to the interpretation 
of valuable, but essentially non‑specific, clinical signs and laboratory markers. We hypothesised that 
it may be feasible to develop a machine learning (ML) approach which may be applied to the analysis 
of clinical data to aid in the diagnosis of disease. A dataset encompassing 1939 suspected FIP cases 
was scored for clinical suspicion of FIP on the basis of history, signalment, clinical signs and laboratory 
results, using published guidelines, comprising 683 FIP (35.2%), and 1256 non‑FIP (64.8%) cases. 
This dataset was used to train, validate and evaluate two diagnostic machine learning ensemble 
models. These models, which analysed signalment and laboratory data alone, allowed the accurate 
discrimination of FIP and non‑FIP cases in line with expert opinion. To evaluate whether these models 
may have value as a diagnostic tool, they were applied to a collection of 80 cases for which the FIP 
status had been confirmed (FIP: n = 58 (72.5%), non–FIP: n = 22 (27.5%)). Both ensemble models 
detected FIP with an accuracy of 97.5%, an area under the curve (AUC) of 0.969, sensitivity of 95.45% 
and specificity of 98.28%. This work demonstrates that, in principle, ML can be usefully applied to the 
diagnosis of non‑effusive FIP. Further work is required before ML may be deployed in the laboratory 
as a diagnostic tool, such as training models on datasets of confirmed cases and accounting for inter‑
laboratory variation. Nevertheless, these results illustrate the potential benefit of applying ML to 
standardising and accelerating the interpretation of clinical pathology data, thereby improving the 
diagnostic utility of existing laboratory tests.

Feline infectious peritonitis (FIP) is a viral disease of cats caused by feline coronavirus (FCoV). FIP is described 
pathologically as a severe immune-mediated vasculitis or perivasculitis that affects multiple organs and results in 
a disease from which cats do not naturally  recover1,2. The prevalence of FCoV infection in the feline population 
is high and FCoV is considered ubiquitous in environments where cats exist. In the UK, approximately 26% of 
cats are  seropositive3 and in multi-cat environments, such as shelters, this increases to between 50 and 100%4. 
FCoV primarily causes self-limiting, mild or asymptomatic enteric infection in cats and only in a minority of 
cases, around 5%, does FIP develop. Until recently, FIP was invariably fatal as no effective treatment was avail-
able to control the virus or the pathology it induces. Fortunately, effective therapeutics are now available and 
so swift and accurate diagnosis can improve animal survival and welfare, allowing treatment to be instigated at 
an early  stage5,6. While evidence of FCoV infection in feline patients is easily attained through both serological 
testing and direct pathogen  detection7, the utility of such tests to diagnose FIP is limited when they are used 
in isolation. In addition, the clinical presentation of FIP overlaps extensively with several other feline  diseases8 
making it a major diagnostic challenge.

FIP comprises a spectrum of clinical presentations, including ‘effusive’ and ‘non-effusive’  disease9,10, the 
former being characterised by the presence of an abdominal or pleural  effusion11. Currently, the only accepted 
method of confirming a diagnosis of non-effusive FIP is histopathological examination of diseased organs, 
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ideally accompanied by anti-FCoV immunohistochemistry (IHC), although this is usually only possible post-
mortem12,13. In practice, only a small proportion of cases are confirmed ante-mortem using IHC, in part because 
this involves invasive sampling of sick cats, and in part because no effective treatment options were previously 
available in the event of a confirmed diagnosis. For this reason, a myriad of ante-mortem tests have been devel-
oped over the decades, but each has its  limitations10,14.

For the majority of cases, the de facto methodology for diagnosing FIP relies on the use of a complex decision-
making system requiring a panoply of laboratory test results together with expert clinical interpretation. The 
Advisory Board for Cat Diseases (ABCD) has published a series of recommended diagnostic approaches for 
FIP, which illustrates the complexities surrounding the interpretation of clinical signs and the diagnostic tests 
 utilised15. On the basis of history, signalment, clinical signs and laboratory tests, a high level of suspicion of FIP 
can be determined. However, these guidelines are complex and rely on the clinician to integrate evidence from 
dozens of clinical parameters, each of which can at best only provide semi-quantitative evidence of infection. For 
example, fever is classed as likely to be present, while icterus is moderately likely to be present and pallor is only 
slightly likely to be present. Equally, a history of fighting or being feral makes it slightly and moderately more 
unlikely for the cat to have FIP, respectively. The variable nature of FIP presentation, which is influenced by the 
stage of progression, means that a single, authoritative decision-making tree cannot be constructed, making FIP 
diagnosis particularly challenging for the primary care clinician.

The concept of using machine learning (ML) as a diagnostic tool has existed for several  decades15–19. We 
hypothesised that using ML algorithms to interpret blood chemistry, haematology and serology data could aid 
clinicians in the ante-mortem diagnosis of FIP. ML has recently been employed for the diagnosis of COVID-
1920,21 and has also been used in the risk assessment, diagnosis and prognosis of diseases including Alzhei-
mer’s22, diabetes  comorbidities23,  cancer24,25 and various infectious  diseases26,27. More recently, ML has been 
employed within veterinary medicine in areas such as diagnostic image  analysis28,29, prediction of chronic kidney 
 disease30, the early detection of  leptospirosis31 and predicting the risk of bovine viral diarrhoea  outbreaks32. 
Indeed Pfannschmidt et al. used FIP as a case study to illustrate the application of some principles of ML to 
disease  diagnosis33.

Here we utilise an extensive, curated database of veterinary clinical data and clinical pathology laboratory 
results and assess their utility to create accurate and reliable informatic-based models for diagnostic classification 
of suspect FIP cases. To determine whether, in principle, an ML model could be developed as a diagnostic tool, 
we elected to utilise a dataset consisting of nearly two thousand cases which has been interpreted in accordance 
with accepted published clinical  guidelines15. Using this methodology, cases are not defined in terms of particular 
threshold values or the definitive presence or absence of specific markers. They are instead defined on the bal-
ance of evidence, classifying cases on the basis of history, clinical signs, signalment and laboratory measures. As 
these classifications were, by definition, reliant on subjective expert opinion, it was necessary to evaluate model 
performance on a set of eighty cases on which a definitive diagnosis had been reached. The reliance on expert 
opinion versus a gold standard for model training is a limitation of this study, a further limitation is the use of 
markers both for manual classification and model training; both are discussed herein. Despite these limitations, 
we present this work as proof-of-principle that ML has value in the analysis of FIP laboratory data and we  report 
the development and performance of such models.

Methods
Dataset and data preparation
Cases submitted to the Veterinary Diagnostic Services (VDS) laboratory between 2001 and 2021 with a suspicion 
of non-effusive FIP were considered for enrolment in this study. A set of laboratory parameters and case metadata 
provided by submitting clinicians was abstracted from the VDS Laboratory Information Management System 
(LIMS). The laboratory data included the following variables measured on blood: anti-FCoV antibody titre, 
alpha-1-glycoprotein (AGP), total protein, albumin, globulin, albumin:globulin ratio, haemoglobin, red blood 
cell count, haematocrit, mean corpuscular volume, mean cell haemoglobin, mean cell haemoglobin concentra-
tion, total white cell count, band neutrophils, neutrophils, lymphocytes, monocytes, eosinophils, basophils and 
normoblasts. Demographic data including age, sex and pedigree and clinical notes, denoted as “reason” on the 
LIMS, was also collected. Retrospective diagnostic disease classifications, based on expert clinical interpreta-
tions, were also collected from the LIMS system alongside the laboratory data. A minimum of three clinicians 
were involved in the decision-making process, including at least one clinical pathologist, and classifications 
were based on consensus opinion. The personnel providing the interpretations differed across the years. These 
interpretations were used as ‘ground truth’ for classifying whether samples represented FIP cases or not in the 
training, validation and expert opinion test datasets.

Cases in which expert clinical opinion (based on the signalment, clinical history and laboratory results), 
following the ABCD FIP diagnostic  guidelines15 current at the time of interpretation, indicated an extremely 
high suspicion of non-effusive FIP were included in the analysis, as were cases where non-effusive FIP was not 
considered a differential diagnosis. The cases included in the study were ill cats with a wide range of clinical 
presentations, where FIP was considered a differential diagnosis by the referring clinician, and the FIP profile 
was performed as part of a diagnostic workup. Cases were designated as “high suspicion of FIP” where sufficient 
criteria within the ABCD guidelines were met to warrant this classification, based on a combination of signal-
ment, history, clinical signs and laboratory data. Similarly, a set of cases was identified where there was a strong 
suspicion that the cat did not have FIP. The creation of strict case definitions based on a defined set of clinical 
and laboratory features was avoided as this is not achievable in line with the balanced interpretation of ABCD 
 guidelines15 and, importantly, it prevented the creation of artefactual models which are overfitted to subsets of 
parameters within the case defining criteria. Cases in which the interpretation was equivocal were excluded; 
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these included cases where FIP was still considered a differential, but there was insufficient evidence to strongly 
support or refute an FIP diagnosis. Similarly, cases with incomplete records, due to only a subset of tests being 
performed, were excluded as some ML algorithms are unable to cope with missing data. This may have been 
due to insufficient material being submitted or the incorrect sample type being provided. Only data from cases 
representing initial FIP diagnostic submissions were included; re-test and follow-up test data was excluded, as 
were suspect cases where treatment with anti-virals, namely GS-441524, Remdesivir or equivalents, had already 
commenced. Cases where treatment had commenced with palliative drugs, such as steroidal or non-steroidal 
anti-inflammatories, or with antibiotics were not excluded from the study.

The dataset, comprising cases with expert clinical interpretation, was randomly partitioned into three smaller 
datasets for modelling purposes namely “training”, “validation” and the “expert opinion test set”, which com-
prised 40%, 40% and 20% of the total records, respectively. An additional set of 80 reference cases with histology 
and/or IHC and/or PCR or an alternative non-FIP diagnosis were used as a “gold standard” dataset to evaluate 
the effectiveness of the models. A summary of the signalment and laboratory variables included in the model 
development and evaluation datasets is detailed in Table 1.

Feature selection
Statistical analysis of all variables, comprising correlation and covariance, was undertaken to establish redun-
dancy across each variable within the dataset. In addition, expert guidance was sought from clinical patholo-
gists regarding potentially redundant variables from a clinical perspective. Together, this allowed the number 
of features used in the modelling exercise to be reduced. Model-based feature importance was also examined 
throughout the modelling process, during both the training and validation stages. Features were assessed by 
model-based feature importance using the base learner models: Logistic Regression (LR), Naïve Bayes (NB), 
Support Vector Machine (SVM), randomForest (rF) and Extreme Gradient Boosting (XGBoost). Where the 
models allowed, Gini index was assessed for feature importance. For the Naïve Bayes and SVM models,  these 

Table 1.  Description of variables used in the training, validation, expert opinion test datasets and definitive 
diagnosis cases. Datasets are stratified by classification group (non-FIP or FIP). The method of testing, 
mean or median, range of variables and the reference interval as appropriate for variables are detailed for 
n = 1939 expert opinion cases, n = 80 definitive diagnosis cases. IFAT immunofluorescent assay, RID radial 
immunodiffusion, ELISA enzyme linked immunosorbent assay.

Variable (unit) Method

Mean/median (*) or number (range or %)

Reference 
interval

Expert opinion (for training & 
validation) Expert opinion (for evaluation) Gold standard (for evaluation)

Non-FIP group 
(n = 1013)

FIP group 
(n = 538)

Non-FIP group 
(n = 243)

FIP group 
(n = 145)

Non-FIP group 
(n = 58)

FIP group 
(n = 22)

Serology

 Anti-FCoV 
antibodies

Immunofluores-
cent antibody test 
(IFAT)

0* (0–1920) 1920* (640–1920) 0* (0–1920) 1920* (640–1920) 0* (0–1920) 1920* (1280–
1920)

Haematology

 Haemoglobin 
(g/dL)

Siemens Advia 
120 haematology 
system

10.75 (1.4–22) 7.805 (2.2–14.2) 10.62 (3.70–17.2) 7.614 (3.3–12.9) 10.4 02 (2.63–
16.1) 7.905 (4.40–14.5) 10–15.0

 Neutrophils 
(×  109 cells/L) 9.072 (0.016–73.6) 11.615 (0.510–

47.301) 9.309 (0.043–49.1) 12.117 (0.761–
39.565)

8.296 (1.571–
33.524)

12.301 (2.598–
27.747 2.5–12.5

 Lymphocytes 
(×  109 cells/L)

2.354 (0.055–
22.099) 1.284 (0–6.883) 2.171 (0.038–

20.299) 1.315 (0–6.092) 3.158 (0.122–
50.828) 1.944 (0–6.013) 1.5–7

 Monocytes (×  109 
cells/L) 0.404 (0–6.16) 0.388 (0–3.413) 0.412 (0–2.66) 0.425 (0–2.64) 0.385 (0–2.576) 0.3796 (0.041–

1.088) 0–0.85

 Eosinophils (×  109 
cells/L) 0.404 (0–8.235) 0.12 (0–2.391) 0.413 (0–6.591) 0.11 (0–1.977) 0.458 (0–5.643) 0.182 (0–1.201) 0–1.5

Biochemistry

 α-1-acid glyco-
protein (mg/mL) RID/ELISA 1213 (300–3601) 2394 (340–3601) 1242 (300–3601) 2356 (780–3601) 1087 (300–3380) 2529 (720–3601) 0–500

 Albumin (g/L) Siemens dimen-
sion Xpand Plus 
(biochemistry 
analyser)

29.72 (12–45) 21.99 (13–36) 29.53 (15.0–46.0) 22.6 (9.0–39.0) 29.28 (17.0–37.0) 23.5 (18–35) 26-36

 A:G ratio 0.712 (0.16–3.21) 0.307 (0.13–0.7) 0.709 (0.1–1.57) 0.309 (0.17–0.63) 0.693 (0.29–1.12) 0.371 (0.19–0.9)

Demographic

 Age (years) 4* (0–20) 1* (0–14) 4* (0–16) 1* (0–13) 3* (0–13) 0* (0–9)

 Sex
n = 579 (57.2%) 
male, n = 434 
(42.8%) female

n = 366 (68%) 
male, n = 172 
(32%) female

n = 147 (60.5%) 
male, n = 96 
(39.5%) female

n = 93 (64.1%) 
male, n = 52 
(35.9%) female

n = 31 (53.5%) 
male, n = 27 
(46.5%) female

n = 15 (68.1%) 
male, n = 7 
(31.9%) female

 Pedigree
n = 248 (24.5%) 
pedigree, n = 765 
(75.5%) non-
pedigree

n = 255 (47.4%) 
pedigree, n = 283 
(52.6%) non-
pedigree

n = 66 (27.2%) 
pedigree, n = 177 
(72.8%) non-
pedigree

n = 72 (49.7%) 
pedigree, n = 73 
(50.3%) non-
pedigree

n = 20 (34.5%) 
pedigree, n = 38 
(65.5%) non-
pedigree

n = 16 (72.7%) 
pedigree, n = 6 
(27.3%) non-
pedigree
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model types are not compatible with calculating Gini index, therefore model accuracy was instead assessed using 
iterative removal of features.

Model selection and building
A range of algorithms was selected to incorporate into the models, each exhibiting a different underlying math-
ematical or statistical methodology. This approach sought to test our hypothesis in a comprehensive manner, 
without bias towards any particular algorithm. Five types of classification algorithm were implemented, namely 
Logistic Regression, Naïve Bayes, Support Vector Machine, randomForest and Extreme Gradient Boosting.

Binary classification models were trained using predictor variables listed in Table 1 and these were either 
numerical variables or dummy binary variables (numeric type) coded “0” or “1” (‘one-hot encoding’) for a specific 
group. The response variables for the models were also coded as binary variables (numeric type), “0” for cases 
classified as not-FIP and “1” for cases classified as FIP. All variables, both predictor and response, were coded as 
numeric data as some algorithms required a numerical matrix as the input data.

Models were built in the statistical programming language R (version 4.1.2)34. The caret package (version 
6.0–85)35 was used to access the data pre-processing and algorithm functions. Figure 1 illustrates the workflow 
from data collection through the process of model building and evaluation to final predictions.

Figure 1.  Data handling, processing and model building steps. CV cross-validation.
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Two predictive binary classification ensemble models were built employing the algorithms listed previously. 
The training dataset used to train all models, base learners and the logistic regression models was pre-processed 
using "Caret” pre-processing functions. Data was centred and scaled, and the “downSample” function was used 
to randomly generate an input dataset where the frequency of both outcome classes was the same as the minor-
ity class (FIP cases in this instance). Data used as input for validation and evaluation were similarly centred and 
scaled through the model function, however there was no requirement to “down-sample” these datasets.

The first approach, the XGBoost ensemble, used one hundred XGBoost base learner models, the predictions 
of which were then aggregated into an input array for a final stacked randomForest predictive model. The second 
mixed ensemble comprised one hundred base learner models in total, consisting of 25 randomForest, 25 Naïve 
Bayes, 25 logistic regression and 25 SVM models. As with XGBoost ensemble, the output predictions of the base 
learners were aggregated into an array and used as input for a final randomForest ensemble model. The function 
“caretStack” (from caretEnsemble) was used to build each ensemble random forest model (meta-model) and 
used ten-fold cross-validation, repeated ten times; the number of randomly drawn candidate variables at each 
split was forced to 40 (the “mtry” hyperparameter of the random forest algorithm) to ensure that a representative 
selection of the base learner predictions was evaluated.

Each base learner was trained using ten-fold cross-validation, repeated ten times. The “caretList” function 
(from caretEnsemble) was used to build the base learners and a grid of optimal tuning parameters was selected 
for each base learner model using the validation dataset. The model building function automatically selected the 
best tuning parameters from the parameter grid and consequently selected the optimal model at each iteration; 
selection was based on accuracy and kappa of the cross-validation hold-out data. Tuning parameters varied 
for each base learner. Optimised tuning grids are provided in Supplementary Table S1. An additional mixed 
ensemble model was built as above but without the use of FCoV titre or AGP as predictive variables; all other 
parameters remained the same.

Basic logistic regression models
We built two standalone basic logistic regression models as comparators to the more complex ensemble models. 
The logistic regression models, similar to those included in our ensemble models, did not have any hyperpa-
rameter tuning performed. One was trained with the same set of predictors as the ensembles and the other with 
FCoV serology as a single predictor (with ten-fold cross-validation used in each).

Model evaluation and statistical analysis
Ten-fold cross-validation was undertaken with nine folds being used for training and the remaining fold used 
to evaluate accuracy during training. Additional evaluation of model performance was undertaken using three 
subsequent datasets. The validation data were used to fine tune the base learners and evaluate tuning parameters, 
and therefore these data were not used to evaluate the final models to avoid information leakage. The final test-
ing was performed using the “expert opinion” test dataset (a partition of expert interpreted cases) and a group 
of reference cases (“gold standard”) where either pathology, histopathology, IHC, PCR or a combination thereof 
was used to determine a definitive diagnosis of FIP, or an alternative diagnosis was determined.

Models were assessed as though they were a new diagnostic tool; confusion matrices were generated using 
the model predictions and the expert predicted outcome was used as the reference. Model performance metrics 
including accuracy, sensitivity, specificity and inter-rater agreement (Cohens Kappa, Κ) were used to compare 
each model’s predictions with the actual outcome. The area under the receiver operator curve (AUC) was also 
calculated. The basic logistic regression models were also evaluated in this way. A corrected McNemar  test36,37 
was used to assess statistical significance of differences between sensitivity and specificity of different models.

All statistical analyses were performed using the statistical programming language “R” (version 4.1.2)34 and 
the packages “Base R”, “stats” (version 4.1.2) and “pROC” (version 1.18.0)38. “Tidyverse” (version 1.3.1) was used 
for data preparation, cleaning and graphical output of results. “Caret (version 6.0.90)”35 and “caretEnsemble” 
(version 2.0.1) were used to build models, to predict from trained models and to produce confusion matrices. 
“Caret” is a wrapper for several other packages and has several package dependencies from which the algo-
rithms themselves originate; the dependencies utilised for the algorithms are listed in Supplementary Table S1. 
Additional packages used throughout are listed in Supplementary Fig. S1. An alpha level (P-value) < 0.05 was 
considered statistically significant in all analyses. The R Studio IDE (version 2021.09.1) was used to facilitate 
the use of the R language.

Ethical approval
This study was authorised by the School of Veterinary Medicine Ethics Committee, University of Glasgow, 
application number EA46/21.

Results
Case summary
A total of 2019 eligible cases was used in this study, representing cases where case history, clinical signs, signal-
ment, laboratory data and clinical interpretation was all available. A collection of 1939 (96%) cases where clinical 
interpretation was used as a proxy for “ground truth” was used in the training and development stages; in 683 
(35%) of cases there was strong evidence to support a diagnosis of FIP while for the remaining 1256 (65%) of 
cases, the evidence did not support a diagnosis of FIP. A total of 775 (40%) cases was randomly “down-sampled” 
during pre-processing in each base learner model build to produce a balanced dataset with which to train the 
models, with an even split of positive and negative cases. This was distinct from the validation dataset which 
consisted of 776 (40%) cases with a bias towards non-FIP cases n = 510 (65.7%), and an expert opinion testing 
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dataset n = 388 (20%) which contained a similar proportion of non-FIP cases n = 243 (62.6%). A set of 80 gold 
standard cases, where either FIP had been confirmed or an alternate diagnosis was reached, was used for final 
evaluation. A summary of the variables used in the analysis, stratified by dataset and disease classification group, 
is displayed in Table 1. This is accompanied by Fig. 2 which shows the distributions of the data points, again 
stratified by dataset and classification group. A summary of the cat population analysed is provided in Table 2.

Exploratory analysis
The clinical laboratory dataset was initially subject to principal component analysis; the first two principal 
components (PC) are illustrated in Fig. 3 and together PC1 and PC2 explain 45% of the variation in the dataset. 
Cases with high suspicion of non-effusive FIP clustered together in one group and non-FIP cases clustered in a 
second group. As anticipated, these clusters showed some degree of overlap.

Distributions of datapoints across outcome classification groups (i.e. ‘FIP’ and ‘Non-FIP’) and data parti-
tions are shown in Fig. 2, illustrating that each outcome classification is associated with a representative dataset.

Feature importance
All variables are listed above in the data preparation section. These were reduced down to the model variables 
by means of feature selection, which is described as follows. Highly correlated variables and those that showed 
covariance were removed from the dataset. Correlation of remaining variables is illustrated in Supplementary 
Fig. S2. The initial data contained three measures that could each have been treated as a proxy for anaemia; only 
haemoglobin measurement was retained, as it was least likely to be affected by artefactual changes during transit 
to the laboratory. Some white blood cell (WBC)  counts (i.e. band neutrophils, basophils) and normoblasts were 
removed as there were insufficient cases with levels above zero or with values recorded. Haematology experts 
agreed that these were not informative variables for FIP diagnosis. The overall WBC count was removed as the 
absolute counts for neutrophils, lymphocytes, monocytes and eosinophils were considered more informative. 
Albumin and A:G ratio were retained as they were deemed more informative, while total protein and globulins 
were removed as the latter are derivatives of these measures, and correlate highly with albumin and A:G ratio. 

Figure 2.  Density plots of the variables included in the models. Expert opinion cases (greens and blues) 
stratified by outcome classification and data partition and gold standard cases (purples) stratified by outcome 
classification.
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“Reason” contains the clinical history or notes provided by a submitting clinician; this was not utilised in this 
modelling exercise as the data was not encoded in a state that was readily usable. Supplementary Table S2 shows 
a full list of the variables removed through the feature selection process and the rationale in each case. During 
evaluation of model-based feature importance, we observed that variable importance varied greatly between base 
learner models. All features that showed importance to any model were retained so as not to disadvantage any 
other models. A selection of variable importance plots is shown in Fig. 4; these show the differences in variable 
importance between base learners. No further variables were removed during model-based feature selection.

Model performance
XGBoost ensemble model
Base learners. The base learner XGBoost models showed an in-model mean resample accuracy of 99.35% 
(range 98.77–99.84%) as measured on the cross-validation hold-out fold (Fig. 5A). The validation data was used 
to tune the base models and select optimal tuning parameters (see Supplementary Table S1 for final model tun-
ing parameters).

Meta-models. A mean training resample accuracy of 100% was achieved on the random forest ensemble model. 
The model accuracy on the validation data was 99.36% (95% CI 98.5–99.79%). Overall accuracy measures are 
illustrated in Fig. 5B and additional measures are presented in Table 3. Using the expert opinion test data, the 
models had an accuracy of 100.0% (95% CI 99.05–100.0%) as measured by a confusion matrix (Fig. 5C) which 
comprised model predictions and pre-classified outcome, and an AUC of 1 (95% CI 1.0–1.0). When applied to 
the gold standard cases, the ensemble models demonstrated an accuracy of 97.5% (95% CI 91.26–99.7%) and 
an AUC of 0.969 (95% CI 0.921–1.0), with a single false positive and a single false negative prediction (Fig. 5C).

Mixed ensemble model
Base learners. The base learners for the mixed ensemble models were individual models built using logistic 
regression, support vector machine, random forest and Naïve Bayes algorithms. The models showed an in-model 
resample accuracy of 99.05% (range 97.97–99.81%) as measured on the cross-validation hold-out fold overall. 
The individual model accuracy breakdowns are shown in Fig. 5A. The validation data was used to evaluate the 
final base models and associated tuning parameters (see Supplementary Table S1 for parameter lists).

Meta-models. Again, a mean training resample accuracy of 100% was achieved on the random forest ensem-
ble model. The validation data provided an accuracy level of 99.48% (95% CI 98.69–99.86%). Overall accuracy 
measures are illustrated in Fig. 5b and additional measures are presented in Table 3. When applied to the expert 
opinion dataset the models showed an accuracy of 100.0% (95% CI 99.05–100.0%) as measured by a confusion 
matrix (Fig. 5c) and an AUC of 1 (95% CI 1.0–1.0). The gold standard cases, when assessed using the mixed 
ensemble model, had an accuracy of 97.5% (95% CI 91.26–99.7%) and an AUC of 0.969 (95% CI 0.921–1.0), 
again illustrated in (Fig. 5c) where there was one false positive and one false negative prediction. Both ensemble 
models were compared across evaluation datasets using the McNemar test and there was no statistical difference 
in the sensitivity and specificity between compared models (Supplementary Table S3).

Table 2.  Summary of population characteristics for all cases.

Characteristic

No of patients in cohort (%)

Interpreted cases (n = 1939) Confirmed cases (n-80)

Non-FIP group (n = 1256) FIP group (n = 683) Non-FIP group (n = 58) FIP group (n = 22)

Sex

Male
Entire 237 (18.9) 211 (30.9) 12 (20.7) 6 (27.3)

Neutered 489 (38.9) 248 (36.3) 19 (32.8) 9 (40.9)

Female
Entire 218 (17.4) 129 (18.9) 8 (13.8) 5 (22.7)

Neutered 312 (24.8) 95 (13.9) 19 (32.8) 2 (9.1)

Age (years)

0 to 1 295 (23.5) 329 (48.2) 1 (17.2) 14 (63.6)

1 to 2 249 (19.8) 184 (26.9) 17 (29.3) 7 (31.8)

3 to 5 260 (20.7) 96 (14.1) 15 (25.9) –

5 to 10 304 (24.2) 59 (8.6) 11 (19.0) 1 (4.5)

10 to 20 148 (11.8) 15 (2.2) 5 (8.6) –

Breed

Not specified 28 (2.2) 16 (2.3) – –

DSH/DLH/X 913 (72.7) 340 (49.8) 38 (65.5) 6 (27.3)

Pedigree

315 (25.1) 327 (47.9) 20 (34.5) 16 (72.7)

Siamese (49), Bengal (41), Brit-
ish Shorthair (40), Maine Coon 
(32), Persian Longhair (26), Bir-
man (23), Ragdoll (19), Burmese 
(14), Oriental (8), Norwegian 
Forest Cat (8), British Blue (6), 
Other pedigree n ≤ 5 (49)

Birman (62), British Shorthair 
(51), Ragdoll (38), Bengal (36), 
Maine Coon (22), Siamese (16), 
Burmese (16), Persian Longhair 
(13), British Blue (12), Oriental 
(8), Devon Rex (6), Norwegian 
Forest Cat (6), Other pedigree 
n ≤ 5 (41)

Bengal (5), Siamese (4), Oriental 
(2), Persian Longhair (1), Maine 
Coon (1), Ragdoll (1), Cornish 
Rex (1), British Blue (1), Norwe-
gian Forest Cat (1), Burmese (1), 
Siberian (1), Egyptian (1)

Bengal (4), Ragdoll (3), Burmese 
(2), Persian Longhair (1), Maine 
Coon (1), Devon Rex (1), Rus-
sian Blue (1), British Shorthair 
(1), Siamese Seal Point (1), 
Birman (1)
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Mixed ensemble model without FCoV or AGP
Base learners. The base learners for the mixed ensemble models were individual models built using logistic 
regression, support vector machine, random forest and Naïve Bayes algorithms. The models showed an in-model 
resample accuracy of 99.06% (range 97.98–99.81%) as measured on the cross-validation hold-out fold overall. 
The validation data was used to evaluate the final base models and associated tuning parameters (see Supple-
mentary Table S1 for parameter lists).

Figure 3.  Principal component analysis using all available variables. The labelled vectors illustrate the direction 
and force of effect (length of the vector) that the original variables have on PC1 and PC2.
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Meta-models. A mean training resample accuracy of 92.02% (range 90.07–94.12%) was achieved on the ran-
dom forest ensemble model. The validation data provided an accuracy level of 92.91% (95% CI 90.87–94.62%). 
Supplementary Table S4 displays all results for this model. The expert opinion test data produced an accuracy of 
92.27% (95% CI 89.15–94.72%) as measured by a confusion matrix and an AUC of 0.931 (95% CI 0.907–0.956). 
The gold standard cases, when assessed using the mixed ensemble model minus FCoV and AGP, had an accu-
racy of 92.5% (95% CI 84.39–97.2%) and an AUC of 0.920 (95% CI 0.850–0.990), and there were four false 
positive and two false negative predictions. When compared to the mixed ensemble and the XGBoost ensemble 
with all predictors, there was no statistical difference in the sensitivity and specificity when applied to the gold 
standard data. However, the ‘no FCoV, no AGP’ model was significantly less accurate than both ‘all variable’ 
ensembles (p-value < 0.05 on McNemar test) when assessed on both the validation and the expert opinion data-
sets (Supplementary Table S3).

Basic logistic regression models
The logistic regression model was the most basic base learner. With no tuning parameters, this model with the 
full set of predictors had an accuracy of 95% (95% CI 87.69–98.62%) and an AUC of 0.951 (95% CI 0.898–1.0); 

Figure 4.  Selected examples of variable importance as assessed by Gini index within algorithms and model 
builds. These illustrate the difference in variable importance between algorithms and within the ensemble 
models. GI Gini index.
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Figure 5.  Accuracy measures of all models. (A) Mean resample accuracy of the base learner models from 
both ensemble models, XGB n = 100, n = 25 for the other base learners. (B) Model accuracy assessed using gold 
standard case data and expert opinion test data with 95% CI. (C) Confusion matrices for the gold standard case 
data and expert opinion test data. NPV negative predictive value.
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the model misclassified four out of 80 cases. The model with FCoV as a single predictor had an accuracy of 
97.5% (95% CI 91.26–99.7%) and an AUC of 0.983 (95% CI 0.959–1.0), misclassifying two out of 80 cases. The 
full results of the basic logistic regression models are reported in Supplementary Table S4.

Both LR models were compared to both ensemble models using the McNemar test and there was no statistical 
difference in the sensitivity and specificity (Supplementary Table S3).

Minimum panel of variables
Whilst evaluating the data for modelling, we established a minimum panel of reliable variables which may be 
used for standard FIP diagnostic inference. These variables include measurements and signalment data which 
are highly informative, least likely to be affected by artefactual changes and which do not correlate or co-vary 
with other measures. These variables are listed in Table 1.

Discussion
This study evaluated whether ML models could be trained on a retrospective set of cases where FIP status could 
be inferred from the interpretation of history, clinical signs, signalment and laboratory data, in line with consen-
sus  guidelines15. Our findings revealed that ML has the potential to accurately predict disease status in agreement 
with expert clinical opinion. Based on signalment and laboratory data alone, unsupervised exploratory analysis 
suggested there were nuanced patterns within this dataset, which would enable discrimination between samples 
from FIP and non-FIP groups. The two-dimensional PCA shown in Fig. 3 illustrates the first two PCs, which 
demonstrate that FIP and non-FIP cases fall into two discernible clusters. Subsequently, we were able to develop 
highly accurate predictive models using a variety of methods. The accuracy and generalisability of these models 
are promising; values for both sensitivity and specificity greater than 95% on new and unseen data constitute 
excellent test performance. While these results are favourable and illustrate the feasibility and potential for using 
machine learning in FIP diagnosis, it is important to appreciate the limitations of the present study and the need 
for further work before a deployable model is ready. The accuracy metrics from classifying test datasets based on 
clinical opinion are very likely over-estimations of the true ‘real world’ accuracies of the models. Firstly, despite 
there being no data leakage through the data processing and model building process, the predictive models use 
a subset of the data used during clinical case classification, and so an element of over-fitting of the models is 
likely. Secondly, the ‘ground truth’ for the current models is based on expert clinical opinion using consensus 
diagnostic  guidelines15, rather than a gold standard case dataset. Therefore, any systematic biases in clinician’s 
opinion resulting in incorrectly inferring the true FIP status of a case could be carried through to the models. 
For this reason, should they become available, datasets with hundreds of cases diagnosed by gold standard could 
be used to refine these models. Encouragingly, with the advent of effective anti-viral therapeutics, FIP is consid-
ered a treatable condition, and for this reason one might predict that the proportion of suspected cases having 
confirmatory testing undertaken will only rise. While this raises hope that an effective ML tool could eventually 
be developed based on the diagnostic test results from a single laboratory, to develop a generalised method that 
can be applied to results from different laboratories would remain a major challenge. This would involve either 
standardising methodologies to a common analytical framework or developing models that could take account 
of data from different haematology/biochemistry analysers and serological methods. The most likely scenario is, 
perhaps, that a range of laboratory-specific models is created that are trained on datasets generated on equipment 
in-house. Despite further work being required before a deployable ML model is created, it is encouraging to note 
the excellent performance of the models on the eighty gold standard cases in the present study; their accuracy 
of 97.5% and AUC of 0.969 demonstrates they have genuine potential as a predictive tool.

In addition to developing preliminary predictive models, we have identified a minimum panel of measures 
and factors that may form the basis of future models (Table 1). The vectors illustrated on the PCA reinforce the 
utility of these features to discriminate between disease classification groups and the high level of performance 
of the models on the ‘gold standard’ dataset is testament to their diagnostic potential. We also looked at feature 

Table 3.  Model accuracies for each ensemble model with each dataset. Accuracy, sensitivity, specificity, kappa 
and AUC of each model are detailed. *Both ensembles had a P-value < 0.05 for the accuracy measure on the 
confirmed cases data. This P-value is for the significance of the accuracy compared to the no information rate 
(NIR), i.e. the model predicting the outcomes by chance.

Evaluation 
dataset Model

Base learner 
training resample 
accuracy (%) 
(range)

Validation 
accuracy (%) 
(95% CI)

Accuracy (%) 
(95% CI)

Sensitivity (%) 
(95% CI)

Specificity (%) 
(95% CI) Cohens kappa (κ) AUC (95% CI)

Training & valida-
tion

XGBoost ensem-
ble

99.35 (98.77–
99.84)

99.36 (98.5- 
99.79)* – 99.62 (98–100) 99.22 (98–100) 98.57 0.994 (0.989–1.0)

Mixed ensemble 99.05 (97.97–
99.81)

99.48 (98.69–
99.86)* – 99.62 (98–100) 99.41 (98–100) 98.86 0.995 (0.990–1.0)

Expert opinion 
test set

XGBoost ensem-
ble – – 100 (99.05–100)* 100 (98–100) 100 (97–100) 100 1.0 (1.0–1.0)

Mixed ensemble – – 100 (99.05–100)* 100 (98–100) 100 (97–100) 100 1.0 (1.0–1.0)

Gold standard 
cases

XGBoost ensem-
ble – – 97.5 (91.26–99.7)* 95.45 (77–100) 98.28 (91–100) 93.73 0.969 (0.921–1.0)

Mixed ensemble – – 97.5 (91.26–99.7)* 95.45 (77–100) 98.28 (91–100) 93.73 0.969 (0.921–1.0)
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importance at various stages of model building; Fig. 4 illustrates the feature importance of a selection of base 
learner models, generating further evidence that the features included in our modelling are useful in disease clas-
sification. Unfortunately, these values are not easily computed for Support Vector Machine or Naïve Bayes models, 
therefore early in the developmental stages we iteratively removed these features and assessed the impact on the 
predictions. Ultimately, due to the diversity of the algorithms employed and the range of features used across 
the model iterations, we opted to retain all the features listed in Table 1, as they contributed to at least some of 
the models. The initial data contained three measures that could each have been treated as a proxy for anaemia; 
only haemoglobin measurement was retained, as it was least likely to be affected by artefactual changes during 
transit to the laboratory. We thoroughly examined the other measures prior to exclusion, and there was found to 
be no detriment to disease prediction upon their removal. Our analysis indicated that high FCoV titres and high 
levels of AGP combined with low A:G ratio and reduced haemoglobin levels were major markers associated with 
FIP, in line with the ABCD  guidelines15. FCoV infection is a prerequisite to FIP, AGP is a non-specific marker 
for inflammation, A:G ratio indicates hyperglobulinaemia and lower haemoglobin corresponds with anaemia, 
and all are consistently recognised as being important but non-specific clinical markers of FIP. Also significant, 
albeit to a lesser extent, was the aberration in white blood cell composition, which contributed informatively to 
the discrimination of FIP from non-FIP disease. Signalment factors (age, sex and pedigree) were also important, 
but to a lesser extent than the haematological and biochemical changes.

In addition to the ensemble models, we evaluated two basic logistic regression models. These both displayed 
a high degree of accuracy, and it could be argued that these possessed some potential for development as pre-
dictive models for FIP diagnosis. It could be inferred from these LR models that FCoV titre alone is a valuable 
biomarker with respect to FIP disease-status prediction when used to assess a cohort of cats such as the one 
used for this study. The LR models built on FCoV titre alone generated results comparable to our ML models 
illustrating that in this cohort of FIP suspected cats FCoV titre has a high positive predictive value (PPV) and 
is a strong predictor for FIP. However, from clinical studies, it is already well-recognised in the veterinary diag-
nostics field that single markers, such as FCoV seropositivity, alone should not be used as a predictor for  FIP15. 
Though this marker performs well in this specific cohort, reliance upon it would not generalise to query cases 
where diagnosis is more complex and where major disease markers such as antibody titre and AGP level are 
equivocal. Consequently, we decided to investigate whether the other haematological and biochemical markers 
alone possessed a discernible diagnostic signal by proceeding to build mixed ensemble models excluding these 
two markers. Encouragingly, the predictive capacity of these ensemble models remained high, demonstrating 
the detection of nuanced informative patterns in the haematology and biochemistry results alone.

ML is inherently flexible to variations in the data, where more traditional statistical models such as logistic 
regression, are static and far less flexible. To overcome this limitation, a focus of this study was building ensemble 
models, which represent a range of different base algorithms. In addition to the future work suggested above, 
benefit will be gained by incorporating confirmed cases into the training set where the initial clinical suspicion 
of disease is lower, and where systemic markers may not be as markedly perturbed, such as in cases of neurologi-
cal or uveitis-associated FIP. The individual base learners might not perform as well in predicting outcomes in 
isolation for less ‘extreme’ cases, however it is possible that these more complex ensemble models could provide 
accurate predictions for such cases.

Both ensemble models evaluated on the gold standard case dataset (n = 80) misclassified the same two cases 
(2.5%); one was mis-classified as FIP and another was mis-classified as non-FIP. We investigated these two cases 
further in order to understand why they may have been misclassified by the models. The history accompanying 
the ‘false positive’ case gave some indications that FIP was a realistic differential diagnosis. The clinical picture 
with this case was mixed: the cat presented with neurological signs (ataxia and confusion) and was a pedigree 
cat from a multi-cat household, thus a high FCoV titre was an expected finding. There were no signs of anaemia, 
however a moderately elevated AGP and hyperglobulinaemia indicated an inflammatory disease process. FIP, 
clinical toxoplasmosis or a bacterial aetiology were all suggested as differential diagnoses by the clinician based 
on the laboratory findings and clinical history. Records show that the clinical signs resolved and the cat survived 
at least five years post-testing for FIP; we conclude that this case was likely to be either clinical toxoplasmosis or 
a bacterial infection, both treatable with antibiotics. Importantly, we were able to conclude that this was not FIP 
as the case preceded the availability of the effective anti-viral treatments. The ‘false negative’ was a case where the 
clinical presentation was of neurological signs (acute ataxia) and uveitis (2 month onset) in a nine month old, 
male entire, domestic shorthair cat. Combined neurological and ocular FIP is an uncommon presentation of this 
disease. The primary clinician observed retinal changes in the left eye, marked brain abnormalities and inflam-
matory cells in a cerebrospinal fluid sample. Incidentally, this case was included in another project to develop 
a molecular diagnostic test for non-effusive  FIP14, and also produced a false negative result in that study. FIP 
was confirmed in this case by histopathology on brain tissue at several sites; ocular tissue also exhibited changes 
consistent with FIP, though not conclusively. The laboratory diagnostic tests utilised, as well as the models devel-
oped in this study, aim to discriminate cases of what is termed ‘classic non-effusive FIP’. Therefore, the inability 
to detect a particularly atypical case of FIP, which does not produce the same systemic inflammatory responses 
as a classic disease manifestation, is unsurprising.

Non-effusive FIP is one of the most challenging conditions to diagnose for the companion animal practi-
tioner. We demonstrate here that ML has great potential to effectively automate the interpretation of routine 
clinical laboratory data for diagnostic purposes and that the most robust models for this purpose are tree-based 
classification algorithms, specifically extreme gradient boosting (XGBoost) and random forests. The mixed 
ensemble model, comprising 100 base learners from each of the four algorithm types feeding into a random for-
est, performed marginally better than the XGBoost ensemble model which was evaluated at the validation stage. 
However, the difference in performance level was found to be extremely small, and both ensembles performed 
comparably when assessed against the two test datasets. Under closer scrutiny, the mixed ensemble takes account 
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of more variables and variation in the dataset than the XGBoost models, which primarily prioritise FCoV titre 
and AGP concentration as the variables of major importance. In cases with more subtle signals in the remain-
ing variables, which the XGBoost models are less likely to evaluate, the risk of misclassification increases. Our 
analysis of the ‘standard haematology and biochemistry’ dataset alone indicates that these nuanced patterns do 
indeed exist. Consequently, mixed ensemble models likely offer the greatest potential for future translation into 
clinical use. Additionally, the mixed ensemble is less computationally demanding in terms of production of the 
model. Both ensemble models displayed predictive performance far exceeding expectations, with model accuracy 
measures in the 90–100% bracket from inception. The panel of algorithms was selected in order to evaluate dif-
ferences in predictive capabilities of each type of algorithm, with varying degrees of complexity. Models based 
on individual algorithms exhibit predictive power, however each algorithm has its strengths and weaknesses. 
Ensemble models generally perform better than any individual contributor model and tend to make superior 
predictions. The use of numerous models to produce an aggregated decision reduces the variance and bias that 
can be observed in a single model and so the present approach leads to more accurate predictions. The high 
levels of performance observed for all the models built further supports our proposal that this form of dataset 
is well suited to the application of ML approaches.

A major consideration when modelling this dataset was that the timepoints of disease progression at which the 
animals were sampled were unknown and these would be highly varied. Consequently, the clinical and laboratory 
data represented only a snapshot of the clinical picture at the time the animal presented to the primary clinician. 
In some cases, cats might have been sampled relatively early in the disease process, whereas in other cases the 
disease might have markedly progressed and the cat would have been near the end of its life. This necessarily 
contributes an additional, unquantifiable aspect to the variation in the dataset. In some cases of FIP, clinical 
signs are slow to develop and can be subtle, with the disease developing insidiously over a long period of time. 
While the majority of submissions represent well-progressed cases, some will be from cases in the early stages of 
disease. Unfortunately, early FIP cases may display an overlap in clinical signs and blood picture, with an even 
larger group of alternative diseases or disorders than late cases. As described, we excluded cases where specific 
anti-viral treatment was mentioned but we did not exclude cases receiving various palliative treatments. It was 
considered that some of these drugs could potentially have had an effect on the haematology and biochemistry 
markers, but no curative effect on the disease. Despite these complexities, we have shown that diagnostic models 
can be remarkably successful at discriminating FIP from non-FIP cases.

ML in medicine has come under scrutiny as a ‘black box’ approach to the generation of predictions and con-
sequent clinical decision-making, as the internal working of models is not easily explained to those outside the 
ML field. In the cases of the algorithms that were implemented here, should it be required, it would be possible 
to interrogate the models and provide some understanding of how they arrive at a prediction for a specific case. 
Increasing our understanding of how the models derive their predictions and supporting the outcome from 
the model with both clinical and biological knowledge allows us to understand and explain the prediction in 
individual cases. It could be argued that this point is fundamental to our ability to use such models in a clinical 
setting. The interpretability of the models and the ability to accurately explain the models’ decisions is a critical 
factor that must be addressed if these systems are to be implemented in healthcare workflows.

Conclusion
FIP is a complex clinical condition which remains a diagnostic challenge to practising veterinary surgeons. We 
have demonstrated that, in principle, ML can be effectively applied to the realm of FIP diagnostics. Insight has 
been shown as to which types of models may be best applied to this problem and which laboratory parameters 
may be particularly valuable. While further work is required before a deployable ML tool is available, encour-
agement can be taken from the high level of accuracy achieved by these preliminary models. In future, such 
models could be incorporated into computer or web-based applications and may be used as ‘expert systems’ for 
the benefit of veterinary clinicians engaged in the diagnostic process. Thus, ML offers the potential to form a 
useful additional layer to laboratory workflows and may in future be added to the arsenal of tools available for 
FIP diagnostics.

Data availability
The clinically sensitive data used in this study can be made available to academic institutions and other interested 
parties upon request. To obtain data, a formal request should be made to the corresponding author.

Code availability
Code used in the study is available on GitHub at the following link https:// github. com/ ddunb ar84/ Dunbar_ FIP_ 
NonEff usive_ ML, and can also be made available upon request.
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