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DNA methylation rates have previously been found to broadly correlate
with maximum lifespanin mammals, yet no precise relationship hasbeen
observed. We developed a statistically robust framework to compare

methylation rates at conserved age-related sites across mammals. We found
that methylation rates negatively scale with maximum lifespanin both blood
and skin. The emergence of explicit scaling suggests that methylation rates
are, or are linked to, an evolutionary constraint on maximum lifespan acting
across diverse mammalian lineages.

Organisms display enormous variation as the result of evolution, span-
ning many orders of magnitude in characteristics such as size, energy
requirements and lifespan. Despite this remarkable diversity, ithasbeen
observed thatbiological traits often share underlying mechanisms and
constraints’. These fundamental connections between organisms can
bereflectedinscaling laws, which mathematically describe anassocia-
tionbetween two physical quantities over several orders of magnitude.

A notable example of a scaling law in the field of biology is Max
Kleiber’s observation that an animal’s metabolic rate is proportional
toits mass to the power of three-quarters® This observation was later
shown to hold across not just whole organisms but also cells and
mitochondria, spanning a total of 27 orders of magnitude in mass®. It
has been proposed that this relationship arises from the transport of
materials through branching fractal-like networks and that evolution
tends to minimize the energy required to supply these materials®.
Such anexplanation demonstrates the power of scaling laws to reveal
fundamental processes that govern biological systems.

DNA methylationis an epigenetic modificationin which amethyl
group is added to a cytosine base followed by a guanine (CpG). Meth-
ylation status at a given CpG site can vary between cells, meaning a
methylation proportion can be calculated for each CpG site across a
population of cells. Methylation proportions of some CpG sites change
inapredictable way with age. This observation led to the development
ofthefirst ‘epigenetic clocks’inthe early 2010s (refs. 5-7), which used
methylation proportions of selected CpG sites to predict chronologi-
cal age in humans. Since then, epigenetic clocks have been extended
to numerous other organisms, including the development of clocks
that measure age across mammalian species®.

Recently, in mammals, DNA methylation rates have been shown
to generally correlate with a species’ maximum lifespan, although

noscaling has been observed and the biological mechanisms behind
the correlation remain unclear. Lowe et al.” looked at age-related
CpG sites across six mammals and found a negative trend between
methylation rates and maximum lifespan. Similarly, Wilkinson et al."
looked at age-related CpG sites in 26 bat species and again found a
negative correlation between methylation rate and longevity. More
generally, methylation dynamics have recently been used to develop
epigenetic predictors of life history traits" and to attempt to identify
specific CpG sites and associated genes involved in both aging and
longevity™. Findings such as these have led to the prediction that
a scaling relationship might exist between methylation rates and
maximum lifespan®.

We compared the methylation rates of conserved age-related CpG
sitesinblood and skininatotal of 42 mammalian species, representing
nine taxonomic orders and covering almost the entire range of mam-
malian lifespans (Supplementary Tables1and 2).In contrast to previous
studies, we removed the impact of potential statistical artifacts, which
arise when comparing linear rates in abounded space of methylation
values across species of different lifespans, by developing a statistically
robust framework and analyzing the effect of CpG selection (described
below). We found that methylation rates inboth tissues scaled tightly
withmaximuma lifespan. The emergence of explicit scaling suggests that
epigeneticmechanismsare, or are linked to, an underlying evolutionary
constraint on lifespan that is shared across species.

We aimed to compare methylationrates, defined as the slope from
linear regressions of methylation proportion versus age, in conserved
age-related sites across mammals. An overview of our workflow is
depicted in Fig. 1a. We initially curated our data for each tissue by
removing outliers using density-based clustering* on principal com-
ponents (PCs; step 1in Fig. 1a and Extended Data Fig. 1). Additionally,
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Fig.1|DNA methylation rates scale with maximum lifespan. a, Workflow
overview. M, methylation proportion. b, Methylation rate (*ratio compared to
baseline species) versus maximum lifespan in blood samples. The y coordinate
of each pointis the cumulative product of the median rate ratio (Methods). The
regression lineis plotted from the transformed log-linear association shown

log,g[Maximum lifespace (yr)]

inc. Theshaded region represents the 95% Cl. ¢, Same data as in b but with axes
log transformed. The regression line is from a simple linear regression of the
formy-x.d,e, Equivalent analysis asb,c but in skin samples. Unlabeled points
are various bat species (see Supplementary Table 2 for details). Created with
BioRender.com.

we removed samples below the age of sexual maturity known to exhibit
non-linear dynamics’ (step 2 in Fig. 1a).

Next, we aimed to avoid any biases arising from the calculation
of rates across different lifespans. First, as methylation levels are con-
strained between 0 and 1, they are more likely to reach these boundaries
in age-related sites and start to stabilize in longer-lived mammals.
Consequently, simply fitting linear regression lines to these data will
resultin slower methylation rates for longer-lived animals (Extended
Data Fig. 2a). Second, R*based thresholds to select age-related sites
may bias the selection of CpG sites toward those with slower rates in

longer-lived animals. This is because shorter-lived species might not
be sampledlong enough for small trends to become statistically appar-
ent. Working with cohort data, these concerns arise when comparing
mammalian species across different ranges of ssmpled ages rather than
different lifespans. In a simulation based on the lifespans observed in
our data, we show that not accounting for these differences in sample
age ranges results in an artificial negative association with maximum
lifespan (Extended Data Fig. 2b).

Todevelop astatistically robust framework, we therefore ordered
the datasets by maximum observed age and compared each mammal
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withitsneighborsinasequential pairwise manner (step 3in Fig.1laand
the Methods). We started from the mammal with the shortest observed
age, which werefer to asthe baseline species. For each comparison, we
restricted the datasets of both mammals to be as close as possible to
eachother (step 4 in Fig. 1a and the Methods).

For each pairwise comparison, we selected the common set of
age-related CpG sites passing an R? threshold and sharing the same
directionality. For each CpGinthis set, we calculated the methylation
rate for each species (step 5inFig.1a). We then calculated the methyla-
tionrateratio of thelonger-sampled species compared to the shorter-
sampled species and extracted the median ratio across all selected CpG
sites. Next, we computed the cumulative product of median ratios to
compare all species together (step 6 of Fig. 1a and the Methods). This
cumulative product can be thought of simply as the methylation rate
of eachspecies (indirectly) compared to that of the baseline species. In
this way, we were able to compare the methylation rates of the shortest-
sampled animals with those of the longest-sampled animals while at
all steps comparing rates over the same timespans.

We explored incremental R* thresholds from 0 to 0.2 to define an
age-related site and show the emergence of astable scaling law for each
tissue (Extended Data Fig. 3).

To validate that our methodology removes any biases resulting
in artificial scaling, we applied it to simulated data that use the ages
observed in our dataset but with rates randomly drawn for each site
fromallthe observed rates across allmammals. The absence of any scal-
inglaw observed in this simulation emphasizes the robustness of our
approachin contrast to previous methods (Extended DataFig. 4)%1°,

To explore the existence of a scaling law between methylation
rate and lifespan, we plotted the methylation rate for each species (as
explained above) against maximum lifespan in two tissues for which
we had sufficient data: blood and skin (Fig. 1b—e). For each tissue, this
revealed arelationship inwhich methylation rates decay to an asymp-
tote as lifespanincreases (Fig. 1b,d). Taking the logarithm of the xand
y axes (see the Methods for details) resulted in strong linear associa-
tions with slopes equal to —0.95 inblood (95% confidence interval (Cl),
-1.14t0-0.76) and —0.60 in skin (95% Cl,—0.74 to —0.47) (Fig.1c,e). This
implies power law relationships for each tissue in which methylation
rates are proportional to lifespan to the power of -0.95 (blood) and
-0.60 (skin). Therelationships were strong and consistent in both tis-
sues, with relatively little variation in methylation rates unexplained
by differences in maximum lifespan (R?=0.81in blood, R*=0.80 in
skin). Similar associations were seen when CpG sites were stratified
into hypermethylating and hypomethylating sites (Extended Data
Fig.5) and in a sensitivity analysis in which we omitted the initial trim-
ming of ages up to the age of sexual maturity (Extended Data Fig. 6).
Notably, the three largest outliers in blood samples were livestock
species (pigs, sheep and cattle).

Overall, our analysis of DNA methylation datain mammals reveals
scaling between maximum lifespan and DNA methylation rate over
approximately two orders of magnitude and intwo distinct tissue types.
For blood, for example, this relationship means that the methylation
rate of humans is about half as fast as that of chimpanzees, given that
our lifespan is about twice as long. An interesting application of such
scaling relationships is thatit allows estimations of maximum lifespan
for newly discovered species through longitudinal sampling, in which
only thetimeinterval betweensamplesis needed instead of any knowl-
edge of chronological ages.

Many physiological characteristics exhibit scaling with lifespan
because they areindirectly associated through body mass*'*. However,
therelationship we observed is largely independent of body mass, with
no clear trend seen when regressing against mass instead of lifespan
(Extended Data Fig. 7). For example, the naked mole rat, which is an
outlier in body mass relationships, scaled appropriately in our data”.

The fact that specific and quantitative relationships exist between
methylation rate and maximum lifespan suggests that there is an

evolutionary constraint acting across diverse mammalian lineages.
This meansthat, whenan organism’s lifespan evolves, its methylation
rates also change. A scaling law emerges when these changes occur in
apredictable way.

Methylation changes over alifespan can be most simply described
by the occurrence of epimutations in stem cells and their inheritance
through cell divisions. As such, methylation rate in a mammal, M,, of
lifespan L can be thought of as the product of two underlying quanti-
ties: R, the rate of stem cell division, and p, the probability that a cell
division results in a change in methylation state'®".

M, « pR « L9, )

where a denotes the scalinglaw. Under this model, the quantity pR must
scale with lifespan. As for which of these factors may be responsible
for the scaling we observe, we discuss two non-mutually exclusive
scenarios below.

First, the probability p of methylation changes with each stem
cell division may scale with maximum lifespan. In this scenario, aber-
rant methylation levels themselves are an evolutionary constraint on
maximum lifespan. In other words, epimutation burden is deleteri-
ous, and so mechanisms to reduce it are selected for in longer-lived
organisms (that is, p decreases as L increases in equation (1)). This
scenario would support aninstructive role of DNA methylation in the
associations observed between epigenetic changes and physiological
outcomesinaging” 2.

Second, it is possible that stem cell replication rates scale with
maximum lifespan (thatis, R decreases as L increases in equation (1)).
Inthe hematopoietic system, it has previously beensuggested that the
rate of stem cell divisions inmammals decreases with lifespan such that
the totalnumber of divisions per stem cellis approximately constant,
regardless of lifespan®. Additionally, it has recently been observed by
Cagan et al. that somatic mutation rates also exhibit negative scaling
with maximum lifespan®. Given that cell division plays a role in both
processes, one possibility is that the scaling of both methylation and
mutation rates is driven by stem cell replication rates.

While our study unambiguously shows the existence of scaling
between methylation rates and maximum lifespan in mammals, the
precise value of the scaling is subject to some uncertainty. First, the
data are one source of error. Specifically, although the Mamma-
lian Methylation Consortium dataset provided an unprecedented
resource for the community, the number of observations per mammal
was sometimes limited. Additionally, the sampling distribution of
agesinsome mammals was uneven or sparse or covered only a small
proportion of their maximum lifespan. Combined, these factors
added uncertainty to the calculation of methylation rates. Similarly,
the age and maximum lifespan estimates in some mammalian spe-
cies are imprecise, adding further uncertainty to the calculations.
Second, while it is well established that methylation dynamics can
be approximated by linear functions, they do not provide acompre-
hensive model. Some age-associated CpG sites exhibit non-linear
dynamics later in life as they approach a stable value and begin to
plateau. This phenomenon would result in an underestimation of
the true methylation rate in faster methylating mammals and likely
bias our results toward the null (Extended Data Fig. 8), although we
partially mitigated this phenomenon by excluding CpG sites with
methylation values concentrated near the boundaries. Given all these
limitations, there is some uncertainty around the exact value of the
scaling laws in blood and skin, and it is unclear whether they are
distinct or converge on acommon value. However, regardless of the
precise values, itis striking that such strong scaling relationships exist
even with all these potential sources of error. Future studies could
evaluate whether these scaling relationships hold for other classes
and tissues and whether non-linear models may shed more light on
the precise values of the scaling laws.
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Methods

Considerations in the calculation of methylation rates

In contrast to previous studies”°, we restricted our analysis to CpGsites
that wererelated to age in each mammal being compared. We did this
because even a conserved CpG site may behave markedly differently
between species. For example, the ELOVL2 CpGsite (cg16867657) is very
strongly associated with age in humans and other primates but shows
no association with age in most other species (Extended Data Fig. 9).
As such, using this CpG site to compare methylation rates between a
primate and non-primate species may not be appropriate.

Additionally, we compared species across the same timespans
because various statistical issues may arise when comparing meth-
ylation rates of species across different age ranges. In our study,
there were two main considerations. First, use of an R* threshold (or
equivalent) to select age-related sites may bias results toward slower
ratesinlonger-lived animals. This is because slowly methylating sites
may not be detected inshorter-lived animals due to smaller timespans
and the fact that methylation data are often noisy. In other words,
shorter-lived animals might not be sampled long enough for small
trends to become statistically apparent. Second, methylation pro-
portions are bounded at 0 and 1. This is important, as it means that,
ifany givensiteisrelated to age, then methylation levels may be more
likely to have approached these boundaries and begun to plateauin
longer-lived mammals. If this is the case, then simply fitting linear
regression lines to these data would resultin slower methylation rates
for longer-lived animals even with the same underlying dynamics
(Extended DataFig. 2).

Ourinitialapproach was to find age-related CpG sites common to
allspeciesand compare the average slope. However, very few CpG sites
satisfied this criterion, resulting in unstable estimates. This method
would also extend poorly to additional animals, as the number of
common CpG sites would decrease with each addition. Furthermore,
we were not able to compare animals over the same timespangiven the
vastly different sampling ranges between the shortest- and longest-
lived animals.

Because of all the above reasons, we decided to compare each
speciesinapairwise manner. This maximized the number of common
age-related sites we could use in each comparison. Additionally, if we
first ordered our dataset by maximum observed age, we could com-
pare neighboring species across the same timespan by appropriately
trimming the datasets in each comparison. This would ensure a fair
comparison while maximizing the amount of dataretainedin each com-
parison. Finally, as we can sequentially move across the dataset, at each
point calculating how the rates of the next mammal compare to those
ofthe one before it, we can (indirectly) compare the methylation rates
of the shortest-sampled animals with those of the longest-sampled
animals while at all points comparing rates over the same timespans.

Primary analysis
We aimed to compare methylation rates, defined as the slope from
linear regressions of methylation proportion versus age, in conserved
age-related sites across mammals. An overview of our workflow is
depicted in Fig. 1a. We initially curated our data for each tissue by
conducting PC analysis on all species combined. We then projected
each tissue onto the PC1and PC2 components to detect and remove
outlier samples using density-based spatial clustering (DBSCAN) for
each species separately (step 1in Fig. 1a and Extended Data Fig. 1; see
codefor further details). Additionally, we removed samples below the
age of sexual maturity known to exhibit non-linear dynamics’ (step 2
in Fig. 1a). The age of sexual maturity, as reported in the AnAge data-
base”, was thensubtracted fromall ages so that O represented the age
of sexual maturity.

Todevelop astatistically robust framework, we ordered the data-
sets by maximum observed age and compared each mammal with its
neighbors in a sequential pairwise manner (step 3 in Fig. 1a and the

Methods). We started from the mammal with the shortest observed
age, which we refer to as the baseline species. For each comparison,
we restricted the datasets of both mammals to be as close as possi-
ble to each other (step 4 in Fig. 1a and the Methods). Specifically, we
calculated the maximum sample age of the shorter-observed species
and then found the sample with closest age from the comparison spe-
cies (either above or below the maximum sample age of the shorter-
observed species). Ifthe differences in samples was greater than 2% of
thelifespan of the shortest mammal or 1year (whichever was smallest),
we used the next-oldest sample in the shorter-observed species and
repeated the process. Once two ages were found that satisfied these
criteria, we then restricted the observations in each of the compared
species accordingly. Mammals that had fewer than15 samples after this
restriction (or 20 initially) were excluded, as were species for which
the maximum sampled age was below 25% of the reported maximum
lifespan.

For each pairwise comparison, we selected the common set of
age-related CpG sites passing an R? threshold and sharing the same
directionality. A CpG site was considered associated with age if the R?
value from a simple linear regression passed a certain threshold (see
Methods). CpG sites with a mean methylation proportion above 0.9
or below 0.1 (calculated after any data trimming) were removed, as
these sites tend to display non-linear dynamics due to being near the
maximum or minimum methylation values.

For each CpG site satisfying these criteria in both mammals in
each pairwise comparison, we calculated the methylation rate for each
species (step 5inFig.1a). We then calculated the methylation rate ratio
ofthelonger-sampled species compared to the shorter-sampled spe-
cies. Thatis, for each CpGsite, methylation rateratio = (rate of longer-
sampled species)/(rate of shorter-sampled species). For example, a
ratio of 0.5 would mean that the methylation rate of the longer-sampled
species is half as fast as the methylation rate of the shorter-sampled
species in a particular CpG site. We calculated these ratios across all
CpGssites included for each comparison and extracted the median
ratio. Use of the median was chosen over the mean, as the mean was
severely affected by large outliers (resulting from the division of very
small numbers in some ratio calculations).

Next, we computed the cumulative product of median ratios to
compare all species together (step 6 of Fig. 1a and the Methods). This
cumulative product can be thought of simply as the methylation rate
of each species (indirectly) compared to that of the baseline species.
For example, the first mammalin thelist (forexample, therat) is given
arate ratio of 1. Suppose that the next mammal in the list (mouse) is
compared to the rat, yielding a rate ratio of 0.94 (that is, its median
methylationrateis 0.94 as fast as that of amouse in common conserved
age-related CpG sites). Suppose the next mammal in the list (sheep)
is then compared to the mouse, yielding a rate ratio of 0.53. We can
indirectly compare the rates of the sheep to those of the rat by the
cumulative rate ratio of 0.94 x 0.53 = 0.49 and so on. In this way, we
can compare the methylation rates of the shortest-sampled animals
withthose of the longest-sampled animals while at all steps comparing
rates over the same timespans.

Weinclude amore detailed mathematical description of this pro-
cess below.

Mathematical description of scaling and power laws
Mathematically, scaling between two variables x and y can generally
be described as a power law relationship of the form

y=ax,

where sis the scaling law and a is a constant. Alternatively, taking the
logarithm on both sides allows for linear inference of both sand a,

log(y) = log(a) + s log(x).
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In our case, we are interested in inferring the scaling law relating
the lifespan [, of a mammal, m, with the slope s, ,, of the methylation
valuesina CpGsite c. This translates to the following scaling relation:

log(ly) = log(b.) + s log(sc,m),

where b.denotes the baseline slope in site c or the slope predicted for
amammal with a lifespan of 1 year.

Our pairwise comparison algorithmexploits the following relation
for any two mammals mg,and m;:

log(scﬂ> =s1og(ln,) =5 108 (I, ) -

Se,mq

In other words, the ratio between the slopes in two mammals
replaces the intercept in the linear relation with one that is relative to
the lifespan of the baseline species m,,.

Finally, given an arbitrarily ordered set of species m,, m,, ... m,,
the cumulative product of slopes resultsin an estimator of the desired
scalinglaws:

Se,my Se,m
Iog (_l -2

Scmg Semy

R

SC,mH

Stability of the scaling law

We calculated the impact of varying the minimum R? threshold to
define an age-related CpG site (Extended Data Fig. 3). A grid of R* val-
ues between 0 and 0.2 was explored for each tissue (Extended Data
Fig.3a,c). We then assessed the stability of our results using the kernel
density estimate of all reported values and selected the optimal scaling
as the point of maximum density (Extended Data Fig. 3b,d). R* values
thatresultedinless thanten CpGsitesin any one comparison were not
considered, evenif below the threshold of 0.2.

Biases and statistical robustness
We conducted various analyses to explore the robustness of our results.

First, we conducted a random null simulation, showing that not
accounting for differencesin sample age ranges results in an artificial
negative association with maximum lifespan (Extended Data Fig. 2b).
Specifically, we created synthetic data representing a scenario that
was as similar as possible to the real data, except with no scaling of
methylation rates. We used the observed species and associated lifes-
pans in our datasets but with synthetic methylation data. For each
species and site, we uniformly sampled ages within its lifespan and
randomly drew slopes and initial methylation values from normal
distributionsto create linear datawith random noise and constrained
their values to within 0 and 1. In this analysis, we simply calculated
the methylation rates of each mammal across their entire sampled
age ranges.

Second, we again used synthetic data but instead conducted
our primary analysis method (Fig. 1a) onit. In this case, we used the
observed species and used exact sampled ages in our datasets but
randomly drew slopes and intercepts from all those observed across
allmammalsin this study to create synthetic linear data.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The majority of the methylation dataset used was created by the Mam-
malian Methylation Consortium?® and is publicly available on the Gene
Expression Omnibus under accession number GSE223748. The chim-
panzee (Pan troglodytes) dataset is available at GSE136296 (ref. 27). Data

on maximum lifespan and mass were taken from the AnAge database
(https://genomics.senescence.info/species/index.html)*. Results of
the primary analysis in blood and skin samples can be found in Sup-
plementary Tables 3 and 4, respectively.

Code availability
All code used for the analysis (conducted in Python 3.11.4) is available
at https://github.com/elc08/meth_scaling_law.
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