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DNA methylation rates scale with maximum 
lifespan across mammals

Samuel J. C. Crofts    1,2, Eric Latorre-Crespo    1,3   & Tamir Chandra    1,3 

DNA methylation rates have previously been found to broadly correlate 
with maximum lifespan in mammals, yet no precise relationship has been 
observed. We developed a statistically robust framework to compare 
methylation rates at conserved age-related sites across mammals. We found 
that methylation rates negatively scale with maximum lifespan in both blood 
and skin. The emergence of explicit scaling suggests that methylation rates 
are, or are linked to, an evolutionary constraint on maximum lifespan acting 
across diverse mammalian lineages.

Organisms display enormous variation as the result of evolution, span-
ning many orders of magnitude in characteristics such as size, energy 
requirements and lifespan. Despite this remarkable diversity, it has been 
observed that biological traits often share underlying mechanisms and 
constraints1. These fundamental connections between organisms can 
be reflected in scaling laws, which mathematically describe an associa-
tion between two physical quantities over several orders of magnitude.

A notable example of a scaling law in the field of biology is Max 
Kleiber’s observation that an animal’s metabolic rate is proportional 
to its mass to the power of three-quarters2. This observation was later 
shown to hold across not just whole organisms but also cells and 
mitochondria, spanning a total of 27 orders of magnitude in mass3. It 
has been proposed that this relationship arises from the transport of 
materials through branching fractal-like networks and that evolution 
tends to minimize the energy required to supply these materials4. 
Such an explanation demonstrates the power of scaling laws to reveal 
fundamental processes that govern biological systems.

DNA methylation is an epigenetic modification in which a methyl 
group is added to a cytosine base followed by a guanine (CpG). Meth-
ylation status at a given CpG site can vary between cells, meaning a 
methylation proportion can be calculated for each CpG site across a 
population of cells. Methylation proportions of some CpG sites change 
in a predictable way with age. This observation led to the development 
of the first ‘epigenetic clocks’ in the early 2010s (refs. 5–7), which used 
methylation proportions of selected CpG sites to predict chronologi-
cal age in humans. Since then, epigenetic clocks have been extended 
to numerous other organisms, including the development of clocks 
that measure age across mammalian species8.

Recently, in mammals, DNA methylation rates have been shown 
to generally correlate with a species’ maximum lifespan, although 

no scaling has been observed and the biological mechanisms behind 
the correlation remain unclear. Lowe et al.9 looked at age-related 
CpG sites across six mammals and found a negative trend between 
methylation rates and maximum lifespan. Similarly, Wilkinson et al.10 
looked at age-related CpG sites in 26 bat species and again found a 
negative correlation between methylation rate and longevity. More 
generally, methylation dynamics have recently been used to develop 
epigenetic predictors of life history traits11 and to attempt to identify  
specific CpG sites and associated genes involved in both aging and 
longevity12. Findings such as these have led to the prediction that 
a scaling relationship might exist between methylation rates and 
maximum lifespan13.

We compared the methylation rates of conserved age-related CpG 
sites in blood and skin in a total of 42 mammalian species, representing 
nine taxonomic orders and covering almost the entire range of mam-
malian lifespans (Supplementary Tables 1 and 2). In contrast to previous 
studies, we removed the impact of potential statistical artifacts, which 
arise when comparing linear rates in a bounded space of methylation 
values across species of different lifespans, by developing a statistically 
robust framework and analyzing the effect of CpG selection (described 
below). We found that methylation rates in both tissues scaled tightly 
with maximum lifespan. The emergence of explicit scaling suggests that 
epigenetic mechanisms are, or are linked to, an underlying evolutionary 
constraint on lifespan that is shared across species.

We aimed to compare methylation rates, defined as the slope from 
linear regressions of methylation proportion versus age, in conserved 
age-related sites across mammals. An overview of our workflow is 
depicted in Fig. 1a. We initially curated our data for each tissue by 
removing outliers using density-based clustering14 on principal com-
ponents (PCs; step 1 in Fig. 1a and Extended Data Fig. 1). Additionally, 

Received: 15 May 2023

Accepted: 2 November 2023

Published online: 4 December 2023

 Check for updates

1MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK. 2School of Biological Sciences, University of Edinburgh, Edinburgh, UK. 3These 
authors contributed equally: Eric Latorre-Crespo, Tamir Chandra.  e-mail: eric.latorrecrespo@glasgow.ac.uk; tamir.chandra@igmm.ed.ac.uk

http://www.nature.com/nataging
https://doi.org/10.1038/s43587-023-00535-6
http://orcid.org/0000-0001-7496-082X
http://orcid.org/0000-0002-2645-4292
http://orcid.org/0000-0002-7935-317X
http://crossmark.crossref.org/dialog/?doi=10.1038/s43587-023-00535-6&domain=pdf
mailto:eric.latorrecrespo@glasgow.ac.uk
mailto:tamir.chandra@igmm.ed.ac.uk


Nature Aging | Volume 4 | January 2024 | 27–32 28

Brief Communication https://doi.org/10.1038/s43587-023-00535-6

longer-lived animals. This is because shorter-lived species might not 
be sampled long enough for small trends to become statistically appar-
ent. Working with cohort data, these concerns arise when comparing 
mammalian species across different ranges of sampled ages rather than 
different lifespans. In a simulation based on the lifespans observed in 
our data, we show that not accounting for these differences in sample 
age ranges results in an artificial negative association with maximum 
lifespan (Extended Data Fig. 2b).

To develop a statistically robust framework, we therefore ordered 
the datasets by maximum observed age and compared each mammal 

we removed samples below the age of sexual maturity known to exhibit 
non-linear dynamics7 (step 2 in Fig. 1a).

Next, we aimed to avoid any biases arising from the calculation 
of rates across different lifespans. First, as methylation levels are con-
strained between 0 and 1, they are more likely to reach these boundaries 
in age-related sites and start to stabilize in longer-lived mammals. 
Consequently, simply fitting linear regression lines to these data will 
result in slower methylation rates for longer-lived animals (Extended 
Data Fig. 2a). Second, R2-based thresholds to select age-related sites 
may bias the selection of CpG sites toward those with slower rates in 
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Fig. 1 | DNA methylation rates scale with maximum lifespan. a, Workflow 
overview. M, methylation proportion. b, Methylation rate (*ratio compared to 
baseline species) versus maximum lifespan in blood samples. The y coordinate 
of each point is the cumulative product of the median rate ratio (Methods). The 
regression line is plotted from the transformed log-linear association shown 

in c. The shaded region represents the 95% CI. c, Same data as in b but with axes 
log transformed. The regression line is from a simple linear regression of the 
form y ~ x. d,e, Equivalent analysis as b,c but in skin samples. Unlabeled points 
are various bat species (see Supplementary Table 2 for details). Created with 
BioRender.com.
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with its neighbors in a sequential pairwise manner (step 3 in Fig. 1a and 
the Methods). We started from the mammal with the shortest observed 
age, which we refer to as the baseline species. For each comparison, we 
restricted the datasets of both mammals to be as close as possible to 
each other (step 4 in Fig. 1a and the Methods).

For each pairwise comparison, we selected the common set of 
age-related CpG sites passing an R2 threshold and sharing the same 
directionality. For each CpG in this set, we calculated the methylation 
rate for each species (step 5 in Fig. 1a). We then calculated the methyla-
tion rate ratio of the longer-sampled species compared to the shorter-
sampled species and extracted the median ratio across all selected CpG 
sites. Next, we computed the cumulative product of median ratios to 
compare all species together (step 6 of Fig. 1a and the Methods). This 
cumulative product can be thought of simply as the methylation rate 
of each species (indirectly) compared to that of the baseline species. In 
this way, we were able to compare the methylation rates of the shortest-
sampled animals with those of the longest-sampled animals while at 
all steps comparing rates over the same timespans.

We explored incremental R2 thresholds from 0 to 0.2 to define an 
age-related site and show the emergence of a stable scaling law for each 
tissue (Extended Data Fig. 3).

To validate that our methodology removes any biases resulting 
in artificial scaling, we applied it to simulated data that use the ages 
observed in our dataset but with rates randomly drawn for each site 
from all the observed rates across all mammals. The absence of any scal-
ing law observed in this simulation emphasizes the robustness of our 
approach in contrast to previous methods (Extended Data Fig. 4)9,10,15.

To explore the existence of a scaling law between methylation 
rate and lifespan, we plotted the methylation rate for each species (as 
explained above) against maximum lifespan in two tissues for which 
we had sufficient data: blood and skin (Fig. 1b–e). For each tissue, this 
revealed a relationship in which methylation rates decay to an asymp-
tote as lifespan increases (Fig. 1b,d). Taking the logarithm of the x and 
y axes (see the Methods for details) resulted in strong linear associa-
tions with slopes equal to −0.95 in blood (95% confidence interval (CI), 
−1.14 to −0.76) and −0.60 in skin (95% CI, −0.74 to −0.47) (Fig. 1c,e). This 
implies power law relationships for each tissue in which methylation 
rates are proportional to lifespan to the power of −0.95 (blood) and 
−0.60 (skin). The relationships were strong and consistent in both tis-
sues, with relatively little variation in methylation rates unexplained 
by differences in maximum lifespan (R2 = 0.81 in blood, R2 = 0.80 in 
skin). Similar associations were seen when CpG sites were stratified 
into hypermethylating and hypomethylating sites (Extended Data  
Fig. 5) and in a sensitivity analysis in which we omitted the initial trim-
ming of ages up to the age of sexual maturity (Extended Data Fig. 6). 
Notably, the three largest outliers in blood samples were livestock 
species (pigs, sheep and cattle).

Overall, our analysis of DNA methylation data in mammals reveals 
scaling between maximum lifespan and DNA methylation rate over 
approximately two orders of magnitude and in two distinct tissue types. 
For blood, for example, this relationship means that the methylation 
rate of humans is about half as fast as that of chimpanzees, given that 
our lifespan is about twice as long. An interesting application of such 
scaling relationships is that it allows estimations of maximum lifespan 
for newly discovered species through longitudinal sampling, in which 
only the time interval between samples is needed instead of any knowl-
edge of chronological ages.

Many physiological characteristics exhibit scaling with lifespan 
because they are indirectly associated through body mass4,16. However, 
the relationship we observed is largely independent of body mass, with 
no clear trend seen when regressing against mass instead of lifespan 
(Extended Data Fig. 7). For example, the naked mole rat, which is an 
outlier in body mass relationships, scaled appropriately in our data17.

The fact that specific and quantitative relationships exist between 
methylation rate and maximum lifespan suggests that there is an 

evolutionary constraint acting across diverse mammalian lineages. 
This means that, when an organism’s lifespan evolves, its methylation 
rates also change. A scaling law emerges when these changes occur in 
a predictable way.

Methylation changes over a lifespan can be most simply described 
by the occurrence of epimutations in stem cells and their inheritance 
through cell divisions. As such, methylation rate in a mammal, ML, of 
lifespan L can be thought of as the product of two underlying quanti-
ties: R, the rate of stem cell division, and p, the probability that a cell 
division results in a change in methylation state18,19.

ML ∝ pR ∝ La, (1)

where a denotes the scaling law. Under this model, the quantity pR must 
scale with lifespan. As for which of these factors may be responsible 
for the scaling we observe, we discuss two non-mutually exclusive 
scenarios below.

First, the probability p of methylation changes with each stem 
cell division may scale with maximum lifespan. In this scenario, aber-
rant methylation levels themselves are an evolutionary constraint on 
maximum lifespan. In other words, epimutation burden is deleteri-
ous, and so mechanisms to reduce it are selected for in longer-lived 
organisms (that is, p decreases as L increases in equation (1)). This 
scenario would support an instructive role of DNA methylation in the 
associations observed between epigenetic changes and physiological 
outcomes in aging19–22.

Second, it is possible that stem cell replication rates scale with 
maximum lifespan (that is, R decreases as L increases in equation (1)). 
In the hematopoietic system, it has previously been suggested that the 
rate of stem cell divisions in mammals decreases with lifespan such that 
the total number of divisions per stem cell is approximately constant, 
regardless of lifespan23. Additionally, it has recently been observed by 
Cagan et al. that somatic mutation rates also exhibit negative scaling 
with maximum lifespan24. Given that cell division plays a role in both 
processes, one possibility is that the scaling of both methylation and 
mutation rates is driven by stem cell replication rates.

While our study unambiguously shows the existence of scaling 
between methylation rates and maximum lifespan in mammals, the 
precise value of the scaling is subject to some uncertainty. First, the 
data are one source of error. Specifically, although the Mamma-
lian Methylation Consortium dataset provided an unprecedented 
resource for the community, the number of observations per mammal 
was sometimes limited. Additionally, the sampling distribution of 
ages in some mammals was uneven or sparse or covered only a small 
proportion of their maximum lifespan. Combined, these factors 
added uncertainty to the calculation of methylation rates. Similarly, 
the age and maximum lifespan estimates in some mammalian spe-
cies are imprecise, adding further uncertainty to the calculations. 
Second, while it is well established that methylation dynamics can 
be approximated by linear functions, they do not provide a compre-
hensive model. Some age-associated CpG sites exhibit non-linear 
dynamics later in life as they approach a stable value and begin to 
plateau. This phenomenon would result in an underestimation of 
the true methylation rate in faster methylating mammals and likely 
bias our results toward the null (Extended Data Fig. 8), although we 
partially mitigated this phenomenon by excluding CpG sites with 
methylation values concentrated near the boundaries. Given all these 
limitations, there is some uncertainty around the exact value of the 
scaling laws in blood and skin, and it is unclear whether they are 
distinct or converge on a common value. However, regardless of the 
precise values, it is striking that such strong scaling relationships exist 
even with all these potential sources of error. Future studies could 
evaluate whether these scaling relationships hold for other classes 
and tissues and whether non-linear models may shed more light on 
the precise values of the scaling laws.

http://www.nature.com/nataging
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Methods
Considerations in the calculation of methylation rates
In contrast to previous studies9,10, we restricted our analysis to CpG sites 
that were related to age in each mammal being compared. We did this 
because even a conserved CpG site may behave markedly differently 
between species. For example, the ELOVL2 CpG site (cg16867657) is very 
strongly associated with age in humans and other primates but shows 
no association with age in most other species (Extended Data Fig. 9). 
As such, using this CpG site to compare methylation rates between a 
primate and non-primate species may not be appropriate.

Additionally, we compared species across the same timespans 
because various statistical issues may arise when comparing meth-
ylation rates of species across different age ranges. In our study, 
there were two main considerations. First, use of an R2 threshold (or 
equivalent) to select age-related sites may bias results toward slower 
rates in longer-lived animals. This is because slowly methylating sites 
may not be detected in shorter-lived animals due to smaller timespans 
and the fact that methylation data are often noisy. In other words, 
shorter-lived animals might not be sampled long enough for small 
trends to become statistically apparent. Second, methylation pro-
portions are bounded at 0 and 1. This is important, as it means that, 
if any given site is related to age, then methylation levels may be more 
likely to have approached these boundaries and begun to plateau in 
longer-lived mammals. If this is the case, then simply fitting linear 
regression lines to these data would result in slower methylation rates 
for longer-lived animals even with the same underlying dynamics 
(Extended Data Fig. 2).

Our initial approach was to find age-related CpG sites common to 
all species and compare the average slope. However, very few CpG sites 
satisfied this criterion, resulting in unstable estimates. This method 
would also extend poorly to additional animals, as the number of 
common CpG sites would decrease with each addition. Furthermore, 
we were not able to compare animals over the same timespan given the 
vastly different sampling ranges between the shortest- and longest-
lived animals.

Because of all the above reasons, we decided to compare each 
species in a pairwise manner. This maximized the number of common 
age-related sites we could use in each comparison. Additionally, if we 
first ordered our dataset by maximum observed age, we could com-
pare neighboring species across the same timespan by appropriately 
trimming the datasets in each comparison. This would ensure a fair 
comparison while maximizing the amount of data retained in each com-
parison. Finally, as we can sequentially move across the dataset, at each 
point calculating how the rates of the next mammal compare to those 
of the one before it, we can (indirectly) compare the methylation rates 
of the shortest-sampled animals with those of the longest-sampled 
animals while at all points comparing rates over the same timespans.

Primary analysis
We aimed to compare methylation rates, defined as the slope from 
linear regressions of methylation proportion versus age, in conserved 
age-related sites across mammals. An overview of our workflow is 
depicted in Fig. 1a. We initially curated our data for each tissue by 
conducting PC analysis on all species combined. We then projected 
each tissue onto the PC1 and PC2 components to detect and remove 
outlier samples using density-based spatial clustering (DBSCAN) for 
each species separately (step 1 in Fig. 1a and Extended Data Fig. 1; see 
code for further details). Additionally, we removed samples below the 
age of sexual maturity known to exhibit non-linear dynamics7 (step 2 
in Fig. 1a). The age of sexual maturity, as reported in the AnAge data-
base25, was then subtracted from all ages so that 0 represented the age 
of sexual maturity.

To develop a statistically robust framework, we ordered the data-
sets by maximum observed age and compared each mammal with its 
neighbors in a sequential pairwise manner (step 3 in Fig. 1a and the 

Methods). We started from the mammal with the shortest observed 
age, which we refer to as the baseline species. For each comparison, 
we restricted the datasets of both mammals to be as close as possi-
ble to each other (step 4 in Fig. 1a and the Methods). Specifically, we 
calculated the maximum sample age of the shorter-observed species 
and then found the sample with closest age from the comparison spe-
cies (either above or below the maximum sample age of the shorter-
observed species). If the differences in samples was greater than 2% of 
the lifespan of the shortest mammal or 1 year (whichever was smallest), 
we used the next-oldest sample in the shorter-observed species and 
repeated the process. Once two ages were found that satisfied these 
criteria, we then restricted the observations in each of the compared 
species accordingly. Mammals that had fewer than 15 samples after this 
restriction (or 20 initially) were excluded, as were species for which 
the maximum sampled age was below 25% of the reported maximum 
lifespan.

For each pairwise comparison, we selected the common set of 
age-related CpG sites passing an R2 threshold and sharing the same 
directionality. A CpG site was considered associated with age if the R2 
value from a simple linear regression passed a certain threshold (see 
Methods). CpG sites with a mean methylation proportion above 0.9 
or below 0.1 (calculated after any data trimming) were removed, as 
these sites tend to display non-linear dynamics due to being near the 
maximum or minimum methylation values.

For each CpG site satisfying these criteria in both mammals in 
each pairwise comparison, we calculated the methylation rate for each 
species (step 5 in Fig. 1a). We then calculated the methylation rate ratio 
of the longer-sampled species compared to the shorter-sampled spe-
cies. That is, for each CpG site, methylation rate ratio = (rate of longer-
sampled species)/(rate of shorter-sampled species). For example, a 
ratio of 0.5 would mean that the methylation rate of the longer-sampled 
species is half as fast as the methylation rate of the shorter-sampled 
species in a particular CpG site. We calculated these ratios across all 
CpG sites included for each comparison and extracted the median 
ratio. Use of the median was chosen over the mean, as the mean was 
severely affected by large outliers (resulting from the division of very 
small numbers in some ratio calculations).

Next, we computed the cumulative product of median ratios to 
compare all species together (step 6 of Fig. 1a and the Methods). This 
cumulative product can be thought of simply as the methylation rate 
of each species (indirectly) compared to that of the baseline species. 
For example, the first mammal in the list (for example, the rat) is given 
a rate ratio of 1. Suppose that the next mammal in the list (mouse) is 
compared to the rat, yielding a rate ratio of 0.94 (that is, its median 
methylation rate is 0.94 as fast as that of a mouse in common conserved 
age-related CpG sites). Suppose the next mammal in the list (sheep) 
is then compared to the mouse, yielding a rate ratio of 0.53. We can 
indirectly compare the rates of the sheep to those of the rat by the 
cumulative rate ratio of 0.94 × 0.53 = 0.49 and so on. In this way, we 
can compare the methylation rates of the shortest-sampled animals 
with those of the longest-sampled animals while at all steps comparing 
rates over the same timespans.

We include a more detailed mathematical description of this pro-
cess below.

Mathematical description of scaling and power laws
Mathematically, scaling between two variables x and y can generally 
be described as a power law relationship of the form

y=axs,

where s is the scaling law and a is a constant. Alternatively, taking the 
logarithm on both sides allows for linear inference of both s and a,

log(y) = log(a) + s log(x).

http://www.nature.com/nataging
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In our case, we are interested in inferring the scaling law relating 
the lifespan lm of a mammal, m, with the slope sc,m of the methylation 
values in a CpG site c. This translates to the following scaling relation:

log(lm) = log(bc) + s log(sc,m),

where bc denotes the baseline slope in site c or the slope predicted for 
a mammal with a lifespan of 1 year.

Our pairwise comparison algorithm exploits the following relation 
for any two mammals m0 and m1:

log (
sc,m1

sc,m0

) = s log (lm1 ) − s log (lm0 ) .

In other words, the ratio between the slopes in two mammals 
replaces the intercept in the linear relation with one that is relative to 
the lifespan of the baseline species m0.

Finally, given an arbitrarily ordered set of species m0, m1, … mi, 
the cumulative product of slopes results in an estimator of the desired 
scaling law s:

log (
sc,m1

sc,m0

sc,m2

sc,m1

…
sc,mi

sc,mi−1

) = s log (lmi ) − s log (lm0 ) .

Stability of the scaling law
We calculated the impact of varying the minimum R2 threshold to 
define an age-related CpG site (Extended Data Fig. 3). A grid of R2 val-
ues between 0 and 0.2 was explored for each tissue (Extended Data  
Fig. 3a,c). We then assessed the stability of our results using the kernel 
density estimate of all reported values and selected the optimal scaling 
as the point of maximum density (Extended Data Fig. 3b,d). R2 values 
that resulted in less than ten CpG sites in any one comparison were not 
considered, even if below the threshold of 0.2.

Biases and statistical robustness
We conducted various analyses to explore the robustness of our results.

First, we conducted a random null simulation, showing that not 
accounting for differences in sample age ranges results in an artificial 
negative association with maximum lifespan (Extended Data Fig. 2b). 
Specifically, we created synthetic data representing a scenario that 
was as similar as possible to the real data, except with no scaling of  
methylation rates. We used the observed species and associated lifes-
pans in our datasets but with synthetic methylation data. For each 
species and site, we uniformly sampled ages within its lifespan and 
randomly drew slopes and initial methylation values from normal 
distributions to create linear data with random noise and constrained 
their values to within 0 and 1. In this analysis, we simply calculated 
the methylation rates of each mammal across their entire sampled 
age ranges.

Second, we again used synthetic data but instead conducted 
our primary analysis method (Fig. 1a) on it. In this case, we used the 
observed species and used exact sampled ages in our datasets but 
randomly drew slopes and intercepts from all those observed across 
all mammals in this study to create synthetic linear data.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The majority of the methylation dataset used was created by the Mam-
malian Methylation Consortium26 and is publicly available on the Gene 
Expression Omnibus under accession number GSE223748. The chim-
panzee (Pan troglodytes) dataset is available at GSE136296 (ref. 27). Data 

on maximum lifespan and mass were taken from the AnAge database 
(https://genomics.senescence.info/species/index.html)25. Results of 
the primary analysis in blood and skin samples can be found in Sup-
plementary Tables 3 and 4, respectively.

Code availability
All code used for the analysis (conducted in Python 3.11.4) is available 
at https://github.com/elc08/meth_scaling_law.
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Extended Data Fig. 1 | PCA-based outlier removal. a, Left: Result of outlier 
detection using the density-based spatial clustering of applications with noise 
(DBSCAN) algorithm on PC1 vs PC2 plots resulting from principal component 

analysis (PCA) of all blood samples combined. Right: Same as the lefthand plot, 
but coloured by species instead of outlier status. b) Same analysis as in a), except 
on skin samples.
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Extended Data Fig. 2 | Potential statistical issues arising when comparing 
methylation rates across different timespans. a, Differences arising in fitting a 
linear slope to identically generated synthetical data in a shorter-lived mammal 
that is sampled to a certain age (50 years, dotted blue line) and a longer-lived 
mammal sampled for a longer time (100 years, dotted brown line). Linear 
regression lines and corresponding 95% confidence intervals (shaded regions) 
are shown in their respective colours. The estimated slope for the longer-lived 
species is under-estimated as the result of constraints in methylation range. 

b, Results from a random simulation, demonstrating that not accounting for 
differences in sample age ranges results in an artificial negative association 
between methylation rate and maximum lifespan. Each point corresponds to the 
median slope inferred in synthetically generated data for all mammals included 
in our analysis of the blood tissue (see Methods). Regression line from a linear 
regression of the form y ~ x is shown in blue with its associated shaded region 
representing the 95% confidence interval.
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Extended Data Fig. 3 | Scaling relationships across varying R2 thresholds 
used to define an age-related site. a, Scaling relationship (that is, slope of the 
log-log plot of methylation rate ratio versus maximum lifespan) across varying R2 
thresholds used to define an age-related site, in blood samples. Also shown is the 

mean number of CpGs used across all pairwise comparisons, and the minimum 
number of CpGs used in any single comparison. b, Kernel density estimate (KDE) 
plot of the scaling relationships shown in a). Red line shows the maximum density 
value. c, d, Same as in a) and b) except in skin samples.
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Extended Data Fig. 4 | Scaling relationships using simulated null data. a, 
Scaling relationship (that is, slope of the log-log plot of methylation rate ratio 
versus maximum lifespan) across varying R2 thresholds used to define an age-
related site, in a random null simulation using blood samples. Also shown is the 
mean number of CpGs used across all comparisons, and the minimum number of 
CpGs used in any single comparison. b, Kernel density estimate (KDE) plot of the 
scaling relationships shown in a). Red line shows the maximum density value.  

c, Log methylation rate (ratio compared to baseline species) versus log maximum 
lifespan, with R2 threshold used to define an age-related site taken from the 
maximum density value in b) (red line). The y-coordinate for each point shows 
the log10 cumulative product of the median slope ratio (see Methods). Regression 
line from simple linear regressions of the form y ~ x. Shaded region represents the 
95% confidence interval. d-f, Equivalent analysis as in a-c, but in skin samples.
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Extended Data Fig. 5 | Scaling relationships stratified into hyper- and 
hypomethylating sites. a, Log methylation rate ratio, compared to baseline 
species, versus log maximum lifespan in blood samples in hypermethylating 
(that is, increasing) sites only. The y-coordinate for each point shows the log10 

cumulative product of the median slope ratio (see Methods). Regression line 
from simple linear regression of the form y ~ x. Shaded region represents the 95% 
confidence interval. b, Equivalent analysis as in a, but in hypomethylating sites 
only. c,d Equivalent analysis as in a and b, but in skin samples.
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Extended Data Fig. 6 | Scaling relationships without initial trimming of ages 
below sexual maturity. a, Log methylation rate ratio, compared to baseline 
species, versus log maximum lifespan in blood samples. Methylation rates 
are calculated for each species without initial trimming of ages below sexual 

maturity. The y-coordinate for each point shows the log10 cumulative product 
of the median slope ratio (see Methods). Regression line from simple linear 
regression of the form y ~ x. Shaded region represents the 95% confidence 
interval. b, Equivalent analysis as in a), but in skin samples.
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Extended Data Fig. 7 | Scaling relationship between methylation rate and 
body mass. a, Log methylation rate (ratio compared to baseline species) versus 
log body mass in blood samples. The y-coordinate for each point shows the log10 

cumulative product of the median slope ratio (see Methods). Regression line 
from simple linear regression of the form y ~ x. Shaded region represents the 95% 
confidence interval. b, Equivalent analysis as in a, but in skin samples.
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Extended Data Fig. 8 | Potential remaining bias, leading to an 
underestimation of methylation rates of faster-methylating species. 
Synthetic data showing a faster methylating site (blue) that reaches the 

maximum methylation value (1) and begins to plateau, compared to a slower 
methylating site (red) that does not plateau. In each case, the resulting inferred 
methylation rates (represented by the linear regression lines) are identical.
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Extended Data Fig. 9 | ELOVL2 CpG. Example of a CpG (ELOVL2) that is strongly age-related in some species but relatively age-invariant in others. Regression lines 
from simple linear regressions of the form methylation ~ age.
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