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This paper presents a dynamic network autoregressive conditional heteroscedasticity
(ARCH) model suitable for high-dimensional cases where multivariate ARCH models are
typically no longer applicable. We adopt the theoretical foundations from spatiotemporal
statistics and transfer the dynamic ARCH model processes to networks. The model
integrates temporally lagged volatility and information from adjacent nodes, which
may instantaneously spill across the entire network. The model is used to forecast
volatility in the US stock market, and the edges are determined based on various distance
and correlation measures between the time series. The performance of alternative
network definitions is compared with independent univariate log-ARCH models in
terms of out-of-sample prediction accuracy. The results indicate that more accurate
forecasts are obtained with network-based models and that accuracy can be improved by
combining the forecasts of different network definitions. We emphasise the significance
for practitioners to integrate network structure information when developing volatility
forecasts.
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1. Introduction

Forecasting volatility in the stock market is crucial,
s it provides relevant information for investment and
isk management purposes. Volatility forecasting usu-
lly employs generalised autoregressive conditional het-
roscedasticity (GARCH) models and their extensions
Andersen & Bollerslev, 1998; Bollerslev, 1986; Francq
Zakoian, 2019). Geweke (1986) advocates using the

og-ARCH model instead of the non-exponential GARCH
hen dealing with highly persistent volatility processes,

arge jumps in the data, outliers, and skewness. How-
ver, in times of worldwide trading systems and common
nternational markets, interactions between stocks and
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their returns play a crucial role. If the volatility of one or
more stocks changes, this change can immediately spill
over to the entire financial network, where ‘‘close stocks’’
are affected by the largest degree. These interactions can
also be exploited for volatility forecasting in financial
networks. In this paper, we propose a network log-ARCH
and develop a novel modelling framework inspired by
spatiotemporal statistics to improve the out-of-sample
volatility forecasting performance.

Considering volatility modelling, Otto et al. (2018) in-
troduced spatial ARCH (spARCH) models, while Otto et al.
(2021) analysed its properties in detail. Further, Sato and
Matsuda (2017) suggested a logarithmic expression of
the volatility equation, which is the equivalent of a log-
ARCH model for spatial data. In Sato and Matsuda (2021),
the spatial log-ARCH model was generalised to a spatial
log-GARCH model. Otto and Schmid (2022) introduced a
forecasting stock market volatility. International Journal of Forecasting
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eneralization of the spARCH model in a unified frame-
ork, allowing for a variety of possible spatial GARCH-
ype models. More recently, Otto et al. (2023) proposed
dynamic spatiotemporal log-ARCH approach for mod-
lling house prices in Berlin. In this paper, we propose
sing the Otto et al. (2023) spatiotemporal modelling
pproach for forecasting stock market volatility. The out-
f-sample forecasting performance is compared with the
enchmark time-series log-ARCH models and ensemble
orecasts.

Although spatial and spatiotemporal modelling is
opular in many domains such as epidemiology
Mattera, 2022; Sahu & Böhning, 2022), environmental
ciences (Cameletti et al., 2019; Fassò et al., 2022; Huang
t al., 2011; Piter et al., 2022), and real estate economics
Baltagi & Li, 2014; Holly et al., 2010; Otto & Schmid,
018), it is less explored in finance. By modelling volatility
ith a spatiotemporal approach, we assume that risk

s influenced not only by the temporal fluctuations but
lso by dependencies with other stocks that are close in
eographical space or, more generally, are in some sense
imilar.
According to Pirinsky and Wang (2006), two main

xplanations of why adjacent information can be helpful
or modelling stock market data can be found in local
nvestors’ correlated trading activities and by the presence
f locally correlated fundamentals. Nevertheless, many
tudies argue that geographical distance has quite lim-
ted relevance in explaining the correlations of financial
eturns, see e.g. Barker & Loughran, 2007; Eckel et al.,
011. Notice also that it is unclear which geographical
nformation could and should be used to analyse stock
arket data, especially if country-specific stocks are con-
idered. For example, using firms’ headquarters to define
patial closeness can be reductive, considering that pro-
uction plants can be located in many places. For this
eason, previous studies propose alternative definitions of
imilarity across stocks measured in an attribute space
ather than the geographical one, for example, the space
panned by financial indicators, balance sheet positions,
r alternative indicator,s see e.g. Asgharian et al., 2013;
ernández-Avilés et al., 2012; Fülle & Otto, 2023. In this
ay, spillovers arise from stocks with similar charac-
eristics, although not necessarily close in geographical
pace.
Therefore, the use of spatial econometric approaches

n the financial domain requires a different definition
f the proximity of locations and how spatial weights
re determined. By substituting spatial contiguity with
broader concept of similarity, we can construct a fi-
ancial network and model the volatility of a stock as a
unction of past values and the relationship with adjacent
odes in the network. Working with this kind of model
s convenient because financial networks provide a suit-
ble framework for understanding the propagation mech-
nisms of shocks occurring in the market. Specifically,
n an empirical application, we consider several network
efinitions based on correlation metrics and closeness in
he volatility dynamics. Moreover, various choices of edge
eights are considered for each network definition, which
re eventually compared concerning their out-of-sample
2

prediction performance. In this way, we can identify the
best financial network structure in terms of forecasting
ability.

As shown by many authors, see e.g. Barigozzi & Hallin,
2017; Betancourt et al., 2020; Demiris et al., 2014; Diebold
& Yılmaz, 2014; Liu et al., 2021; Vinciotti et al., 2019;
Zhou et al., 2023, the financial market is well represented
by networks where stocks are the nodes, and the edges
reflect the degree of similarity across them. We introduce
the spillovers from adjacent nodes in an ARCH-like man-
ner. The information from adjacent network nodes can
be successfully used to model relationships across stock
returns and volatility. The idea that better predictions
can be achieved by incorporating network information
has attracted the interest of researchers in the field, see
e.g. Huang et al., 2023; Wu et al., 2022. But we still know
very little, especially about the form of interactions, and
further studies are needed. Indeed, network modelling of
returns and volatilities is a recent and flourishing research
area in finance.

We contribute to this literature in three main direc-
tions. First, unlike previous papers (Billio et al., 2021;
Caporin & Paruolo, 2015; Zhou et al., 2020), we propose
the use of a spatiotemporal dynamic log-ARCH model for
volatility forecasting in financial networks. Specifically,
we consider instantaneous network interactions in an
ARCH-like manner. Hence, the volatility may immediately
spill over to adjacent/similar stocks, reflecting the simul-
taneity of investors’ trading decisions. Furthermore, our
proposed modelling approach shares the same relevant
features of exponential volatility models. Second, we ex-
tend the dynamic spatiotemporal ARCH models of Otto
et al. (2023) with homogeneous temporal ARCH effects
by introducing stock-specific temporal ARCH parameters.
Consequently, we directly extend univariate log-ARCH
models for each stock by including interactions across
the financial network. We assess the usefulness of the
network log-ARCH model by a rigorous evaluation of its
forecasting performance. To the best of our knowledge,
this was not the focus of previous research. Third, un-
der the assumption of unknown locations, we evaluate
how the approach used for constructing the network af-
fects the forecasting results. More precisely, we compare
several network and edge weight definitions, and we
select the network structure with the best forecasting
performance. Previous papers proposed the construction
of an adjacency based on objective criteria such as shared
shareholders (Zhou et al., 2020), industry sectors (Billio
et al., 2021; Caporin & Paruolo, 2015), or balance sheet
data (Fülle & Otto, 2023). By contrast, we adopt three
alternative definitions of similarity across stocks, taking
inspiration from the time series clustering literature, for
an overview see Maharaj et al., 2019. In doing so, we
adopt an intuitive and fast data-driven approach for con-
structing the network that only requires the time series
to be predicted for its construction. Then, we build the
networks considering the inverse distance and k-nearest
neighbours, obtaining 12 alternative network log-ARCH
models. Ensemble forecasts to combine all model alterna-
tives are considered to further improve the out-of-sample

forecasting performance.
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The empirical application is carried out on data about
the stocks included in the Dow Jones Industrial Average
Index during the period from 2010–2022. The forecast-
ing exercise is conducted considering a rolling window
approach, and the out-of-sample accuracy is evaluated in
terms of the root mean squared forecast error (RMSFE)
and mean absolute forecast error (MAFE). Moreover, the
difference in the predictive performance of the network-
based models (and their combinations) with respect to
the benchmark is tested by means of the Diebold and Mar-
iano (2002) and Clark and West (2007) tests. The results
demonstrate that the proposed network-based log-ARCH
approach provides more accurate out-of-sample forecasts
than the traditional log-ARCH modelling relying solely on
temporal information. Moreover, considering predictive
accuracy tests, we find that both the similarity measure
and the procedure employed in constructing the net-
work model affect the out-of-sample forecasting accuracy.
Although all the network approaches outperform the
benchmark, we identify a superior subset (three out of
12) of network models with forecasts that are more sta-
tistically accurate. Finally, we show that a combination
of forecasts obtained with alternative network definitions
further improves forecasting accuracy. Given the good re-
sults obtained through network combinations, we suggest
adopting combination procedures in practice when fore-
casting volatility with alternative network-based models.

The rest of the paper is structured as follows. Section 2
discusses the dynamic spatiotemporal log-ARCH model
of Otto et al. (2023) and how spatial weights are deter-
mined. Section 3 presents the data used for the empirical
analysis and explains how the out-of-sample forecasting
methodology is conducted. Section 4 shows the main
results, i.e. forecasting accuracy and predictive accuracy
tests. Section 5 concludes with final remarks and some
suggestions for future research.

2. Forecasting models

The following sections introduce the modelling frame-
work used for forecasting comparisons. We consider a
process of stock market returns on a network G = (V , E),
which consists of a set of nodes/vertices V (i.e., stocks)
that are possibly connected by directed or undirected
edges. These edges are contained in the set E. Further-
more, we observe a process {Yt (si) : t = 1, . . . , T , si ∈ V }

of nodal attributes across time (i.e., return series). In par-
ticular, our focus is on the volatility of this process, which
should be forecasted for T+1, T+2, . . . using the dynamic
network ARCH model. Moreover, let V = {s1, . . . , sn}
be the set of n stocks and Y t = (Yt (s1), . . . , Yt (sn))′
the n-dimensional vector of the observed process on the
network. It is important to note that we do not consider
dynamic networks (i.e., time-varying sets of nodes and/or
edges), but the networks are assumed to be constant over
time.

2.1. Univariate logarithmic ARCH models (baseline model)

We start our model comparison with univariate log-
arithmic ARCH (log-ARCH) models, which are fitted in-
dependently to each time series. In this way, we get a
 c

3

very flexible model, allowing for different dependence
structures for each stock to get the forecast performance
of the volatility series. The model was originally proposed
by Geweke (1986). To be precise, the log-ARCH(P) for the
ith stock can be written as follows:

Yt (si) =

√
ht (si)εt (si), (1)

n ht (si) = ωi +

p∑
p=1

γip ln Y 2
t−p(si) , (2)

here ωi is the constant term, γi1, . . . , γiP are the ARCH
arameters for the ith stock, and P is the order of the log-
RCH process. We can fit n univariate log-ARCH models
nd predict stocks’ volatilities by only using idiosyncratic
emporal information. The n(P + 1) unknown parameters
f the log-ARCH model can be consistently estimated
ia ARMA representation of the process, see e.g. Su-
arrat et al., 2016. Applying a log-square transformation
f (1) shows that ln Y 2

t (si) = ln ht (si) + ln ε2
t (si). As a

onsequence,

n Y 2
t (si) = ωi +

P∑
p=1

γip ln Y 2
t−p(si) + ln ε2

t (si) .

owever, since the distribution of ln ε2
t (si) does not have

mean of zero, E
(
ln ε2

t (si)
)
is added and subtracted from

ides of the equation, leading to

ln Y 2
t (si) = φi0 +

P∑
p=1

φip ln Y 2
t−p(si) + ut (si) (3)

ith a new error term ut (si) = ln ε2
t (si) − E

(
ln ε2

t (si)
)

nd the constant φi0 = ωi + E
(
ln ε2

t (si)
)
. Notice that(

ln ε2
t (si)

)
= µ∗

i for all t , so this transformation ensures
hat the error term ut (si) has a zero mean. Hence, the
RMA representation (3) allows for consistent estima-
ions of the log-ARCH parameters. More precisely, we
ave that γip = φip and ω = φi0 − E

(
ln ε2

t (si)
)
.

From the discussion highlighted so far, it is clear that
e need an estimate of the term E

(
ln ε2

t (si)
)
to estimate

i. Bauwens and Sucarrat (2010), Sucarrat and Escribano
2012), Sucarrat et al. (2016) propose ex post scale ad-
ustments based on the estimated residuals {ût (si), t =

, . . . , T }. That is,

ˆ
∗

i = − ln

[
1
T

T∑
t=1

exp(ût (si))

]
. (4)

This is a consistent and asymptotic normal smearing es-
timator of the log-square transformed errors’ mean, see
Duan, 1983; Francq & Sucarrat, 2018; Sucarrat et al., 2016.

Lastly, the resulting one-step-ahead forecast at T + 1
of the log-ARCH(1) model is given by

ln ĥt+1(si) =

[
φ̂i0 + ln

(
1
T

T∑
t=1

exp(ût (si))

)]
+φ̂i1 ln y2t (si),

(5)

ith y2t (si) being the observed values of Y 2
t (si). For the
omparison, we focus on one-step-ahead forecasts and a
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odel order of P = 1, but the methods can easily be
xtended to multi-step-ahead forecasts and higher model
rders.
Generally, network processes could also be represented

s multivariate time series. Thus, a natural extension to
ccount for dependence between the nodes would be
ultivariate log-ARCH models (Francq & Sucarrat, 2017).
owever, they are limited in the sense that (1) they
o not account for the inherent network structure, and
2) the number of parameters grows quadratically when
he number of nodes n increases. It is worth mentioning
hat the time series length (without any changes in the
arameters or structural breaks) must be larger than n2

o get unique and reasonably precise estimates. In this
aper, we particularly focus on the case with large n
compared to the length of the time series T ). Hence, we
ropose to include instantaneous ARCH effects across the
etwork to describe the dependence between the stock
eturns. In other words, the log volatility ln ht (si) of the
th stock is influenced by all other observations yt (sj)
or j = 1, . . . , n and j ̸= i, whereby the dependence
tructure is determined by the edges E of the network. In
his way, large volatilities (i.e., large values of yt (sj)2) can
pill over to the adjacent nodes and lead to an increase
n ln ht (si). As a consequence, volatility clusters can be
bserved across the network.

.2. Dynamic network logarithmic ARCH model

The new dynamic network log-ARCH model is based
n the dynamic spatiotemporal ARCH models proposed
y Otto et al. (2023). As for the univariate log-ARCH
odels, the observed process is given by

t (si) =

√
ht (si)εt (si), (6)

but now ht (si) is being influenced by past observations
at the same node, Yt−1(si), and simultaneously by the
adjacent observations at the same time point, {Yt (sj) :

j ∈ Ei}, where Ei is the subset of edges with links to
ode si. Let h∗

t = (ln h2
t (s1), . . . , ln h2

t (sn))
′ and Y ∗

t =

(ln Y 2
t (s1), . . . , ln Y 2

t (sn))
′. Then, the network log-ARCH

process of order one can be written as follows:

h∗

t = ω + ΓY ∗

t−1 + ρWY ∗

t , (7)

whereW = (wij)i,j=1,...,n is a matrix of edge weights which
define the relative degree of the volatility spillovers, ρ
is an unknown parameter for these instantaneous net-
work interactions, Γ = diag(γ1, . . . , γn)′ is a diagonal
matrix of stock-specific temporal ARCH effects, and ω =

(ω1, . . . , ωn)′ is the constant term. The matrix of edge
weights W is analogously specified as the spatial weight
matrix in spatial econometrics. That is, the diagonal en-
tries are supposed to be zero (i.e., no self-loops). The ma-
trix is non-stochastic and uniformly bounded in row and
column sums in absolute terms. The latter assumption is
needed to limit the network interactions to a constant
degree when the number of nodes n is increasing. Typ-
ical choices are inverse-distance matrices (e.g., for road
networks) or k-nearest neighbour matrices, where the
proximity is defined by any network characteristic. We

discuss the definition of W in more detail in Section 2.3.

4

The log-volatility terms follow a process characterised
by the presence of instantaneous network effects, which
is the key difference to previously proposed network
GARCH models e.g. Zhou et al., 2020 or GARCH models
including artificial neural network structures, e.g. Don-
aldson & Kamstra, 1997; Kristjanpoller & Minutolo, 2015.
These previous models include network interactions only
at the first temporal lag. That is, network spillovers can
only happen in the next time instance but not instanta-
neously. The network log-ARCH model allows for deriving
an ARMA representation of the model, namely

Y ∗

t = φ0 + ρWY ∗

t + ΓY ∗

t−1 + ut , (8)

where ut = (ln ε2
t (s1) − E(ln ε2

t (s1)), . . . , ln ε2
t (sn) −

E(ln ε2
t (sn)))

′ are the log-squared errors, and φ0 = ω + µ∗

with µ∗
=
(
E(ln ε2

t (s1)), . . . , E(ln ε2
t (sn))

)′. It is important
to note that we allow for different means E(ln ε2

t (si))
for each stock, which is constant over time. To estimate
φ∗

0, we propose using the smearing estimate proposed
by Sucarrat et al. (2016) for time-series log-ARCH models.
That is,

φ̂
∗

0 =
1
T

T∑
t=1

ût . (9)

From (8), we see that the instantaneous spillovers lead
to endogeneity in the model (i.e., Y ∗

t appears on both
sides of the equation), which is not the case when the
network interactions are restricted to the first tempo-
ral lag, like in Zhou et al. (2020). Hence, we apply the
estimation proposed by Otto et al. (2023) based on or-
thonormal transformations and the generalised method of
moments (GMM). The key idea of the GMM estimator is
to instrument WY ∗

t by higher-order network lags origi-
nally proposed for spatiotemporal autoregressive models
by Lee (2007), Lee and Yu (2014). For further details, we
refer the interested reader to Otto et al. (2023).

Finally, we obtain the one-step-ahead forecast of all
stocks at time T + 1 as

∗

T+1 =
(
In − ρ̂W

)−1
[
Γ̂Y ∗

T + φ̂0

]
, (10)

where In is the n-dimensional identity matrix. Notice
that φ0 includes ω and µ∗, but these two quantities are
jointly estimated from the residuals’ process, as in (9),
because the orthonormal transformation eliminates all
cross-sectional fixed effects.

For this network log-ARCH model, finding a suitable
edge weight matrix for the ARCH-type interactions across
the network is crucial. The edges are typically unknown
for financial networks or stock market interactions and
therefore have to be estimated. Nevertheless, it is rea-
sonable to assume that with the increasing similarity
between the stocks, they are more likely to experience
spillovers in the risks, i.e., conditional volatilities. In the
following section, we discuss several options to estimate
the similarity/dissimilarity in stock return series, which is

a basis for the edge weights in W.



R. Mattera and P. Otto International Journal of Forecasting xxx (xxxx) xxx

2

i
t
m
c
s
o
d
s
b
e
h
o
2
s
m
1
2
2
2
a
w
c
h

t
a
p
b
f
a

d

C
g

d

w
t
1
e
u
u
(
s

w
s
i
P
B
h

a
P

s
i
w

w

.3. Determining similarity across stocks

Measuring distance across time series can be done
n many different ways. In this regard, one mainly dis-
inguishes between raw-data-based, feature-based and
odel-based approaches (Maharaj et al., 2019). In the first
lass, we consider dissimilarities computed on raw data,
uch as using the standard Euclidean distance on temporal
bservations or dynamic time warping when stocks have
ifferent lengths. Following a future-based approach, dis-
imilarities across financial time series can be calculated
ased on asset correlations (Mantegna, 1999; Tumminello
t al., 2010), auto-correlation structures (D’Urso & Ma-
araj, 2009), periodograms (Caiado et al., 2006, 2020),
r Hurst exponents (Cerqueti & Mattera, 2023; Lahmiri,
016). Further, model-based approaches measure dis-
imilarity across stocks by considering parameters esti-
ated from statistical models, such as ARIMA (Piccolo,
990), GARCH, see e.g. D’Urso et al., 2016; Otranto,
008, the multiplicative error model, see e.g. Gallo et al.,
021, or score-driven models, see e.g. Cerqueti et al.,
022, 2021. The most commonly employed approaches
re those based on volatility dynamics when dealing
ith stock returns. Indeed, volatility-based approaches
an measure similarities by directly exploiting conditional
eteroscedasticity.
In this paper, we consider three alternative configura-

ions for the matrix W: the standard Euclidean distance
cross stock returns, the use of a correlation-based ap-
roach as suggested by Mantegna (1999), and a model-
ased approach based on the log-ARCH estimates. For the
irst approach, the dissimilarities over time are computed
s follows:

ij =

√ T∑
t=1

(
yt (si) − yt (sj)

)2
. (11)

onsidering the correlation-based approach, instead, the
eneric entries of the dissimilarity matrix are given by

ij =

√
2
(
1 − ρij

)
, (12)

ith ρij being the estimated correlation coefficient be-
ween stocks i and j over the entire time horizon t =

, . . . , T . In this way, we assume that stocks are similar to
ach other if their correlation is high. Finally, we propose
sing a log-ARCH approach, accounting for the stocks’
nderlying log-volatility dynamics. According to Piccolo
1990), we can define the dissimilarity between two time
eries i and j by means of the AR(∞) of log-squared
returns:

dij =

√ ∞∑
p=1

(
γip − γjp

)2
, (13)

here γip is the autoregressive parameter (of order p) log-
quared returns series of the ith stock. In practice, the
nfinite sum in (13) has to be truncated at some order
. The selection can be made according to the Akaike or
ayesian information criterion. If two time series i and j
ave different orders, P and P , we take P = max(P , P )
i j 1 2

5

nd let γip = 0 for P > P1 and, similarly, γjp = 0 for
> P2 (Piccolo, 1990).
Based on the pairwise distances in (11) to (13), we con-

ider two different strategies for constructing the weight-
ng matrix W. First, W is defined as an inverse-distance
eight matrix with

ij = d−1
ij for all i, j = 1, . . . , n . (14)

Second, W is considered to have constant edge weights
based on the k-nearest neighbours:

wij =

{ 1/k if sj is closer than the k + 1
nearest neighbours of si

0 otherwise.
(15)

The so-obtained weighting matrix W expresses distances
in the (temporal) attribute space. Whereas the inverse-
distance matrix is a symmetric and dense matrix by
construction with equal weights for both directions
(i.e., undirected graph, fully connected), the k-nearest-
neighbour matrix is not necessarily symmetric (it will
usually be asymmetric), but each neighbour has the same
weight (i.e., a directed graph, homogeneously weighted).
Alternatively, the weights could be obtained from esti-
mated distances in balance sheet data, cf. Fülle & Otto,
2023.

3. Empirical analysis: Data and forecasting methodol-
ogy

For our empirical exercise, we focused on volatility
forecasting of stocks in the Dow Jones Industrial Average
Index. To facilitate replication and further analysis, we
have made our code, data, and examples available at
philot789.github.io/Network_ARCH/.

3.1. Data

The time series of daily stock returns span from Oc-
tober 1, 2010, to October 31, 2022. We removed from
our analysis any stocks with missing values. The list of
considered stocks is shown in Table 1, along with their
main descriptive statistics. The return series are displayed
in Fig. 2 in terms of the median log returns of all stocks
on each day (first row), and their median absolute returns
as a measure of the stock market volatility (second row).
In total, we observe the logarithmic returns of n = 29
nodes/stocks for T = 3040 days. To evaluate the bene-
fit of including instantaneous network ARCH effects, we
include the same information for all predictions. That is,
we choose the temporal lag order P = 1 for the models
described in Sections 2.1 and 2.2. We allow for different
values of µ∗

i for each stock and different temporal ARCH
parameters for each stock. That is, for ρ = 0, the network
model is identical to the independent time-series log-
ARCH models considered as the benchmark model. It is
worth noting that, given the number of stocks n, the num-
ber of parameters of multivariate GARCH would exceed
a reasonable degree, so it is useful to assume a certain
structure of the covariance. More precisely, the number
of parameters of a scalar Gaussian dynamic conditional

correlation (DCC) model is 495, which corresponds to one

https://philot789.github.io/Network_ARCH/
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Fig. 1. Temporal stability of the network structure based on estimated correlations of a DCC model. Top left: Sorted temporal stability index
(i.e., standard deviation of the estimated correlations across time for each pair of stocks). Top right: representation of four selected pairs of stocks
with the highest/lowest temporal stability. Bottom: DCC correlations plotted across time, where the colour corresponds to the selected plots in the
top panels.
parameter per roughly five time points in the estima-
tion window (Caporin & McAleer, 2012). Nevertheless, we
show the estimated DCC correlations in Fig. 1 to anal-
yse the temporal stability of the network structure. The
temporal correlation is largely stable across time, and
the largest variations in the pairwise correlations are ob-
served due to some peaks (light orange and green curves).
To assume a structure in the covariance, we consider the
proposed network ARCH structure. Thus, we allow for
instantaneous volatility interactions across the network
in an ARCH sense. Moreover, we compare the forecasting
performance for various choices of edge weights, namely
all three distance measures described in (11)–(13) and

inverse-distance weighting (models A.1, A.2, and A.3) and

6

k-nearest-neighbour weights with k = 2, 3, 5, and 10
(models B.k.1, B.k.2, and B.k.3).

The networks obtained considering the alternative ap-
proaches are shown in Fig. 3. The nodes in Fig. 3 are
located according to their distances, and in the case of
the inverse-distance approach, the edges are coloured ac-
cording to their weights such that the higher the weight,
the darker the edge. The network structures highlight
interesting differences which can be exploited in the fore-
casting task.

In the case of Euclidean distances, as described in (11),
we observe two outlying nodes, namely the CRM and
BA stocks. When the weights are constructed based on
the inverse distance (left-hand graphs), these two stocks

have a minor influence on all other stocks. By contrast,
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Table 1
Considered stocks in the empirical analysis and main descriptive statistics.
Company Symbol Mean St. Dev. Min Max

Apple AAPL 0.0010 0.0180 −0.1377 0.1132
Amgen AMGN 0.0006 0.0153 −0.1008 0.1034
American Express AXP 0.0005 0.0183 −0.1604 0.1979
Boeing BA 0.0003 0.0232 −0.2724 0.2177
Caterpillar CAT 0.0004 0.0183 −0.1541 0.0983
Salesforce CRM 0.0006 0.0226 −0.1730 0.2315
Cisco CSCO 0.0004 0.0169 −0.1769 0.1480
Chevron CVX 0.0004 0.0177 −0.2501 0.2049
Dow DOW 0.0004 0.0161 −0.1391 0.1346
Goldman Sachs GS 0.0003 0.0182 −0.1359 0.1620
Home Depot HD 0.0008 0.0148 −0.2206 0.1288
Honeywell HON 0.0006 0.0147 −0.1288 0.1404
IBM IBM 0.0002 0.0144 −0.1375 0.1071
Intel INTC 0.0003 0.0187 −0.1990 0.1783
Johnson & Johnson JNJ 0.0005 0.0107 −0.1058 0.0769
JPMorgan Chase JPM 0.0005 0.0179 −0.1621 0.1656
Coca-Cola KO 0.0004 0.0111 −0.1017 0.0628
McDonald’s MCD 0.0005 0.0121 −0.1729 0.1666
3M MMM 0.0002 0.0139 −0.1386 0.1187
Merck MRK 0.0005 0.0131 −0.1038 0.0990
Microsoft MSFT 0.0008 0.0164 −0.1595 0.1329
Nike NKE 0.0006 0.0172 −0.1371 0.1444
Procter & Gamble PG 0.0004 0.0111 −0.0914 0.1134
Travelers TRV 0.0005 0.0144 −0.2332 0.1248
UnitedHealth UNH 0.0010 0.0161 −0.1897 0.1204
Visa V 0.0008 0.0161 −0.1456 0.1397
Verizon VZ 0.0002 0.0112 −0.0697 0.0740
Walgreens Boots Alliance WBA 0.0001 0.0178 −0.1548 0.1187
Walmart WMT 0.0004 0.0124 −0.1208 0.1107
for the k-nearest-neighbour weights (right-hand graphs),
heir influence to adjacent stocks will be of the same
egree. Interestingly, considering the main descriptive
tatistics in Table 1, BA and CRM have the highest variabil-
ty in the sample. Specifically, BA has the lowest minimum
alue, while CRM has the highest maximum. Thus, we ob-
erve the highest Euclidean distance for these two stocks,
hich is not robust in the case of outlying observations.
urthermore, these two stocks show the most volatile
atterns in terms of their returns. However, under this
etwork structure and inverse-distance weights, the in-
ormation included of these two stocks will have pretty
ow relevance for forecasting other stocks in the network.
onversely, the leading network structure is characterised
y a central block (comprising, among the others, IBM,
NH, and MMM) affected mainly by the influence of the
ther stocks. Simultaneously, this group of stocks strongly
ffect those placed in the tails of the network. The central
lock of stocks has a stronger relationship with CRM,
hile the effect of BA is more pronounced for stocks in
he right tail of the network.

The second row in Fig. 3 shows the networks con-
tructed under the correlation distance defined in (12).
rom one side, under this scenario, the stock BA is not
ar away from the other stocks, as it is highly correlated
ith AXP, HON, JPM, and the other closer stocks. The same
attern was also observed for the Euclidean distance. On
he other side, CRM is still the most distant from the
thers, although it shows an interestingly high correlation
ith IT-related stocks such as AAPL, MSFT, INTC, and
SCO. In light of this evidence, stocks belonging to the IT-
elated sectors would rely on information from stocks of
7

the same or similar industry sector. In this way, the infor-
mation included in highly correlated stocks is successfully
employed to improve the volatility forecasts, due to the
network structure. For the inverse-distance weights (left-
hand graphs), this information spillover is represented by
the edge colour, as the more relevant arrows have darker
colours, and we observe a block of closely connected
stocks in the bottom-right area of the graph. Contrary to
these nodes, stocks placed on the left have lighter arrows,
meaning that their information would scarcely be used for
predicting stocks to the right of the structure and that
their predictions rely mainly on idiosyncratic temporal
information rather than the information coming from the
network.

The last row in Fig. 3 shows the network structure con-
structed in terms of the volatility-based measure given by
(14). Under this network structure, closer stocks are those
sharing similar log-volatility dynamics. BA is again an
outlying stock in this case, as it was under the Euclidean-
based network. Thus, information from BA will scarcely
be used for predicting the other stocks, and at the same
time, BA forecasts will be mainly based on their tempo-
rally lagged values. The other two stocks placed far from
the main cluster are AXP and TRV. However, the edges
of these stocks show darker colours compared with BA,
meaning that these stocks still have informative power for
the volatility dynamics of the network.

3.2. Forecasting evaluation

The forecasting methodology is based on a rolling win-
dow procedure. For this reason, we first divide the sample
into training and testing sets for each stock, leaving the
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Fig. 2. Summary of n = 29 time series of log returns. Top: Median log returns of each day (solid line) and 5% and 95% quantiles (dashed lines).
ottom: Median (solid line) and 5% and 95% quantiles of the absolute log returns to depict the temporally varying volatility.
ast 500 observations (i.e., the last two years) for out-of-
ample testing. The first M = 2540 observations are used
to obtain the edge weight matrix W and to estimate the
model parameters. Then, the models are used for the one-
step-ahead forecasts at M+1. Then, according to a rolling
indow procedure, the oldest observation is removed

or the next step, and the new realised observation at
+ 1 is included in the estimation sample. Parameters

re re-estimated with the new data, and the forecasts
re obtained for M + 2. This procedure is repeated until

no new observation is available and all T − M = 500
volatilities are predicted for each stock. Thus, we always
have an estimation window equal to 2540 observations at
each recursion step.

To evaluate forecasting accuracy, we rely on two com-
monly employed accuracy metrics, namely the root mean
squared forecast error (RMSFE), i.e.,

RMSFE =

√ 1
T − M

T∑ (
ln ĥit − ln y2it

)2
, (16)
t=M+1

8

and the mean absolute forecast error (MAFE), i.e.,

MAFE =
1

T − M

T∑
t=M+1

⏐⏐⏐ln ĥit − ln y2it
⏐⏐⏐ . (17)

Notice that we use realised squared log returns as the
proxy of volatility for the out-of-sample accuracy evalu-
ation. Furthermore, we use a predictive accuracy test to
evaluate whether the forecasting errors of the competing
statistical models are significantly different.

Let dt = g
(
e1,t
)

− g
(
e2,t
)
be the error differential

between two forecasting approaches up to some transfor-
mation g(·), that in this paper are squaring g(e1,t ) = e21,t
and absolute value g(e1,t ) = |e1,t |. We perform the test
independently for each stock; thus, we drop the index i in
this notation. Assuming covariance stationarity of the loss
differential series dt , Diebold and Mariano (2002) show
that the sample mean of the loss differential

d̄ ≡
1

T − M

T∑
t=M+1

dt (18)

asymptotically follows a standard normal distribution.
Hence, a test decision about the null hypothesis of equal



R. Mattera and P. Otto International Journal of Forecasting xxx (xxxx) xxx

f
s

D

Fig. 3. Network of the considered stocks with different dissimilarity measures and weighting schemes. The nodes are located according to their
distances. Top row: Euclidean dissimilarity (11). Centre row: correlation dissimilarity (12). Bottom row: log-ARCH dissimilarity (13). Left column:
inverse-distance edge weights (14) with edges coloured according to their weights (i.e., the higher the weight, the darker the edge). Right column:
k = 3-nearest-neighbour weights (15), where the arrows point towards the direction of the influence.
orecast accuracies can be obtained based on the following
tatistic:

M =
d̄√
ˆ ¯

, N ∼

(
0, V̂ (d̄)

)
, (19)
V (d)

9

where V (d̄) can be consistently estimated assuming a par-
ticular autocorrelation structure of the forecasting errors.
Moreover, we note that the network log-ARCH model
nests the log-ARCH when ρ = 0. In this framework,
under the null that the parsimonious model generates the
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ata, it is known that forecasts obtained by the larger
odels are affected by noise introduced by the estimation
f parameters that are zero in the population (Clark &
cCracken, 2001). Therefore, we expect the forecast-

ng errors of the log-ARCH to be smaller than those
f the network log-ARCH. To test the predictive accu-
acy of nested models, we also include the results of
he Clark and West (2007) test that is approximately
ormal under squared forecasting errors. In the end, to
ompare forecasts obtained from multiple models, we
onsider the model confidence set (MCS) procedure of
ansen et al. (2011) for sequential testing based on the
tatistics in (19).

. Results of the out-of-sample forecasting exercise

Below, we discuss the results of the out-of-sample
xercise. We aimed to predict the log volatility for the n =

9 stocks considered in Table 1. Forecasts obtained from
3 alternative models are compared. The time-series log-
RCH is the selected benchmark, as it exploits temporal
nformation only. For the network log-ARCH models, we
onsidered three different distance measures and four
lternative weight definitions (i.e., inverse-distance, k =

-nn, k = 5-nn, and k = 10-nn), resulting on 12 different
etwork models.

.1. Does the network-based approach improve the forecast-
ng accuracy?

In what follows, we evaluate whether the additional
nformation from the network nodes is useful for forecast-
ng volatility. An overview of the results in terms of both
he MAFE and RMSFE, computed considering the average
orecasting errors for the n stocks, is shown in Table 2.
he p-values associated with the tests of equal predic-
ive accuracy against the benchmark are also reported.
he first column shows the log-ARCH results, while the
ther columns report the forecasting results of differ-
nt network structures. The stock-specific results are re-
orted in Appendix. More precisely, Table A.1 shows the
omparison in terms of predictive accuracy between the
enchmark and the best network model, while Table A.2
ompares the benchmark with the worst network model.
nterestingly, all the network-based models provide more
ccurate out-of-sample predictions than the log-ARCH,
ecause of their increased model flexibility.
Let us consider the RMSFE results first. The log-ARCH

odel provides an average RSME of 2.82, while the best
etwork log-ARCH model (k = 3 nearest neighbours with
uclidean distance, i.e. model B.3.1) reaches an average
MSFE of 2.44, which is about 15% lower. The worst net-
ork model (k = 3 nearest neighbours with correlation-
ased distance, i.e. model B.3.2), instead, has an average
MSFE of 2.55 thus providing a not negligible improve-
ent in the forecasting accuracy compared to the log-
RCH. Considering MAFE loss, the log-ARCH has an aver-
ge value of 2, which is much larger than 1.85, which is
he average MAFE obtained with the best network model
k = 10 nearest neighbours with volatility-based distance,

.e. model B.10.3). The worse network model in terms of

10
MAFE (k = 3 nearest neighbours with correlation-based
distance, i.e. model B.3.2) has an average value of 1.94
which is still lower than the log-ARCH. The superiority of
the network-based log-ARCH models is supported by the
predictive accuracy tests, as we reject the null hypothesis
for all the considered network log-ARCH models and for
both the considered forecasting losses.

From a first view, we can improve the forecasting
accuracy of the log-ARCH by using any network struc-
ture. In this respect, it is worth noting that even if we
include the market volatility factor as an explanatory vari-
able in the log-ARCH model, we do not find significantly
better forecasting results compared with the network log-
ARCH. This confirms that the network interactions ac-
count for common market factors to a certain extent.
However, not all network structures are the same regard-
ing out-of-sample forecasting accuracy. First, a compari-
son across network models highlights that the k-nearest-
neighbour approach leads to the construction of more
effective financial networks from a financial point of view.
In other words, fully connected networks obtained with
the inverse-distance approach are not the best forecasting
choice. To be precise, the fully connected network con-
structed with the volatility-based approach (13) (model
A.3) provides the best forecasts compared to the other
two inverse-distance approaches (models A.1 and A.2) in
terms of both the RMSFE and MAFE. However, almost
all k-nearest-neighbour networks provide more accurate
forecasts in the validation set.

The stock-specific results, reported in Appendix (see
Tables A.1 and A.2), suggest that even the worse network
approach provides statistically more accurate forecasts
out of sample than the benchmark. Interestingly, outlier
stocks highlighted in some network structures, e.g. BA
and CRM for both returns or AXP and BA for volatility
distances, are better predicted considering network infor-
mation. This result is not straightforward, because it is
reasonable to assume that the more distant the adjacent
nodes, the less relevant their information for forecasting.

4.2. Does the network structure matter?

The previous results showed that network-based log-
ARCH models are useful for predicting volatilities. How-
ever, Table 2 highlights differences across the alternative
network models in forecasting accuracy. For example, it
is clear that the k-nearest-neighbour network provides
more accurate forecasts on average than inverse-distance
approaches. Thus, we may raise the question of whether
the network structure matters. In other words, how can
the best-fitting network be interpreted from a financial
perspective?

To get more insights about the issue of finding the
best network log-ARCH model, we apply the model confi-
dence set (MCS) procedure of Hansen et al. (2011), which
aims to find a smaller set of network models with the
same statistical performance. The MCS procedure does
not include in the superior sets network ARCH models
with statistically lower forecasting performance. As in
the previous assessment, we consider the results of the
MCS procedure in terms of both squared and absolute
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Table 2
Comparison of the forecasting results using different edge weight matrices. The best RMSFE/MAFE in each row is printed in bold. We report the
average performance across stocks. The p-values of the Diebold and Mariano (2002) and Clark and West (2007) tests are reported. Under the null
hypothesis of both tests, the benchmark log-ARCH model has better or equal performance than the network log-ARCH with alternative network
definitions.
Model Log-ARCH Inverse-distance weights k-nearest-neighbour weights

Benchmark A.1 A.2 A.3 B.k.1 B.k.2 B.k.3

k 3 5 10 3 5 10 3 5 10

Average RMSFE 2.8202 2.5324 2.5229 2.5194 2.4457 2.4904 2.4990 2.5476 2.4668 2.5017 2.4940 2.4571 2.4568
DM test (p-value) – 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CW test (p-value) – 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
Average MAFE 2.0018 1.9000 1.8898 1.8896 1.8669 1.8905 1.8960 1.9369 1.8733 1.8920 1.8953 1.8675 1.8559
DM test (p-value) – 0.0076 0.0035 0.0038 0.0007 0.0005 0.0040 0.0873 0.0013 0.0015 0.0100 0.0008 0.0001
Table 3
Model confidence set: superior set of models – MSE and MAFE losses for the average errors. eR,M is the
elimination rule, ‘‘p-val.’’ is the MCS p-value, and ‘‘Loss’’ is the associated (MSE or MAFE) loss value.
‘‘Rank’’ provides the ranking of the models within the superior set in terms of the selected loss function.
Network structure Rank eR,M p-val Loss

Panel A: Average squared error loss
k-NN with (11) and k = 3 (B.3.1) 1 −1.75 1.00 6.033726
k-NN with (13) and k = 3 (B.5.3) 3 1.11 0.39 6.093567
k-NN with (13) and k = 10 (B.10.3) 2 0.79 0.62 6.088585

Panel B: Average absolute error loss
k-NN with (11) and k = 3 (B.3.1) 2 0.85 0.56 1.866924
k-NN with (13) and k = 5 (B.5.3) 3 1.12 0.39 1.867474
k-NN with (13) and k = 10 (B.10.3) 1 −1.79 1.00 1.855948
forecasting errors. The results are shown in Table 3, where
Panel A reports the results under the squared error loss,
while Panel B reports them under the absolute error loss.

Interestingly, Table 3 highlights that the superior set
omposition is the same regardless of the adopted loss.
ndeed, only three network-based ARCH models belong
o the superior set, and all of them are based on net-
orks constructed according to the k-nearest-neighbour
rocedure (15). In particular, the models included in the
uperior set are the Euclidean distance, which is based on
eturns, with k = 3, and the log-ARCH distance, which is
ased on volatilities, with k = 5 and k = 10.
However, it is interesting that the best model in the

superior set differs according to squared and absolute
forecasting errors. In the case of squared forecasting er-
rors, the Euclidean distance (11) with k = 3 nearest
neighbours provides the lowest loss, while in the case
of absolute error, the best model is k = 10 nearest
neighbours under log-ARCH distance (13). Therefore, we
can conclude that we only need the information from a
few adjacent stocks in forecasting under returns-based
networks. By contrast, information from a higher number
of nodes is required for volatility-based networks.

Overall, the results confirm that fully connected net-
works provide less accurate forecasts out of sample; thus,
k-nearest-neighbour approaches should be preferred in
practice. Moreover, the results suggest that although
correlation-based approaches are the most widely used
in the construction of financial networks, the correlation-
based network ARCH is not included in the superior set.
This means that information included in most correlated
stocks is not as valuable for out-of-sample exercises as it
appeared previously.

In summary, Table 3 shows that the network structure

matters in terms of out-of-sample forecasting accuracy.
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Therefore, researchers and practitioners have to carefully
specify the kind of network underlying the network ARCH
model, even though the forecasting performance is good
when not choosing the best network. Using a suitable
network structure, it is possible to enhance the fore-
casting ability of the model further. The choice of the
network can rely on the user’s experience or on a cross-
validation study. A third suitable approach that we evalu-
ate next in Section 4.3 is the combination of alternative
network-based models. In fact, if the prediction perfor-
mance increases by combination, practitioners can be ag-
nostic about the best network specification to adopt and
combine the forecasts obtained by alternative models.

4.3. Can the prediction performance be increased by consid-
ering multiple network definitions?

Finally, we ask whether it is possible to improve the
volatility forecasting accuracy with network log-ARCH
models. A suitable idea is to use a combination of fore-
casts from the alternative models considered in the paper.
Forecasting combination, also known as ensemble fore-
casting, is a technique used to improve the accuracy of
predictions by combining multiple forecasts. The basic
idea is that by combining the predictions of different
models, the strengths of each can be leveraged to pro-
duce more accurate forecasting. By combining forecasts
from multiple models, forecasters can reduce the risk of
relying on a single model. The use of combination meth-
ods is nowadays widespread not only in economics see
e.g. Proietti & Giovannelli, 2021 but also in other research
areas such as sociology (Tollenaar & van der Heijden,
2013), epidemiology (Deb & Deb, 2022) and, meteorol-
ogy (Di Narzo & Cocchi, 2010). In the context of volatil-
ity forecasting, ensemble techniques are also commonly

considered (Becker & Clements, 2008).
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Although there are many ways of combining forecasts,
we consider the three most common approaches: the sim-
ple average, minimum-variance combination, and con-
strained OLS (COLS) for details, see Timmermann, 2006.
For the simple average method, forecasts are obtained
by averaging the predictions from the alternative models.
Although straightforward, there is wide evidence sup-
porting the superiority of simple averaging compared
with optimal combination approaches (i.e. the so-called
forecast-combination puzzle). In the case of the minimum-
variance approach, combination weights are obtained by
minimising the resulting forecasting error variance. In
the COLS combination, the weights are obtained as the
parameters of a linear regression, with a constraint on the
parameters such that they sum up to one. In particular,
the actual values of the time series to be predicted are
regressed on the set of the alternative forecasts.

Below, we combine for each stock the forecasts ob-
tained with both log-ARCH and the network log-ARCH,
under the three aforementioned ensemble approaches.
Then, we evaluate whether combination further enhances
forecasting accuracy in the validation sample. Table 4
shows the comparison in terms of both the RMSFE and
MAFE computed on average forecasting errors between
the three competing combination approaches. Panel A
of Table 4 shows the average accuracy metrics, while
Panel B and Panel C show the relative accuracy of each
combination approach with both the benchmark and the
best network-based model. The ensemble forecast results
can be compared with those of Table 2. Furthermore,
Panel B and Panel C include the p-values associated with
the Diebold and Mariano (2002) and Clark and West
(2007) predictive accuracy tests.

In terms of the average RMSFE and MAFE, the best
combination approach is represented by COLS. For exam-
ple, the best network approach of Table 2 has an average
RMSFE of 2.45. With the COLS combination, we reduce
it to 2.35, which is about 5% lower. In terms of abso-
lute errors, the best network achieves an average MAFE
of 1.86, while with the COLS combination, we reduce
the loss to 1.76, which is about 6% smaller. Therefore,
the improvements in the forecasting accuracy with the
combination are not negligible.

Interestingly, the simple average is the worst combi-
nation scheme to adopt. Contrary to this evidence, how-
ever, the best benchmark model performs (a bit) worse
than this relatively easy combination approach. This sug-
gests that we can improve forecasting accuracy with little
effort or, more generally, by proficiently handling uncer-
tainty about what model to use in a straightforward man-
ner. The minimum-variance combination also improves
forecasting accuracy, albeit by less than COLS.

Stock-specific results of the combination schemes are
shown in Tables A.3 and A.4 in Appendix. In particular, Ta-
ble A.3 shows the RMSFE and MAFE for each single stock
and combination approach, while Table A.4 shows the
results of stock-specific predictive accuracy tests, compar-
ing the best combination approach with the best network
log-ARCH model.

Based on the results presented in Table 4, combining
forecasts obtained from the benchmark model and several
12
Table 4
Ensemble forecasting (average values). Results are reported in terms of
the RMSFE and MAFE accuracy metrics. Relative performance in terms
of the benchmark log-ARCH model and the best network log-ARCH
model is also evaluated. ‘‘Min. var.’’ indicates the minimum-variance
ensemble, while ‘‘COLS’’ is the constrained OLS approach.

Simple Average Min. var. COLS

Panel A – Accuracy metrics
RMSFE 2.4596 2.3703 2.3572
MAFE 1.8319 1.7684 1.7634

Panel B – Relative accuracy (benchmark):
Relative RMSFE 1.1465 1.1897 1.1964
DM test (p-value) 0.0000 0.0000 0.0000
CW test (p-value) 0.0000 0.0000 0.0000
Relative MAFE 1.0927 1.1319 1.1351

DM test (p-value) 0.0001 0.0000 0.0000

Panel C – Relative accuracy (best network model):
Relative RMSFE 0.9943 1.0317 1.0375
DM test (p-value) 0.0000 0.0000 0.0000
CW test (p-value) 0.0000 0.0000 0.0000

Relative MAFE 1.0131 1.0494 1.0524
DM test (p-value) 0.0000 0.0000 0.0000

Table 5
Model confidence set, including forecast combination approaches: su-
perior set of models – MSE and MAFE losses for the average errors.
Here, eR,M is the elimination rule, ‘‘p-val’’ is the MCS p-value, ‘‘Loss’’
is the associated (MSE or MAFE) loss value, and ‘‘Rank’’ provides the
ranking of the models within the superior set in terms of the selected
loss function.
Network structure Rank eR,M p-val Loss

Panel A: Squared error loss
COLS combination 1 −5.52 1.00 5.56

Panel B: Absolute error loss
COLS combination 1 −2.04 1.00 1.76

network log-ARCH models appears more advantageous
than relying solely on a single model. This approach is
beneficial for addressing the uncertainty associated with
selecting an appropriate network structure. As discussed
in Section 4.2, the forecasts generated from different net-
work structures are statistically different. While selecting
the most suitable network structure is crucial, doing so
ex ante can be challenging and complex. By combin-
ing forecasts obtained from different networks, we can
enhance the accuracy of out-of-sample forecasts and al-
leviate concerns about selecting the appropriate network
structure.

Finally, we provide a comparison across all the mod-
els considered in the paper—that is, the benchmark log-
ARCH, all the network log-ARCH models under alternative
network specifications, and their combination by means
of the model confidence set (see Table 5). Interestingly,
we find that the superior set includes only the COLS-based
network combination. This finding is very important be-
cause we do not find any model competing with the
best combination approach. Therefore, we recommend
combining the results obtained from different network
definitions.

In sum, the results highlighted in Tables 4 and 5 pro-
vide a suggestion to practitioners—that is, to combine

different network log-ARCH models. This suggestion is
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Table A.1
Diebold and Mariano (2002) and Clark and West (2007) predictive accuracy tests:
benchmark vs. best network model. Under the null, the benchmark model (log-ARCH)
has better or equal predictive accuracy than the best network log-ARCH approach.
Stock Diebold and Mariano (2002) Clark and West (2007)

Squared errors Absolute errors

DM stat p-value DM stat p-value CW stat p-value

AAPL 5.10 0.00 45.39 0.00 11.61 0.00
AMGN 10.20 0.00 42.37 0.00 16.97 0.00
AXP 3.24 0.00 41.08 0.00 9.72 0.00
BA 3.30 0.00 38.80 0.00 10.01 0.00
CAT 5.99 0.00 47.71 0.00 12.27 0.00
CRM 3.74 0.00 47.03 0.00 11.49 0.00
CSCO 7.73 0.00 50.06 0.00 13.72 0.00
CVX 4.89 0.00 41.18 0.00 10.48 0.00
DIS 3.86 0.00 41.18 0.00 9.04 0.00
GS 6.41 0.00 44.79 0.00 11.01 0.00
HD 4.03 0.00 43.63 0.00 10.42 0.00
HON 6.24 0.00 41.39 0.00 11.45 0.00
IBM 7.33 0.00 45.51 0.00 12.78 0.00
INTC 4.69 0.00 40.16 0.00 10.28 0.00
JNJ 5.59 0.00 42.88 0.00 10.52 0.00
JPM 4.78 0.00 47.30 0.00 11.53 0.00
KO 5.69 0.00 46.59 0.00 11.46 0.00
MCD 6.70 0.00 51.82 0.00 13.49 0.00
MMM 6.90 0.00 39.89 0.00 12.45 0.00
MRK 7.18 0.00 47.51 0.00 12.11 0.00
MSFT 4.03 0.00 52.28 0.00 10.20 0.00
NKE 3.14 0.00 43.75 0.00 9.85 0.00
PG 5.52 0.00 41.48 0.00 11.59 0.00
TRV 4.57 0.00 34.94 0.00 10.86 0.00
UNH 10.19 0.00 45.27 0.00 14.57 0.00
V 4.51 0.00 49.77 0.00 11.18 0.00
VZ 0.98 0.16 23.34 0.00 11.95 0.00
WBA 6.73 0.00 43.15 0.00 12.14 0.00
WMT 5.27 0.00 51.70 0.00 12.34 0.00
particularly relevant in the absence of any information
about the most suitable network structure to adopt.

5. Conclusion

In this paper, we proposed a novel approach to fore-
asting volatility that extends the log-ARCH to incorporate
he network structure of financial time series. The stock
arket is well represented by networks, where stocks are

he nodes and the edges reflect the degree of similarity
cross them. By including the network connectives in
he statistical model, we explicitly introduce the effect
f instantaneous spillovers from adjacent nodes reflecting
he simultaneity of investors’ trading decisions. The infor-
ation from the adjacent nodes of a financial network can
e used for forecasting purposes.
There are many different ways of constructing finan-

ial networks. We evaluated the performance of 12 al-
ernative network log-ARCH configurations. Inspired by
he time series clustering literature, three alternative dis-
imilarity definitions were considered for constructing
he networks, i.e. the Euclidean distance across returns,
correlation-based approach, and a volatility-based ap-
roach. In addition, networks were considered fully con-
ected, employing an inverse-distance approach, and not
ully connected, utilising k-nearest neighbours with k =

{3, 5, 10}. In practice, a suitable underlying financial net-
work structure could be chosen in a cross-validation study.
13
However, given the good results obtained with the com-
bination of alternative network log-ARCH models for fore-
casting out-of-sample volatility, we recommend using the
combination in the absence of any a priori information.
Finally, we used the proposed modelling approach to
forecast the out-of-sample volatility of the stocks in the
Dow Jones Index. The network structure would also allow
modelling larger financial networks, even in cases where
n is larger than T , which would be an interesting point for
future research.

First, we found that the forecasting accuracy of log-
ARCH models significantly increases when including net-
work information. This means that the information on
adjacent network nodes is helpful for forecasting volatil-
ity. Moreover, we showed that the network structure
matters regarding out-of-sample forecasting accuracy. In
particular, we found that networks constructed with in-
verse distance seem less effective at forecasting than
those based on k-nearest neighbours (15). Thus, fully
connected networks appear not to be the best forecasting
choice. Moreover, we found three alternative network
log-ARCH models belonging to the superior set, as sug-
gested by Hansen et al. (2011). Interestingly, none of these
models adopts a correlation-based network, although this
is one of the most common choices for constructing
financial networks.

We can highlight two possible future research direc-
tions. First, we included stock-specific constant terms in

the volatility equation. However, future research could
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Table A.2
Diebold and Mariano (2002) and Clark and West (2007) predictive accuracy tests:
benchmark vs. worst network model. Under the null, the benchmark model (log-ARCH)
has better or equal predictive accuracy than the worst network log-ARCH approach.
Stock Diebold and Mariano (2002) Clark and West (2007)

Squared errors Absolute errors

DM stat p-value DM stat p-value CW stat p-value

AAPL 5.12 0.00 72.30 0.00 12.37 0.00
AMGN 4.62 0.00 35.63 0.00 11.78 0.00
AXP 2.74 0.00 59.40 0.00 10.07 0.00
BA 1.60 0.05 49.00 0.00 8.66 0.00
CAT 5.77 0.00 58.68 0.00 12.77 0.00
CRM 4.22 0.00 51.47 0.00 12.02 0.00
CSCO 7.67 0.00 54.11 0.00 14.51 0.00
CVX 3.46 0.00 53.53 0.00 10.12 0.00
DIS 3.72 0.00 53.13 0.00 9.69 0.00
GS 5.34 0.00 64.53 0.00 10.84 0.00
HD 3.75 0.00 50.69 0.00 11.19 0.00
HON 5.21 0.00 51.50 0.00 11.79 0.00
IBM 6.94 0.00 52.73 0.00 13.59 0.00
INTC 4.20 0.00 56.41 0.00 11.25 0.00
JNJ 5.65 0.00 47.31 0.00 11.75 0.00
JPM 4.16 0.00 62.63 0.00 11.77 0.00
KO 5.13 0.00 39.35 0.00 12.08 0.00
MCD 6.93 0.00 48.82 0.00 13.50 0.00
MMM 6.92 0.00 49.24 0.00 13.21 0.00
MRK 5.01 0.00 35.67 0.00 11.25 0.00
MSFT 3.77 0.00 63.15 0.00 11.70 0.00
NKE 2.72 0.00 55.61 0.00 10.37 0.00
PG 5.20 0.00 38.07 0.00 11.90 0.00
TRV 3.30 0.00 45.66 0.00 11.06 0.00
UNH 9.66 0.00 45.74 0.00 14.75 0.00
V 3.62 0.00 46.29 0.00 10.55 0.00
VZ −3.52 0.00 21.45 0.00 5.80 0.00
WBA 7.28 0.00 47.04 0.00 13.12 0.00
WMT 5.24 0.00 40.49 0.00 12.49 0.00
Table A.3
Ensemble forecasting for each stock. Results are reported in terms of both the RMSFE
and MAFE accuracy metrics. ‘‘Min. var.’’ indicates the minimum-variance ensemble, while
‘‘COLS’’ is the constrained OLS approach.
Stock Simple average Min. var. COLS

RMSFE MAFE RMSFE MAFE RMSFE MAFE

AAPL 2.3522 1.8440 2.3263 1.8136 2.3209 1.8129
AMGN 2.4915 1.8271 2.2754 1.6764 2.2399 1.6625
AXP 2.3537 1.8207 2.2533 1.7024 2.2465 1.7019
BA 2.5508 1.9933 2.4392 1.8734 2.4171 1.8550
CAT 2.4031 1.8318 2.3514 1.8150 2.3381 1.8056
CRM 2.5308 1.9261 2.4094 1.8271 2.4021 1.8318
CSCO 2.2689 1.7101 2.2476 1.7247 2.2419 1.7226
CVX 2.3810 1.8424 2.2831 1.7204 2.2431 1.6966
DIS 2.6537 1.9728 2.6170 1.8982 2.5961 1.8808
GS 2.3094 1.7037 2.2547 1.6654 2.2500 1.6718
HD 2.2341 1.7274 2.2090 1.6892 2.2041 1.6922
HON 2.3814 1.8023 2.3249 1.7485 2.3156 1.7451
IBM 2.2139 1.6232 2.1901 1.6131 2.1803 1.6070
INTC 2.4565 1.8827 2.4006 1.8101 2.3908 1.8050
JNJ 2.6467 1.7668 2.6123 1.7642 2.5844 1.7545
JPM 2.3275 1.7554 2.2674 1.7184 2.2550 1.7090
KO 2.3686 1.7281 2.3178 1.6926 2.3154 1.6940
MCD 2.3091 1.7454 2.2816 1.7295 2.2680 1.7209
MMM 2.5672 1.9107 2.5072 1.9084 2.4964 1.9110
MRK 3.2397 2.0732 3.1407 2.0694 3.1319 2.0739
MSFT 2.6221 1.9454 2.5923 1.8978 2.5889 1.8992
NKE 2.2772 1.7594 2.2148 1.6787 2.1956 1.6806
PG 2.3088 1.7356 2.2350 1.7131 2.2317 1.7125

(continued on next page)
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Table A.3 (continued).
Stock Simple average Min. var. COLS

RMSFE MAFE RMSFE MAFE RMSFE MAFE

TRV 2.1022 1.6435 2.0094 1.5689 1.9966 1.5610
UNH 2.4257 1.7304 2.3590 1.7597 2.3481 1.7681
V 2.1860 1.6969 2.0752 1.6361 2.0660 1.6341
VZ 3.1516 2.4379 2.5011 1.9102 2.4768 1.8846
WBA 2.4308 1.8502 2.3965 1.8413 2.3841 1.8278
WMT 2.4345 1.8394 2.3940 1.8205 2.3793 1.8184
Table A.4
Diebold and Mariano (2002) and Clark and West (2007) predictive accuracy tests: best
combination approach vs. best network model. Under the null, the best combination
approach has better or equal predictive accuracy than the best network log-ARCH
approach.
Stock Diebold and Mariano (2002) Clark and West (2007)

Squared errors Absolute errors

DM stat p-value DM stat p-value CW stat p-value

AAPL 2.40 0.01 2.99 0.00 4.57 0.00
AMGN 4.05 0.00 2.65 0.00 6.86 0.00
AXP 3.88 0.00 3.54 0.00 6.48 0.00
BA 4.30 0.00 3.03 0.00 6.22 0.00
CAT 2.67 0.00 2.93 0.00 4.55 0.00
CRM 3.63 0.00 2.81 0.00 5.85 0.00
CSCO 2.09 0.02 2.90 0.00 3.49 0.00
CVX 4.98 0.00 2.89 0.00 7.36 0.00
DIS 3.60 0.00 3.09 0.00 6.16 0.00
GS 2.73 0.00 3.03 0.00 4.53 0.00
HD 2.54 0.01 2.85 0.00 4.93 0.00
HON 3.02 0.00 2.93 0.00 5.37 0.00
IBM 1.85 0.03 2.75 0.00 3.87 0.00
INTC 2.70 0.00 2.95 0.00 5.00 0.00
JNJ 2.51 0.01 2.81 0.00 4.38 0.00
JPM 2.83 0.00 3.09 0.00 5.42 0.00
KO 3.40 0.00 2.66 0.00 5.74 0.00
MCD 3.03 0.00 2.78 0.00 5.48 0.00
MMM 2.60 0.00 2.99 0.00 5.09 0.00
MRK 2.14 0.02 2.92 0.00 3.88 0.00
MSFT 2.32 0.01 3.00 0.00 4.90 0.00
NKE 3.38 0.00 2.84 0.00 6.60 0.00
PG 2.33 0.01 2.72 0.00 4.92 0.00
TRV 4.16 0.00 2.66 0.00 6.83 0.00
UNH 1.99 0.02 2.76 0.00 3.66 0.00
V 4.53 0.00 2.78 0.00 7.41 0.00
VZ 4.71 0.00 2.78 0.00 8.81 0.00
WBA 2.74 0.00 2.78 0.00 5.16 0.00
WMT 2.78 0.00 2.89 0.00 4.76 0.00
extend these stock-specific constant terms to a common-
factor representation. Second, whereas we assumed the
network structure to be constant over time, time-dynamic
adjacency matrices or regime-switching network
log-ARCH models could also be developed in future stud-
ies. In this case, it would be interesting to consider the
estimated correlation structure from DCC models.
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ppendix. Additional results for single stocks

See Tables A.1–A.4.
15
References

Andersen, T., & Bollerslev, T. (1998). ‘Answering the skeptics: Yes, stan-
dard volatility models do provide accurate forecasts’. International
Economic Review, 88, 5–905.

Asgharian, H., Hess, W., & Liu, L. (2013). ‘A spatial analysis of interna-
tional stock market linkages’. Journal of Banking & Finance, 37(12),
4738–4754.

Baltagi, B., & Li, J. (2014). ‘Further evidence on the spatio-temporal
model of house prices in the United States’. Journal of Applied
Econometrics, 29(3), 515–522.

Barigozzi, M., & Hallin, M. (2017). ‘A network analysis of the volatility
of high dimensional financial series’. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 66(3), 581–605.

Barker, D., & Loughran, T. (2007). ‘The geography of S & P 500 stock
returns’. Journal of Behavioral Finance, 8(4), 177–190.

Bauwens, L., & Sucarrat, G. (2010). ‘General-to-specific modelling of
exchange rate volatility: A forecast evaluation’. International Journal
of Forecasting, 26(4), 885–907.

Becker, R., & Clements, A. (2008). ‘Are combination forecasts of S
& P 500 volatility statistically superior?’. International Journal of
Forecasting 24(1), 122–133.

http://refhub.elsevier.com/S0169-2070(24)00002-5/sb1
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb1
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb1
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb1
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb1
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb2
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb2
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb2
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb2
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb2
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb3
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb3
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb3
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb3
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb3
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb4
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb4
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb4
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb4
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb4
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb5
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb5
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb5
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb6
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb6
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb6
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb6
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb6
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb7
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb7
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb7
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb7
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb7


R. Mattera and P. Otto International Journal of Forecasting xxx (xxxx) xxx

B
etancourt, B., Rodríguez, A., & Boyd, N. (2020). ‘Modelling and pre-
diction of financial trading networks: An application to the New
York Mercantile Exchange natural gas futures market’. Journal of the
Royal Statistical Society. Series C. Applied Statistics, 69(1), 195–218.

Billio, M., Caporin, M., Frattarolo, L., & Pelizzon, L. (2021). ‘Networks
in risk spillovers: A multivariate GARCH perspective’. Econometrics
and Statistics, 28, 1–29.

Bollerslev, T. (1986). ‘Generalized autoregressive conditional het-
eroskedasticity’. Journal of Econometrics, 31(3), 307–327.

Caiado, J., Crato, N., & Peña, D. (2006). ‘A periodogram-based metric for
time series classification’. Computational Statistics & Data Analysis,
50(10), 2668–2684.

Caiado, J., Crato, N., & Poncela, P. (2020). ‘A fragmented-periodogram
approach for clustering big data time series’. Advances in Data
Analysis and Classification, 14, 117–146.

Cameletti, M., Gomez-Rubio, V., & Blangiardo, M. (2019). ‘Bayesian
modelling for spatially misaligned health and air pollution data
through the INLA-SPDE approach’. Spatial Statistics, 31, Article
100353.

Caporin, M., & McAleer, M. (2012). ‘Do we really need both BEKK and
DCC? A tale of two multivariate GARCH models’. Journal of Economic
Surveys, 26(4), 736–751.

Caporin, M., & Paruolo, P. (2015). ‘Proximity-structured multivariate
volatility models’. Econometric Reviews, 34(5), 559–593.

Cerqueti, R., D’Urso, P., De Giovanni, L., Giacalone, M., & Mattera, R.
(2022). ‘Weighted score-driven fuzzy clustering of time series with
a financial application’. Expert Systems with Applications, 198, Article
116752.

Cerqueti, R., Giacalone, M., & Mattera, R. (2021). ‘Model-based fuzzy
time series clustering of conditional higher moments’. International
Journal of Approximate Reasoning, 134, 34–52.

Cerqueti, R., & Mattera, R. (2023). ‘Fuzzy clustering of time series
with time-varying memory’. International Journal of Approximate
Reasoning, 153, 193–218.

Clark, T., & McCracken, M. (2001). ‘Tests of equal forecast accuracy and
encompassing for nested models’. Journal of Econometrics, 105(1),
85–110.

Clark, T., & West, K. (2007). ‘Approximately normal tests for equal
predictive accuracy in nested models’. Journal of Econometrics,
138(1), 291–311.

Deb, S., & Deb, S. (2022). ‘An ensemble method for early prediction
of dengue outbreak’. Journal of the Royal Statistical Society Series A:
Statistics in Society, 185(1), 84–101.

Demiris, N., Kypraios, T., & Smith, L. (2014). ‘On the epidemic of
financial crises’. Journal of the Royal Statistical Society. Series A
(Statistics in Society), 177(3), 697–723.

Di Narzo, A., & Cocchi, D. (2010). ‘A Bayesian hierarchical approach
to ensemble weather forecasting’. Journal of the Royal Statistical
Society. Series C. Applied Statistics, 59(3), 405–422.

Diebold, F., & Mariano, R. (2002). ‘Comparing predictive accuracy’.
Journal of Business & Economic Statistics, 20(1), 134–144.

Diebold, F., & Yılmaz, K. (2014). ‘On the network topology of variance
decompositions: Measuring the connectedness of financial firms’.
Journal of Econometrics, 182(1), 119–134.

Donaldson, R., & Kamstra, M. (1997). ‘An artificial neural network-
GARCH model for international stock return volatility’. Journal of
Empirical Finance, 4(1), 17–46.

Duan, N. (1983). ‘Smearing estimate: A nonparametric retransformation
method’. Journal of the American Statistical Association, 78(383),
605–610.

D’Urso, P., De Giovanni, L., & Massari, R. (2016). ‘GARCH-based robust
clustering of time series’. Fuzzy Sets and Systems, 305, 1–28.

D’Urso, P., & Maharaj, E. (2009). ‘Autocorrelation-based fuzzy clustering
of time series’. Fuzzy Sets and Systems, 160(24), 3565–3589.

Eckel, S., Löffler, G., Maurer, A., & Schmidt, V. (2011). ‘Measuring the
effects of geographical distance on stock market correlation’. Journal
of Empirical Finance, 18(2), 237–247.

Fassò, A., Maranzano, P., & Otto, P. (2022). ‘Spatiotemporal variable
selection and air quality impact assessment of COVID-19 lockdown’.
Spatial Statistics, 49, Article 100549.

Fernández-Avilés, G., Montero, J.-M., & Orlov, A. (2012). ‘Spatial mod-
eling of stock market comovements’. Finance Research Letters, 9(4),
202–212.
16
Francq, C., & Sucarrat, G. (2017). ‘An equation-by-equation estimator
of a multivariate log-GARCH-X model of financial returns’. Journal
of Multivariate Analysis, 153, 16–32.

Francq, C., & Sucarrat, G. (2018). ‘An exponential chi-squared QMLE
for log-GARCH models via the ARMA representation’. Journal of
Financial Econometrics, 16(1), 129–154.

Francq, C., & Zakoian, J.-M. (2019). GARCH models: Structure, statistical
inference and financial applications. John Wiley & Sons.

Fülle, M., & Otto, P. (2023). ‘Spatial GARCH models for unknown
spatial locations – An application to financial stock returns’. Spatial
Economic Analysis, 19(1), 92–105.

Gallo, G., Lacava, D., & Otranto, E. (2021). ‘On classifying the effects
of policy announcements on volatility’. International Journal of
Approximate Reasoning, 134, 23–33.

Geweke, J. (1986). ‘Modeling the persistence of conditional variances:
A comment’. Econometric Reviews, 5(1), 57–61.

Hansen, P., Lunde, A., & Nason, J. (2011). ‘The model confidence set’.
Econometrica, 79(2), 453–497.

Holly, S., Pesaran, M., & Yamagata, T. (2010). ‘A spatio-temporal
model of house prices in the USA’. Journal of Econometrics, 158(1),
160–173.

Huang, D., Hu, W., Jing, B., & Zhang, B. (2023). ‘Grouped spatial
autoregressive model’. Computational Statistics & Data Analysis, 178,
Article 107601.

Huang, W., Wang, K., Jay Breidt, F., & Davis, R. (2011). ‘A class of
stochastic volatility models for environmental applications’. Journal
of Time Series Analysis, 32(4), 364–377.

Kristjanpoller, W., & Minutolo, M. (2015). ‘Gold price volatility: A
forecasting approach using the artificial neural network–GARCH
model’. Expert Systems with Applications, 42(20), 7245–7251.

Lahmiri, S. (2016). ‘Clustering of Casablanca stock market based on
Hurst exponent estimates’. Physica A. Statistical Mechanics and its
Applications, 456, 310–318.

Lee, L.-f. (2007). ‘GMM and 2SLS estimation of mixed regressive spatial
autoregressive models’. Journal of Econometrics, 137(2), 489–514.

Lee, L.-f., & Yu, J. (2014). ‘Efficient GMM estimation of spatial dynamic
panel data models with fixed effects’. Journal of Econometrics,
180(2), 174–197.

Liu, S., Caporin, M., & Paterlini, S. (2021). ‘Dynamic network analysis of
North American financial institutions’. Finance Research Letters, 42,
Article 101921.

Maharaj, E., D’Urso, P., & Caiado, J. (2019). Time series clustering and
classification. CRC Press.

Mantegna, R. (1999). ‘Hierarchical structure in financial markets’. The
European Physical Journal B, 11(1), 193–197.

Mattera, R. (2022). ‘A weighted approach for spatio-temporal clus-
tering of COVID-19 spread in Italy’. Spatial and Spatio-temporal
Epidemiology, 41, Article 100500.

Otranto, E. (2008). ‘Clustering heteroskedastic time series by model-
based procedures’. Computational Statistics & Data Analysis, 52(10),
4685–4698.

Otto, P., Doğan, O., & Taşpınar, S. (2023). ‘Dynamic spatiotemporal
ARCH models’. In Spatial economic analysis. http://dx.doi.org/10.
1080/17421772.2023.2254817.

Otto, P., & Schmid, W. (2018). ‘Spatiotemporal analysis of German
real-estate prices’. The Annals of Regional Science, 60(1), 41–72.

Otto, P., & Schmid, W. (2022). ‘A general framework for spatial GARCH
models’. In Statistical papers (pp. 1–27).

Otto, P., Schmid, W., & Garthoff, R. (2018). ‘Generalised spatial and spa-
tiotemporal autoregressive conditional heteroscedasticity’. Spatial
Statistics, 26, 125–145.

Otto, P., Schmid, W., & Garthoff, R. (2021). ‘Stochastic properties of
spatial and spatiotemporal ARCH models’. Statistical Papers, 62,
623–638.

Piccolo, D. (1990). ‘A distance measure for classifying ARIMA models’.
Journal of Time Series Analysis, 11(2), 153–164.

Pirinsky, C., & Wang, Q. (2006). ‘Does corporate headquarters location
matter for stock returns?’. The Journal of Finance, 61(4), 1991–2015.

Piter, A., Otto, P., & Alkhatib, H. (2022). ‘The Helsinki bike-sharing
system—Insights gained from a spatiotemporal functional model’.
Journal of the Royal Statistical Society Series A: Statistics in Society,
185(3), 1294–1318.

http://refhub.elsevier.com/S0169-2070(24)00002-5/sb8
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb8
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb8
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb8
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb8
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb8
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb8
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb9
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb9
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb9
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb9
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb9
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb10
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb10
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb10
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb11
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb11
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb11
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb11
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb11
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb12
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb12
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb12
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb12
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb12
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb13
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb13
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb13
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb13
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb13
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb13
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb13
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb14
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb14
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb14
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb14
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb14
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb15
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb15
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb15
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb16
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb16
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb16
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb16
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb16
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb16
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb16
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb17
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb17
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb17
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb17
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb17
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb18
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb18
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb18
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb18
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb18
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb19
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb19
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb19
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb19
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb19
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb20
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb20
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb20
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb20
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb20
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb21
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb21
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb21
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb21
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb21
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb22
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb22
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb22
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb22
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb22
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb23
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb23
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb23
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb23
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb23
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb24
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb24
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb24
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb25
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb25
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb25
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb25
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb25
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb26
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb26
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb26
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb26
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb26
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb27
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb27
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb27
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb27
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb27
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb28
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb28
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb28
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb29
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb29
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb29
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb30
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb30
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb30
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb30
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb30
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb31
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb31
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb31
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb31
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb31
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb32
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb32
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb32
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb32
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb32
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb33
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb33
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb33
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb33
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb33
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb34
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb34
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb34
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb34
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb34
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb35
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb35
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb35
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb36
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb36
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb36
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb36
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb36
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb37
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb37
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb37
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb37
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb37
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb38
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb38
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb38
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb39
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb39
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb39
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb40
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb40
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb40
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb40
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb40
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb41
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb41
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb41
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb41
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb41
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb42
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb42
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb42
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb42
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb42
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb43
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb43
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb43
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb43
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb43
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb44
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb44
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb44
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb44
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb44
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb45
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb45
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb45
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb46
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb46
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb46
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb46
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb46
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb47
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb47
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb47
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb47
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb47
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb48
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb48
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb48
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb49
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb49
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb49
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb50
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb50
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb50
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb50
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb50
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb51
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb51
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb51
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb51
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb51
http://dx.doi.org/10.1080/17421772.2023.2254817
http://dx.doi.org/10.1080/17421772.2023.2254817
http://dx.doi.org/10.1080/17421772.2023.2254817
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb53
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb53
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb53
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb54
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb54
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb54
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb55
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb55
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb55
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb55
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb55
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb56
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb56
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb56
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb56
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb56
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb57
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb57
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb57
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb58
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb58
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb58
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb59
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb59
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb59
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb59
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb59
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb59
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb59


R. Mattera and P. Otto International Journal of Forecasting xxx (xxxx) xxx

P

S

S

S

S

S

T

roietti, T., & Giovannelli, A. (2021). ‘Nowcasting monthly GDP with big
data: A model averaging approach’. Journal of the Royal Statistical
Society Series A: Statistics in Society, 184(2), 683–706.

ahu, S., & Böhning, D. (2022). ‘Bayesian spatio-temporal joint disease
mapping of Covid-19 cases and deaths in local authorities of
England’. Spatial Statistics, 49, Article 100519.

ato, T., & Matsuda, Y. (2017). ‘Spatial autoregressive conditional
heteroskedasticity models’. Journal of the Japan Statistical Society,
47(2), 221–236.

ato, T., & Matsuda, Y. (2021). ‘Spatial extension of generalized autore-
gressive conditional heteroskedasticity models’. Spatial Economic
Analysis, 16(2), 148–160.

ucarrat, G., & Escribano, A. (2012). ‘Automated model selection in
finance: General-to-specific modelling of the mean and volatility
specifications’. Oxford Bulletin of Economics and Statistics, 74(5),
716–735.

ucarrat, G., Grønneberg, S., & Escribano, A. (2016). ‘Estimation and
inference in univariate and multivariate log-GARCH-X models when
the conditional density is unknown’. Computational Statistics & Data
Analysis, 100, 582–594.

immermann, A. (2006). ‘Forecast combinations’. Handbook of Economic
Forecasting, 1, 135–196.
17
Tollenaar, N., & van der Heijden, P. (2013). ‘Which method predicts
recidivism best?: A comparison of statistical machine learning
and data mining predictive models’. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 176(2), 565–584.

Tumminello, M., Lillo, F., & Mantegna, R. (2010). ‘Correlation, hier-
archies, and networks in financial markets’. Journal of Economic
Behaviour and Organization, 75(1), 40–58.

Vinciotti, V., Tosetti, E., Moscone, F., & Lycett, M. (2019). ‘The effect
of interfirm financial transactions on the credit risk of small and
medium-sized enterprises’. Journal of the Royal Statistical Society
Series A, 182(4), 1205–1226.

Wu, J., Xu, K., Chen, X., Li, S., & Zhao, J. (2022). ‘Price graphs:
Utilizing the structural information of financial time series for stock
prediction’. Information Sciences, 588, 405–424.

Zhou, Y., Chen, Z., & Liu, Z. (2023). ‘Dynamic analysis and community
recognition of stock price based on a complex network perspective’.
Expert Systems with Applications, 213, Article 118944.

Zhou, J., Li, D., Pan, R., & Wang, H. (2020). ‘Network GARCH model’.
Statistica Sinica, 30(4), 1723–1740.

http://refhub.elsevier.com/S0169-2070(24)00002-5/sb60
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb60
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb60
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb60
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb60
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb61
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb61
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb61
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb61
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb61
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb62
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb62
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb62
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb62
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb62
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb63
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb63
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb63
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb63
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb63
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb64
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb64
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb64
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb64
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb64
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb64
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb64
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb65
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb65
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb65
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb65
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb65
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb65
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb65
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb66
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb66
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb66
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb67
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb67
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb67
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb67
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb67
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb67
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb67
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb68
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb68
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb68
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb68
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb68
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb69
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb69
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb69
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb69
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb69
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb69
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb69
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb70
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb70
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb70
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb70
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb70
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb71
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb71
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb71
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb71
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb71
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb72
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb72
http://refhub.elsevier.com/S0169-2070(24)00002-5/sb72

	Network log-ARCH models for forecasting stock market volatility
	Introduction
	Forecasting models
	Univariate logarithmic ARCH models (baseline model)
	Dynamic network logarithmic ARCH model
	Determining similarity across stocks

	Empirical analysis: Data and forecasting methodology
	Data
	Forecasting evaluation

	Results of the out-of-sample forecasting exercise
	Does the network-based approach improve the forecasting accuracy?
	Does the network structure matter?
	Can the prediction performance be increased by considering multiple network definitions?

	Conclusion
	Declaration of competing interest
	Appendix. Additional results for single stocks
	References


