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Abstract
This study investigates the growth of an avascular tumour described through the interchange of mass among its con-
stituents and the production of inelastic distortions induced by growth itself. A key contribution of this research examines
the role of non-local diffusion arising from the complex and heterogeneous tumour micro-environment. In our context,
the non-local diffusion is enhanced by a variable-order fractional operator that incorporates crucial information about
regions of limited nutrient availability within the tissue. Our research also focuses on the identification of an evolution law
for the growth-induced inelastic distortions recast through the identification of non-conventional forces dual to suitable
kinematic descriptors associated with the growth tensor. The establishment of such evolution law stems from examining
the dissipation inequality and subsequently determining a posteriori connections between the inelastic distortions and
the source/sink terms in the mass balance laws. To gain insights into the dynamics of tumour growth and its response to
the proposed modelling framework, we first study how the variables governing the tissue evolution are affected by the
introduction of the new growth law. Second, we investigate how regions of limited diffusion within the tumour, encoded
into a fractional operator of variable-order, influence its growth.
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1. Introduction
Cancer is a complex disease and a prominent cause of mortality worldwide [1] with one common aspect being
its diversity [2]. The inherent complexity of cancer poses significant challenges for studying and comprehending
the disease and complicates the discovery of treatments that can be effective for all patients [2, 3]. Owing to its
intricate nature and the diverse range of diseases it encompasses, cancer lacks a universal description, making
its aetiology a subject of ongoing debate [3–5]. Nevertheless, there is a general consensus that both inherited
and external factors contribute to the development of mutations in gene expression transforming normal cells
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into tumour cells [1, 4–7]. A multistage process characterised by an imbalance between cell proliferation and
cell death leads to the emergence of a population of cells capable of invasive growth and metastasis [1, 6, 8].
Tumour progression can be categorised into three distinct stages: avascular, vascular, and metastatic [7, 9, 10].

Avascular tumours, also known as in situ cancers, lack their own blood vessels and rely on diffusion for oxy-
gen and nutrients supply [4, 10]. This limited blood supply allows the tumour to grow slowly and remain dormant
for extended periods. However, it can transition into a dangerous vascular tumour through angiogenesis [7]. In
laboratory settings, the initial avascular phase of tumour development can be studied using three-dimensional
multicellular spheroids composed of cancer cells [7, 11–13]. In vitro experiments using tumour spheroids have
shown that their growth ceases once they reach a specific size, because of the balance between cell proliferation
and necrosis [12]. Proliferating cells are primarily found in the outer layers, necrotic cells in the centre, and
quiescent cells in an intermediate environment, with some capable of being recruited to the proliferating cell
layer [7, 12, 14].

Considerable efforts have been devoted to investigating tumour progression through extensive research (see,
for instance, [7, 9, 13–26]). These models provide a means to explore and predict tumour behaviour that may not
be readily observable in experimental studies, potentially leading to novel therapies or improvements in existing
treatments [23]. However, owing to the complexity of tumour behaviour and limited knowledge of growth pro-
cesses [2–5], the development of realistic models remains a significant challenge [27, 28]. Mathematical models
describing tumour growth can be classified into discrete and continuum models. A comprehensive review of
these models can be found in Roose et al. [7]. In this study, we focus on utilising a continuum approach to
model the growth of avascular tumours. Although modelling avascular solid tumour growth might not be as
essential for cancer therapy as modelling vascular and angiogenic tumour growth, understanding the evolu-
tion of avascular tumours can provide insights into more complex models. Avascular tumour growth is simpler
to model mathematically, has abundant experimental data, and encompasses concepts applicable to general
vascular tumour growth models [7]. Continuum models account for the interaction between cell density and
chemical agents, such as nutrients, which influence tumour cell cycle events and provide insights into tumour
growth dynamics [7]. These models are often based on the Theory of Mixtures [29–35] where tumour growth is
accompanied by inelastic distortions and can be associated with chemo-mechanical interactions [17, 36, 37]. In
this respect, the Bilby–Kröner–Lee (BKL) decomposition of the deformation gradient tensor [37–40] has been
commonly used to account for alterations in the internal structure of the tissue caused by changes in mass.

Nutrients play a significant role in tumour progression because cancer cells rely on them for proliferation [7,
12, 14, 41, 42]. Fick’s law–based diffusion models are commonly employed to describe the transport of nutrients.
However, recent studies have identified anomalous diffusion patterns, also known as non-Fickian or non-local,
in biological tissues [43–46]. Non-local diffusion, which considers interactions between distant particles, has
been attributed to the multiscale and heterogeneous nature of the medium in which it is taking place [44, 46,
47]. For instance, as discussed in Höfling and Franosch [45], macromolecular crowding leads to densely packed
and heterogeneous structures, causing subdiffusive behaviour in the mean-square displacement and spatially
non-Gaussian particle movement, thereby challenging the standard Brownian motion assumption.

Fractional calculus [48–50] offers a mathematical framework for investigating non-Fickian transport pro-
cesses and anomalous diffusion, and it has shown promise in understanding cancer-related phenomena such as
chemotherapy, radiotherapy, and tumour growth [26, 51–54]. The utilisation of integro-differential operators,
characterised by a constant order α ∈ R, has proven to be highly effective in explaining diverse non-local
phenomena [47, 55–57]. However, there is a rising interest in fractional operators that incorporate a variable-
order (depending on time, space or specific variables) for representing evolutionary phenomena while keeping
the governing equations unchanged [58]. Notably, variable-order integrodifferential operators are increasingly
recognised as valuable tools in modelling complex real-world problems [58–61]. These include the study of
the mechanics of materials [62–64], the dynamics of biological tissues [25, 65], transport processes and diffu-
sion [66–68], among others. These examples demonstrate the potential of variable-order fractional operators in
advancing our comprehension of various fields, enabling more precise and comprehensive modelling of intricate
systems that exhibit non-local effects.

In the present work, our objective is to examine the influence of non-local diffusion mechanisms on the
growth of an avascular tumour. To achieve this, we describe the tumour tissue as a biphasic medium comprising
a fluid and a solid phase, and we associate its growth with the gain or loss of mass of the solid phase at the
expense or advantage of the fluid one [9, 24, 26]. In this respect, it is important to note that our current model
focuses on the growth of a tumour tissue in the absence of blood vessels, considering only proliferating and
necrotic cells in the solid phase and neglecting quiescent cells in our analysis. Furthermore, to describe the
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diffusion of chemical agents, we slightly modify the constitutive law proposed in Ramírez-Torres et al. [26] by
introducing a spatial dependency in the order of the integro-differential operator. This represents an additional
feature with respect to the definition given in Ramírez-Torres et al. [26] and will allow us to capture potential
spatial phenomena that may arise due to the heterogeneous and complex environment in which diffusion occurs.
Our goal is to include relevant information about the complex tumour micro-environment, which can lead to
regions with limited difussion [69]. We remark that, although we refer to a variable-order fractional operator in
space, our system evolves over time as the variable-order parameter is influenced by the motion of the body, as
well as the inelastic distortions it undergoes.

Another extra feature with respect to Ramírez-Torres et al. [26] is that we adopt the methodology proposed
in Grillo and Di Stefano [70, 71] to derive a dynamic equation for the evolution of growth-induced inelastic dis-
tortions. This methodology relies on the admission of the existence of non-conventional forces [36, 70] whose
balance represents the evolution equation for the inelastic distortions. Furthermore, it avoids making initial phe-
nomenological assumptions in the source/sink term corresponding to the mass balance of the solid phase as a
whole. Within this setting, the equation for the inelastic distortions is identified through an a posteriori method-
ology [70, 71], i.e., after the constitutive law governing the internal non-conventional force has been established
through the study of the dissipation inequality. In our context, a consequence of this approach involves the
necessity of introducing source and sink terms accounting for the influence of configurational mechanical stress
in the mass balance equations for the proliferating and necrotic cells. Indeed, once the equation for the growth-
induced inelastic distortions has been established, these new terms are attributed to the presence of the Eshelby
stress tensor in the constitutive law governing the internal non-conventional force. In particular, they charac-
terise the influence of the inelastic distortions on the dynamics of the solid phase’s constituents. We mention
that the introduction of source/sink terms accounting for the impact of inelastic distortions on the growth of a
tumour has also been investigated in Di Stefano et al. [24]. Finally, in agreement with previous research [9, 24,
26], we formalise the growth law by expressing the external non-conventional force in such a way it accounts
for the progression of nutrients and mechanotransduction.

We conclude this work by examining the consequences of our modelling approach, which aims to understand
how the dynamics of an avascular tumour are affected by a non-Fickian diffusion law of variable-order. Our
analysis focuses on two main aspects: first, we investigate how the variables governing the tumour’s evolution are
influenced by the new growth law, which accounts for configurational mechanical stress, and second, we explore
the impact of a specific non-uniform fractional-order parameter encoding information about regions with limited
nutrient availability within the tumour tissue.To this end, we investigate a benchmark problem that represents
the progression of ductal carcinoma in situ (DCIS). DCIS is increasingly recognised as a target for preventive
measures [72] as it is considered a precursor to invasive breast cancer and shares many biological characteristics
with invasive diseases. Therefore, the study of DCIS is relevant since, if left untreated, DCIS can potentially
develop and infiltrate the breast stromal tissue surrounding the ducts, thereby becoming life-threatening [72, 73].

2. Description of the avascular tumour as a mixture
Here, we briefly introduce some of the main definitions used in the description of a mixture consisting of two
phases: a fluid phase, denoted with Pf, and a solid phase Ps [32–35]. Specifically, by considering some of
the assumptions made in Mascheroni et al. [9], Di Stefano et al. [24], Ramírez-Torres et al. [26], Mascheroni
et al. [74], and Grillo et al. [75] in the case of an avascular tumour, we assume that the solid phase consists of
proliferating and necrotic cells, with mass fractions ωps and ωns, respectively, while the fluid phase is made of
water and chemical agents, with mass fractions ωwf and ωcf, respectively. In our context, we speak of nutrients
instead of chemical agents, and one example is glucose, which serves as an energy source facilitating cell
proliferation. Furthermore, we suppose that both the solid and the fluid phases are saturated, i.e., ωps + ωns = 1
and ωwf +ωcf = 1. In addition, the apparent mass densities of the solid and fluid phases are denoted by ϕs�s and
ϕf�f, respectively, where �s and �f represent the true mass densities of the solid and fluid phases, and ϕs and ϕf
are the solid and the fluid phases volumetric fractions. Here, we also assume to be in the presence of a saturated
mixture, so that the condition ϕf + ϕs = 1 holds true.

2.1. Kinematics

As in previous works [9, 24, 26, 75], we let S be the three-dimensional Euclidean space and denote with
B and Bt, respectively, the reference and current configurations of the continuum representing the avascular
tumour. Following the discussion in Quiligotti et al. [76] and Crevacore et al. [77], Bt corresponds to the region
within the Euclidean space S , where both solid and fluid phases coexist, namely, the solid–fluid mixture. The
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map χ(·, t) : B → S denotes the motion of the solid phase, and we assume that, for each time t ∈ S , the
inverse mapping χ−1(·, t) : Bt → S maps every point of Bt to the reference configuration of the solid phase.
Consequently, since χ−1(·, t) is surjective, χ characterises the motion of the entire mixture and B can be taken
as the reference configuration of the mixture. Furthermore, if vs and vf are the spatial velocities of the solid
and the fluid phase, we can write vs(x, t) = v̂s(X , t) := χ̇(X , t) and vf(x, t) = v̂f(X , t), where X ∈ B and the
“hat” notation is used to represent the material form of the spatial field. That is, for a generic spatial field φ,
φ̂ := φ ◦ (χ , T ), where T : B × I → I is such that T (X , t) = t, with I denoting a bounded time interval.

The visible deformation of the mixture is characterised by the deformation gradient tensor F, which is
defined as the tangent map of the motion χ and its determinant, denoted by J := det F, is assumed to be positive.
Here, we focus on volumetric growth and as in previous works (see, for instance, [37, 39, 78–81]), we describe
it as a phenomenon that induces inelastic distortions. In this respect, we introduce the BKL decomposition of
the deformation gradient [37–39, 78, 79, 81, 82]:

F(X , t) = Fe(X , t)Fγ (X , t), (1)

where the second-order tensor Fe represents the tensor of elastic distortions or elastic accommodation, while Fγ

is known as the tensor of inelastic distortions or growth tensor. The latter maps, for each pair (X , t) ∈ B × I ,
vectors from the tangent space TX B to vectors in Nt(X ), often referred to as the body’s natural state. More
precisely, Nt(X ) represents the state where the tissue is entirely free of stress. If growth is seen as an inelastic
process that generates stresses that cannot be eliminated by just removing applied loads, achieving this stress-
free state requires an ideal tearing process that effectively disassembles the tissue into a collection of completely
relaxed pieces. Experiments conducted on tumours (see, for instance, [13]) support the idea of growth-induced
inelastic distortions. Further discussions about the multiplicative decomposition (1) can be found in Di Stefano
et al. [24], Goriely [37], Mićunović [38], Sadik and Yavari [82], and Ciancio et al. [83].

We indicate by Je and Jγ the determinants of Fe and Fγ , respectively, so that from equation (1), we can write
J = JeJγ . Furthermore, we notice that the time derivative of Jγ is:

J̇γ = Jγ tr(F−1
γ Ḟγ ). (2)

In this work, we build upon the consideration that Fγ is spherical and set Fγ = γ I, where γ > 0 is
the growth parameter and I denotes the material identity tensor. In particular, this consideration implies that
equation (2) can be rewritten in the form:

J−1
γ J̇γ = 3γ −1γ̇ . (3)

3. Balance laws

3.1. Mass balance laws

If the mass of the mixture’s constituents is not conserved, then mass exchange exists among them. In this context,
the mass balance laws for the constituents of the mixture can be written as [9, 24, 26, 35, 80, 84]:

∂t(ϕs�sωps) + div(ϕs�sωpsvs) = rpn + rfp + rph, (4a)

∂t(ϕs�s) + div(ϕs�svs) = rs, (4b)
∂t(ϕf�fωcf) + div(ϕf�fωcfvf + yα) = rcf, (4c)

∂t(ϕf�f) + div(ϕf�fvf) = rf, (4d)

where equations (4a) and (4b) represent the mass balance for the proliferating cells and the solid phase as a
whole, whereas equations (4c) and (4d) characterise the mass balance for the nutrients and the fluid phase as a
whole, respectively.

In writing equations (4a)–(4d), we have assumed that the proliferating cells move with the same velocity of
the solid phase [9,24,26] and we have denoted by yα the mass flux vector of the chemical agents in the fluid
phase. We notice that the presence of the subscript α in the notation of the mass flux vector is due to our efforts
in deviating from Fick’s law to describe the diffusion of nutrients. To this end, as anticipated in section 1, we
benefit from the notion of fractional differentiation [48–50] which considers integro-differential operators of
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order α ∈ R. Although we do not provide at this point a constitutive expression for the mass flux vector yα ,
comprehensive insights into the implications of this selection will be provided in the following sections.

To account for the mass exchange among the constituents of the system under consideration, we have intro-
duced source/sink terms. These are rpn, which is used to describe the rate at which the proliferating cells die, rfp
takes into consideration the mass originating from the fluid phase that facilitates cell proliferation, and rcf is the
rate at which the proliferating cells consume nutrients. In our formulation, we have also introduced the notation
rs := rfp + rnf + rph + rnh where the rate at which the fluid dissolves necrotic cells is denoted as rnf and, to ensure
mass conservation of the mixture as a whole, we have set rf = −rs. We remark that a difference with respect to
the model presented in Ramírez-Torres et al. [26] relies on the introduction of the source/sink terms rph and rnh
into the balance equations for the proliferating and necrotic cells which, in consonance with Di Stefano et al.
[24], characterise potential effects of the properties of Fγ on the growth process. Specifically, as it will be clear
in the following sections, rph and rnh enclose the effects of the inelastic distortions induced by growth. Their
existence will showcase the contribution of configurational mechanical stress to the dynamics of the tissue and
complement those of different nature (e.g., of chemical nature) specified through the external non-conventional
force.

As in Giverso et al. [20], Di Stefano et al. [24], Ramírez-Torres et al. [26], and Byrne and Preziosi [85],
we consider the true mass densities to be constant and equal for both the solid and fluid phases, namely,
�s(x, t) = �f(x, t) ≡ �s0. Consequently, the mass balance equations (4a)–(4d), expressed in relation to the
reference configuration, are given by:

˙̂ωps = J[r̂pn + r̂fp + r̂ph − r̂sω̂ps][Jγ
sν�s0]−1, (5a)

J̇γ = JγRγ , (5b)

�s0[J − Jγ
sν] ˙̂ωcf + �s0QGrad(ω̂cf) + Div(Yα) = J[r̂cf + r̂sω̂cf], (5c)

Div(Q) + J̇ = 0, (5d)

where Yα := J ŷαF−T and Q := J q̂F−T denote, respectively, the backward Piola transform of the mass flux
vector yα and of the filtration velocity q̂ := ϕ̂f[v̂f − v̂s]. We notice that equation (5b) can be obtained as a
consequence of considering that the mass is conserved after growth has taken place [80]. Indeed, if we express
both the mass of the tissue in its current configuration and in its natural state with respect to the reference
configuration B, we will have that Jeϕ̂s�̂s = 
sν�ν , where 
sν := Jeϕ̂s and 
sν�ν denote, respectively, the
volumetric fraction of the solid phase and the apparent mass density in the natural state. Moreover, from the
the mass balance of the solid phase as a whole, see equation (4b), written in its material form, one may infer

that ˙Jγ
sν�ν = Jr̂s. Consequently, if the growth process preserves the density, the apparent mass density in
the natural state is time-independent, which leads to equation (5b). We notice that these considerations can
be reformulated by selecting Fγ in a manner that ensures the relationship tr(F−1

γ Ḟγ ) = Jr̂s/(Jγ �s0
sν) to be
satisfied, thereby representing a constraint on Fγ [75, 86].

Prior to proceeding, it is worth mentioning that in different models of tumour growth, the assignment of Rγ
is consistently based on phenomenological considerations (see, for instance, [15, 17, 35, 87]). Here, however,
in line with DiCarlo and Quiligotti [36], Epstein and Maugin [79], Cermelli et al. [88], and Grillo et al. [89],
we adopt the methodology put forward in Grillo and Di Stefano [70, 71]. The approach, which relies on the
admission of the existence of non-conventional forces [36] to explain the chemo-mechanical coupling and other
essential factors involved in growth, circumvents making any initial assumptions about Rγ := Jr̂s/(Jγ ρs0
sν),
called growth law in Grillo and Di Stefano [70, 71]. Instead, following Grillo and Di Stefano [70, 71], Rγ is
derived by solving the dynamics of the growing medium under consideration, eliminating the need for any
preconceived notions. Within this framework, we remark that equations (5a)–(5d) can only be solved once the
law for Rγ has been found since Jr̂s depends on Rγ through the relationship Jr̂s = Jγ �s0
sνRγ . Furthermore,
by utilising the aforementioned relationship and the definition of rs, once the expression for Rγ is found, it will
allow us to define the source/sink terms r̂fp, r̂nf, r̂ph, and r̂nh. It is worth noting that unlike in Di Stefano et al.
[24], the definitions of r̂ph and r̂nh are not provided a priori and will be established a posteriori based on the
representation of non-conventional forces. Finally, we mention that a different viewpoint has been put forward
in Grillo and Di Stefano [86] in which the growth law is treated as a non-holonomic kinematic constraint and
reconsidered in Grillo and Di Stefano [90] without adopting time as a fictitious Lagrangian parameter.
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3.2. Governing dynamic equations

Building upon the research conducted in DiCarlo and Quiligotti [36], Grillo and Di Stefano [70], and Grillo et
al. [75], we adopt the perspective that the growth tensor serves as a kinematic variable that captures the tumour’s
inelastic distortions induced by its growth. Although it is possible to account for all the components of Fγ to
deduce the equations that govern their dynamics as in DiCarlo and Quiligotti [36] and Grillo and Di Stefano
[70]. In this work, we have assumed that the growth tensor Fγ is spherical, namely, Fγ = γ I, so that we seek to
determine both the growth parameter γ and the growth law Rγ by introducing suitable non-conventional forces
[36, 70]. Within this context, we retrieve the equations determining the dynamics of the mixture by adhering to
the Principle of Virtual Work and incorporate the set of kinematic descriptors {χ , F, γ } alongside their virtual
variations, denoted by {δχ , δF, δγ }. Then, for negligible inertial terms and no body forces, in the reference
configuration, we can write [36, 70, 71]:

∑
k∈{s,f}

{∫
B

Pk : gGradδχ dV +
∫

B
Jm̂k.δχ dV

}
+
∫

B
ηJ−1

γ δJγ dV

=
∑

k∈{s,f}

{∫
∂NB

τ k.δχ dA

}
+
∫

B
ζJ−1

γ δJγ dV , (6)

where, for k ∈ {s, f}, Pk := J σ̂ kF−T is the first Piola–Kirchhoff stress tensor of the kth phase, g is the metric
tensor associated with Bt, m̂k denote the internal forces describing the gain or loss of momentum of the kth
phase in response to exchange interactions between the two phases, and τ k is a boundary contact force on the
Neumann portion of the boundary of B. Furthermore, within the framework of this work, the non-conventional
forces η and ζ represent the spherical parts of the so-called remodelling couples [36, 70, 71] and are work
conjugated of J−1

γ δJγ . According to Di Carlo [91], it is worth noting that the external non-conventional force
ζ has the potential to encompass interactions originating from smaller scales, such as biochemical interactions.
Finally, we notice that our model is of order zero in the growth parameter γ , which describes the evolution of
the inelastic distortions, while it is of order one in χ , which represents the observable deformation of the body.

In particular, equation (6) can be equivalently rewritten as:

∑
k∈{s,f}

{∫
∂NB

[Pk.N − τ k] .δχdA

}
+
∑

k∈{s,f}

{∫
B

[
Jm̂k − DivPk

]
.δχ dV

}

+
∫

B
[η − ζ ]J−1

γ δJγ dV = 0, (7)

so that, by localisation and adding a Dirichlet boundary condition for χ , we obtain the following system of
equations:

Jm̂k − DivPk = 0, in B, (8a)
Pk.N = τ k, on ∂NB, (8b)

χ = χb, on ∂DB, (8c)
η = ζ , in B, (8d)

for each k ∈ {s, f} and with ∂DB being the Dirichlet portion of the boundary of B. Therefore, by replacing
equation (8a) for k = s with the equation obtained by summing (8a) over all k ∈ {s, f}, we can express equations
(8a)–(8d) as:

DivP = 0, in B, (9a)
Jm̂f − DivPf = 0, in B, (9b)

P.N = τ , on ∂NB, (9c)
χ = χb, on ∂DB, (9d)

η = ζ , in B. (9e)
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We notice that equation (9a) is the balance of linear momentum for the mixture as a whole, where P :=
Ps + Pf is the first Piola–Kirchhoff stress tensor of the mixture and equation (9c) is the associated Neumann
boundary condition with τ := τ s + τ f. In writing equation (9a), we made use of the condition J(m̂s + m̂f) = 0,
which is a consequence of the principle of material frame-indifference [35, 76]. Furthermore, equation (9e),
which represents a balance of growth-conjugated forces, has garnered substantial attention in numerous studies
focused on growth and remodelling (see, for instance, [35, 92, 93]) and, by utilising the dissipation inequality
as a method to establish a constitutive law governing the force η, it serves as the fundamental basis for deriving
a dynamic equation that governs the behaviour of γ .

4. Study of the dissipation
In our analysis for obtaining constitutive information, we turn our attention to the compliance of Ps, Pf, η and
Q with the dissipation inequality, which here we adapt from Grillo et al. [35] and Grillo and Di Stefano [70].
For clarity and convenience, we express the dissipation inequality in relation to the reference configuration as:

0 ≤
∫

C
DR dV = −

∫
C

Jr̂s(ψ̂s − ψ̂f) dV −
∫

C
J�s0ϕ̂s

˙̂
ψs +

∫
C

−1

f QM f dV

+
∫

C
Ps : gḞ dV +

∫
C

Pf : gGradv̂f dV +
∫

C
ζJ−1

γ J̇γ dV , (10)

where C is an arbitrary open subset of B, ψ̂s and ψ̂f are the material form of the Helmholtz free energies
per unit mass of the solid and fluid phases, and M f := J(gm̂f)F is the material counterpart of the momentum
exchange rate. In particular, as in Grillo et al. [75], in writing equation (10), we have approximated ψ̂f with a
constant. Furthermore, the last term in the dissipation inequality represents the external net power conjugated
with J−1

γ J̇γ , which by means of equation (6), can be put in terms of the internal power [70, 71]. We further
observe that equation (10) does not account for the dissipative contribution associated with the nutrients. Its
omission is due to the complexities that would arise if one wants to derive a thermodynamically valid non-local
constitutive law for the mass flux vector. Doing so is currently a subject of investigation in our research, but that
falls outside the scope of this work.

By regarding the balance of mass of the mixture as a whole (i.e., the equation resulting from adding together
equations (4b) and (4d)) as a constraint for the dissipation inequality with associated Lagrange multiplier p, the
inequality (10) can be equivalently rewritten as:

0 ≤
∫

C
DR dV = −

∫
C

Jr̂s(ψ̂s − ψ̂f) dV −
∫

C
J�s0ϕ̂s

˙̂
ψs dV +

∫
C

−1

f QM f dV

+
∫

C
Ps : gḞ dV +

∫
C

Pf : gGradv̂f dV +
∫

C
ηJ−1

γ J̇γ dV

+
∫

C
p̂
[

sF

−T : Ḟ +
fF
−T : Gradv̂f + J
−1

f QGrad(J−1
f)
]

dV , (11)

where
k := J ϕ̂k. In particular, to account for the inelastic distortions induced by growth and under the hypoth-
esis of isotropic and hyperelastic material, the strain energy density ψ̂s is constitutively expressed as a function
of F and Fγ such that ψ̂s = ψ̌ν(FF−1

γ ) = ψν(Fe) (see, for instance, [70, 75]). Thus, by means of the chain rule
and taking into account (4b), the localisation of the dissipation inequality leads to:

0 ≤ DR = 
−1
f Q

[
M f + Jp̂Grad(J−1
f)

]+ [
Pf + p̂
fg

−1F−T
]

: gGradv̂f

+
[

Ps + p̂
sg
−1F−T − J2/3

γ �s0
sνg
−1 ∂ψν(Fe)

∂Fe
I−T

]
: gḞ

+
[
η − 1

3 Jγ �s0
sν

(
(ψ̂s − ψ̂f)I

−T − J−1/3
γ FT ∂ψν(Fe)

∂Fe
I−T

)
: I

]
J−1
γ J̇γ , (12)
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which by means of the Coleman and Noll procedure lead to the following identifications for the first Piola–
Kirchhoff stress tensor of the solid and of the fluid phase:

Ps = −p̂
sg
−1F−T + Psc, (13a)

Pf = −p̂
fg
−1F−T, (13b)

where Psc := J2/3
γ �s0
sνg−1 ∂ψν (Fe)

∂Fe
I−T represents the constitutive part of the first Piola–Kirchhoff stress tensor

of the solid phase [75]. Furthermore, by introducing the notations M fd and ηd for the dissipative parts of the
momentum exchange rate and the internal conjugated force, namely:

M fd := M f + Jp̂Grad(J−1
f), (14a)
ηd := η − H, (14b)

with:

H := Jγ �s0
sν(ψ̂s − ψ̂f) − 1
3 tr(FTgPsc), (15)

the local dissipation inequality rewrites as:

0 ≤ DR = ηdJ−1
γ J̇γ +
−1

f QM fd. (16)

We notice that equation (15) represents, up to a constant, the spherical part of the Eshelby stress tensor
[70, 79, 94, 95], a tensor that has been identified to be the driving force of inelastic processes contributing to
growth [79].

5. Constitutive considerations
Here, we set the constitutive considerations of our model, which involve formulating relationships between
different quantities, such as fluxes and forces, that govern the system’s dynamics.

5.1. Darcy’s law

By adhering to established practices in the field of porous media mechanics (see, for example, [30, 35, 96]), we
express M fd constitutively as a linear function of the fluid filtration velocity, namely:

M fd := 
fK
−1Q, (17)

where K := JF−1k̂F−T, with k̂ being the material form of the spatial permeability tensor, denotes the mate-
rial permeability tensor, which is assumed to be invertible, symmetric, and positive definite. Therefore, the
substitution of equations (13b) and (17) in equation (9b) yields:

g−1F−T
[

fK

−1Q − Jp̂Grad(J−1
f)
]− DivPf = 0, (18)

and, consequently, using the Piola identity, equation (18) reduces to:

Q = −KGrad p̂, (19)

which represents the material form of Darcy’s law of filtration. As in previous works [24, 26], the permeability
tensor of the tissue is assumed to be proportional to the inverse of the metric tensor, so that k̂ = k0g−1. Then,
we can write:

K = JF−1k0g−1F−T = Jk0C−1, (20)

where C is the right Cauchy–Green deformation tensor and:

k0 = kR

(
J − Jγ
sν

Jγ ϕfR

)m0

exp

(
m1

2

[
J2 − J2

γ

J2
γ

])
, (21)
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is the Holmes–Mow scalar permeability [97]. In equation (21), kR is a reference permeability, ϕfR := 1 − 
sν
denotes a reference value of the fluid phase volumetric fraction, and m0 and m1 are constant material parameters.
Finally, the substitution of equations (20) and (21) into equation (19) leads to:

Q = −J

{
kR

(
J − Jγ
sν

Jγ ϕfR

)m0

exp

(
m1

2

[
J2 − J2

γ

J2
γ

])}
C−1Gradp̂. (22)

5.2. Constitutive part of the first Piola–Kirchhoff stress tensor

Following Di Stefano et al. [24] and Ramírez-Torres et al. [26], the solid phase Helmholtz free energy density
is assumed to be of the Holmes–Mow type [97], namely,

ψν(Fe) = ψ̄ν(Ce) = ψ̃ν(ICe ) = a0

�s0
sν
[exp(�(ICe )) − 1], (23a)

�(ICe ) = a1[I1(Ce) − 3] + a2[I2(Ce) − 3] − a3log(I3(Ce)), (23b)

where ICe denotes the list of the principal invariants of the elastic right Cauchy–Green deformation tensor
Ce := FT

e gFe = F−T
γ CF−1

γ , namely, ICe = (I1(Ce), I2(Ce), I3(Ce)), and a0, a1, a2, and a3 are defined as:

a0 := 2μ+ λ

4a3
, a1 := a3

2μ− λ

2μ+ λ
, a2 := a3

λ

2μ+ λ
, a3 := a1 + 2a2 = 1, (24)

with λ and μ being Lamé’s parameters. The above considerations imply that the constitutive part of the first
Piola–Kirchhoff stress tensor is given by:

Psc = J2/3
γ �s0
sνg

−1 ∂ψν(Fe)

∂Fe
I−T = 2J2/3

γ �s0
sνFe
∂ψ̄ν(Ce)

∂Ce
I−T

= 2Jγ
{
b1FC−1

γ + b2[I1(Ce)FC−1
γ − FC−1

γ CC−1
γ ] + b3I3(Ce)FC−1

}
, (25)

where:

b1 := ∂ψ̃ν(ICe )

∂I1(Ce)
= a1[ψ̌ν(Ce) + a0], (26a)

b2 := ∂ψ̃ν(ICe )

∂I2(Ce)
= a2[ψ̌ν(Ce) + a0], (26b)

b3 := ∂ψ̃ν(ICe )

∂I3(Ce)
= −a3[I3(Ce)]−1[ψ̌ν(Ce) + a0], (26c)

where ψ̌ν(Ce) := �s0
sνψ̄ν(Ce) = a0

[
exp (�(ICe )) − 1

]
.

5.3. Growth law

Drawing inspiration from Grillo and Di Stefano [70], here, we recast an equation for the evolution of the growth
parameter γ from the balance of growth-conjugated forces specified in equation (9e). To accomplish this, we
begin by introducing the dissipative part of η in the natural state as ηdν = J−1

γ ηd, which, by referring to equations
(14b) and (9e), leads to the expression:

ηdν = J−1
γ [−H + ζ ], (27)

where H has been defined in equation (15). Thus, to comply with the dissipation inequality, we set:

ηdν := 1

3
aνJ

−1
γ J̇γ , (28)
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where aν is a positive real constant with physical dimensions of stress per unit of time. Consequently, the sought
dynamic equation for γ can be written in the form:

1

3
aνJ

−1
γ J̇γ = J−1

γ [−H + ζ ], (29)

or equivalently, using equation (3), as:

γ −1γ̇ = a−1
ν J−1

γ [−H + ζ ]. (30)

We remark that, as shown in Grillo and Di Stefano [70], a law for ηdν that satisfies fundamental principles of
constitutive laws [98], such as independence of the choice of the reference configuration, can be written in the
form given in equation (28). Furthermore, by examining equation (30), we observe that the dynamics of γ are
determined by the difference between H and ζ . Consequently, even when ζ ≡ 0, the governing equation for γ
remains non-trivial due to the influence of H, which drives the evolution of the growth parameter. Nevertheless,
when a non-zero ζ is present, its specific form plays a crucial role in determining how γ evolves. Among
the possible choices for ζ and, since we are dealing with the growth of an avascular tumour where different
constituents are interacting, we assign an expression accounting for the nutrients and mechanotransduction. In
particular, following a methodology similar to Grillo and Di Stefano [70] and by targeting the phenomenological
expressions found in Mascheroni et al. [9], Di Stefano et al. [24], and Ramírez-Torres et al. [26], so that we
preserve the biological concepts and ideas supported by previous research efforts and that have been successful
in the modelling of tumour growth, we write:

ζ := Jγ
(
κfpϒfp − κnfϒnf

)
, (31)

where κfp and κnf are the constant parameters with physical units of stress per time, and the scalar quantities ϒfp
and ϒnf are defined as:

ϒfp := ζfp

3�s0

〈
ω̂cf − ωcr

ωenv − ωcr

〉
+

[
1 − δ1〈σ̄ 〉+

δ2 + 〈σ̄ 〉+

]
J − Jγ
sν

JϕfR
ω̂ps, (32a)

ϒnf := ζnf

3�s0
(1 − ω̂ps). (32b)

In equations (32a) and (32b), ζfp and ζnf account for the absorption of fluid by the proliferating cells and for
the necrotic cells that dissolve into the fluid, ωcr is a critical value for the nutrients’ mass fraction below which
proliferating cells start dying and ωenv represents the value of the nutrients available in the tissue’s environment.
Furthermore, δ1 is a dimensionless constant, δ2 is a strictly positive characteristic stress, and σ̄ denotes the
spherical part of the Cauchy stress tensor. Finally, the notation 〈φ〉+ is used to represent Macaulay’s bracket that
returns zero if φ is negative or zero, and φ if it is positive.

Thus, combining the above results, the evolution equation for the growth parameter, γ , is:

γ −1γ̇ = − H
aνJγ

+ 1

aν

(
κfpϒfp − κnfϒnf

)
. (33)

Furthermore, from equations (5b) and (30), we are now able to provide an expression for the growth law Rγ ,
which is similar to the one found in Grillo and Di Stefano [70] and reads:

Rγ ≡ J−1
γ J̇γ = − 3H

aνJγ
+ 3

aν

(
κfpϒfp − κnfϒnf

)
. (34)

So, once the growth parameter and the other unknowns of the problem have been identified, the value of
Rγ can be determined through equation (34). In addition, by recalling that Jr̂s = Jγ �s0
sνRγ with Jr̂s =
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J[r̂fp + r̂nf + r̂ph + r̂nh], we can make the following identifications:

Jr̂fp

Jγ
sν�s0
≡ 3κfp

aν
ϒfp = ζfpκfp

�s0aν

〈
ω̂cf − ωcr

ωenv − ωcr

〉
+

[
1 − δ1〈σ̄ 〉

δ2 + 〈σ̄ 〉+

]
J − Jγ
sν

JϕfR
ω̂ps, (35a)

Jr̂nf

Jγ
sν�s0
≡ −3κnf

aν
ϒnf = −ζnfκnf

�s0aν
(1 − ω̂ps), (35b)

Jr̂ph

Jγ
sν�s0
= − 3H

aνJγ
, (35c)

where we have set r̂nh ≡ 0. As remarked in previous sections, equation (35c) establishes an a posteriori connec-
tion between the production of inelastic distortions, encoded in the growth parameter γ , and r̂ph, which reflects,
by referring to equation (5a), the impact of the properties of Fγ on the evolution of the proliferating cells.

5.4. Mass flux vector

By taking inspiration from Ramírez-Torres et al. [26], the components of the mass flux vector of nutrients are
defined through the expression:

[
yα(x, t)

]a = −�f

∫
Bt

fα(x,x̃)(x − x̃)[d(x, x̃, t)]ab [grad(ωcf(x̃, t))]b dv(x̃), (36)

where fα(x,x̃)(x − x̃) is a non-locality function depending on the dimensionless positive scalar function α(x, x̃) ∈
R

+, and d(x, x̃, t) is the diffusivity tensor. Moreover, we notice that since yα represents the flux of nutrients, it
needs to have physical units of a standard flux, i.e., ML−2T−1, where M , L, and T denote a specific unit of mass,
length, and time, respectively. This implies that the non-locality function has physical units L−3. We remark
that the non-uniform form of the scalar quantity α represents an additional feature with respect to the definition
given in Ramírez-Torres et al. [26].

Remark 1 By considering the notions offered by fractional calculus [48–50], we observe that it is possible to
assume the non-locality function to be a power-law dependent on the distance between the two spatial points x
and x̃, with α(x, x̃) being the exponent, such that the integral in equation (36) can be thought as a variable-order
fractional differentiation operator. In particular, within the context of anomalous diffusion, the consideration
of a space-dependent order α(x, x̃) has been linked to the medium heterogeneity (see, for instance, [61] and
references therein) such that it can be interpreted as a quantity encoding location-dependent, microstructural
properties of a system at larger scales.

In addition, we notice that, just like constant-order fractional operators, the variable-order counterparts
lack a universally accepted definition, resulting in numerous options presented in the scientific literature [59,
64, 99–105]. The suggested alternatives reflect desired mathematical properties or physical interpretations
under specific conditions. Emphasis has been placed on the functional expression of a time-dependent fractional
differentiation order, aiming to capture diverse memory patterns in the modelling process. Notably, with abuse
of notation, the cases α(t, τ ) = α(t) and α(t, τ ) = α(τ ) offer different forms on how the fractional operator
“remembers” past values of α, with the memory being weaker when α(t, τ ) = α(t), as it only depends on
the current time, and stronger when α(t, τ ) = α(τ ) as it contains the memory of the order history [60, 61].
Within the context of this work, however, we put emphasis on the spatial dependence in the variable-order to
account for potential spatial phenomena that may arise due to the heterogeneous and complex environment in
which diffusion is taking place. Thus, the aforementioned interpretations translate to accounting for location-
dependent, non-local interactions determined by the current position when α(x, x̃) = α(x) or relying on the
information at “distant” points when α(x, x̃) = α(x̃). It is important to note that our system evolves over time,
so the variable-order parameter α(x, x̃) is influenced by the motion since x = χ(X , t) and x̃ = χ(X̃ , t). This
reflects a type of variable-order non-locality that changes with the dynamics of the medium being studied.

From the definition of the material mass flux vector, we have that:

Yα(X , t) := J(X , t)ŷα(X , t)F−T(X , t)

= −�f

∫
B

Fα(χ(X ,t),χ(X̃ ,t))(χ(X , t) − χ(X̃ , t))D(X , X̃ , t)Grad(ω̂cf(X̃ , t))dV (X̃ ), (37)
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where Fα is the material non-locality function and D denotes the non-local material diffusivity tensor and are
defined as:

Fα(χ(X ,t),χ(X̃ ,t))(χ(X , t) − χ(X̃ , t)) := J(X , t)fα(χ(X ,t),χ(X̃ ,t))(χ(X , t) − χ(X̃ , t)), (38a)

D(X , X̃ , t) := J(X̃ , t)F−1(χ(X , t), t)d̂(X , X̃ , t)F−T(X̃ , t). (38b)

We observe that the material non-locality function considers a form of non-locality that changes according
to the tumour’s kinematics through its motion χ .

Building on previous research [26], we suppose that the diffusivity tensor d depends on x̃ and t, so that if
d(x̃, t) = ϕf(x̃, t)dRg−1(x̃, t), where dR is a constant reference diffusivity [24, 26], we can write:

d̂(X̃ , t) = J(X̃ , t) − Jγ (X̃ , t)
sν

J(X̃ , t)
dRg−1(χ(X̃ , t), t), (39)

and the material diffusivity tensor given in equation (38b) can be expressed in the form:

D(X , X̃ , t) = [
J(X̃ , t) − Jγ (X̃ , t)
sν

]
dRF−1(χ(X , t), t)g−1(χ(X̃ , t), t)F−T(X̃ , t), (40)

which reduces to the standard material diffusivity tensor, i.e., D = [J − Jγ
sν]dRC, in the case in which X and
X̃ are indistinguishable [26].

6. Summary of the model and benchmark problem
In this section, we provide an overview of the equations under consideration. In summary, we have:

˙̂ωps = J[r̂pn + r̂fp + r̂ph][Jγ
sν�s0]−1 − Rγ ω̂ps, (41a)

γ̇ = − H
aνγ 2

+ γ

aν

[
κfpϒfp − κnfϒnf

]
, (41b)

Rγ = − 3H
aνJγ

+ 3

aν

[
κfpϒfp − κnfϒnf

]
, (41c)

[J − Jγ
sν] ˙̂ωcf − [KGrad p̂]Grad(ω̂cf) + 1

�s0
Div(Yα) = Jr̂cf

�s0
+ Jγ
sνRγ ω̂cf, (41d)

Div
(−Jp̂g−1F−T + Psc

) = 0, (41e)

J̇ − Div(KGradp̂) = 0, (41f)

where K , Psc, H, and Yα have been specified in equations (20), (25), (15), and (37), respectively, and as in Di
Stefano et al. [24] and Ramírez-Torres et al. [26], we set:

Jr̂pn

Jγ
sν�s0
= − ζpn

�s0

〈
1 − ω̂cf

ωcr

〉
+
ω̂ps, (42a)

Jr̂cf

�s0
= − ζcf

�s0

ω̂cf

ω̂cf + ω0
Jγ
sνω̂ps, (42b)

with ω0 ∈ ]0, 1] being a reference value influencing the consumption of nutrients, and ζpn and ζcf representing
factors that contribute to the consumption of nutrients and the emergence of necrotic cells.

One significant distinction from the model presented in Ramírez-Torres et al. [26], is that for growth to
occur, it is not necessary that Jr̂fp is positive as it was the case in Ramírez-Torres et al. [26]. In the present
framework, growth can occur even when Jr̂fp ≤ 0 as the contribution of the configurational mechanical stress
H would still be present and driving the evolution of the body [70, 86].
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6.1. Description of a benchmark problem

Now, we focus our attention on the description of the benchmark problem previously investigated in [24, 26,
106]. Specifically, we examine a scenario in which the growth of an avascular tumour occurs within a cylindrical
domain with a rigid curved boundary, so that the tumour’s motion is exclusively constrained to happen in the
axial direction. This description is aligned with the progression of DCIS, which represents the earliest stage
of breast cancer. Indeed, DCIS is characterised by a non-invasive state in which tumour cells are confined
by an intact basement membrane acting as a thin, flexible sheet-like extracellular matrix structure, effectively
preventing the penetration of blood vessels from the surrounding tissue into the duct [73].

As in Di Stefano et al. [24] and Ramírez-Torres et al. [26], we describe the reference configuration of the
tissue using a cylindrical coordinate system (R,�, Z), where R ∈ [0, Rin[, � ∈ [0, 2π [, and Z ∈ [−Lin, +Lin]
represent the radial, circumferential, and axial coordinates, respectively. In particular, Rin denotes the initial
radius and 2Lin is the initial length of the cylinder. Correspondingly, the current configuration of the tissue is
characterised by the cylindrical coordinate system (r, θ , z), where:

r = χ r(R,�, Z, t) = R, (43a)

θ = χθ (R,�, Z, t) = �, (43b)

z = χ z(R,�, Z, t) = Z + u(Z, t), (43c)

with u(Z, t) being the axial displacement. Specifically, we focus on maintaining a constant radius for the spec-
imen, but allowing its length to vary solely along the axial direction. This approach effectively eliminates any
rotational movement around the primary axis. Accordingly, the set of unknowns of the problem at hand, namely,
U = {ω̂ps, γ , ω̂cf, u, p̂} depends only on the axial coordinate and time. Furthermore, the restrictions imposed to
the motion imply that while equations (41a), (41b), and (41c) will have the same structure, equations (41d)–(41f)
can be further simplified. In particular, in the framework of the benchmark problem, the system of equations
given in the previous section reduces to:

˙̂ωps = J[r̂pn + r̂fp + r̂ph][Jγ
sν�s0]−1 − Rγ ω̂ps, (44a)

γ̇ = − H
aνγ 2

+ γ

aν

[
κfpϒfp − κnfϒnf

]
, (44b)

Rγ = − 3H
aνJγ

+ 3

aν

[
κfpϒfp − κnfϒnf

]
, (44c)

[J − Jγ
sν] ˙̂ωcf − k0

[
1 + ∂u

∂Z

]−1
∂ p̂

∂Z

∂ω̂cf

∂Z
+ 1

�s0

∂Y Z
α

∂Z
= Jr̂cf

�s0
+ Jγ
sνRγ ω̂cf, (44d)

∂

∂Z

(
−p̂ +

(
1 + ∂u

∂Z

)
[Ssc]

ZZ

)
= 0, (44e)

∂2u

∂t∂Z
− ∂

∂Z

(
k0

(
1 + ∂u

∂Z

)−1
∂ p̂

∂Z

)
= 0, (44f)

where we have used the fact that [F] = diag{1, 1, 1 + ∂u/∂Z} and Ssc = F−1Psc is the second Piola–Kirchhoff
stress tensor.

To solve the system of equations specified by equations (44a)–(44f), we use the same initial and boundary
conditions as those employed in Di Stefano et al. [24] and Ramírez-Torres et al. [26]. Specifically, at the initial
time instant t = 0, we assume that the solid phase consists entirely of proliferating cells, i.e., ω̂ps(Z, 0) = 1, and
that the growth parameter is uniform and equal to 1. Besides, nutrients are considered to be evenly distributed in
the spatial domain with mass fraction ω̂cf(Z, 0) = ωenv > 0. Finally, both the pressure and the axial displacement
are assumed to be zero at the initial time.

On the contrary, by denoting with (∂B)left and (∂B)right the left and right surfaces at the extremities of
B, respectively, and with (∂B)C the lateral boundary of the cylinder, the boundary conditions complementing
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equations (44a)–(44f) are:

ω̂cf = ωenv, on (∂B)left and (∂B)right, (45a)

Q.NC = 0, on (∂B)C, (45b)
Yα .NC = 0, on (∂B)C, (45c)

p̂ = 0, on (∂B)left and (∂B)right, (45d)
P.NA = 0, on (∂B)left and (∂B)right, (45e)

where NA = ±EZ is the unit normal to (∂B)left and (∂B)right, and NC = ER denotes the normal unit vector to
(∂B)C. The boundary conditions specified in equations (45a)–(45e) assure that there is a constant concentration
of nutrients at all times, the boundary (∂B)C is impermeable, there is no flux at the boundaries (∂B)left and
(∂B)right, and the axial boundaries are free of pressure and traction, respectively, assuring that changes in the
boundary are solely attributable to growth.

6.2. Axial mass flux

To comply with the assumptions made so far, we redefine the non-locality function so it depends only on z and
z̃. Therefore, by adapting the results obtained in Ramírez-Torres et al. [26] to our case, we set:

fα(x,x̃)(x − x̃) := hα(z,z̃)(z − z̃) = Lα(z,z̃)−1
in

2πR2
in�(1 − α(z, z̃))

|z − z̃|−α(z,z̃), (46)

where �(·) denotes Euler’s Gamma function and α(z, z̃) ∈ ]0, 1[. Consequently, the substitution of the last
expression into equation (36) yields:

[yα(z, t)]z = −�f

∫ +�(t)

−�(t)

Lα(z,z̃)−1
in

2�(1 − α(z, z̃))|z − z̃|α(z,z̃)
[d(z̃, t)]zz ∂ ωcf(z̃, t)

∂ z̃
dz̃, (47)

where �(t) > 0 denotes the changing axial length of the body. It should be noted that, in this work, we use a
definition of mass flux vector, which is slightly different from the definition given in Ramírez-Torres et al. [26]
(see equation (54) therein). Specifically, in Ramírez-Torres et al. [26], it was considered a fractional diffusiv-
ity tensor with anomalous physical units L1+αT−1 whereas, in the present approach, we preferred to give the
anomalous length units to the non-locality function with the aim of having a standard diffusivity tensor from
the outset.

Remark 2 We observe that although the definition of the non-locality function presented in equation (46) bears
similarities to the one proposed in Ramírez-Torres et al. [26], its motivation necessitates a different approach
compared to the methodology followed in Ramírez-Torres et al. [26]. The primary challenge in addressing
equation (47) lies in the difficulties arising in trying to express [yα(z, t)]z as a convolution integral. Nevertheless,
we observe that by extending the domain to the real line, i.e., � → +∞, and introducing the notation yz(z̃, t) :=
−�f[d(z̃, t)]zz∂ωcf(z̃, t)/∂ z̃, we can reformulate equation (47) as:

[yα(z, t)]z =
∫ +∞

−∞

Lα(z,z̃)−1
in

2�(1 − α(z, z̃))|z − z̃|α(z,z̃)

sin(α(z, z̃)π/2)

sin(α(z, z̃)π/2)
yz(z̃, t)dz̃, (48)

so that, by defining I(z, z̃) := 1/�(1 − α(z, z̃))|z − z̃|α(z,z̃) sin(α(z, z̃)π/2) and noticing that �(α)�(1 − α) =
π/ sin(απ ), we have that [107]:

I(z, z̃) = �(α(z, z̃))

π iα(z,z̃)(z − z̃)α(z,z̃)
+ �(α(z, z̃))

π iα(z,z̃)(z̃ − z)α(z,z̃)
= 1

π

∫ +∞

−∞
eiξ (z−z̃)|ξ |α(z,z̃)−1dξ . (49)

Thus, by substitution into equation (48), we can write:

[yα(z, t)]z = 1

2π

∫ +∞

−∞
Lα(z,z̃)−1

in sin(α(z, z̃)π/2)

{∫ +∞

−∞
eiξ (z−z̃)|ξ |α(z,z̃)−1dξ

}
yz(z̃, t)dz̃

= 1

2π

∫ +∞

−∞
eiξz

{∫ +∞

−∞

[
Lα(z,z̃)−1

in sin(α(z, z̃)π/2)
]
|ξ |α(z,z̃)−1e−iξ z̃yz(z̃, t)dz̃

}
dξ . (50)
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Hence, when α approaches either one or zero, and z and z̃ are fixed, it can be inferred that:

lim
α→1−

[yα(z, t)]z = F−1 {F{yz}(ξ , t)} (z, t) = yz(z, t) = −�f[d(z, t)]zz ∂ωcf

∂z
(z, t), (51a)

lim
α→0+

[yα(z, t)]z = 0, (51b)

where F{·} denotes the Fourier transform and F−1{·} denotes its inverse. Thus, although a different approach
was used in Ramírez-Torres et al. [26] to formulate yα , the findings in equations (51a) and (51b) still maintain
the original non-local diffusion patterns proposed in Ramírez-Torres et al. [26]. These, in particular, enable
the examination of the connection between the function α and the dynamics of nutrient diffusion. When α
approaches one, it corresponds to the conventional Fick’s law. Conversely, when α approaches zero, it signifies
that the diffusion of nutrients is impeded, reflecting hindered transport.

The restrictions imposed on the motion, together with the definitions (38a) and (46), imply that the material
non-locality function can be rephrased as:

Hα̌(Z,Z̃,t)(Z, Z̃, t) = [1 + u′(Z, t)]Lα̌(Z,Z̃,t)−1
in

2πR2
in�(1 − α̌(Z, Z̃, t))

1

|Z + u(Z, t) − Z̃ − u(Z̃, t)|α̌(Z,Z̃,t)
, (52)

where the notation u′(Z, t) has been used to denote the partial derivative of u with respect to Z and:

α̌(Z, Z̃, t) := α(χ z(Z, t),χ z(Z̃, t)) = α(Z + u(Z, t), Z̃ + u(Z̃, t)). (53)

Furthermore, the axial component of the material diffusivity tensor given in equation (38b) is:

[D(Z, Z̃, t)]ZZ = 1 + u′(Z̃, t) − γ 3(Z̃, t)
sν

[1 + u′(Z, t)][1 + u′(Z̃, t)]
dR. (54)

Thus, considering equations (52) and (54), the axial component of the material flux vector Yα specified in
equation (37) can be written in the form:

[Yα(Z, t)]Z = −�f

∫ +Lin

−Lin

[1 + u′(Z̃, t) − γ 3(Z̃, t)
sν][1 + u′(Z̃, t)]−1Lα̌(Z,Z̃,t)−1
in dRω̂

′
cf(Z̃, t)

2�(1 − α̌(Z, Z̃, t))|Z + u(Z, t) − Z̃ − u(Z̃, t)|α̌(Z,Z̃,t)
dZ̃. (55)

7. Numerical results
In this section, we present the numerical results obtained through the implementation in COMSOL Multi-
physics® of the model equations in their weak formulation. These results will serve as a critical tool in our
quest to unravel the complexities of our model and shed light on its implications. In particular, the parameters
used in our simulations are reported in Table 1.

We notice that, in addition to the parameters listed in Table 1, we also need to consider the Helmholtz free
energy of the fluid phase. Following Penta et al. [110], we consider the mass fraction of nutrients to be low, so
that ψ̂f can be approximated by [111, 110]:

ψ̌f = Cf [f (T ) − T log(T/T0)] , (56)

where Cf is the specific heat capacity set to be equal to the specific heat of water 4184 J/(kg K), f (T ) is a
function of temperature, assumed here to be linear in T with slope b > 0, and T0 denotes a reference value for
the temperature. Since we are dealing with isothermal processes, T is constant and, for simplicity, we assume
that T = T0 = 310.15 K. Moreover, we set b = 10−6.
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Table 1. List of parameters used in the numerical simulations.

Parameter Unit Value Parameter Unit Value

Lin cm 0.500 �s kg/m3 1000
Rin cm 1.000×10−2 �f kg/m3 1000
λ Pa 1.333×104 dR m2/s 3.200 × 10−9

μ Pa 1.999 × 104 ζfp kg/(m3 s) 1.343 × 10−3

kR m2/(Pa s) 4.875 × 10−13 ζnf kg/(m3 s) 1.150 × 10−5

m0 − 0.0848 ζcp kg/(m3 s) 3.000 × 10−4

m1 − 4.638 ζpn kg/(m3 s) 1.500 × 10−3

δ1 − 7.138 × 10−1 ωcr − 1.000 × 10−3

δ2 Pa 1.541 × 103 ωenv − 7.000 × 10−3


sν − 0.8 ω0 − 1.000 × 10−2

The values were taken from different sources [9,18,24,26,87,97,108,109].

7.1. Case I: constant-order non-local flux

As a first step in our investigations, we begin by assuming a constant fractional parameter and explore how
the new growth law (refer to equation (44c)) impacts the dynamics of an avascular tumour subjected to a non-
Fickian diffusion law. Essentially, our analysis focuses on understanding the influence of H on the tumour’s
evolution. To achieve this, we assign κfp and κnf the same value of aν = 2×1011 Pa s, so that we obtain the same
growth law as considered in Ramírez-Torres [26] when H is absent.

Figure 1 presents the spatial distributions of the axial displacement u and the growth law Rγ at a fixed time of
20 days. The comparison in Figure 1 focuses on the model’s outcomes by switching on and off the contribution
of the configurational mechanical stress H for two different values of the fractional parameter α. Specifically,
the fractional parameter is set equal to α = 0.1, indicating hindered diffusion, and to α = 0.9, a scenario of
nearly Fickian diffusion (see Remark 2). By examining the left panel of Figure 1 for α = 0.9, we observe that
the displacement is higher in the model that neglects H with respect to the model that accounts for this term.
This behaviour can be explained by referring to the right panel of Figure 1 as the sign of Rγ determines if
there is mass accretion (Rγ > 0) or mass resorption (Rγ < 0) and its value is directly related to the amount of
displacement the tumour experiences. In fact, in the case without H, Rγ becomes negative when the nutrients’
mass fraction goes below the critical value, namely, ω̂cf < ωcr (as shown in Figure 2). However, the sign of Rγ
can also change when ω̂cf > ωcr due to the contribution of H being larger than ϒ := 3[κfpϒfp − κnfϒnf]/aν
(refer to equation (44c)). This conclusion is supported by both the right panel of Figure 1 and the left panel of
Figure 2. In the latter, we present the spatial distribution of 3H/(aνJγ ) and ϒ for α = 0.9. Indeed, we notice
that when the configurational stress is accounted for, the growth law becomes negative at around Z = 0.24 cm,
while the nutrients’ mass fraction falls below the critical value (represented with the dashed horizontal line in
the right panel of Figure 2) at around Z = 0.08 cm. Therefore, in our model, mass resorption can still occur in
the body even if the nutrients’ mass fraction does not fall below the critical value. This behaviour showcases
the influence of the configurational mechanical stress on the body’s dynamics and its direct impact on growth,
as per our adopted approach. While the growth law without H relies heavily on the presence and changes in
nutrient availability, the current model incorporates the Eshelby stress in the growth law, which, for α = 0.9,
prevents the displacement from increasing. In contrast, if α = 0.1, we observe that the numerical results for the
case that includes the contribution of H (represented by the dotted line with square markers) exhibit an increase
in the axial displacement that is less concentrated at the axial boundary compared to the model that neglects H
(represented by the solid line with plus sign markers). By referring to the right panel of Figure 1, we notice that
while Rγ < 0 in almost the whole spatial domain in the absence of H and α = 0.1, it is positive in large part of
the spatial domain when H is not neglected and reflects the contribution to growth given by the configurational
mechanical stress by aiding the displacement to increase and not be confined to the axial boundary.

To continue with our analysis, in Figure 3, we present the spatial profiles of the pressure and the mass
fraction of the proliferating cells. Focusing on the left panel of Figure 3, we observe that necrotic cells appear
when ω̂cf < ωcr, which is consistent with the spatial distribution of nutrient mass fraction shown in Figure 2.
Particularly, in examining the case in which H is active and α = 0.9, the model foresees a low mass fraction
of necrotic cells (although not visible to the unaided eye) compared to the scenario without H, where a larger
necrotic cell’s mass fraction is appreciated. However, when H is present, we note that the displacement is lower
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Figure 1. (Left panel): spatial distribution of the axial displacement u. (Right panel): spatial distribution of the growth law Rγ . The
model’s outcomes are compared by toggling the contribution of H. All curves shown represent the results at a fixed time of 20 days.

Figure 2. (Left panel): spatial distribution of 3H/(aνJγ ) and ϒ := 3(κfpϒfp − κnfϒnf)/aν for α = 0.9. (Right panel): spatial
distribution of the nutrients’ mass concentration ω̂cf. All curves shown represent the results at a fixed time of 20 days. The horizontal
dashed line represents the critical value ωcr.

Figure 3. (Left panel): spatial distribution of the proliferating cells’s mass fraction ω̂ps. (Right panel): spatial distribution of the
pressure p̂. The model’s outcomes are compared by toggling the contribution of H. All curves shown represent the results at a fixed
time of 20 days.

than in the case without H. This behaviour emphasises how the properties of Fγ play a major role in the equation
that governs cell proliferation through the term rph. Still, the appearance of the necrotic region is ascribable to
ω̂cf being less than ωcr.

Now, focusing on the right panel of Figure 3, we observe that in the absence of H and for α = 0.1, the
pressure is positive. This phenomenon can be attributed to hindered diffusion resulting from selecting α = 0.1,
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Figure 4. (Left panel): time evolution of the tumour’s volume. (Right panel): spatial distribution of the ratio J/Jγ at different instants
of time.

which leads to the existence of a large region of necrotic cells at the centre of the tumour. In agreement with the
biological foundations of nutrient diffusion and necrosis in a tumour [26,112], the dissolution of necrotic cells
in water generates an outward flux, opposing the direction of fluid flow, which makes p̂ to be positive. We notice
that the red solid curve undergoes a change in monotony when α = 0.9, and this phenomenon can be attributed
to the increasing prominence of the mass fraction of necrotic cells. However, when considering the presence
of H and α = 0.1, a significant portion of necrotic cells no longer generates a positive pressure. Furthermore,
if α = 0.9, for which the concentration of necrotic cells is low, the pressure becomes positive. In such a case,
the change of sign of the pressure (as it is negative for initial times) appears to be strongly associated with the
configurational mechanical stress rather than the evolution of the necrotic cells’ mass fraction as the coupling
of the dynamic equations with the latter is weaker.

In the left panel of Figure 4, we illustrate the temporal evolution of the tumour’s volume across a 100-day
span. We remark that, our model, built upon the specific choice of the scalar permeability (refer to equation
(21)), necessitates that J/Jγ > 
sν for all X ∈ B and t ∈ I . Figure 4 demonstrates that in the absence of the
configurational mechanical stress in the growth law, this criterion is breached at the axial boundary before the
specimen’s volume stabilises (see right panel of Figure 4). Specifically, for α = 0.1, the ratio J/Jγ reaches 
sν
when evaluated at Z = Lin at around approximately 55 days. Furthermore, for α = 0.9, it occurs after about 85
days. As a result, our simulations, constrained by the specific parameter selections and underlying constitutive
assumptions, are unable to extend beyond these time frames. Notably, both scenarios without H exhibit a phase
of resorption and, in particular, for α = 0.1, the tumour reverts to its initial volume shown with the horizontal
dashed line in the left panel of Figure 4. Conversely, when H is accounted for, the specimen’s volume stabilises
while maintaining J/Jγ greater than the volumetric fraction of the solid phase in the natural state, 
sν , for all
X ∈ B and t ∈ I . These considerations highlight the pivotal role of the configurational stress in our model
and its influence on the evolution of the tumour.

Before going further, we study the influence of aν in the evolution of the body specimen. Specifically, in
Figure 5, distinct growth patterns can be observed for different values of aν . It is noteworthy that for α = 0.9, as
aν increases, the displacement distribution tends to resemble the case where the contribution of H in the growth
law is absent. In addition, when α = 0.1, decreasing aν leads to a less pronounced impact of nutrients at the axial
boundary. This is evident from the nearly identical curves for aν = 1×108 Pa s and aν = 1×1010 Pa s, indicating
that the coupling with the configurational stress is stronger compared to the coupling with the evolution of
nutrients.

7.2. Case II: variable-order non-local flux

In this second scenario, we explore how a variable fractional-order affects the evolution of the main parameters
in our model. Before delving deeper into the analysis, we note that although there is a lack of experimental data,
we opt for a functional form that holds a physical interpretation. Specifically, we prescribe α in a way that it
acts as an overall descriptor of the complex micro-environment found in tumours by reflecting, for instance, a
poorly organised vasculature leading to regions of limited diffusion [69]. To facilitate our study, we consider
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Figure 5. (Left panel): spatial distribution of the axial displacement for α = 0.9. (Right panel): spatial distribution of the axial
displacement for α = 0.1. The model’s outcomes are compared by selecting different values of aν . All curves shown represent the
results at a fixed time of 20 days.

Figure 6. Profile of the variable-order parameter at t = 0 s and with A = 0.9, B = 0.85, and C = 2 × 10−2 cm.

that α(z, z̃) = α1(z̃) and set:

α1(z̃) := A − B exp

(
− 1

C2
(z̃ − Lin/2)2

)
, (57)

where A, B, and C are positive constants, with A and B being dimensionless and C having physical units of
length. As depicted in Figure 6, at the initial time and for the given values of A, B, and C, the expression in
equation (57) enables the description of a non-diffusive regime in the vicinity of ±Lin/2. Therefore, our focus
lies in understanding how this particular selection influences the tumour dynamics.

Figure 7 illustrates the evolution of the spatial profiles of the axial displacement and the mass concentration
of nutrients. We notice that the variable and non-local way in which the nutrients diffuse into the tissue affects
the manner in which the tumour grows. Specifically, we observe a notable inhomogeneous spatial distribution
in the axial displacement, which corresponds to a significant decrease in the nutrients’ mass concentration near
Z = Lin/2 as prescribed by equation (57). In particular, even though the variable-order α1 returns to 0.9 in
the interval [0, Lin/2], which corresponds to an unhindered diffusion region, the nutrient availability remains
low. This outcome can be attributed to our decision to prescribe α as a function of z̃, giving importance to a
situation where α retains a stronger “spatial memory” of its previous states (see Remark 1). We emphasise that,
in contrast, the case in which α depends solely on z would result in disregarding information from remote points
and causing the mass flux to respond relatively quickly to changes. Such an approach would require facing
challenges both from numerical and physical points of view, similar to those observed in previous studies (refer
to Sun et al. [113] for an example).

To continue our analysis, we present the numerical results for the mass fraction of proliferating cells and
the growth parameter. The left panel of Figure 8 shows a significant decline in proliferating cells where α1
reaches its minimum value. This minimum value corresponds to the spatial location with the greatest inhibition
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Figure 7. (Left panel): spatial distribution of the axial displacement u. (Right panel): spatial distribution of the nutrients’ mass
concentration ω̂cf. The curves correspond to the fixed times of t = 1 day and t = 20 days.

Figure 8. (Left panel): spatial distribution of the proliferating cells’ mass fraction ω̂ps. (Right panel): spatial distribution of the
proliferating cells’ mass fraction. The curves correspond to the fixed times of t = 1 day and t = 20 days.

to diffusion, creating a region of space of limited nutrient availability. The right panel of Figure 8 depicts the
spatial profile of the growth parameter γ , which exhibits a similar sudden “jump” at Lin/2. This jump increases
over time in correspondence with the axial displacement evolution. We also notice that the part of the domain
in which the necrotic cells appear coincides with the one in which the nutrients fall below the critical value.
Furthermore, when examining Figure 9, we can observe a decrease in the pressure of the interstitial fluid over
time from the free boundary towards the centre of the tumour which, in the case reported here, does not become
positive. By making reference to our discussions in the previous section, this can be attributed to two factors:
first, the region of necrotic cells is not sufficiently large to generate an outward flux, and second, the influence
of ϒ on the pressure is dominant, surpassing the contribution of 3H/(aνJγ ), as evidenced by the positive values
of Rγ in the right panel of Figure 9.

An important observation arises from the spatially inhomogeneous growth giving rise to residual stresses
(see, for example, [13, 15, 39, 114–117] and references therein), i.e., the stress in the material is different from
zero even though there are no applied loads. As reported in Figures 1 and 7, the inhomogeneous nature of the
displacement suggests the existence of regions where the tumour grows faster due to the non-uniform distribu-
tion of nutrients. Particularly, referring to Figure 7, this phenomenon manifests in the region [Lin/2, Lin] (and, by
symmetry, in [−Lin, −Lin/2]) where both the proliferating cells’ mass fraction, ω̂ps, and the growth parameter,
γ , exhibit higher values (see Figure 8). As illustrated on the left panel of Figure 10, the circumferential stress
(and, due to the inherent symmetry, the radial stress as well) is more compressive in the spatial region where
the specimen experiences increased growth, which is indicative of the proliferation activity. On the contrary,
in the inner region (i.e., [0, Lin/2[), where the tumour exhibits reduced growth, the circumferential stress is
less compressive. Although experimental and theoretical studies are mainly focused on the growth of tumour
spheroids [9, 13, 108, 116], our theoretical findings align with evidence supporting the existence of residual
stresses induced by growth and of stresses compressively increasing within the tumour region. We remark that,
in the context of this work, we are not considering the restriction by a surrounding tissue.
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Figure 9. (Left panel): spatial distribution of the pressure. (Right panel): spatial distribution of the growth law. The curves correspond
to the fixed times of t = 1 day and t = 20 days.

Figure 10. Spatial distribution of the circumferential (left panel) and axial (right panel) stresses. The curves correspond to the fixed
times of t = 1 day and t = 20 days.

If we direct our attention to the right panel in Figure 10, the axial stress vanishes at Z = Lin and, at initial
times, is compressive. Particularly, in the neighbourhood of the point Z = Lin/2, where diffusion is hindered
(see equation (57) and Figure 7), the axial stress exhibits a non-monotonic trend and, as time progresses, a
jump-like transition can be observed. To gain insight into this pattern, we notice that although the decline in
nutrient availability becomes less pronounced over time, it eventually falls below the critical threshold ωcr. As
reported in Figure 8, this event effectively creates a region of actively proliferating cells and another one with
presence of necrotic cells, which underscores the sharp jump of the axial stress at Z = Lin/2 and, consequently,
the critical role of the non-uniform distribution of nutrients in shaping the tumour’s dynamics. We further
notice that at points near Z = Lin/2 from the right, the stress is in tension, whereas it is in compression as we
approach Z = Lin/2 from the left. This trend bears a resemblance to patterns documented in studies examining
tumour growth in contact with host tissues (as in, for example, [9, 108, 118]). In our specific scenario, we
attribute this behaviour to both the sharp region of restricted diffusion and the abrupt alteration in the tumour’s
micro-environment (refer to Figure 8).

8. Conclusion
This study introduces a novel approach to model the growth of an avascular tumour by incorporating the
effects of nutrient transport through a non-local constitutive relationship. Notably, we extend the methodology
in Ramírez-Torres et al. [26] by proposing a non-local law for the mass flux vector that introduces a non-uniform
parameter to include relevant information about the complex tumour micro-environment, such as regions with
hindered diffusion. Our framework has similarities with the notion of variable-order fractional operators, which
has been acknowledged for their potential in simulating interdisciplinary processes [58–61]. It is important to
note that both the non-locality of the constitutive law and the variable-order parameter evolve with the growth-
induced inelastic distortions that occur during the evolution of the system and its visible deformation. Hence,
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by allowing the variable-order parameter to vary, our approach offers a potential framework for capturing space-
dependent microstructural phenomena with the variable-order parameter α serving as the link transferring the
information across the scales.

In our simulations, we explored the impact of non-Fickian diffusion on tumour progression in a simplified
yet significant scenario involving the axial growth of a cylindrical specimen. Within this framework, owing to
imposed symmetries while still recognising its three-dimensional nature, we consider a non-locality function,
fα , which captures the dependence of the non-local mass flux vector on both elastic deformation and inelastic
distortions (refer to equation (55)). Our choice of the non-locality function is akin to the one presented in
Ramírez-Torres et al. [26], with the distinction that our approach incorporates a non-uniform variable-order
fractional operator (refer to equation (46)). Importantly, this modification maintains a key characteristic of
the definition in Ramírez-Torres et al. [26]. As discussed in Remark 2, when α tends to one, the mass flux
vector aligns with conventional Fick’s law. Conversely, as α approaches zero, the diffusion of nutrients becomes
hindered. In this respect, our model introduces a notable improvement to enhance realism by considering the
effects of fractional parameter inhomogeneity. We hypothesise that the fractional parameter α characterises,
in a homogenised sense, situations where the tumour is composed of areas with varying diffusion properties.
Specifically, we examine the transition to a region with low diffusion in an attempt to establish a correlation
between the fractional parameter and the micro-environment of the tumour tissue, as depicted in Figure 6.

In contrast to the constant-order non-local flux model, the variable-order non-local model may acknowledge
the complexity of the medium by accounting for spatial phenomena arising in a heterogeneous and complex
environment. This complexity, as per our proposed model, is characterised by the presence of regions with
low diffusion within the tumour. Our numerical simulations revealed that the evolution of the main parameters
in the model is significantly influenced by this selection and, notably, we observed more complex behaviours
in displacement, growth, nutrients’ mass fraction, the distribution of proliferating cells, and stresses. Overall,
these findings provide valuable insights into the complex dynamics and highlight the potential of applying this
modelling framework to study even more intricate scenarios in the future.

Another crucial aspect of our work, distinguishing it from Ramírez-Torres et al. [26], is the establishment of a
new growth law following the approach presented in Grillo and Di Stefano [70, 71]. Within this setting, the evo-
lution law for the inelastic distortions is determined without relying on initial phenomenological assumptions.
As a consequence, we introduced non-standard source/sink terms in the mass balance equations for prolifer-
ating and necrotic cells accounting for the effects of the configurational mechanical stress. These terms are
determined once the equation for growth-induced inelastic distortions has been established through the study
of the dissipation inequality. To account for the implications of embracing this approach, we investigated a
benchmark scenario under the assumption of a uniform fractional parameter, considering two possibilities: the
presence or absence of the term H in the growth law. In particular, incorporating H has a significant impact on
the spatial distribution and temporal evolution of the model’s unknowns with respect to when it is ignored. The
inclusion of the configurational mechanical stress in the growth law predicts that the accumulation and removal
of mass cannot be solely attributed to nutrient availability thereby H reflects a positive or negative contribution
to growth.

Our work holds potential for future enhancements and broader applicability. One area pertains to tailoring
the mass flux vector of nutrients to the dimensions and symmetries of the problem. Moreover, further explo-
ration is needed to understand the connection of the variable-order parameter to the tumour micro-environment
or other physical phenomena that may influence it. Therefore, it is crucial to develop constitutive relationships
in collaboration with chemists and biologists for future research. Establishing such relationships could yield
valuable insights in the analysis of drug transport and treatment within tumour tissues. As recognised in differ-
ent studies (see, for example, [119]), the tumour’s complex internal structure plays a crucial role in controlling
how drugs disperse through soft tissues. Among several factors, the chaotic and aberrant nature of tumour
blood vessels, characterised by tortuosity and irregular connections disrupting blood flow, hampers the perfor-
mance of anti-tumour drugs [120]. Thus, accounting for the spatial aspects of diffusion through the tumour’s
micro-environment and their influence on drug delivery in mathematical models is highly desirable to enhance
therapeutic efficacy. The framework proposed in this work has the potential to address the spatial complexities
of drug transport within tumour tissues. Indeed, in our model, the introduction of an integro-differential operator
of variable-order offers a mathematical tool to encode, in an effective way, spatial irregularities that change with
the dynamics of the tissue and their impact on distant points. Part of our current efforts aim to pinpoint areas
where drug diffusion could potentially be insufficient by deciphering how the variability in α may be linked
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to inconsistent and less efficient drug delivery. In exploring the complex interplay between vascular abnormal-
ities and drug diffusion, our model might suggest a pathway toward a more detailed understanding of drugs’
non-local diffusion mechanisms due to the heterogeneous tumour’s micro-environment. This knowledge might
contribute to developing improved drug delivery strategies, which could, in turn, enhance treatment outcomes.

After witnessing significant advancements in fractional calculus across various scientific disciplines over
the past decade, the incorporation of such a mathematical tool into the field of biological sciences could yield
remarkable contributions. While the use of fractional calculus in real-world phenomena is still in its early
stages, it has proven to be an exceptional mathematical tool for comprehending extraordinary events. Our model
endeavours to capture the intricate complexities observed in real tumours, striving to replicate the complex
tumour growth patterns and the distribution of nutrients within the tumour micro-environment with a level of
realism. In doing so, it offers valuable insights into the dynamics of avascular tumour growth and emphasises
the significance of considering the non-local effects of the tumour micro-environment in tumour growth models.
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