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ABSTRACT
The software submission presents a fully working artificial cog-
nition model, which controls a NAO social robot. The model was
specifically designed to control a socio-affective companion ro-
bot for use in a medical setting. It was deployed using embedded
hardware: a Raspberry Pi 4B and a Jetson Nano Board, and an ex-
ternal RGB-D camera. Based on the ROS operating system, this
software package includes components for social signal processing,
behaviour selection, affective behaviour rendering, and a web-based
user interface. The robot’s behaviours are selected by a planning
system, which generates the robot’s behaviours based on the state
of the interaction, the progress of the medical procedure, and the
user’s affective state. The system has been tested in simulated envi-
ronments and is currently being used in two clinics to perform a
usability test and will subsequently be used to carry out a series of
clinical trials.
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1 BACKGROUND AND SUMMARY
This system was implemented as part of a project aiming to develop
a companion robot to assist children during a painful and distress-
ing medical procedure. In the specific clinical scenarios that we are
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targeting, the robot is placed in a small room together with the
patient, along with one or more carers and a Health Care Provider
(HCP) during the course of a single clinical procedure. We have
developed a fully functioning companion robot for operating in
this scenario, which was designed using both a co-design (involv-
ing several stages and children, parents and HCPs) and targeted
meetings between the technical team and the HCPs. The robot
positions itself as a friendly and supportive companion, setting out
positive expectations. It can present various supportive behaviours,
including diversions and humour, practising coping strategies, role
modelling, and providing positive reinforcements. Its behaviour
is controlled by a planning system, which conditions its action
selection based on the user’s affective state.

The proposed cognitive model can be used and extended to other
social robots and other scenarios in healthcare. Our implementation
offers a simple and practical integration of basic functionalities in a
prototype that can explain the user’s mental state and analyse the
effect of actions on it. This software can be used as a starting point
for prototyping social robots with the ability to automatically adapt
the execution of their behaviours by reasoning and managing the
user’s affective state.

2 PURPOSE
The primary function of the cognitive model is to use the human-
robot interaction paradigm to produce behaviours in the robot
that help manage the affective state of a child undergoing stressful
clinical procedures. This means that our systemmust assess how the
affective state detection and the robot’s behaviour realisation can
support an intervention that responds to the child’s emotional state.
To achieve this, we use a lightweight architecture that comprises
several components, such as social signal processing, an interaction
manager, a plan-based affective manager, a memory module, and
an affective behaviour renderer. The architecture also includes a
web-based interface that complements the system by providing a
mechanism to control the interaction. Furthermore, it provides an
alternative input and feedback module, allowing an operator to
monitor and update the affective state as necessary.

The system consists of several additional hardware components.
The complete system includes embedded hardware to improve the
NAO processing capabilities. An external RGB-D camera has also
been added to complement the NAO’s limited internal sensors. The
entire system has been developed using the Robot Operating system
(ROS) [8].
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The social signal processing system constantly estimates the
child’s emotional state and attention towards the robot by analyzing
its head posture and location. This information is provided to the
planner on demand, generating and updating plans and actions
based on the affective sensing data. The web app performs various
functions, such as loading the system, entering the child’s name,
and initiating a new top-level goal for the planner. During the robot
intervention, the operator used the web interface to indicate the
different stages of the procedure, such as the beginning of the pre-
procedure phase. The interaction manager requests an action from
the planning system each time a procedure step is initiated, and
it executes the action by calling the appropriate modules, such as
requesting a behaviour from the robot or querying the user’s state.

3 CHARACTERISTICS
Our model of artificial cognition is developed using ROS Melodic
and Ubuntu 18.04 LTS to ensure compatibility between the signal
processing and planner components. Each module is wrapped in a
ROS node and can be executed on embedded platforms. We use a
Raspberry Pi 4B to host the ROS master, the planner and web server
nodes, and a Jetson Nano that handles video processing tasks exclu-
sively. The ROS master node and a Python HTTP server automati-
cally start up when the Raspberry Pi boots. The ‘gui_management’
process executes the other nodes using a roslaunch command when
the web interface requires them. The Raspberry and Jetson Nano
are connected through a local Wi-Fi network, and all the nodes on
the Jetson Nano are executed remotely from the ROS master host.

Listing 1: action_chain.msg
i n t 3 2 c a l l e r _ i d
i n t 3 2 p l a n _ s t e p
s t r i n g a c t i o n _ t y p e
s t r i n g [ ] pa rame t e r s
s t r i n g speech_cmd
d i a gno s t i c _msg s e x e c u t i o n _ s t a t u s

The interaction manager and the planner are at the centre of the
ROS graph (see Figure 1); these two processes are responsible for
the reasoning loop. On the other hand, the process related to the
user’s feedback is managed between the interaction manager and
the web-based user interface. To optimise those loops, we create
two ROS messages, ‘action_chain.msg’ and ‘web_chain.msg’, that
allow us to propagate helpful information and diagnose the inter-
action. All interacting nodes share the ‘action_chain’ message (see
listing 1) throughout the reasoning loop; for example, the NaoQi
driver was modified to listen for these messages and maintain con-
sistency throughout the loop. This message has three string fields
and a ‘diagnostic_msgs’ field. The planner fills the ‘action_type’
and ‘parameters’ in each execution step, while the ‘tobo_core’ node
fills the ‘speech_command’ field, and all are propagated until the
NaoQi driver.

Listing 2: web_chain.msg
i n t 3 2 p l a n _ s t e p
s t r i n g r e qu e s t _ t y p e
s t r i n g [ ] pa rame t e r s
f l o a t 3 2 du r a t i o n

The ‘web_chain’ message comprises four fields, as seen in List-
ing 2. Once the planner generates an action requiring the user
operator’s intervention, the interaction manager enquires the web
interface using ‘request_type’ and the appropriate ‘parameters’.
The duration of this request is represented in the last field of the
message. Once the time is exceeded, the web app responds with the
default option, which can be any specific value and is defined in
each web request.

The ‘next_action’ and ‘animated_speech’ topics use ‘action_chain’
messages, while the ‘listener_req’ and ‘request’ topics use ‘web_chain’
messages. The other topics use standard ROS messages (See Fig-
ure 1). The ‘get_an_action’ and ‘get_sensor_value’ services use a
modified version of the ‘std_srvs/setBool’ service that receives a
‘step_plan’ in integer format instead of a Boolean.

3.1 Knowledge database module
Managing the knowledge database is an essential characteristic of
any cognitive model. In our case, the database comprises four com-
ponents: the domain knowledge that is represented by a static part
and is read when all the processes start and the dynamic feature
that allows modification of the system’s state based on the sensor
readings and actions’ effects on the planner’s world model. Further-
more, we include the behaviour library and the action hierarchy
to complement the knowledge database (see Figure 1). We have
simplified the deployment of the knowledge database by employing
the ROS parameter server. The ROS parameter server is a shared
memory space accessible using XMLRPC, which runs inside the
ROS Master. It is globally viewable, allowing any node to store and
retrieve parameters at runtime [8]. However, to prevent simulta-
neous access or modification of the same memory space by the
different components, the interaction manager implements higher-
level threading interfaces and provides a thread-safe interface for
exchanging data between running threads.

3.2 Interaction manager
The interaction manager runs several loops to check and update
the system states. The first internal loop begins when the interac-
tion manager requests the planner for a new action. Depending
on the system’s state, the plan can generate reactive actions of the
type ‘do_activity’, ‘query_response’ or ‘request_sensor_value’. If
a ‘do_activity’ action is published, the behaviour renderer listens
to the action and processes it, searching the behaviour library for
dialogues and body movements that match the action. Thus, the
‘tobo_core’ transforms these into a command that the NaoQi bridge
can execute; once the robot finishes the execution, NAO emits a sig-
nal publishing in a topic that lets the interaction manager know that
the cycle has ended, and then it updates the system states. In the
case that a ‘query_response’ is published, the interaction manager
listens to it and sends a web query using the ‘listener_req’ topic. The
web server executes the respective callback, processes the query
using popup messages to capture the user’s attention, and, once the
user responds, publishes the feedback in the ‘request’ topic. Thus,
the interaction manager receives the message, updates the system
state again and continues requesting a new action. Finally, the loop
that allows gathering information using sensing elements is trig-
gered in the interaction manager by a ‘request_sensor_value’ action.
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Figure 1: ROS Graph illustrating the nodes structure, topics and services developed

When this situation arises, a call is made to the ‘get_sensor_value’
service, and then the sensing module sends the estimated value for
the sensing variable (engagement or anxiety).

Listing 3: service_provider class
c l a s s s e r v i c e _ p r o v i d e r ( objec t ) :

def _ _ i n i t _ _ ( s e l f ) :
def i n i t i a l i s e ( s e l f , a c t i o n _ b r o a d c a s t _ f ,
web s e r v e r _b r o ad c a s t _ f , n au_b r o ad c a s t _ f ) :
def r e q u e s t _ a c t i o n ( s e l f , . . . ) :
def a s k _ f o r _ u s e r _ i n pu t ( s e l f , . . . ) :
def on_ r e c e i v e d _p l a nn e r _ a c t i o n ( s e l f , . . . ) :
def on_rece i ved_webse rve r_mes sage ( s e l f , . . . ) :

We have developed a simple API-style module definition that
allows us to register a Python-based ‘service_provider’, including
each interaction manager module (see Listing 3). The planner, the
web server, the knowledge database, and the sensing and rendering
actions represent the basic modules of our model. We can create
independent dummies of each module and test them separately.
This helps us to isolate dependencies such as ROS or Gstream.

3.3 Planning-based affective manager
We have developed an on-demand ROS service to wrap the plan-
ner, similar to the ROSPlan [2] system. The interaction manager
evaluates the system’s state, and when it determines that it is time
to perform a new action, it calls the service. The service diagnoses
the execution and publishes the next action chosen by the planner
on the ‘next_action’ topic using an ‘action_chain’ message. Thus,
the ‘get_an_action_service’ iterates through the plan (or replans)
and feeds the pipeline with a new ‘action_chain’ ROS message on
demand.

Our approach is built around the PRP planning system [7], which
supports fully observable non-deterministic (FOND) planning mod-
els [7]. In our approach, propositions model the situation in the

room and state of the procedure (e.g., a health care provider is in
the room), abstract information (e.g., that a certain behaviour has
already been used), and affective state (e.g., anxiety or engagement
of the patient). Actions can be separated into four groups: robot
behaviour, procedure updates, implicit signals and explicit queries.
The robot can perform a range of actions, including distracting
actions (e.g., dancing) and calming and instructive actions (e.g.,
stepping through breathing exercises), each of which is represented
in the planning model.

We implemented our own plan manager using the API-style
components definition (see Subsection 3.2) to allow for greater flex-
ibility around the management of the state. We have incorporated
features to simplify the transition from simulation to real-world
deployment, particularly to allow early deployed testing. The sys-
tem has, therefore, been designed to allow parameterisation so that
elements of the planning model can be associated with alternative
transition implementors. In the current system, the options are
modelled, GUI provided, and sensed. These labels determine how
each element is updated when an action is applied. Modelled ele-
ments are updated using information from the planning model; the
values of world-determined (sensed and GUI-provided) elements
are gathered after the action has been applied, either by a predictive
model or by querying the user. More detail is provided at [6].

Our planning system has also exploited recent work in PDDL
modelling [6], which supports inheritance in action definitions. As
a byproduct, each action in the planning model has an associated
hierarchy of super actions (see Subsection 3.5).

3.4 Social signal processing module
Our signal processing module was built using the Deepstream
SDK as a core component. This allowed us to take advantage of
its streaming analytic features. Deepstream applications are based
on the GStreamer architecture, which provides code blocks in the
form of easy plugins to connect, configure, and deploy. The main
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benefit of Deepstream plugins is that they are designed to perform
hardware-accelerated tasks.

Our video stream pipeline captures RGB frames (1920 × 1080)
from a ZED2 camera at 30𝑓 𝑝𝑠 using the ‘zedsrc’ plugin. Once the
frames are in memory, they are batched, scaled, and converted
to Jetson-NV12 format. The first inference for face detection is
performed using a RetinaFace [3] model with TensorRT from the
‘Gst-nvinfer’ plugin. The ‘Gst-tracker’ plugin is used for face track-
ing just after face detection; then, a landmark detection model [5]
is applied using ‘Gst-nvinfer’ configured as a secondary inference
process, optimising the inference time. Metadata such as bounding
boxes, region of interest (RoI), landmarks, and head 3D pose [1] are
attached to ‘Gst-buffer’ using the standard structure ‘NvDsBatch-
Meta’. Finally, two additional inferences are performed in cascade
to estimate facial expression and gaze. We use EmotionNet, a clas-
sification network with five fully connected layers, which NVidia
trained on the MultiPie dataset to classify six emotions. GazeNet
detects the patient’s gaze vector and point of regard, and it was
trained on a Nvidia proprietary dataset. Our pipeline offers two
options to process the output: showing the bounding boxes, land-
marks, and gaze on the screen or publishing the user’s gaze vector
as a ROS coordinate frame using a ‘tf’ broadcasting transform.

Our DeepStream application has an additional feature that al-
lows us to capture raw data frames in real time and save them
into a file. The above is achieved by dynamically reconfiguring the
subpipeline and linking its pads at runtime. The subpipeline com-
prises a hardware-accelerated video converter, an H264 encoder,
a Matroska muxer, and a filesink element. A ROS service called
‘recording_service’ triggers the recording process.

3.5 Affective behaviours renderer module
The behaviour renderer has two main parts. The first part is respon-
sible for receiving an ‘action_chain’ message and interpreting it. It
then converts the message into a tuple that consists of a dialogue
and body movements or expressions. This tuple is selected from a
‘library of behaviours’ that has been built and fine-tuned by hand
with the stakeholders. The goal is to ensure that the expected effect
on the user’s emotional state corresponds with the planning model.
The second part of the renderer takes the dialogues and behaviours
and sends them to the ‘NaoQiBridge’ using the ‘animated_speech’
topic.

In the planning component (see Subsection 3.3), we noted that
the planning model describes an action hierarchy. We observe that
in many cases, the distinctions made in the low levels of the hierar-
chy result from the specific representational details in the planning
model, which are not reflected in different robot behaviours. As a
consequence, we associate the robot’s behaviours with the appro-
priate level in the hierarchy. This has two benefits: the behaviours
are defined at the most appropriate level, saving duplication, and
it adds robustness because if when a new action is added, no be-
haviour is associated with the action, then the system will still
continue, using behaviour from higher in the hierarchy. See [6] for
more information.

Given the requirements of the renderer, we increase the essen-
tial functions of the NaoQi_Bridge by implementing a series of

services and additional topics that allow monitoring and control-
ling directly from ROS, the LEDs, the language, the aliveness and
posture features, volume, and battery, among others. One of the
main modifications was creating a topic that publishes when the
NaoQi ‘EndOfAnimatedSpeech’ event is triggered internally, allow-
ing the external execution loop to be closed. We also implement
a service that directly controls the NaoQi ‘AlBehaviorManager’
module, allowing us to stop running behaviours and speech calls
anytime.

3.6 Web-based user interface
We created a web application interface that enables the user to
control the system and intervention through any web browser. The
web app is stored on a Raspberry Pi and is deployed using the
Python3 HTTP Server package. To enable the web app to interact
with ROS, we integrated the JSON API RosBridge Suite package,
which allows registering a WebSocket to channel ROS topics with
callback functions in JavaScript. Additionally, we added a web-
terminal emulator to access the CLI ROS functionality without
requiring additional browser plugins.

The web application comprises four pages: a welcome page, a
configuration page, a personalisation page, and a dashboard page.
The welcome page introduces the project and the research team
and provides an interaction overview. The configuration web page
enables the user to monitor the position of the external camera
and adjust it based on the user’s location. The above is achieved
by implementing a video stream module that uses the HTTP Live
Streaming (HLS) protocol on the front-end. A Gstream pipeline is
implemented on the back-end with a UDP sink as its final element.
The personalisation page allows the user to register fields such as
the institution name, username, and age to modify the content of
the behaviour library accordingly. The dashboard is the primary
communication channel between the planner and the operator
during the intervention. The user can connect/disconnect from
ROS, start/stop the intervention, receive and respond to planner
queries, control the robot’s volume, view the battery level, and
manually execute some pre-established behaviours.

4 SOFTWARE
The software submitted in this work is stored as a ROS meta-
package in public GitHub repositories1. The planner details are in
the ‘tobo_planner/planning_service’ package, and the specific do-
main model used by the planning-based affective manager is in the
‘model0.9’ subdirectory. Note that this repository does not include
third-party modules such as ‘planner-for-relevant-policies’ and
‘naoqi_driver’. The system requires extensive but non-critical con-
figuration to ensure all components function correctly. Therefore,
the meta package provides two files, ‘rasp_deps_config’ and ‘jet-
son_deps_config’, containing instructions to configure each board
manually.

5 USAGE NOTES
The designer team includes experts in AI and robotic ethics who are
guided by a moral commitment to carefully consider the interests
of stakeholders, for more details see [4].
1https://github.com/andres-ramirez-duque/HRI2024-Metapackage
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