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ABSTRACT 
Social robotics has recently focused on developing AI agents that 
recognise and respond to human emotions. The use of plan-based 
approaches is promising, especially in domains where collecting 
data in advance is challenging (e.g., medical domains). However, 
we observe that the appropriate use of the user’ afective state will 
vary with the particular interaction, the expected impact of the 
robot’s behaviours on the user, and the opportunity and accuracy 
of afective sensing. We observe that there are diferent ways of 
modelling the user’s afective state, and the appropriate choice 
will take into consideration the relationship between the user’s 
afective state and the robot’s behaviour. We propose alternative 
methods of modelling the user’s afective state, and use lessons 
learnt from a recent project in order to discuss the relevant factors 
in each approach. We use simulated data in order to demonstrate 
the fexibility of model-based generation of interaction strategies. 

CCS CONCEPTS 
• Human-centered computing → HCI theory, concepts and 
models; • Computer systems organization → Robotic auton-
omy; • Computing methodologies → Planning under uncer-
tainty. 
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1 INTRODUCTION 
Recent advances in the felds of Human-Computer and Human-

Robot Interaction (HRI) have focused on developing AI agents that 
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recognise and respond to human emotions [28]. These approaches 
take advantage of the notion that emotions provide a high-level 
evaluation of events based on their relationship with human in-
ternal beliefs and desires. In particular, emotions provide another 
communication modality to interpret an individual’s implicit cues 
and needs [23]. As a consequence, using socio-afective cognitive 
models has improved human-robot interaction in collaborative 
tasks requiring socially acceptable strategies and in some cases can 
(indirectly) improve harmful behaviours related to emotions such 
as fear, stress, or anxiety in mental health care [5]. 

Typically, researchers assume that the robot is equipped with 
a social signal processing system capable of estimating basic and 
explicit afective expressions. These signals have been used to re-
actively generate sequences of robot behaviours, with the aim of 
communicating the robot’s mental state and communicative inten-
tions [1, 21, 22]. Within deliberative architectures, monitoring of 
user’s afective state has been used to adapt actions in human-robot 
collaborative tasks [10] and to provide a social robot with skills to 
explain its internal reasoning process [21]. However, deliberative 
reasoning that directly reasons with specifc aspects of the user’s 
afective state to manage complex emotions such as anxiety has not 
been fully explored. Plan-based approaches are promising as they 
support the creation of environment models, which can encode 
interaction and social constraints while also embedding appropriate 
domain knowledge. 

In this work, we consider the management of the user’s afec-
tive state. In particular, we consider how to incorporate the user’s 
afective state into a planning model that underpins a human-robot 
interaction. As a running example, we use our recent experience 
of building a companion robot for a medical scenario. Using this 
example as grounding, we discuss the use of deterministic and non-
deterministic approaches to modelling the user’s afective state. We 
demonstrate how a planning model can be used to capture various 
strategies that can be specialised both for a particular user (e.g., 
in reaction to higher-than-expected anxiety) or a particular sup-
porting strategy (e.g., focusing on either diverting behaviours or 
adopting cognitive behavioural interventions). 

2 BACKGROUND 
Socially assistive robots (SARs) are embodied devices designed to 
interact with humans by communicating through mechanisms com-

patible with a human-centric approach [7]. The primary focus of 
SARs is to provide necessary aid to humans by engaging with them 
socially. Research has shown that SARs can help alleviate tension, 

679

https://orcid.org/0000-0002-4577-4689
https://orcid.org/0000-0002-8419-9285
https://orcid.org/0000-0002-1228-7657
https://orcid.org/0000-0002-3386-9568
https://doi.org/10.1145/3610978.3640744
https://doi.org/10.1145/3610978.3640744
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3610978.3640744
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610978.3640744&domain=pdf&date_stamp=2024-03-11


HRI ’24 Companion, March 11–14, 2024, Boulder, CO, USA Alan Lindsay, Andrés A. Ramírez-Duque, Mary Ellen Foster, and Ronald P. A. Petrick 

reduce stress, and enhance social interactions in medical settings. 
In addition, SARs have proven helpful by assisting and supporting 
people experiencing stress or anxiety, such as children undergoing 
medical procedures [6, 15, 24]. Studies have compared short-term 
single-procedure exposure or long-term companionship [11], as 
well as the efectiveness of robot-delivered interventions, such as 
distraction and cognitive-behavioural therapies, with standard care 
in needle-based practices [2, 19, 20]. 

2.1 Running Example: A Companion Robot for 
a Medical Scenario 

This work uses a running example involving supporting children 
during a painful and distressing medical procedure. A robot is 
placed in a small room together with the patient, their carers and a 
Health Care Provider (HCP) during the course of a single clinical 
procedure. In related work [8, 12, 13], we have developed a fully 
functioning companion robot for operating in this scenario, which 
was designed using both a co-design strategy (involving several 
stages and children, parents and HCPs) and targeted meetings be-
tween the technical team and the HCPs. IV insertion was identifed 
as an appropriate procedure: This is one of the most commonly 
performed procedures in the context of children seeking medical 
care. A standard procedure in a paediatric setting is to provide 
distraction before and during the procedure to alleviate pain and 
distress. We identifed several stages: introduction, preprocedure 
(optional site-check), procedure, debrief, and conclusion. The robot 
positions itself as a friendly and supportive companion, setting 
out positive expectations, and can present various supportive be-
haviours, including humour, coping strategies, role modelling, and 
positive reinforcements. 

2.2 Planning Based Interaction 
Planning as a high-level decision-making mechanism has previ-
ously been integrated with cognitive models in various social robots 
and interactive systems, e.g., [14, 18], but without estimating and 
managing the user’s afective state. Managing of the user’s afective 
state has been considered in planning models [26, 27], but these 
approaches target specifc aspects of social and afective state and 
do not present generally applicable approaches. 

In our approach, the robot’s behaviours are underpinned by a 
planning model, which uses a declarative representation to encode 
the domain knowledge and possible interactions concisely. We use 
a fully observable non-deterministic (FOND) planning model based 
on [16], which can be defned as a tuple ⟨F , I, G, A⟩, with fuents 
F , initial state I (a full assignment to F ), a partial goal state G, and 
a set of actions A. Each action � ∈ A is a pair ⟨pre�, ef � ⟩, with a 
precondition pre� (a subset of F that must hold) and an efect ef � 
(a set of possible outcomes—fuents that are made true or false). If an 
action defnes one outcome, it is a deterministic action; otherwise, 
it is a non-deterministic action. Each action application results in 
an outcome, but the outcome cannot be chosen by the planner. 
A solution to the problem is a branched plan � , which includes 
alternative action outcomes and describes the sequence of actions 
that will achieve the goal, given any outcome. When we can assume 
that all actions have a single outcome (a deterministic model), a 
plan can be represented as a sequence of actions. In deterministic 

models we also allow numeric fuents in the state, which can be 
used in the preconditions and efects of actions, and can be used in 
the defnition of the optimisation function. 

3 MODEL-BASED MANAGING OF THE USER’S 
AFFECTIVE STATE 

A key problem in designing SAR interactions is in managing the 
user’s perception of those events. This relies on careful design of 
the interaction, making changes to the strategy where the user 
reacts diferently than expected and exploiting the shared context 
of the unfolding events. As this varies with the specifc relation-
ships between the users and the environment, there is no general 
approach to incorporating all aspects of the user’s afective state 
into an existing model. However, through observations and through 
consultation with experts, we can build the monitoring and man-

agement of afective state into the interaction. 
Based on a recent co-design study [8], specifcally targeted to 

our running example, requirements were identifed that covered 
a broad range of aspects, including the robot’s appearance, the 
interaction, and the ethical considerations. Using this information 
we have developed a fully working system, including social signal 
recognition, planning, and robot behaviour rendering modules, im-

plemented on embedded hardware. The system uses a planning 
model to underpin the robot’s interaction. The main interaction cap-
tured in the planning model is structured along the possible patient 
pathways outlined with HCPs during the design process. The robot 
can perform a range of actions, each of which is represented in 
the planning model: distracting actions (e.g., dancing) and calming 
and instructive actions (e.g., breathing exercises); sensing actions 
for the medical scenario, e.g., to maintain the progress through 
the medical procedure; and patient focused sensing actions, e.g., to 
determine whether the patient is engaged in the interaction. The 
main stages of the medical procedure (see Subsection 2.1) were used 
to organise the appropriate behaviours and in order to specify key 
objectives for the robot in each stage. For example, we can ensure 
that the robot delivers certain key information to the patient during 
the preprocedure (e.g., regarding its role). 

In this section we examine two alternative approaches for mod-

elling the user’s afective state within the system’s planning model. 
We also provide an overview of our sensing approach and discuss 
how the limitations in the sensing component infuence the selec-
tion of an appropriate planning model. 

3.1 Modelling the User’s Afective State 
Changes in Action Efects 

A basic requirement for integrating afective state into an inter-
action is that the interaction is conditioned on the value of the 
afective state. We can assume that there is a fnite set of aspects of 
the user’s afective state that are relevant to the interaction, and we 
associate each of these aspects with a variable, � . Each variable � 
has a set of possible values, D(�), which captures the set of discrete 
values for � . For example, in the context of anxiety, this might be a 

′
pair, e.g., D(������� � ) = (‘�� , ‘ℎ��ℎ-������� ′), or a set of values: 
D(�������� ) = (1(��� ), 2, 3, 4, 5(ℎ��ℎ)), depending on the level of 
accuracy required in the model. 
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(a) Anxiety for simulated plans (b) Engagement for simulated plans1 

Figure 1: Two plans were generated, the frst to reduce anxiety (anx in blue), and the second to increase engagement (eng in 
orange). These plots present the plan values of anxiety (a) and engagement (b) against time. 

Action Anxiety Action Anxiety 
ready_to_start +3 start_procedure 
introduction -1 with procedure plan +2 
divert dance1 -2 no plan +5 
educate ivdescription +1 imp_plan breathing 
make_procedure_plan 0 practised breathing -2 
debrief song1 -3 not practised 0 

Table 1: Predicted impact on user anxiety for a selection of the 
planning actions interaction model for a medical scenario. 

To incorporate a representation of afective state change into 
a planning model, we assess each of the transitions in the model 
and assess their expected impact on the user’s afective state. The 
main advantage of representing the impact of transitions on the 
afective state within the model is that the planner can reason about 
its value directly. For example, Table 1 presents values indicating 
how user anxiety is predicted to be impacted by aspects of the med-

ical procedure (e.g., the start_procedure action), and the robot’s 
intervention (e.g., divert dance1). Notice that past aspects of the 
interaction can impact on the predicted efect of behaviours on anx-
iety level (e.g., the anxiety for the procedure depends on whether or 
not the robot has made a plan of how to support the patient during 
the procedure). Given these values for expected changes on anxiety 
and an objective function (e.g., minimise anxiety, or maintain an 
acceptable level of anxiety), the planner can search for a sequence 
of actions that optimises/satisfes this objective. 

We compiled these anxiety values into the planning model and 
used it to generate two plans (using the Optic planner [3]), each 
optimising a diferent metric. In [9] they demonstrated two distinct 
strategies that the robot could use. The frst was to use cognitive-
behavioural interventions, e.g., the robot might practice breathing 
strategies with the patient during the preprocedure, to help the pa-
tient stay calm during the procedure stage. An alternative strategy 
was to focus on distracting the patient (e.g., dancing or a quiz). We 
used this as motivation for two optimisation functions: The frst 
aims to minimise anxiety, whereas the second aims to maximise 
engagement. In Figure 1 we have plotted each of the resulting plans 
against both metrics. We can see from the engagement plot (1b) that 
the engagement plan (orange line) is focused on increasing engage-
ment, and initially is efective at managing anxiety. However, the 

1
The engagement values have been modelled to support optimisation. 

(introduction intro)

(start_preprocedure)

(test-anxiety)

(start_anxiety_management)

(debrief high-5)

...
Robot Behaviour

Non-Deterministic
Action

Outcome 1 Outcome 2

 

(divert magic)
(calming_activity breathing)

(educate ivdescription)

Figure 2: A partial plan showing actions (e.g., breathing ex-
ercises and high fve), sensing actions (e.g., testing patient 
anxiety) and procedure actions (e.g., the preprocedure start). 

lack of preparation during the preprocedure leads to higher anxiety 
during the procedure stage (see 1a). This strategy involved select-
ing diverting actions at each opportunity. Conversely, in the case 
of anxiety (blue line) the anxiety plot ( 1a) demonstrates that the 
preparation during the preprocedure (practising breathing, making 
a plan, and providing some information to the patient), have led to 
lower simulated anxiety during the procedure. As a consequence, 
the engagement plot indicates that the interaction was not as en-
gaging. It is interesting to note that these two plans, with quite 
diferent strategies (corresponding to the distraction and cognitive-
behavioural strategies used in [9]) were generated from a single 
planning model (with diferent metric functions). 

In order for the model to be useful, and progress the interaction 
towards its goals, it is important that the model should be accurate. 
For example, in [25] they indicate the importance of including the 
therapist in their modelling loop (they were creating personalised 
physical rehabilitation plans). In future work we will investigate 
how continual monitoring can be used so that variations between 
the predicted state and the sensed environmental state can be de-
tected and replanning used [4]. 

3.2 Incorporating Afective Sensing 
In general, accurately modelling afective state within the model can 
be impractical due to limited data, the potential complexity of the 
relationship, and the lack of relevance of the planning model to the 
important aspects afecting afective state. In our medical scenario, 
a key concern for the HCP during the procedure is that patients 
will typically harbour anxiety inducing negative anticipation and 
uncertainty about the procedure. The system, therefore, makes a 
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plan of how the robot will support the child during the procedure 
and provides the child with certainty. The aim is to reduce their 
negative anticipation and uncertainty by replacing it with positive 
anticipation. We could attempt to capture this intervention’s impact 
on anxiety through observations. However, it is likely that the 
impact of this strategy will be fairly subtle across the interaction, 
and without expert input, it would be challenging to model as an 
efect without substantial data. 

As an alternative, we can consider incorporating sensing into 
the model, allowing certain outcomes’ uncertainty to be explicitly 
represented. We defne a sensing action for each variable, � , with 
an outcome for each of the |D(�) | possible values, such that out-
come � adds a proposition, �� 

, representing the ��ℎ 
value of � . The

�
action preconditions use these propositions to identify the required 
afective state variables, and their values. 

Figure 2 presents part of a branched plan (generated using the 
PRP planner [16]), including the sensing action sense_anxiety. 
This fgure demonstrates how branched plans captures the strat-
egy in the context of a variety of patient pathways, customising 
the interaction based on the specifc detail of the medical proce-
dure, and the patient’s afective state and preferences. This allows 
the plan to capture the strategy in the case of either high (e.g., 
selecting an appropriate intervention) or normal anxiety (e.g., con-
tinuing the interaction by practising breathing exercises). In our 
medical scenario, we defne a variable for engagement with values: 

′ D(�������� ) = (‘�� , ‘���-���������� ′). This value is monitored 
at certain points during the procedure, allowing the robot to adapt 
its strategy. For example, in the context of high patient anxiety, the 
value �������� is monitored. In the case study, in cases where the 
patient is not engaging, the robot stops its interaction. 

Anxiety Management Component. As part of our design process, 
we have identifed specifc points during the interaction where there 
are appropriate interventions for managing the patient’s afective 
state. To exploit these opportunities, we pair targeted sensing of 
patient’s afective state with managing interventions. In this part 
we focus on a specifc anxiety management intervention during 
the preprocedure. The anxiety test action (a sensing action that 
determines whether the patient’s anxiety level is OK) is used as a 
sensing action, and in cases where the patient has high anxiety, we 
adopt the anxiety management intervention. 

Our approach is based on frst detecting high anxiety and sub-
sequently enacting a specially constructed intervention sequence, 
which was designed with HCPs. The fnal step involves retesting, 
which is key to allowing the interaction to proceed appropriately. 

An example intervention adopts a strategy of frst diverting with 
a high-distraction activity, such as dancing, and then attempting 
to calm the patient using a relaxing activity, such as breathing 
exercises. The belief is that the patient’s anxiety will be reduced by 
this procedure. This belief is confrmed by retesting the patient’s 
anxiety level at the end of the procedure. If the patient’s anxiety 
has not reduced, an appropriate subsequent course of action should 
be chosen. In the case of our scenario, in order to minimise further 
distress, the robot will step back from the interaction. 

Monitoring Afective State in a Medical Setting. The development 
of a planning model for the management of afective state must be 

made in parallel with an investigation of the sensing opportuni-
ties in the scenario and the accuracy that can be achieved. In the 
context of afective state prediction, these models typically involve 
the design of multi-stage pipelines, which incorporate informa-

tion from multiple sensory sources in order to reduce ambiguities. 
However, due to the physical constraints of the robot deployment, 
the system was limited to facial analysis. In fact, predicting the 
patient’s afective state automatically in this scenario proves to 
be challenging due to various limiting factors: 1.) There is limited 
space near the patient, and constant staf movement causes occlu-
sion. 2.) The patient is likely to be wearing a surgical mask. 3.) 
The system must be portable and mobile; it must be able to move 
between the diferent emergency rooms with agility, which reduces 
the possibility of using fxed cameras and Internet connections 
via LAN and WLAN due to interference. With these limitations in 
mind, a pipeline has been developed to automatically analyse the 
patient’s face in a medical scenario like the one described in our 
running example. The automatic facial analysis pipeline is based 
on Nvidia DeepStream SDK[17] and was deployed using a Jetson 
Nano board. During a practical application, six facial expressions, 
the focus of visual attention, and the speed of movement of the 
patient’s head are estimated. The engagement (�������� ) and the 
patient’s afective state (������� � ) are then determined using the 
aforementioned social cues. 

In our specifc medical setting, we do not expect the sensing com-

ponent to be able to distinguish more than two levels of anxiety. We 
are currently in the process of testing our system’s usability using 
the non-deterministic model and two levels of anxiety. However, 
we hope to be able to support a richer model in other deployments 
where e.g., skin response can be used. 

4 CONCLUSION AND FUTURE WORK 
In this work, we considered the management of user afective state 
in plan-based socially assistive robots. We presented both deter-
ministic and non-deterministic modelling approaches. In the de-
terministic approach, the impact on user afective state of robot 
behaviours and world events are captured within the planning ac-
tions, whereas in the non-deterministic model, the uncertainty of 
how the robot’s interventions impact on afective state is captured 
explicitly within the planning model. We observed that while deter-
ministic models require substantial data and expert interpretation, 
non-deterministic models allow for explicit testing of assumptions 
through sensing. We demonstrated that a beneft of deterministic 
models is that the associated planning systems are capable of efec-
tive optimisation, and we demonstrated how a single deterministic 
model can be used to generate alternative supporting strategies by 
using alternative metrics for optimisation. We then showed how 
alternative strategies for individual patient pathways are captured 
within the plans for the non-deterministic model. 
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