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We study a discrete version of a biaxial nematic liquid
crystal model with external fields via an approach
based on the solution of differential identities for
the partition function. In the thermodynamic limit,
we derive the free energy of the model and the
associated closed set of equations of state involving
four order parameters, proving the integrability and
exact solvability of the model. The equations of
state are specified via a suitable representation of
the orientational order parameters, which imply two-
order parameter reductions in the absence of external
fields. A detailed exact analysis of the equations of
state reveal a rich phase diagram where isotropic
versus uniaxial versus biaxial phase transitions are
explicitly described, including the existence of triple
and tricritical points. Results on the discrete models
are qualitatively consistent with their continuum
analogue. This observation suggests that, in more
general settings, discrete models may be used to
capture and describe phenomena that also occur in the
continuum for which exact equations of state in closed
form are not available.
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1. Introduction
Mean-field models in statistical mechanics and thermodynamics are a powerful tool to
explore general qualitative properties of thermodynamic systems that, otherwise, would not be
analytically treatable. Both conceptual and historical importance of mean-field models is testified
by the celebrated van der Waals and Curie–Weiss models [1], complemented by Maxwell’s equal
areas rule (e.g. [2]), which provided the first qualitative description of the mechanisms for the
occurrence of phase transitions in fluids and magnetic systems. It is also well established that,
in order to obtain accurate quantitative predictions, mean-field models need to be replaced
by models with finite range interactions which are generally more challenging, and solvable
cases require the use of sophisticated techniques as, for example, the transfer matrix and the
renormalization group (e.g. [3]).

Spin models are the archetypal example of models aimed at describing the macroscopic and
collective behaviour of systems made up of components with internal degrees of freedom (in the
simple case the spin σ = ±1) with pairwise (and also higher order) interactions. Such models,
although originally introduced in condensed matter physics to explain magnetic properties of
materials are, however, of universal importance, as testified by applications in other disciplines
such as biology, economics, social sciences (e.g. [4–6] and references therein). It is also worth
noting that a resurgence of interest, in the last decade, for spin-like mean-field models is due
to the studies concerning their deployment for information processing, classification, memory
retrieval and, more generally, machine learning purposes [7]. These studies, originally inspired
by the pioneering work of Hopfield [8], led to the definition of models for neural networks,
such as the Boltzmann machines and their variations, based on spin glasses and statistical
inference algorithms for training and learning [9]. The key idea in this context is that spin
particles sit at a node of a graph and possess internal degrees of freedom, i.e. their spin
values are interpreted as node states of the neural network associated with the graph. The
spin–spin interaction constant corresponds to the weight associated with the links on the
network.

In this paper, we consider a biaxial version of the discrete Maier–Saupe model for
nematic liquid crystals (LCs) as studied in [10], whose structure resembles a multi-partite
spin model with spin components subject to suitable constraints. The model consists of
a system of particles endowed with an internal assigned geometry and symmetries with
only orientational degrees of freedom. Not surprisingly, the exact analytical description of
their macroscopic thermodynamic behaviour, phase transitions and emergent properties is,
in general, not available and therefore alternative approaches and approximation techniques
need to be adopted [11]. Numerical simulations [12], Landau’s expansion of the free energy
[13,14], group representation and bifurcation theory [15] are approaches that allow to
explore, at least locally, i.e. in the neighbourhood of specified values for the thermodynamic
parameters, the possible occurrence of criticalities and phase transitions, and estimate relevant
thermodynamic quantities such as orientational order, specific heat and critical exponents.
Mean-field models are effective in providing insights that complement and support the
aforementioned methodologies and all together help achieve accurate qualitative description
and predictions on key properties of LCs including those that are paramount for technological
applications [16].

From a physical viewpoint, in the last few decades, the biaxial nematic LC phase has been
the object of much intense study. The story of this phase has its roots back to 1970 [17], when
the theoretical physicist Marvin Freiser noted that rather than possessing a rod-like shape (i.e.
D∞h symmetry), as usually assumed, most thermotropic, mesogenic molecules were in fact closer
to being board-like, thus intrinsically biaxial (i.e. endowed with D2h symmetry). Usually, they
produce uniaxial nematic phases as a consequence of the rotational disorder around the long
molecular axis, which eventually yields the definition of a single macroscopic director. This
rotational disorder can be overcome by molecular mutual interactions favouring the molecules to
align parallel to one another, thus leading to a thermotropic biaxial nematic phase at sufficiently
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low temperatures. Accordingly, Freiser understood that mesogens should be expected to exhibit
a biaxial nematic phase, in addition to the usual uniaxial one. The prediction of a second nematic
phase, possessing novel properties and promising potential applications, stimulated considerable
interest, as well as not little debate. In fact, on the experimental side, stable biaxial phases have
been observed in lyotropic systems since the pioneering work of Yu & Saupe [18]. By contrast,
the experimental proof in favour of their existence in thermotropic systems has been subject of
scrutiny and criticism in [19–21]. In the period 1986–2003, the matter remained controversial
with no widely accepted results [19,22,23]. However, since 2004, clearer experimental evidence
was provided for a few classes of compounds, such as polar bent-core or V-shaped molecules
[24–26], and organosiloxane tetrapodes or their counterparts with a germanium core [27–31].
These compounds have been investigated by several techniques which led to measurements of
biaxial order parameters [32]. According to these experimental results, an alternative picture of
biaxial nematic order has emerged [33–37], based on the idea of biaxial domains reoriented by
surface anchoring or external fields. Other researchers [38–40] have also pointed out that the
biaxial nematic order is related to the onset of smectic fluctuations. Moreover, it has also been
remarked that biaxial nematics may be formed from molecules possessing a lower symmetry
than the usually assumed D2h one, as for instance the C2h symmetry [36,41–45]. In addition,
quite recently [46,47], low symmetry interaction models have been addressed, involving dipolar
contribution, so as to describe polar bent-core molecules. The study of biaxial nematics is not
only of theoretical origin, it is also connected with their potential technological applications in
displays [33,48–52]: orientation of the secondary director in response to external perturbations
is expected to be significantly faster than the primary one [34,41]. Biaxial nematic phases have
also been produced in colloidal suspensions of inorganic compounds [53–55]. More recently,
in [56], Smalyuhk et al. have considered a hybrid molecular-colloidal soft-matter system with
orthorhombic biaxial orientational order and fluidity. This molecular-colloidal complex fluid
is made up of only uniaxial rod-like building blocks. By contrast, this complex fluid exhibits
a surprising self-assembly into a biaxial nematic LC with the D2h point group symmetry.
Finally, let us mention that, very recently, the emergence of biaxial order upon mechanical
strain has been proved experimentally in a nematic LC elastomer, the first synthetic auxetic
material at a molecular level [57]. By measuring the order parameters during deformation, the
deviation from Maier–Saupe theory was detected for the uniaxial order parameters and the biaxial
order parameters were deduced, suggesting the occurrence of biaxiality in the initially uniaxial
system.

On the theoretical side, after Freiser’s first prediction [17], investigations were actively carried
out along different approaches such as molecular-field or Landau theories, and later on by
computer simulations. By the end of the past century, this collection of theoretical methodologies
had shown that single-component models consisting of molecules possessing D2h symmetry, and
interacting via various continuous or hard-core potentials, are capable of producing a biaxial
nematic phase under appropriate thermodynamic conditions [33,58–60]. Theoretical studies
usually predict a low-temperature biaxial phase, undergoing a transition to the uniaxial one,
which, in turn, finally turns into the isotropic phase. In some cases, the transition takes place
directly from the biaxial nematic to the isotropic phase. In the former cases, the ratio between
the two transition temperatures (biaxial-to-uniaxial and uniaxial-to-isotropic) often turns out
to be rather small in comparison with experimentally known stability ranges of the nematic
phase. Both the isotropic-to-biaxial and uniaxial-to-biaxial phase transitions can be either first- or
second-order, and, accordingly, the phase diagram exhibits triple and tricritical points. However,
in the low-temperature range, other phases, such as smectic or solid ones, may become more
likely to occur. On the other hand, most theoretical frameworks only allow for isotropic and
nematic phases [34], being the positional order not accounted for. Over the years, a rather simple,
continuous, biaxial mesogenic pair interaction model has been proposed and investigated by
several authors and via several types of techniques. In the literature, this model is known as
the generalized Straley interaction [61] and it finds its roots in the celebrated Maier–Saupe model
for interacting uniaxial nematic molecules [62–64]. Actually, over the last two decades, several
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properties of this model have emerged, such as possible simplifications, additional symmetries
and versatility in applications. More precisely, in 2003, new experimental findings on biaxial
nematics boosted a renewed theoretical interest by some authors [65–70]. More precisely, the
generalized Straley pair potential model was studied by mean-field, as well as Monte Carlo
simulation in the simple-cubic lattice-model version and, correspondingly, the effects produced
on the resulting macroscopic behaviour were analysed [58,59,67,68,70,71]. Moreover, motivated
by the new experimental facts, the single-tensor Landau–de Gennes theory of biaxial nematics
has been carefully revisited and a double-tensor Landau theory was put forward and studied
[72,73]. The hidden link between mean-field and Landau–de Gennes-type treatments has also
been studied [74–76]. The Straley potential model involves three independent parameters, and the
aforementioned studies have shown that the model is rather versatile and capable of producing
both biaxial and purely uniaxial order. In addition, the effect of strong antinematic terms, i.e.
terms promoting misalignment, in the pair potential onto the resulting orientational order has
been investigated [59,77]. As shown in [77,78], these antinematic terms in the Straley model
may destroy biaxiality, producing only uniaxial orientational order, and in some cases show
evidence of the existence of a continuous ordering transition, in contrast with the discontinuous
phase transition predicted by the simple Maier–Saupe model. Moreover, in [79], the Straley
potential only contains antinematic terms, and it is found to produce biaxial order via a
mechanism of order by disorder. In [61], the authors investigated the effect of two predominant
antinematic couplings of equal strength perturbed by a comparatively weaker calamitic one. The
resulting phases are a pure calamitic uniaxial phase, accompanied by an intermediate antinematic
uniaxial phase.

In this work, we consider a discrete version of the celebrated Maier–Saupe model for nematic
LCs as the one considered in [10] and study its biaxial generalization, i.e. Straley model, further
extended to account for the effects of external fields. More specifically, molecules are assumed
to be rigid cuboids, with two individual orientational degrees of freedom associated with two of
the three principal axes of inertia, as the position of the third axis is automatically determined.
It is also assumed that homologous principal axes of inertia interact pairwise for any pairs of
molecules in the system. This assumption specifically characterizes the mean-field models, where
indeed any pair of molecules equally interact independently of their distance, and therefore
positional degrees of freedom are not relevant. A further assumption is that orientational degrees
of freedom are discrete, namely principal axes can only be parallel to the directions of a predefined
Cartesian reference frame. The discretization of orientational degrees of freedom for nematic LC
models was firstly introduced by Zwanzig in [80] and successfully employed in various works,
including recent papers [10,81]. Although this assumption may seem to be at a glance restrictive,
it captures, as observed in [10], with striking accuracy, properties of the continuum model. We
show, via explicit examples, that the predictions obtained under specific symmetry reductions
are consistent with the ones present in the literature for the corresponding continuum models.

It is also important to note that, although, on one hand, the above assumptions restrict the
model and allow to derive explicit global equations of the thermodynamic order parameters, on
the other hand, the model is more general than its continuum analogues and the methodology
adopted naturally incorporates external fields interacting with each orientational degree of
freedom. Therefore, to the best of our knowledge, we provide the first theoretical study on
the equilibrium statistical mechanics of a molecular field theory for biaxial LCs subject to
external fields.

To solve the model, we show that the partition function ZN of the N-molecules reduced
Straley biaxial model with external fields satisfies a remarkable differential identity as a function
of the temperature and coupling constants. Using suitably rescaled independent variables, the
differential identity for the partition function of the finite size model is equivalent, up to a
linear change of variables, to the heat equation. The required solution is therefore obtained by
solving a linear equation with a specific initial condition that is fixed by the value of the partition
function for the non-interacting model the solution of which is straightforward. The properties
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of the system in the thermodynamic regime are obtained by studying the behaviour of the
free energy

FN := 1
N

log ZN

in the limit as N → ∞, which corresponds to the semi-classical, or low diffusion, limit, of the heat
equation, via a suitable asymptotic expansion of the free energy in powers of N−1. At the leading
order, the problem is solved via a Hamilton–Jacobi equation, which can be explicitly integrated,
and the solution is given in terms of the orientational order parameters from which the equations
of state follow as a stationary point for the free energy functional. We study in detail the solution
of the Hamilton–Jacobi equation and, specifically, a related system of quasi-linear PDEs for the
orientational order parameters.

The methodology based on differential identities is applied for the first time in the context
of a molecular theory for biaxial nematics described by two tensor fields. We derive explicit
expressions for state functions when a finite number of molecules N is considered, as well as
a novel system of equations of state, which include the interaction with external fields. We
rigorously classify all admissible reductions in the absence of external fields, revealing a rich
singularity structure describing transitions between isotropic, uniaxial and biaxial phases. A
comparison with results available in the literature shows that our findings are consistent with
those obtained with different methods and techniques.

As pointed out in a number of papers [10,82–91] the nature of the PDEs derived for the
orientational order parameters suggests a natural interpretation of the singularities as classical
shocks propagating in the space of thermodynamic variables. This allows to explain and,
qualitatively, predict some features of the phase diagram based on the general properties of shock
waves, as for example the occurrence of tricritical points as a collision and merging mechanism
of two shock waves. This example demonstrates how such an interpretation is at the same time
intriguing and of practical use.

The paper is organized as follows. In §2, we introduce the physical model under study, we
derive differential identities for the statistical partition function, and we provide exact solutions
for the model in the finite-size regime. In §3, we perform the thermodynamic limit and derive
exact equations of state for the full model. Two-parameter reductions are also obtained in the
cases of (i) zero fields and (ii) non-zero fields under special constraints. In §4, we present the phase
diagram of the model in the absence of external fields, and discuss criticality and behaviour of the
corresponding order parameters. Section 5 is devoted to concluding remarks.

2. The discreteλ-model for biaxial nematics
Let us consider a system of N interacting LCs molecules with D2h symmetry, whose molecular
directors m, e and e⊥ are mutually orthogonal unit vectors parallel to their principal axes.
The orientational state of a given molecule is identified by the directions of its molecular axes.
Introducing the tensors (e.g. [92])

q = m ⊗ m − 1
3

I and b = e ⊗ e − e⊥ ⊗ e⊥, (2.1)

where I is the 3 × 3 identity matrix, we consider the Hamiltonian of the form

H0 = − μ

2N

∑
i,j

(qi · qj + λbi · bj), (2.2)

where qi and bi specify the orientational state of the ith molecule and the scalar product is
a · b := Tr (ab), where Tr is the trace operator. Summation indices i and j run from 1 to N, μ is the
non-negative mean-field coupling constant and λ is a parameter weighing the degree of biaxiality.
In the present paper, we assume λ ∈ [0, 1]. In this range, the ground state for two interacting
molecules corresponds to parallel homologous axes, that is ei tend to line up with ej, mi with
mj and e⊥,i with e⊥,j. When λ = 0, the above Hamiltonian reduces to the classical Maier–Saupe
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model. The specific choice λ = 1/3 corresponds to the MMM model for LCs with equally nematic
interaction among corresponding molecular axes [67], i.e.

H1 = − μ

2N

∑
i,j

(
qi · qj + 1

3
bi · bj

)

= − μ

2N
2
3

∑
i,j

[
(mi · mj)

2 + (ei · ej)
2 + (e⊥,i · e⊥,j)

2 − 1
2

]
. (2.3)

For convenience, we have included self-interaction terms corresponding to i = j. This choice
will not affect the result as it corresponds to a shift of the energy reference frame by a constant.

The Hamiltonian (2.2) corresponds to a Straley pair-interaction potential reduced to the case
of explicit zero-coupling between q and b tensors [64,65]. Such pair-potential, identifying the so-
called λ-model, has been studied extensively and its associated phase diagram, in the absence of
external fields, has been inferred for specific two-order parameter reductions [65–67]. It is worth
noticing that, although the two tensors q and b are not directly coupled in the Hamiltonian (2.2),
they are geometrically related via the constraint qi · bi = 0, thus implying an implicit microscopic
coupling. As a result, the macroscopic behaviour will eventually reflect this hidden coupling
through an entropic contribution in the free energy, in addition to other possible coupling terms
in the order tensors, as we also show in this work.

Assuming that allowed configurations are such that molecular directors are parallel to the axes
of a fixed Cartesian reference frame, the Hamiltonian (2.2) can be written as follows:

H0 = − μ

2N

∑
i,j

∑
l,k∈{1,2}

ckl(Λ
l
iΛ

k
j + λΛl+2

i Λk+2
j ),

where ckl = 1 + δkl for k, l = 1, 2, and Λl
i, with i = 1, . . . , N, and l = 1, 2, 3, 4, parametrize the

components of qi and bi as follows:

qi = diag(Λ1
i , Λ2

i , −Λ1
i − Λ2

i ) and bi = diag(Λ3
i , Λ4

i , −Λ3
i − Λ4

i ) (2.4)

giving six possible orientational states of each molecule. In particular, we have that for the ith
molecule, Λi = (Λ1

i , Λ2
i , Λ3

i , Λ4
i ) ∈ {Λ(1), Λ(2), . . . , Λ(6)}, where

Λ(1) =
(

2
3

, −1
3

, 0, −1
)

, Λ(2) =
(

2
3

, −1
3

, 0, 1
)

Λ(3) =
(

−1
3

,
2
3

, 1, 0
)

, Λ(4) =
(

−1
3

,
2
3

, −1, 0
)

,

Λ(5) =
(

−1
3

, −1
3

, −1, 1
)

Λ(6) =
(

−1
3

, −1
3

, 1, −1
)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

Upon introducing the quantities Ml =∑
i Λ

l
i/N with l = 1, 2, 3, 4, the Hamiltonian H0 reads as

follows:

H0 = −μN[(M1)2 + M1M2 + (M2)2 + λ((M3)2 + M3M4 + (M4)2)]. (2.6)

We now proceed with modelling the interaction between the LC and external fields. Consistently
with previous studies on uniaxial [93–97] and biaxial nematics [10,98], we assume that the
interaction between an individual biaxial liquid crystal molecule and external fields produces
a term that is linear in the molecular tensors.
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Let ε = diag(ε1, ε2, ε3) and χ = diag(χ1, χ2, χ3) be two tensors associated with a general external
field and let Hex be the Hamiltonian modelling the interaction between the external field and the
LC molecules. Our assumption implies that Hex is of the form

Hex = −
∑

i

(ε · qi + χ · bi) (2.7)

= −N[(ε1 − ε3)M1 + (ε2 − ε3)M2 + (χ1 − χ3)M3 + (χ2 − χ3)M4]. (2.8)

By introducing the notation εk3 = εk − ε3 and χk3 = χk − χ3 with k = 1, 2, we can write1

Hex = −N(ε13M1 + ε23M2 + χ13M3 + χ23M4). (2.9)

Hence, the full Hamiltonian for the mean-field model under study in this work is H = H0 + Hex.
The associated partition function for the Gibbs distribution is given by the expression

ZN =
∑

{(q,b)}
exp(−βH),

where the summation refers to all possible configurations of (qi, bi) and β = 1/T with T denoting
the absolute temperature. Upon introducing the rescaled coupling constants t := βμ, x := βε13,
y := βε23, z := βχ13 and w := βχ23, the partition function reads as

ZN =
∑

{(q,b)}
eN{t[(M1)2+M1M2+(M2)2+λ((M3)2+M3M4+(M4)2)]+xM1+yM2+zM3+wM4}. (2.10)

In the following, similarly to the case of van der Waals-type models [85,87], spin systems [99] and
the generalization of the Maier–Saupe model in [10], we look for a differential identity satisfied by
the partition function and calculate the associated initial condition. We observe that the partition
function (2.10) satisfies the (4 + 1)-dimensional linear PDE

∂ZN

∂t
= 1

N

[
∂2ZN

∂x2 + ∂2ZN

∂x∂y
+ ∂2ZN

∂y2 + λ

(
∂2ZN

∂z2 + ∂2ZN

∂z∂w
+ ∂2ZN

∂w2

)]
. (2.11)

Note that, for λ > 0, equation (2.11) can be transformed via a linear transformation of the spatial
coordinates into the heat equation

∂ZN

∂t
= σ

(
∂2ZN

∂x′2 + ∂2ZN

∂y′2 + ∂2ZN

∂z′2 + ∂2ZN

∂w′2

)
,

where x′,y′, z′, w′ denote the new coordinates and σ = 1/N is the analogue of the heat conductivity.
More precisely, the transformation of coordinates is given by u′ = Pλu, where

u′ = (x′, y′, z′, w′)T, u = (x, y, z, w)T

and Pλ =

⎛
⎜⎜⎜⎝

2 −2 0 0
2/

√
3 2/

√
3 0 0

0 0 2/
√

λ −2/
√

λ

0 0 2/
√

3λ 2/
√

3λ

⎞
⎟⎟⎟⎠ .

The associated initial condition, Z0,N(x, y, z, w) := ZN(x, y, z, w, t = 0), corresponds to the value
of the partition function of the model for non-mutual interacting molecules. Given that the

1The parameters εk,j and χk,j can be thought of as functions of the external field applied and the properties of the material, e.g.
the components of the magnetic and electric susceptibilities (e.g. [93,94,97]).
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exponential is linear in the variables M1, M2, M3 and M4, the initial condition can be evaluated
by recursion and gives the following formula:

Z0,N =
( 6∑

i=1

exΛ1,i+yΛ2,i+zΛ3,i+wΛ4,i

)N

, (2.12)

where the index i labels the quadruples Λ(i) = (Λ1,i, Λ2,i, Λ3,i, Λ4,i) defined in equations (2.5a) and
(2.5b).

The exact solution to equation (2.11) for a given number of molecules N can be formally
obtained by separation of variables using as a basis the set of exponential functions obtained
by expanding the Nth power at the r.h.s. of equation (2.12). The solution reads as

ZN =
∑
{k}

BkAk(t; λ) exp(xω1
k + yω2

k + zω3
k + wω4

k), (2.13)

where k = (k1, . . . , k6) is a multi-index such that ki = 0, . . . , Ni with N1 = N, Ni = Ni−1 − ki−1 for
i = 2, . . . , 5, k6 = N −∑5

i=1 ki, ωl
k =∑6

i=1 Λl,iki, l = 1, 2, 3, 4 and

Bk =
6∏

i=1

(
Ni

ki

)

and Ak = exp
{

t
N

[(ω1
k)2 + ω1

kω2
k + (ω2

k)2 + λ((ω3
k)2 + ω3

kω4
k + (ω4

k)2)]
}

.

Let us define the scalar order parameters m1
N , m2

N , m3
N and m4

N as the expectation values of,
respectively, M1, M2, M3 and M4, i.e.

ml
N := 〈Ml〉 = 1

ZN

∑
{(q,b)}

Ml e−βH, l = 1, 2, 3, 4. (2.14)

Upon introducing the free-energy density as FN := (1/N) log ZN , the order parameters for an
intrinsically biaxial system composed by N molecules can be calculated by direct differentiation
as follows:

m1
N = ∂FN

∂x
, m2

N = ∂FN

∂y
, m3

N = ∂FN

∂z
and m4

N = ∂FN

∂w
, (2.15)

where ml
N = ml

N(x, y, z, w, t; λ), for l = 1, 2, 3, 4. Equation (2.11) implies that the free-energy density
satisfies the following differential identity:

∂FN

∂t
=
(

∂FN

∂x

)2
+ ∂FN

∂x
∂FN

∂y
+
(

∂FN

∂y

)2

+ λ

[(
∂FN

∂z

)2
+ ∂FN

∂z
∂FN

∂w
+
(

∂FN

∂w

)2
]

+ 1
N

[
∂2FN

∂x2 + ∂2FN

∂x∂y
+ ∂2FN

∂y2 + λ

(
∂2FN

∂z2 + ∂2FN

∂z∂w
+ ∂2FN

∂w2

)]
. (2.16)

In §3, we derive the equations of state in the thermodynamic (large N) regime via a direct
asymptotic approximation of the solution to equation (2.16). Before proceeding, it is worth
emphasizing that the case λ = 0 implies a reduction of the model (2.16) to the one studied in
[10], although the initial condition considered in that work depends on the intrinsic molecular
biaxiality parameter �, differently from the present case in which the degree of biaxiality of the
interaction is entirely contained in the internal energy term. The differences in the two treatments
arise as in this paper, we are working with two order tensors, while in [10] the so-called geometric
approximation on the interaction potential allowed to work with a single-order tensor, that is a
linear combination of q and b.
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3. Thermodynamic limit and equations of state
The thermodynamic limit is defined as the regime where the number of particles N is large, i.e.
N → ∞. Under the assumption that the free-energy admits the expansion of the form FN = F +
O(1/N) and by using equation (2.16) we obtain, at the leading order, the following Hamilton–
Jacobi-type equation:

∂F
∂t

=
(

∂F
∂x

)2
+ ∂F

∂x
∂F
∂y

+
(

∂F
∂y

)2
+ λ

[(
∂F
∂z

)2
+ ∂F

∂z
∂F
∂w

+
(

∂F
∂w

)2
]

. (3.1)

A similar asymptotic expansion for the order parameters ml
N = ml + O(1/N) implies the relations

m1 = ∂F
∂x

, m2 = ∂F
∂y

, m3 = ∂F
∂z

and m4 = ∂F
∂w

.

Equation (3.1) is completely integrable and can be solved via the method of characteristics. In
particular, the solution can be expressed via the free-energy functional

F = xm1 + ym2 + zm3 + wm4 + t[(m1)2 + m1m2 + (m2)2 + λ((m3)2 + m3m4 + (m4)2)]

+ S(m1, m2, m3, m4), (3.2)

where m1, m2, m3 and m4 are stationary points of the free-energy, i.e:

∂F
∂ml

= 0 for l = 1, 2, 3, 4.

Equivalently, order parameters are solutions to the following system of equations:

Ψ1 := x + (2m1 + m2)t + ∂S
∂m1 = 0,

Ψ2 := y + (m1 + 2m2)t + ∂S
∂m2 = 0,

Ψ3 := z + (2m3 + m4)λt + ∂S
∂m3 = 0,

Ψ4 := w + (m3 + 2m4)λt + ∂S
∂m4 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

The term S(m1, m2, m3, m4) represents the entropy of the system and, as discussed below, is
uniquely fixed via the initial condition F0 = F(x, y, z, w, t = 0).

The system (3.3) represents the set of equations of state for the λ-model. Hence, phase
transitions can be studied through the analysis of critical points of the equations (3.3). Similarly to
the thermodynamic models studied in [85–87,90], order parameters ml can be viewed as solutions
to a nonlinear integrable system of hydrodynamic type where coupling constants x, y, z, w and
t play the role of, respectively, space and time variables. In this framework, state curves within
the critical region of a phase transition are the analogue of shock waves of the hydrodynamic
flow. In order to specify completely equations of state (3.3), we have to determine the function
S(m1, m2, m3, m4). We proceed by evaluating equations (3.3) at t = 0, that is

x(m1
0, m2

0, m3
0, m4

0) = − ∂S
∂m1

∣∣∣∣
ml=ml

0

,

y(m1
0, m2

0, m3
0, m4

0) = − ∂S
∂m2

∣∣∣∣
ml=ml

0

,

z(m1
0, m2

0, m3
0, m4

0) = − ∂S
∂m3

∣∣∣∣
ml=ml

0

,

w(m1
0, m2

0, m3
0, m4

0) = − ∂S
∂m4

∣∣∣∣
ml=ml

0

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)
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where ml
0 = ml(x, y, z, w, t = 0), with l = 1, 2, 3, 4. Equations (3.4) show that the function

S(m1, m2, m3, m4) can be obtained, locally, by expressing x, y, z and w as functions of the order
parameters ml evaluated at t = 0 and then integrating equations (3.4). Indeed, observing that the
initial condition for F is F0 =FN,0 = (1/N) log Z0,N , where Z0,N is given in (2.12), the required
functions can be obtained by inverting the system

m1
0 = ∂F0

∂x
(x, y, z, w), m2

0 = ∂F0

∂y
(x, y, z, w),

m3
0 = ∂F0

∂z
(x, y, z, w), m4

0 = ∂F0

∂w
(x, y, z, w).

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

More explicitly, equations (3.5) read as follows:

6∑
i=1

(ml
0 − Λl,i)XΛ1,i

YΛ2,i
ZΛ3,i

WΛ4,i = 0, l = 1, 2, 3, 4, (3.6)

where we have introduced the notation X = exp(x), Y = exp(y), Z = exp(z), W = exp(w). Hence,
equations of state (3.3) for the model with external fields are completely determined in terms of
the roots of system of equations (3.6). We should also emphasize that system (3.6) is algebraic
with respect to the variables X, Y, Z and W.

Remark 3.1. The order parameters introduced here are related to the scalar order parameters
adopted in [65] by the following linear transformation:

m1 = T − S
3

, m2 = −T − S
3

, m3 = T′ − S′

3
and m4 = −T′ − S′

3
, (3.7)

where S, T, S′, T′ are the scalar order parameters characterizing the tensors Q := 〈q〉 and B :=
〈b〉 in their common eigenframe, once the thermodynamic limit is performed. Specifically, by
considering the eigenframe (ex, ey, ez), the order tensors can be written as

Q = S
(

ez ⊗ ez − 1
3

I
)

+ T (ex ⊗ ex − ey ⊗ ey) (3.8)

and

B = S′
(

ez ⊗ ez − 1
3

I
)

+ T′(ex ⊗ ex − ey ⊗ ey). (3.9)

The inverse of the linear transformation (3.7) is

S = −3
2

(m1 + m2), T = 1
2

(m1 − m2)

S′ = −3
2

(m3 + m4), T′ = 1
2

(m3 − m4).

⎫⎪⎪⎬
⎪⎪⎭ (3.10)

In [67], it is claimed that, in the absence of external fields, reductions T = S′ = 0, or T = ±S and
S′ = ±3T′ hold, these latter obtained by swapping the axes of the reference frame, ex, ey, ez. These
conditions read as m1 = m2 = −S/3 and m3 = −m4 = T′.

In the next section, we will introduce a new parametrization based on the introduction of the
molecular Gibbs weights, which leads to the explicit solutions of the model.

(a) Equations of state
A convenient approach to the evaluation of the entropy of the discrete model and the
corresponding equations of state starts from the statistical analysis of the ‘initial condition’,
namely the evaluation of the partition function (2.12) as a function of the external fields at t = 0.
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Indeed, at t = 0, LC molecules are mutually independent and expectation values can be evaluated
by looking at the one-molecule partition function,

Z0,1 =
6∑

i=1

exΛ1,i+yΛ2,i+zΛ3,i+wΛ4,i
. (3.11)

The molecular Gibbs weights [2] at t = 0 and as functions of the external fields take the following
form:

p0,i(x, y, z, w) := exΛ1,i+yΛ2,i+zΛ3,i+wΛ4,i

Z0,1
, i = 1, . . . , 6.

Note that the partition function (3.11), ensures that the Gibbs weights fulfil the standard
normalization condition,

6∑
i=1

p0,i = 1. (3.12)

The configurational entropy of the model is standardly given by S = −∑6
k=1 pk log pk. At t = 0,

this reads, S0 = −∑6
k=1 p0,k log p0,k. By inspection, the following holds at t = 0

x = 1
2

log
p0,1p0,2

p0,5p0,6
, y = 1

2
log

p0,3p0,4

p0,5p0,6
,

z = 1
2

log
p0,3

p0,4
, w = 1

2
log

p0,2

p0,1
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.13)

In the specific case of the model under study, one can verify that only four out of six Gibbs weights
are functionally independent. Indeed, additionally to the normalization constraint (3.12), one can
readily verify the following:

3∏
k=1

p0,2k−1 =
3∏

k=1

p0,2k. (3.14)

By using equations (3.12) and (3.14), one can express p0,6 and p0,5 in terms of p0,1, p0,2, p0,3 and p0,4
as follows:

p0,5 =
p0,2p0,4

(
1 −∑4

i=1 p0,i

)
p0,1p0,3 + p0,2p0,4

and p0,6 =
p0,1p0,3

(
1 −∑4

i=1 p0,i

)
p0,1p0,3 + p0,2p0,4

. (3.15)

Note that the entropy density, as well as the Gibbs weights, depend on the temperature and
the fields via the scalar order parameters only (see equation (3.2)). Therefore, the identities in
equations (3.15) hold at every t. The Gibbs weights are related to the order parameters ml via the
transformation ϕ : (p1, p2, p3, p4) ∈ [0, 1]4 → (m1, m2, m3, m4) ∈D ⊂ R

4, where

m1 = p1 + p2 − 1
3

,

m2 = p3 + p4 − 1
3

,

m3 = (p1p3 − p2p4)(1 − p1 − p2) + 2p3p4(p2 − p1)
p1p3 + p2p4

,

m4 = (p2p4 − p1p3)(1 − p3 − p4) + 2p1p2(p3 − p4)
p1p3 + p2p4

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.16)

The domain D is identified by the following constraints:

−2
3

≤ m1 + m2 ≤ 1
3

, −
(

2
3

+ m1 + m2
)

≤ m1 − m2 ≤ 2
3

+ m1 + m2

− 2 ≤ m3 − m4 ≤ 2, −
(

2
3

+ m1 + m2
)

≤ m3 + m4 ≤ 2
3

+ m1 + m2.
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Using the relations (3.13), (3.15) and (3.16), and the observation (3.4) one obtains the following set
of equations for p1, p2, p3 and p4 in terms of the fields and the temperature:

x + (2p1 + 2p2 + p3 + p4 − 1)t

− 1
2

log

(
(p1p3 + p2p4)2

p3p4(1 − p1 − p2 − p3 − p4)2

)
= 0, (3.17a)

y + (2p3 + 2p4 + p1 + p2 − 1)t

− 1
2

log

(
(p1p3 + p2p4)2

p1p2(1 − p1 − p2 − p3 − p4)2

)
= 0, (3.17b)

z +
(

p1p3(1 − 2p1 + p3 − 3p4 − p2p4(1 − 2p2 − 3 p3 + p4))
p1p3 + p2p4

)
λt

− 1
2

log
(

p3

p4

)
= 0, (3.17c)

w +
(

p2p4(1 − 3p1 + p2 − 2p4) − p1p3(1 + p1 − 3p2 − 2p3)
p1p3 + p2p4

)
λt

− 1
2

log
(

p2

p1

)
= 0. (3.17d)

Equations (3.17a)–(3.17d) can be viewed as the equations of state of the discrete λ-model subject to
external fields, parametrized by pi and intensive thermodynamic variables x, y, z, w and t, which
are the control parameters of the model. Note that equations (3.17a)–(3.17d) are the critical points
of the free-energy which can now be given the form

F = x m1 + y m2 + z m3 + w m4 + t
2

[Tr Q2 + λ Tr B2] −
6∑

k=1

pk log pk, (3.18)

where Q = diag(m1, m2, −m1 − m2) and B = diag(m3, m4, −m3 − m4), and ml = ml(p1, p2, p3, p4),
with l = 1, 2, 3, 4, and p5,6 = p5,6(p1, p2, p3, p4) are given by equations (3.16) and (3.15), respectively.

(i) Two-parameter reductions

In this subsection, we will focus on the derivation of two-parameter reductions of the equations of
state (3.17a)–(3.17d). Such reductions arise naturally when considering the LC system constrained
to suitable forms of external fields, including the case in which external fields are not present and
the phase behaviour is entirely regulated by the mutual interactions among LC molecules and the
temperature. The following holds in the absence of external fields.

Lemma 3.2. In the absence of external fields, that is at x = y = z = w = 0, solutions to the system
(3.17a)–(3.17d) are given by one of the following two-parameter reductions:

(i) (a) p4 = p2 and p3 = p1, with

(1 − 3p1 − 3p2)t = 1
2

log

(
p1p2(1 − 2p1 − 2p2)2

(p2
1 + p2

2)2

)
(3.19)

and

(p1 − p2)

(
1 + 4p1p2 − p1 − p2

p2
1 + p2

2

)
λt = 1

2
log

(
p2

p1

)
. (3.20)

(b) p3 = [(1 − 2p1 − 2p2)p2
2]/(p2

1 + p2
2) and p4 = [(1 − 2p1 − 2p2)p2

1]/(p2
1 + p2

2), where p1 and
p2 satisfy equations (3.19)–(3.20).
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(c) p1 = [(1 − 2p3 − 2p4)p2
4]/(p2

3 + p2
4) and p2 = [(1 − 2p3 − 2p4)p2

3]/(p2
3 + p2

4), where p3 and
p4 satisfy

(1 − 3p3 − 3p4)t = 1
2

log

(
p3p4(1 − 2p3 − 2p4)2

(p2
3 + p2

4)2

)
(3.21)

and

(p4 − p3)

(
1 + 4p3p4 − p3 − p4

p2
3 + p2

4

)
λt = 1

2
log

(
p3

p4

)
. (3.22)

(ii) (a) p3 = p2 and p4 = p1, with

(1 − 3p1 − 3p2)t = 1
2

log

(
(1 − 2p1 − 2p2)2

4p1p2

)
(3.23)

and

3(p1 − p2)λt = 1
2

log
(

p1

p2

)
. (3.24)

(b) p3 = p4 = 1/2 − p1 − p2, with equations (3.23) and (3.24) holding for p1 and p2.
(c) p2 = p1 = 1/2 − p3 − p4, with

(1 − 3p3 − 3p4)t = 1
2

log

(
(1 − 2p3 − 2p4)2

4p3p4

)
(3.25)

and

3(p4 − p3)λt = 1
2

log
(

p4

p3

)
. (3.26)

Proof. Let us consider equations (3.17a)–(3.17d) restricted to the condition x = y = z = w = 0.
Observing that equation (3.17a) has special solutions such that

2p1 + 2p2 + p3 + p4 − 1 = 0 (3.27)

and

(p1p3 + p2p4)2 − p3p4(1 − p1 − p2 − p3 − p4)2 = 0, (3.28)

the above system admits two solutions for p3 and p4 as functions of p1 and p2: one is p3 = [(1 −
2p1 − 2p2)p2

2]/(p2
1 + p2

2), p4 = [(1 − 2p1 − 2p2)p2
1]/(p2

1 + p2
2), and the other is p3 = p4 = 1/2 − p1 − p2.

Substituting the first into equation (3.17b), we obtain equation (3.19), while the same constraints
imply that equations (3.17c)–(3.17d) reduce to equation (3.19), thus proving reduction (i) (b). If
we consider the second solution instead, we obtain (3.23) from equations (3.17b) and (3.24) from
equations (3.17c) and (3.17d), thus proving reduction (ii) (b). Similarly, equation (3.17b) admits
solutions such that

2p3 + 2p4 + p1 + p2 − 1 = 0 (3.29)

and

(p1p3 + p2p4)2 − p1p2(1 − p1 − p2 − p3 − p4)2 = 0, (3.30)

which provide two solutions: one is p1 = [(1 − 2p3 − 2p4)p2
4]/(p2

3 + p2
4), p2 = [(1 − 2p3 − 2p4)p2

3](p2
3 +

p2
4), and the other is p2 = p1 and p3 = 1/2 − p1 − p4. Substituting the first solution into equation

(3.17a), one obtains (3.44), while the same constraints imply that equations (3.17c) and (3.17d)
reduce to equation (3.25), that is the reduction (i) (c). If we consider the second solution
instead, we obtain (3.23) from equation (3.17b) and (3.24) from equation (3.17c) and (3.17d), thus
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yielding reduction (ii) (c). When 2p1 + 2p2 + p3 + p4 − 1 = 0 and 2p3 + 2p4 + p1 + p2 − 1 = 0, we
can eliminate t from equations (3.17a)–(3.17b) to get the following:

log
(

p1p3 + p2p4

p3p4

)
= p1 + p2 − p3 − p4

1 − p1 − p2 − 2p3 − 2p4
log

(
(1 − p1 − p2 − p3 − p4)2

p1p3 + p2p4

)

+ 1 − 2p1 − 2p2 − p3 − p4

1 − p1 − p2 − 2p3 − 2p4
log

(
p1p3 + p2p4

p1p2

)
. (3.31)

Let k > 0 be an arbitrary constant and ϑ be the scale transformation defined by ϑ : pi → kpi
for i = 1, 2, 4, 6. The l.h.s. of equation (3.31) is invariant under the action of ϑ , and is therefore
independent of k. For consistency, the r.h.s. must retain the same property. By applying ϑ to
equation (3.31) and requiring that the r.h.s. is does not dependent on k, one obtains that solutions
satisfy

p1 + p2 = p3 + p4. (3.32)

We proceed by eliminating the factor λt from equations (3.17c) and (3.17d), obtaining

log
(

p1

p2

)
= (1 − 3p1 + p2 − 2p4)p2p4 − (1 + p1 − 2p3 − 3p2)p1p3

(1 − 2p1 + p3 − 3p4)p1p3 − (1 − 2p2 − 3p3 + p4)p2p4

× log
(

p3

p4

)
. (3.33)

The generic solution is obtained by the same scaling argument. More precisely, invariance of
both sides of equation (3.33) under the action of ϑ gives (p1p3 − p2p4)(p1p3 + p2p4)(p1 + p4 − p2 −
p3) log (p4/p3) = 0, which can be realized in the two following cases:

p1 + p4 = p2 + p3 (3.34)

and

p1p3 = p2p4. (3.35)

System of equations (3.32)–(3.34) has solutions p3 = p1 and p4 = p2, while system of equations
(3.32)–(3.35) has solutions p3 = p2 and p4 = p1. By imposing the first of the two sets of constraints
to equations (3.17a)–(3.17d), one obtains the system of equations (3.19) and (3.20), hence proving
the reduction (i) (a), while the second set of constraints gives equations (3.23) and (3.24), thus
proving the reduction (ii) (a). �

As we prove in theorem 3.3, lemma 3.1 has a remarkable implication on the structure of the
two order tensors of the theory. In order to proceed, it may be convenient to recall a criterion to
characterize the degree of biaxiality of a given order tensor Ω . This will be based on the biaxiality
parameter β2(Ω) := 1 − 6(Tr2(Ω3)/Tr3(Ω2)), satisfying 0 ≤ β2 ≤ 1 [100].

Definition 3.3. A tensor Ω is said to be uniaxial if β2(Ω) = 0 and biaxial if 0 < β2(Ω) ≤ 1.
Furthermore, in the extreme case β2(Ω) = 1, Ω is said to be maximally biaxial.

The following theorem characterizes the allowed forms of the two order tensors of the model.

Theorem 3.4. In the absence of external fields, at all temperatures and values of λ, the order tensors
take one of the following two forms

(i) Q uniaxial and B maximally biaxial;
(ii) Q and B both uniaxial.

Proof. The result is readily obtained by considering lemma 3.1 and the transformation ϕ

specified by equations (3.16). The subcases (a), (b) and (c) of lemma 3.1 in each of the two cases (i)
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and (ii), correspond to a particular choice of the principal axis. For instance, the transformation ϕ

evaluated along with case (i) (a) implies Q = diag (m1, m1, −2 m1) and B = diag (m3, −m3, 0), with

m2 = m1 = −1
3

+ p1 + p2

and m4 = −m3 = (p1 − p2)

(
1 + 4p1p2 − p1 − p2

p2
1 + p2

2

)
,

while case (ii) (a) leads to Q = diag (m1, m1, −2m1) and B = diag (m3, m3, −2m3), with

m2 = m1 = −1
3

+ p1 + p2 and m4 = m3 = p2 − p1.

Similarly, case (i) (b) corresponds to Q = diag (m1, −2m1, m1) and B = diag (m3, 0, −m3), with

m2 = −2m1 = 2
(

1
3

− p1 − p2

)

and m3 = (p1 − p2)

(
1 + 4p1p2 − p1 − p2

p2
1 + p2

2

)
, m4 = 0,

and case (ii) (b) corresponds to Q = diag (m1, −2m1, m1) and B = diag (m3, −2m3, m3), with

m2 = −2m1 = 2
(

1
3

− p1 − p2

)
and m4 = −2m3 = −2(p1 − p2).

Finally, case (i) (c) corresponds to Q = diag (−2m2, m2, m2) and B = diag (0, m4, −m4), with

m1 = −2m2 = 2
(

1
3

− p3 − p4

)

and m3 = 0, m4 = (p4 − p3)

(
1 + 4p3p4 − p3 − p4

p2
3 + p2

4

)
,

and case (ii) (c) leads to Q = diag (−2m2, m2, m2) and B = diag (−2m4, m4, m4), with

m2 = m1 = −1
3

+ p1 + p2 and m3 = −2m4 = 1 − 2p1 − 4p4.

The statement is proven by evaluating the biaxiality parameter β2 for Q and B along all cases.
Due to the invariance by exchange of principal axes, β2 for Q and B will take same values for all
subcases (a), (b) and (c) of a given case. Without loss of generality, we can consider cases (i) (a)
and (ii) (a) to get, respectively,

(i) β2(Q) = 1 − 6(Tr2(diag ((m1)3, (m1)3, −8(m1)3))/Tr3)(diag ((m1)2, (m1)2, 4(m1)2)) = 0,
β2(B) = 1 − 6(Tr2(diag((m3)3, −(m3)3, 0))/Tr3(diag((m3)2, (m3)2, 0))) = 1, that is Q uniaxial
and B maximally biaxial;

(ii) β2(Q) = 1 − 6(Tr2(diag ((m1)3, (m1)3, −8(m1)3))/Tr3(diag ((m1)2, (m1)2, 4(m1)2))) = 0,
β2(B) = 1 − 6(Tr2(diag((m3)3, (m3)3, −8(m3)3))/Tr3(diag((m3)2, (m3)2, 4(m3)2))) = 0, hence
Q and B both uniaxial.

�

A direct consequence of the reductions (ii) in theorem 3.3 and the transformation ϕ is the
following corollary.

Corollary 3.5. The equations of state for the model in the case of Q and B both uniaxial, cases (ii)
in Theorem (3.3), can be written explicitly in terms of the eigenvalues ml. In particular, we have that
reductions (ii) (a), (b) and (c) can be written as follows:
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(ii) (a) m2 = m1 and m4 = m3 with

6m1t = log

(
(1 + 3m1 + 3m3)(1 + 3m1 − 3m3)

(1 − 6m1)2

)
(3.36)

and

6m3λt = log

(
1 + 3m1 + 3m3

1 + 3m1 − 3m3

)
; (3.37)

(b) m2 = −2m1 and m4 = −2m3 with m1 and m3 specified by equations (3.36) and (3.37);
(c) m1 = −2m2 and m3 = −2m3 with

6m2t = log

(
(1 + 3m2 + 3m4)(1 + 3m2 − 3m4)

(1 − 6m2)2

)
(3.38)

and

6m4λt = log

(
1 + 3m2 + 3m4

1 + 3m2 − 3m4

)
. (3.39)

Proof. As shown in the proof of Theorem (3.3), the transformation ϕ is linear when restricted
to the case of Q and B both uniaxial. Hence, the transformation can be easily inverted to get
the projection ϕ−1 : (m1, m2, m3, m4) �−→ (p1, p2, p3, p4) along with each particular two-parameter
reduction. The equations in terms of the eigenvalues are then obtained by application of the
inverse transformation for the specific reduction to the corresponding set of equations in the
p-variables. Taking the case (ii) (a) as an example, the application of ϕ−1

a := {ϕ|p3=p2,p4=p1 }−1

explicitly given by

ϕ−1
a : (m1, m3) �−→ (p1, p2) =

(
1 + 3m1 − 3m3

6
,

1 + 3m1 + 3m3

6

)
,

to equations (3.23) and (3.24) gives equations (3.36) and (3.37). Equations (3.36) and (3.37) and
(3.38) and (3.39) for (b) and (c), respectively, are obtained in a similar fashion. �

Unlike uniaxial–uniaxial reductions discussed above, uniaxial–maximally biaxial reductions
cannot be written in explicit simple form in terms of the ml variables.

In this paper, we will focus our discussion on the phase behaviour in the absence of external
fields. We note, however, that the above reductions are also compatible with non-zero fields values
subject to suitable constraints. Indeed, the following proposition allows to identify the constraints
on the external fields so that the system admits uniaxial–maximally biaxial and uniaxial–uniaxial
solutions for Q and B. In such cases, we can still consider two-parameter reductions of the system,
with the equations of state also accounting for the action of applied fields.

Proposition 3.6. In the presence of external fields, the system (3.17a)–(3.17d) admits the following
uniaxial–maximally biaxial two-parameter reductions:

(i) (a) p3 = p1 and p4 = p2, provided that external fields satisfy y = x and w = −z, that is ε1 = ε2
and χ3 = (χ1 + χ2)/2, specified by

x + (3p1 + 3p2 − 1)t = 1
2

log

(
(p2

1 + p2
2)2

p1p2(1 − 2p1 − 2p2)2

)
(3.40)

and

z + (p2 − p1)

(
1 + 4p1p2 − p1 − p2

p2
1 + p2

2

)
λt = 1

2
log

(
p1

p2

)
(3.41)
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(b) p3 = ((1 − 2p1 − 2p2)p2
2/(p2

1 + p2
2)) and p4 = (1 − 2p1 − 2p2)p2

1/(p2
1 + p2

2), provided that
x = 0 and z = 2w, that is ε1 = ε3 and χ2 = (χ1 + χ3)/2, specified by

y + (1 − 3p1 − 3p2)t = 1
2

log

(
p1p2(1 − 2p1 − 2p2)2

(p2
1 + p2

2)2

)
(3.42)

and

w + (p1 − p2)

(
1 + 4p1p2 − p1 − p2

p2
1 + p2

2

)
λt = 1

2
log

(
p2

p1

)
(3.43)

(c) p1 = (1 − 2p3 − 2p4)p2
4/(p2

3 + p2
4) and p2 = (1 − 2p3 − 2p4)p2

3/(p2
3 + p2

4), provided that
y = 0 and w = 2z, that is ε2 = ε3 and χ1 = (χ2 + χ3)/2, and specified by

x + (1 − 3p3 − 3p4)t = 1
2

log

(
p3p4(1 − 2p3 − 2p4)2

(p2
3 + p2

4)2

)
(3.44)

and

z + (p4 − p3)

(
1 + 4p3p4 − p3 − p4

p2
3 + p2

4

)
λt = 1

2
log

(
p3

p4

)
(3.45)

and uniaxial–uniaxial two-parameter reductions:
(ii) (a) p3 = p2 and p4 = p1, provided that x = y and z = w, that is ε1 = ε2 and χ1 = χ2, specified

by

x + (3p1 + 3p2 − 1)t = 1
2

log
(

4p1p2

(1 − 2p1 − 2p2)2

)
(3.46)

and

z + 3(p2 − p1)λt = 1
2

log
(

p2

p1

)
(3.47)

(b) p3 = p4 = 1
2 − p1 − p2, provided by x = 0 and z = 0, that is ε1 = ε3 and χ1 = χ3, specified

by

y + (1 − 3p1 − 3p2)t = 1
2

log

(
(1 − 2p1 − 2p2)2

4p1p2

)
(3.48)

and

w + 3(p2 − p1)λt = 1
2

log
(

p2

p1

)
(3.49)

(c) p2 = p1 = 1
2 − p3 − p4, provided that y = 0 and w = 0, that is ε2 = ε3 and χ2 = χ3, specified

by

x + (1 − 3p3 − 3p4)t = 1
2

log

(
(1 − 2p3 − 2p4)2

4p3p4

)
(3.50)

and

z + 3(p3 − p4)λt = 1
2

log
(

p3

p4

)
. (3.51)

Proof. The constraints on the fields follow from looking for either uniaxial–maximally biaxial or
uniaxial–uniaxial reductions of the whole set of equations of state, equations (3.17a)–(3.17d). For
instance, the uniaxial–maximally biaxial reduction (i) (a) requires p3 = p1 and p4 = p2. Equations
(3.17a)–(3.17d) restricted to this constraint imply that compatibility of the first two equations
restricts fields to y = x, while compatibility of the third and fourth requires w = −z. Elementary
algebraic manipulations lead to equations (3.40) and (3.41). The set of field-dependent equations
of state in the case (i) (b) and (c), and (ii) (a), (b) and (c) are obtained following the same procedure,
together with the associated constraints on the fields. �
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4. Order parameters in the two-parameter reductions
The equations of state (3.17a)–(3.17d) are the critical points of the free-energy functional (3.18).
According to the definition of free-energy adopted in this paper, global maxima identify stable
states of the system and associated phases. Coexistence curves (hypersurfaces, in general) arise as
sets of control parameters for which two or more local maxima are resonant, hence identifying the
coexistence of the corresponding phases. In order to proceed, we should therefore first identify all
local maxima for each choice of control parameters x, y, z, w, λ and t. In this section, we focus on
the complete characterization of the system in the absence of external fields, i.e. x = y = z = w = 0,
hence relying on theorem 3.3 and its implications. An immediate consequence is that the onset of
phase transitions is determined by analysing the singularities of two-dimensional maps defined
by equations (3.19) and (3.26) (see [10] for an exhaustive treatment). Noticeably, this is a more
affordable task compared with the full four-dimensional problem governing the system when
external fields are present, equations (3.17a)–(3.17d).

By evaluating the Hessian matrix of the free energy density (3.18), it turns out that none of
the critical points in the uniaxial–uniaxial reductions, cases (ii) (a–c) in lemma 3.1) are stable.
This result is consistent with what is known from mean-field theories based on a continuum
of molecular orientational states [67]. Therefore, the uniaxial–maximally biaxial reductions,
cases (i) (a)–(c) in lemma 3.1, are the only ones relevant from the equilibrium thermodynamics
viewpoint. The following subsections focus on the analysis of the resulting phase diagram and
the associated order parameters’ behaviour, with case (i) (a) being considered for such purpose.
Cases (i) (b) and (i) (c) can be straightforwardly obtained from case (i) (a) via suitable linear
transformations on m1 and m3, which merely correspond to permutations of axes.

(a) Phase behaviour in the absence of external fields
The phase diagram of the model in the absence of external fields is shown in figure 1. The top row
shows the phase diagram in the λ−t plane, while the bottom row shows the phase diagram in
the λ−T∗ plane, where T∗ is the dimensionless temperature defined by T∗ := 1/t = (kBT)/μ. The
λ–t plane is divided in three regions identifying three distinct macroscopic phases, namely the
isotropic (I), the uniaxial nematic (U) and the biaxial nematic (B). The lines separating the different
regions are either dotted black lines or solid black lines. The former identify the so-called second-
order transition lines, that is the lines associated with phase changes characterized by continuous
order parameters but discontinuous derivatives. The latter are instead associated with first-order
lines, that is the order parameters and their derivatives experience a discontinuity when the line
is crossed. Similarly to the analysis performed in [10], second-order lines are identified by cusp
points of two-dimensional maps. The cusp points of the model (red lines in figure 1) are given
explicitly in terms of the transcendental curve

C =
{

(λ, t) ∈ [0, 1] × [0, +∞) | et−(1/λ)(2 − λt) + 1 − 2λt = 0
}

.

Note that the cusp set can be seen as the union of two curves intersecting at the point
(λ, t) = (1/3, 3). The model admits two tricritical points, (λ(UB)

tc , t(UB)
tc ) = (0.217, 2.854) (red circle)

and (λ(IB)
tc , t(IB)

tc ) = (2/3, 3/2) (blue circle). The three phases coexist at the triple point, (λtp, ttp) =
(0.234, 2.773) (green circle) identified by the resonance condition for the corresponding maxima.
A closer look in the region surrounding the triple point and the uniaxial–biaxial tricritical point is
provided in the right column. The cusp points in the λ−T∗ plane are given by the set

C∗ =
{

(λ, T∗) ∈ [0, 1]2 | e(1/T∗)−(1/λ)
(

2 − λ

T∗

)
+ 1 − 2λ

T∗ = 0
}

.

The constraint λ = T∗ identifies the subset of cusp points associated with second-order lines for
λ ≥ 2/3.
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Figure 1. Zero-fields phase diagram. (a,b) phase diagram in the λ−t plane. (c,d) phase diagram in the λ−T∗ plane. The
figures in (b,d) represent a magnification of the phase diagram in the region surrounding the triple point (green circle) and the
uniaxial–biaxial tricritical point (red circle). The line associated with uniaxial cusp points is indicated in red.

(b) Order parameters in the absence of external fields
In this section, we analyse the order parameters’ behaviour for the reduction m2 = m1, m4 = −m3

in the absence of external fields as the temperature changes. Following our discussion on the
phase diagram displayed in figure 1, we proceed by showing the expectation values m1 and
m3 at different increasing values of λ. The values chosen for λ aim at displaying the whole
phenomenology predicted by the phase diagram.

Figure 2 shows the behaviour of order parameters in the absence of external fields for small
values of λ. The case λ = 0 (a,d) reproduces the phenomenology of the standard Maier–Saupe
model, with the biaxial order parameter vanishing and a discontinuous isotropic-to-uniaxial
nematic phase transition at tNI

c = 4 log 2. For small values of λ (b,e), that is 0 < λ < λUB
tc ≈ 0.217,

additionally to the isotropic-to-nematic phase transition, a continuous phase change at lower
temperatures is displayed from the uniaxial phase to the biaxial phase. Consistently with
the phase diagram in figure 1, the uniaxial-to-biaxial phase transition becomes first-order at
the uniaxial-biaxial tricritical point (c,f ), where both order parameters experience a gradient
catastrophe at t = t(UB)

tc = 2.854.
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Figure 2. Order parameters in the two-parameter reduction for small values ofλ. Each column shows both order parameters,
m1 (black) andm3 (red) versus t at a specific value ofλ. The solutions corresponding to a global maximumof the free energy are
displayed with solid lines, while other solutions are indicated with dotted lines. (a,d)λ = 0, that is the uniaxial Maier–Saupe
interaction potential, (b,e)λ = 1/6, (c,f )λ = λUB

tc = 0.217.

The behaviour for values of λ in the interval (λ(UB)
tc , λtp) is displayed in figure 3. For values

of λ in this range the model predicts two first-order phase transitions, a isotropic-to-uniaxial
phase transition at high temperature (low values of t) followed by a uniaxial-to-biaxial phase
transition at lower temperatures (higher values of t). While the former is associated with a shock
that is static in λ, the latter is originated at the uniaxial–biaxial tricritical point and is identified
by a classical shock whose location moves from low temperatures to higher temperatures as the
biaxiality parameter λ increases.

As shown in figures 1 and 4a,d, for λ = λtp = 0.234 the system displays a triple point at which
all three phases coexist. This situation is realized as the two shocks associated with the isotropic-
to-uniaxial and uniaxial-to-biaxial phase transitions merge at zero external fields, giving rise to
a single shock having an amplitude given by the sum of the amplitudes of the two individual
shocks. Consistently with the phase diagram in figure 1, the uniaxial phase is not energetically
accessible for λ > λtp. For instance, for λ = 0.284 (figure 4b,e), the order parameters jump from
the isotropic phase to the biaxial phase as the temperature is lowered. This is also the case when
λ = 1/3 (c,f ). The case λ = 1/3, as also discussed in [67], leads to proportionality between the stable
branches of the order parameters. Precisely this is 3m1 ± m3 = 0, corresponding to T′ = ±S in the
convention adopted by Virga and co-authors in [67].

For values of λ exceeding the value 1/3, the isotropic-to-biaxial phase transition remains first-
order until a second tricritical point is disclosed. In figure 5, the change in order of the isotropic-
to-biaxial phase transition is displayed. For λ < λ

(IB)
tc (figure 5a,d) both order parameters undergo

a discontinuous jump from the isotropic solution to the biaxial one. The shock disappears when
λ = λ

(IB)
tc = 2/3 is considered (figure 5b,e), and consequently both order parameters experience a

gradient catastrophe at t = t(IB)
tc = 3/2. Larger values of λ lead to a direct second-order transition

from the isotropic to the biaxial phase, with the transition value given by t(IB) = 1/λ (figure 5c,f ).
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Figure 3. Order parameters in the two-parameter reduction for values ofλ in the intervalλ(UB)
tc ≤ λ < λtp. Panel (a,c) shows

both order parameters versus t for λ = 0.226 ∈ (λ(UB)
tc , λtp) as an example. Panel (b,d) displays a magnification of the order

parameters around the tricritical temperature and triple point temperature.
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Figure 4. Order parameters in the two-parameter reduction for values ofλ in the intervalλtp ≤ λ ≤ 1/3. (a,d)λ = λtp =
0.234, (b,e)λ = 0.284, (c,f )λ = 1/3.
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Figure 5. Order parameters in the two-parameter reduction for λ > 1/3. (a,d) λ = 0.429, (b,e) λ = λ
(IB)
tc = 2/3,

(c,f )λ = 0.857.

Our results are, both qualitatively and quantitatively, consistent with previous studies
[58,60,67]. In particular, according to the Monte Carlo simulation results reported in [58,60,67],
the values of λ at the first and second tricritical points are approximately 0.24 and approximately
2/3, respectively. Moreover, the global Monte Carlo study performed in [60] predicts λ � 0.26 for
the triple point. Consistency is also shown with the extended analysis preformed in [73], where a
fourth-degree Landau potential in the two tensors Q and B is considered. Indeed, the authors
find a zero-fields phase diagram displaying a first- and second-order isotropic-to-uniaxial-to-
biaxial phase transitions and first- and second-order isotropic-to-biaxial phase transitions, thus
disclosing two tricritical points and a single triple point. On the other hand, similar but not
totally equivalent phase diagram topologies are described in [14,72], where a sixth-degree Landau
potential in a single-order tensor has been analysed. The phase diagram we obtain (figure 1) is
also qualitatively in agreement with the one obtained in [74], where the authors derive a Landau
expansion of a free energy which is intrinsically linked to a molecular-field theory, and then
discuss the Sonnet–Virga–Durand limit.

It goes without saying that a single-tensor theory does not distinguish between intrinsic and
phase biaxiality. This separation is made clear and sharp by starting from two molecular tensors
q and b in the Hamiltonian (e.g. (2.2)) which, correspondingly, give rise macroscopically to two
order tensors Q and B eventually accounting for the phase and intrinsic biaxiality, respectively.
In this work, the λ-model in the absence of external fields is shown to admit two-parameter
reductions, which account for isotropic, uniaxial and intrinsic biaxial phases. Other models, as
for example the Maier–Saupe model (retrieved from the λ-model setting λ = 0), have been shown
to produce uniaxiality and phase biaxiality at the macroscopic level and in the presence of external
fields [10,95–97].

5. Concluding remarks
In this paper, we have analysed in detail a discrete mean-field model for a biaxial nematic LC
subject to external fields, using an approach based on the differential identity (2.11) for the
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partition function. Upon the introduction of suitable variables, namely the order parameters,
the multi-dimensional linear PDE satisfied by the partition function leads, in the thermodynamic
limit, to a set of equations of state involving all four orientational order parameters. The equations
are completely solvable by the method of characteristics proving the integrability of the model.

Via the introduction of a novel set of order parameters corresponding to orientational Gibbs
weights, we have obtained the equations of state in explicit form. We proved that, in the absence
of external fields, the system is fully characterized by two-parameter reductions, and such
reductions persist in the case of non-zero external fields subject to suitable constraints. A detailed
analysis demonstrates the existence of a rich phase diagram, that is remarkably consistent with
the results known in the literature for the standard Maier–Saupe model and its biaxial extensions.
Hence, the discrete models of the type studied in this paper capture, at least qualitatively, the
most important features of continuum models with external fields for which explicit analytic
formulae are not available. These results indeed encourage further studies on integrable biaxial
models where the Hamiltonian contains a more general nonlinear dependence on the tensors q
and b, as for instance the one implied by the full Straley pair-interaction potential. Moreover, the
phenomenology encoded in the equations of state (3.17a)–(3.17d) for general field values, as well
as the two-parameter reductions obtained in proposition 3.5 for constrained fields, still need to be
further analysed and described. Such cases are currently under investigation and results will be
reported in due course.
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