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ARTICLE INFO ABSTRACT

MSC: Many clinical and research studies of the human brain require accurate structural MRI segmentation. While
41A05 traditional atlas-based methods can be applied to volumes from any acquisition site, recent deep learning
41A10 algorithms ensure high accuracy only when tested on data from the same sites exploited in training (ie.,
65D05 internal data). Performance degradation experienced on external data (i.e., unseen volumes from unseen sites)
65D17 is due to the inter-site variability in intensity distributions, and to unique artefacts caused by different MR
Keywords: ) scanner models and acquisition parameters. To mitigate this site-dependency, often referred to as the scanner
g?;;ﬂl;;“anon effect, we propose LOD-Brain, a 3D convolutional neural network with progressive levels-of-detail (LOD), able

to segment brain data from any site. Coarser network levels are responsible for learning a robust anatomical
prior helpful in identifying brain structures and their locations, while finer levels refine the model to handle
site-specific intensity distributions and anatomical variations. We ensure robustness across sites by training
the model on an unprecedentedly rich dataset aggregating data from open repositories: almost 27,000 T1w
volumes from around 160 acquisition sites, at 1.5 - 3T, from a population spanning from 8 to 90 years old.
Extensive tests demonstrate that LOD-Brain produces state-of-the-art results, with no significant difference in
performance between internal and external sites, and robust to challenging anatomical variations. Its portability
paves the way for large-scale applications across different healthcare institutions, patient populations, and
imaging technology manufacturers. Code, model, and demo are available on the project website.

Progressive level-of-detail architecture
Multi-site learning

1. Introduction computationally expensive and slow, these methods easily adapt to

images from different scanners or acquired using different sequences.

Brain structure segmentation in magnetic resonance imaging (MRI)
plays a pivotal role in both research and clinical routines for assessing
and monitoring brain morphology, volumetry, and connectivity, in both
normal and pathophysiological conditions. As more and more studies
analyse data derived from thousands of MRI brain scans (Bethlehem
et al., 2022), there is a growing need for tools able to perform auto-
matic, fast, and reliable segmentation of brain structures, with benefits
on downstream research and clinical studies in terms of accuracy,
statistical power, and reproducibility of findings.

Well-established segmentation methods in neuroimaging, such as
FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), SPM (Fris-
ton et al., 1995), and CAT12 (Gaser et al., 2022), exploit one or
more atlases ie., reference volumes and their manual trusted seg-
mentation: first, the target is registered with the reference volume,
then the anatomical prior knowledge from the manual segmentation
is transferred to the target volume (Yaakub et al., 2020). Although
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Recently, achievements in deep learning (DL) methods applied to
automatic brain MRI segmentation (Akkus et al., 2017) such as Deep-
Nat Wachinger et al. (2018), QuickNat Roy et al. (2019), and CERE-
BRUM (Bontempi et al., 2020; Svanera et al., 2021), have made remark-
able progress in competing with the reliability offered by atlas-based
segmentation methods. However, most DL methods usually include, for
both training and testing, only MRI volumes collected from a single or
few centres with almost homogeneous characteristics in terms of image
statistics, acquisition parameters, and artefacts. Consequently, when
challenged on external data i.e., unseen volumes from unseen sites, DL
methods face the so-called scanner effect, a drop in performance on han-
dling the data variability originated by different MRI site acquisitions.
This mismatch between the distributions of internal and external data,
which is common in MRI (see e.g., the competitions in Sun et al. (2021),
Campello et al. (2021)) is a problem more broadly known as distribution
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shift (Wiles et al., 2021). Some researchers in brain segmentation pro-
pose to tackle it by applying aggressive data augmentation (Zhao et al.,
2019) or harmonisation (Beer et al., 2020), by using domain adaptation
or randomisation (Billot et al., 2021), or by generating synthetic data
with the needed variations (Shin et al., 2018). Despite achieving good
robustness on a wide range of MRI contrasts and resolutions, these
approaches keep showing limitations in matching statistics of real data
distributions, struggling with morphological variabilities and atypical
scanner artefacts.

Given the current availability of open datasets, a concrete oppor-
tunity for handling inter-site diversity and improving the model porta-
bility is training a model directly on out-of-the-scanner data coming
from multiple sites, to cover a broad range of vendors, resolutions, slice
thickness, participant demographics, and pathological conditions. By
integrating anatomical information acquired by a large number of vol-
umes, such approach builds on the idea of generating the equivalent of
an anatomical brain prior. Some studies on infant brains demonstrated
the effectiveness of using a site-independent scanner-independent prior
in helping the tissue segmentation (Wang et al., 2018a,b). However, in
these works, prior knowledge of human brain is learned on a limited
quantity of individuals and anatomical labels, adopting traditional
machine learning classifiers. Also the work in Cerri et al. (2023) makes
use of a subject-based segmentation prior based on a deformable prob-
abilistic atlas. Specifically, the method is used for whole-brain and
white matter lesion segmentation of longitudinal MRI scans (over 4500
volumes), and it is adaptive to different scanners, field strengths and
acquisition protocols.

In general, previous approaches to multi-site learning for segmenta-
tion in different medical imaging domains show, on the one hand, that
these methods help generalising on external data. On the other hand,
they often perform worse on internal ones (i.e., unseen volumes from
sites included in the training set) (Styner et al., 2002). This apparently
contradictory situation has been observed also in other medical image
analysis tasks (Zech et al., 2018), reinforcing the concept that effective
learning from multiple sources is highly challenging.

1.1. Main contributions

Driven by the goal of obtaining a brain prior that exploits the
information contained in multi-source data, we design a dedicated neu-
ral network solution capable of integrating the anatomical knowledge
acquired from a large number of volumes. This solution overcomes the
memory requirements needed for multiple 3D whole-brain segmenta-
tions, and is additionally able to handle the high degree of variability
that characterises data from different sites and scanner vendors. To
date, we are not aware of existing effective solutions which exploit
extensive multi-site data and deep neural networks to automatically
generate the equivalent of a robust anatomical brain prior on multiple
labels. Our contributions revolve around the following points:

Unprecedented dataset: In our work, we leverage an extensive
dataset consisting of nearly 27,000 Tlw brain MRI volumes from
approximately 160 acquisition sites. This dataset represents on of the
largest ever utilised for segmentation, surpassing (Pati et al., 2022),
which reported to be the largest dataset in the literature for brain MRI
(data from 71 sites, amounting to 6314 volumes).

Data insight: We shed light on a critical issue never tackled before
in the field of multi-site segmentation: determine the required number
of training datasets and the optimal number of volumes per site to learn
a robust model.

Innovative model: We introduce a Level-of-Detail DL network ar-
chitecture tailored to the unique characteristics of brain imaging data.
This innovation eliminates the need for complex registration steps,
significantly enhancing segmentation efficiency and speed. The model
takes raw MRI data, bypassing computation-intensive pre-processing,
and works seamlessly without the need for fine-tuning, making it easier
to use. Furthermore, fully 3D segmentation masks are returned within
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Fig. 1. LOD-Brain is a level-of-detail (LOD) network, where each LOD is a U-net which
processes 3D brain multi-data at a different scale. Lower levels learn a coarse and site-
independent brain representation, while superior ones incorporate the learnt spatial
context, and refine segmentation masks at finer scales. Examples of outputs (grey matter
renderings) at different LODs are shown in blue at the bottom.

outputs

few seconds, instead of many hours as is the case with the most
commonly used tools in the field. In the specific, LOD-Brain is a
progressive level-of-detail network able to train a robust brain MRI
segmentation model from a huge variety of multi-site and multi-vendor
data. LOD-Brain architecture is organised on multiple levels of detail
(LOD), as shown in Fig. 1. Each level is a convolutional neural network
(CNN) which processes 3D brain data at a different scale obtained
via progressively down-sampling the input volume. Thanks to the rich
variability of brain samples from different MRI acquisition sites, the
proposed architecture learns, at lower levels, a robust brain anatomical
prior. Concurrently, higher levels handle site-specific intensity distribu-
tions and scanner artefacts. Through inter-level connections between
networks and a bottom-up training procedure, such architecture inte-
grates contributions from all levels to produce an accurate and fast
segmentation.

Efficiency and performance: Despite having significantly fewer
model parameters compared to competing methods, our approach
achieves state-of-the-art segmentation performance. LOD-Brain per-
forms better than other solutions on almost every novel site, with no
need for retraining nor fine-tuning, and with no relevant performance
offset in segmenting either internal or external sites. Furthermore, it
proves to be general and robust across sites against different population
demographics, anatomical challenges, clinical conditions, and technical
specifications (e.g., field strength, manufacturer).

Usage and reproducibility: To maximise research reproducibility
and state-of-the-art comparisons, we adopt for testing the MICCAI
anatomical structure labels proposed in Mendrik et al. (2015), using
FreeSurfer (Fischl, 2012) segmentation masks as silver ground-truth
(ie., a ground-truth with errors). Moreover, as we release both the
model and the code at the project website, LOD-Brain can be re-
trained from scratch to deal with any set of structures and labels
obtained by any manual or automatic software. A working demo is also
available here.

2. Related work

Atlas- or multi-atlas based methods, such as FreeSurfer (Fischl,
2012) or FLS (Jenkinson et al., 2012), SPM (Friston et al., 1995), and
CAT12 (Gaser et al., 2022), are still largely adopted for brain MRI
segmentation (Cabezas et al., 2011). Despite the needed registration
procedure usually provides a good alignment between volumes, these
methods typically require hours of processing for each scan (Klein et al.,
2017), thus imposing barriers to groups with limited computational
capabilities in case of large-scale studies (Bethlehem et al., 2022).
Furthermore, atlas-based strategies are hardly effective on data with
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abnormalities, either in terms of anatomy or intensity distributions,
requiring manual intervention for error fixing.

In recent years, deep learning (DL) techniques deeply impacted
medical imaging (Litjens et al., 2017) and image segmentation tools
(Isensee et al., 2021). Regarding the brain, first DL-based methods
were limited in handling the 3D nature of MRI data, as they processed
single 2D slices only. QuickNAT (Roy et al., 2019) tries to overcome
the drawbacks imposed by 2D segmentation by aggregating the pre-
dictions of three different 2D slice-based encoder-decoder models, one
per canonical slicing plane (longitudinal, sagittal, and coronal), and
combining the three results for obtaining the segmentation. FastSurfer-
CNN (Henschel et al., 2020) applies the same 2D approach training
the network on a sequence of 2D neighbouring slices, instead of a
single slice. To reduce the loss of 3D context and minimise inter-
slice artefacts, methods processing 3D-patches and aggregating the
resulting sub-volumes are proposed in Dolz et al. (2019), Wachinger
et al. (2018). However, all these tools exploit only local 3D spatial
information, while global spatial clues, such as the absolute and relative
positions of different brain structures, are disregarded, hindering any
possible learning of anatomical priors. Other ensemble approaches
based on multiple CNNs processing different overlapping brain sub-
volumes, such as AssemblyNet (Coupé et al., 2020) or SLANT (Huo
et al., 2019), achieve whole brain segmentation, at the cost of an
explosion of parameter cardinality. To avoid these drawbacks typical
of the tiling process on 2D or 3D patches (Reina et al., 2020), CERE-
BRUM tools represent a fully 3D solution to brain MRI segmentation
for 3T (Bontempi et al., 2020), and 7T scans (Svanera et al., 2021).
However, similarly to DL methods which are trained on single-site
MRIs, they also do not perform well on volumes from unseen sites, as
they require training from scratch, or fine-tuning for each new target
distribution (Svanera et al., 2021).

Drawing inspiration from the recent achievements of transformers
in the field of Natural Language Processing (NLP), early research
works (Hatamizadeh et al., 2022; Zhou et al., 2023) reformulate the
challenge of volumetric segmentation as a sequence-to-sequence pre-
diction problem. Yet, these initial investigations primarily focus on
multi-organ segmentation, automatic cardiac diagnosis, and the seg-
mentation of brain tumours, without confronting the issues arising in
large-scale analyses of independently collected neuroimaging data.

Data harmonisation strategies, when oriented to an explicit removal
of site-related effects in multi-site data (Pomponio et al., 2020), consti-
tute a valid strategy to partially alleviate the unwanted performance
drop due to the scanner effect. To mitigate inter-site differences, Beer
et al. (2020) propose a longitudinal version of the ComBat method: an
empirical Bayesian approach which applies a multivariate linear mixed-
effects regression to account for both the biological variables and the
scanner. The model is able to adjust for additive and multiplicative
effects by calculating a site-specific scaling factor. A joint normal-
ising function across multiple datasets is instead learnt by Delisle
et al. (2021) by means of two fully-convolutional 3D CNNs: the first
normalises image intensities across multiple datasets, while the sec-
ond optimises images for a downstream segmentation task. The study
discussed in Robinson et al. (2020) suggests instead the application
of image-and-spatial transformer networks (ISTNs) to address domain
shift harmonisation at the image-feature level within multi-site imag-
ing data. Despite harmonisation algorithms mitigate scanner-specific
effects, they not always preserve the inter-subject biological variability
from each site, and are sometimes sensitive to changes in pre-processing
steps (Cetin-Karayumak et al., 2020).

Closely related to harmonisation, domain adaptation methods try
to adapt the segmentation networks trained on a source domain to pro-
duce correct outputs also on samples from a target domain. As an exam-
ple, DeepHarmony (Dewey et al., 2019) exploits a fully-convolutional
CNN architecture to map brain scans of a subject from one source
acquisition protocol to a target one. However, DeepHarmony can-
not be extended to more than two sites since it relies on learning a
protocol-to-protocol mapping.
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SynthSeg (Billot et al., 2021) is an effective adaptation method
which, starting from a full domain randomisation of the training set,
segment brain MRI scans of any contrast and resolution, without re-
training nor fine-tuning. As traditional data augmentation has limited
ability to emulate real variations, SynthSeg is trained with synthetic
scans obtained by leveraging a generative model with fully randomised
parameters (intensity, shape, etc.). Despite its high accuracy, peculiar
scanner artefacts and the absence of alignment parameters in the image
header can determine the presence of errors in the segmentation.

Far from applying full domain randomisation, Zhao et al. (2019)
propose an alternative but still aggressive augmentation solution. This
approach first learns independent spatial and appearance transform
models to capture the variations in a dataset of brain scans. Then, it
uses these transform models to synthesise a dataset of labelled examples
starting from only a single selected scan. The synthesised dataset is
eventually used to train a supervised network, which significantly
improves over previous methods for one-shot biomedical image seg-
mentation, but with less clear advantages in the presence of larger
labelled training sets. Other synthetic approaches adopt generative
adversarial networks (GAN) to create synthetic abnormal MRI images
with brain tumours, so as to improve tumour and brain segmenta-
tion (Shin et al., 2018). A DL framework based on GAN is used by Liu
et al. (2021) to consider cross-site MRI image harmonisation as a style
transfer problem rather than a domain transfer problem; in particular,
authors show that MR images can be harmonised by inserting the style
information encoded from a reference image directly, without knowing
their site/scanner labels a priori. Also the work in Chen et al. (2021)
presents a generative framework for improving cross-site segmentation
on cardiac imaging datasets. It includes a cooperative training approach
with fast and slow-thinking networks and a method for generating
challenging training examples that enhance generalisation and robust-
ness to unforeseen data shifts. While synthetic methods can enhance
generalisation, aggressive augmentations do not always improve model
performance. In these cases, they do not represent a valid solution for
coping with distinct scanners and protocols.

One of the first multi-site learning-based attempts at making a
model that is robust to the scanner effect is described in Liu et al.
(2020) in the domain of prostate segmentation. Authors first perform
feature normalisation for each site separately, and then extract more
generalisable representations from multi-site data by a novel learning
paradigm. Other seminal works that adopt deep learning techniques to
cope with the multi-site variability can be found in Rundo et al. (2019)
again for prostate segmentation, and in Dou et al. (2020) for multi-
organ segmentation from unpaired CT and MRI. However, most of these
approaches confirm to perform well on internal subjects, whereas re-
quire additional external images for the adaptation step (e.g., see Karani
et al. (2018)) to adequately cope with testing data obtained using
different imaging protocols or scanners. An accurate review presenting
other retrospective techniques to compensate site effects in multi-site
neuroimaging analyses, with a thorough discussion on the benefits and
drawbacks for each of different use cases, can be found in Bayer et al.
(2022). What emerges is that efficiently handling multi-site data is still
an open challenge and how the development of models able to jointly
handle structure segmentation and site adaptation is highly needed.
Learning directly from out-of-the-scanner MRI brain volumes (i.e., with
no atlas-based pre-alignment) from multiple-sites, with no fine-tuning
nor adaptation steps, is an option that has remained unexplored until
now, despite the recent availability of a large amount of brain open
data repositories.

3. Brain MRI multi-site data

To address the huge brain MRI variability in intensity statistics
and scanning artefacts, we collect almost 27,000 brain T1-weighted
volumes of both healthy and clinical subjects, mainly scanned with
mprage/mp2rage sequences, and released in 80 databases covering
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Fig. 2. Multi-site dataset: we collect and analyse with MRIQC (Esteban et al., 2017) almost 27,000 volumes originating from around 160 different sites (26,182 volumes after the
quality check). (a) A visualisation by t-SNE (Van der Maaten and Hinton, 2008) of the 68 MRIQC features (different colour for each dataset). Note that one dataset (e.g., IXI in
yellow colour) may contain volumes from more than one site or acquired with different scanners, and thus separate in clusters in the t-SNE space. (b) Dataset cardinalities. (c)
Details on data quality assessment and (d) pre-processing. From (e) to (i), different demographic features and scanner properties are reported.

approximately 160 world sites.? We first aggregated data from well-
known open repositories, such as HCP, ABCD, OASIS, and datasets
contained in the INDI project including NKI-RS, IXI, ABIDE, and ADHD.
Then we added datasets from open platforms as OpenNeuro, OSF,
neuGRID2 and NIMH, avoiding paid repositories such as UKBiobank.
Other public datasets included are Mindboggle101, AOMIC, BrainWeb,
and IBSR. Apart from Glasgow data,® all repositories are available
without fees, to maximise the reproducibility of this work. A full data
table is provided on the project website.

In Fig. 2, we present the composition of the dataset, its cardinalities
and features, the quality assessment process done by MRIQC (Esteban
et al., 2017), and details on training and testing splits. The 26,182
volumes that passed the MRIQC quality control analysis undergo de-
facing first, and then simple pre-processing steps before neural network
feeding, including FreeSurfer’s mri_convert to reorient volumes to
LIA (left, inferior, anterior) reference space, padding to 256°, and
z-scoring.

3.1. Data split and labelling

Out of the 80 datasets, 70 are considered as internal (INT), while
8 are left out for testing only (EXT). The 2 remaining sets are used for
specific analyses: SIMON (Duchesne et al., 2019) contains scans from
a single healthy individual who participated in a multi-centre study;
the last is a dataset with five patients with only one brain hemisphere
from Kliemann et al. (2019). As validated in Section 5.1.1, the model
used for testing is trained on a randomised selection of 1049 volumes
from internal data (15 volumes for each dataset, except one contribut-
ing with 14 volumes as it does not have enough data). This allows to
obtain a balanced training set in terms of dataset representativeness
and an appropriate total number of training volumes for the learning

2 From open repositories, it is not always possible to retrieve the number
and model of the scanners employed in acquisitions, nor the number of unique
participants. This means that a database could contain more than one site.
Henceforth, we try to distinguish between dataset and site wherever possible.

3 Maintained by authors, with pending ethics permissions for sharing.

task. The 78 datasets used for testing (70 INT and 7 EXT) include a total
of 25,016 volumes (15,841 INT and 9175 EXT). Since only 10% of the
datasets include more than 80% of the testing volumes, we select up to
200 volumes per dataset to avoid biases and guarantee balanced results,
ending up with a total of 5976 testing volumes (5360 INT and 616
EXT). The validation set, used for hyperparameter selection, includes
117 volumes from 72 datasets (91 INT and 26 EXT).

As no manual segmentations (gold standard) are available for most
volumes, training adopts a weakly supervised learning strategy, exploit-
ing segmentation labels obtained by FreeSurfer (Fischl, 2012) as a silver
standard ground-truth (GT), similarly to what proposed in Bontempi
et al. (2020). MindBoggle, a dataset with semi-manual labels (ie.,
FreeSurfer plus manual corrections), is exploited in validation and
testing. The manual segmentations provided for IBSR and MALC2012
were discarded and replaced with FreeSurfer outputs, because of their
low quality. The only dataset that provides gold standard segmentation
masks is BrainWeb, which contains a set of synthetic MRI data volumes
produced by an MRI simulator and is only used in testing.

As for the quality of the FreeSurfer’s GT masks, these present high
variability. In particular, out of the seven external datasets (testing
only) labelled with FreeSurfer, four present an acceptable GT (covering
a total of 32 sites), while the other three show low quality GT segmen-
tations as they include clinical scans. Low quality GT masks are usually
produced from low quality Tlw volumes; while they are not used
for training, since we do not want to compromise the model learning
ability, they are still used for testing to explore model capabilities and
limitations.

The labelling strategy follows the 7 classes adopted by MRBrainS
challenge (Mendrik et al.,, 2015): grey matter, white matter, cere-
brospinal fluid, ventricles, cerebellum, brainstem, and basal ganglia.
Such labelling maximises the possibility of comparison with other state-
of-the-art methods, and covers most of clinical and research studies and
applications. However, there are no limitations in selecting different
brain structures and related labels for retraining LOD-Brain.

4. Methods

LOD-Brain is a progressive level-of-detail 3D network designed for
brain MRI segmentation. As shown in the general scheme in Fig. 1, each
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Fig. 3. LOD-Brain architecture selected for the experiments on the brain MRI
segmentation task (L =2, d =4).

Legend

LOD: LOD:

level of LOD-Brain is a U-net (Cicek et al., 2016) which processes
the input MRI volume (of initial dimensions 256) at a different scale
obtained by successively down-sampling the volume by a factor d along
each coordinate axis. The lowest network level, LOD;, is in charge of
learning a robust anatomical prior. Since down-sampling input volumes
removes high frequency details and smoothes individual differences,
LOD,; learns a coarse representation of brain structures, and their
mutual locations, which is less dependent on the scan site. Training
happens in a bottom-up approach: after convergence, LOD; is frozen,
and inter-level connections ensure that the 3D spatial context learnt
at the lower level is embedded and propagated to LOD;_, and, from
there, to higher levels of the architecture. The process is iteratively
repeated through superior levels until the upper one i.e., LOD,, which
processes the input data at the full scale, refining the segmentation
masks at the finest detail and accounting for site-specific intensity
distributions.

The loss £ adopted by LOD-Brain is a mixed per-channel dice
function L., and cross entropy loss L :

L=—ALce— (1 =ADLyjc.

with 4 balancing the two components. In particular, L is:

c v

Lcg = Z 2 Yiilog(Fy ;)
i=1 k=1
where V' and C are the set of voxels and classes, respectively, y is the
GT mask, and F is the output. Conversely, L., is:

C

v
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= Xem Vi

[:dice C
Hyperparameter selection, network design, and the choice of parame-
ters L, A, d, etc. is described in Section 5.1.4.

The architecture which emerges as the best performing one during
the experiments is presented in Fig. 3.

The network is made up of three basic 3D convolutional blocks.
The first addresses feature learning: it is composed of a 3 x 3 x 3
convolution layer followed by normalisation and non-linear activation,
all repeated multiple times, ending with a dropout layer. The other
two blocks perform down-sampling and up-sampling, with strided con-
volution and transposed convolutions, respectively, both followed by
non-linear activations. These layers allow the network to learn optimal
up/down-sampling strategies and process different extracted feature
hierarchies. Moreover, skip connections and inter-level connections are
implemented along with summation nodes, as it was proven to have a
better trade-off between segmentation accuracy and parameter count
compared to concatenation (Milletari et al., 2016).
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Table 1
Details on selected augmentation methods.
Group Augmentation Prob. Parameters
. Flip 1/2 Sagittal plane only
Geometrical Grid distortion 1 Steps: 5; Distortion: .1
Salt and pepper 1/6 Amount: 0.01; Salt: 0.2
Gaussian 1/6 Amount: 0.2
Noise Gamma 1/6 Clip: 0.025
Contrast 1/6 Alpha: 0.5-3.0
Blur 1/6 Limit: 3
Downscale 1/6 Scale: 0.25-0.75
Ghosting 172 Max rep.: 4
Artef:
reefacts Inhomogeneity 1/2 See Svanera et al. (2021) for details

4.1. Data augmentation

Instead of performing a pre-selected set of common data augmen-
tations, we perform an ad-hoc procedure to verify the usefulness of
augmentations in advance. In the first step, we create a pool of realistic
transformations belonging to three categories: geometrical transforma-
tions, noise distortions, and artefact introduction. In the first category,
in addition to classical operations such as, flip, rotation, and transla-
tion, we also introduce grid distortion. The second category accounts
for a comprehensive set of noises: salt and pepper, Gaussian, Gamma,
and contrast noise. The last transformation family focuses on mimicking
MRI artefacts like ghosting and MR field inhomogeneity, as described
in Svanera et al. (2021). In the second step, we test which transfor-
mation is beneficial to increase the model performance. Validation is
done by applying each transformation to the validation set volumes
(by increasing transformation parameters), and then computing the
performance of a model trained without any data augmentation. If the
model is already robust to a specific transformation (i.e., there is no
performance gap in testing a volume with and without transformation),
this is no further considered. Otherwise, in those situations in which the
training set is not rich enough (i.e., whenever transforming the input
data introduces a performance drop), such transformation is considered
suitable for augmentation, since it can introduce a realistic alteration
to input volumes that the model is not able to handle yet. Table 1
reports details on selected augmentations only, showing probabilities
of application and parameters justified by the experiments detailed in
Section 5.1.3.

5. Results and discussion

The experimental assessment of our multisite-based model is struc-
tured as follows. The first set of experiments aims to justify the choice
of the adopted model. Next, we test the robustness and generality of
LOD-Brain on different types of data (internal and external datasets,
and data with marked anatomical variations), and the invariance of the
model against different types of bias, including scanner vendors and
models. Eventually, we quantitatively and qualitatively compare our
method against the state-of-the-art. Unless differently stated, results are
computed using Dice coefficient as performance metric, and FreeSurfer
segmentation as silver ground-truth.

5.1. Model training and hyperparameter selection

5.1.1. Multi-site learning

Given the richness of the aggregated data, we first want to find
suitable dimensions for the training set. This requires answering to the
following questions: in order to reach good generalisation capability
(i.e., similar performance on both INT and EXT testing data), how many
volumes per site should be considered in the training set? And, how
many different datasets should be included?

In Fig. 4(a), we show the performance of models trained with 1,
5, 10, or 15 volumes per dataset, considering all 70 available training
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Fig. 4. (a) Using 70 available training datasets, we trained 4 models with [1,5, 10, 15]
volumes per dataset. The model is tested on INT (red) and EXT data (blue). (b)
Using 15 volumes per dataset, we train models with an increasing number of sites
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Fig. 5. Ablation study. Performance of models trained with different architectural
options are shown with respect to the best model (on the zero x-axis). Results (Dice
coefficient differences) are computed on the validation set (those marked with * are
statistically significant according to ¢, applying Bonferroni correction).

test

datasets (i.e., number of training volumes = 70, 350, 700, 1049). Internal
testing (INT) is performed on 110 unseen volumes equally distributed
among the same datasets used for training at the considered step, while
external testing includes again 110 volumes from 4 left out datasets
(ABCD, MALC2012, 1000_FCP_CORR_NKI_TRT, and MindBoggle101).
As expected, using more training volumes per dataset enhances the
segmentation accuracy for both INT and EXT testing data. Since we
reach a plateau of performance between 10 and 15 volumes per dataset,
and to avoid the introduction of dataset-related biases, we decide to use
15 volumes per dataset, which is the maximum possible for maintaining
balance across datasets.

In Fig. 4(b), we evaluate the accuracy of LOD-Brain as a function
of the number of datasets included in training. Testing volumes, both
INT and EXT, are the same used in Fig. 4(a) to allow comparisons.
For each value i € [1,4,8,16,32,64,70], we retrain LOD-Brain with
1049 volumes selected from i datasets randomly chosen from those
with enough samples. As shown in Fig. 4(b), as long as the number of
sites increases, the gap of performance between internal and external
testing data progressively decreases, until it fades. Therefore, unless
otherwise specified, we set to 70 the number of datasets used to train
LOD-Brain.

5.1.2. Parameter selection

In Fig. 5, we present the most relevant results of the ablation study
carried out to select model parameters.

This includes investigations regarding data processing, network ar-
chitecture, and training. All results are computed on the validation set
by evaluating their statistical significance and, in case no significance
is found, by preferring models with least parameters.
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Fig. 6. Data augmentation: performance of models trained with versus without
augmentation for four transformations (i.e., blur, ghosting, gaussian, and salt and
pepper noise).

On data, we evaluate the most advantageous type of data normal-
isation, and we make an attempt to train with a larger training set
(almost 3k samples). However, since this causes a unbalance in data,
we observe a drop in performance.

Regarding the network, we test different design choices for its
architecture e.g., the number of levels L, the convolutional block (plain
or residual), layer normalisation (batch or group), etc. As a result,
the LOD network implemented for testing is configured on L = 2
levels and a down-sampling factor of d = 4, as shown in Fig. 3. It is
relevant to note that working with two levels as resulting from the
ablation study, somehow recalls the effectiveness of the approaches
extensively used in classic reference methods for brain segmentation:
atlas-based registration first, followed by voxel-level segmentation.
Similarly here, the coarser level learns a robust brain prior which
replaces the registration step in identifying brain structure locations,
while, the finest level, handles site-specific intensity distributions and
artefacts. The entire procedure also may resemble the steps of manual
segmentation, in which the human expert first zooms out to identify
major anatomical structures, and then zooms in refining structures until
the task is complete at the finest level.

With respect to training choices, we compare, among others, differ-
ent loss functions (best with 1 = 0 i.e., pure Dice loss) and evaluate as
detrimental a refinement of the entire unfrozen network, thus confirm-
ing that the brain prior learnt at LOD, is robust, and that a joint fine-
tuning with a higher level would negatively affect its site-independent
brain representation.

5.1.3. Data augmentation

After selecting the useful transformations as in Section 4.1, we
augment the validation set (117 volumes) and test the two models
trained with and without augmentation. Fig. 6 reports the compari-
son as function of the augmentation parameters for four significant
transformations.


https://abcdstudy.org/
http://www.neuromorphometrics.com/2012_MICCAI_Challenge_Data.html
https://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/FrontPage.html
https://mindboggle.info/data.html
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Fig. 7. Testing results. (a) Dice coefficient on 5976 testing volumes (78 datasets), displayed per dataset: INT (green), EXT with good GT (red), with low-quality GT (grey), and
synthetic GT (yellow). Segmentation masks of the worst numerical result (blue dots) are further displayed in Fig. 16. (b) Accuracy on SIMON (Single Individual volunteer for
Multiple Observations across Networks) dataset (EXT) (Duchesne et al., 2019), comprising 94 volumes acquired with 15 different models of scanner by 3 major MR vendors (in

different colours).

5.1.4. Implementation details

Training optimisation is done using Adam (Kingma and Ba, 2014)
and training lasts 50 epochs for LOD, and 30 for LOD,, with an
initial learning rate of 5e — 4, reduced by 1/4 on plateau. As non-linear
activation, relu is applied for both encoder and decoder. For better
regularisation, each convolutional block performs group normalisation,
while the dropout rate is 0.05. Training lasts 3 days using a worksta-
tion with Nvidia©Quadro RTX 8000 GPUs and Weights & Biases for
experiment tracking.

5.2. Robustness and generalisability

In the following series of experiments, we test LOD-Brain on a
variety of scenarios to assess its robustness and capabilities.

5.2.1. Accuracy across datasets

Fig. 7(a) reports segmentation performance for each of the 78
datasets used in this study. The overall accuracy (mean: 0.928, std:
0.017) proves the robustness of the method, showing similar results
on both internal and external sites. The performance obtained on low-
quality GT datasets (in grey in Fig. 7(a)) is justified by the presence of
several scans with head movement artefacts due to participant popula-
tions (e.g., elderly people with dementia in EDSD and children 7.5-12.9
y.o. in ABIDE Stanford) which impair FreeSurfer segmentation.

5.2.2. Multi-site versus single-site models

To validate the need for multi-site data, we compare the gener-
alisation abilities of multi-site (MS) training with those of single-site
(SS) models, by testing both (MS vs. SS) on the same internal (INT)
and external data (EXT). For enabling comparison, this experiment uses
only the 4 single-site datasets with more than 1049 volumes (AOMIC:
1911 volumes, Glasgow: 1220, FCP_BGSP: 1552, FCP_RocklandSample:
2156).

For each of the 4 datasets, we train a SS model with 1049 volumes,
and we test its segmentation accuracy on both internal data (ie., all
remaining volumes from the same site) and external sites (i.e., all left-
out volumes from the other 3 datasets). A significant drop between INT
and EXT performance, due to the scanner effect, is observed in Fig. 8(a).

As for multi-site training, we test our model trained with 1049
volumes from 70 datasets on the same INT dataset used in the single-
site case. To test on external data, we train 4 additional MS models
on 69 datasets, considering the left-out dataset (one among AOMIC,
Glasgow, FCP_BGSP, and FCP_RocklandSample) as EXT data. As both
experiments in Figs. 8(a) and 8(b) use the same testing sets, we observe
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(a) Single-site model (b) Multi-site model

Fig. 8. (a) Performance obtained using single site (SS) models: in green, results on
testing volumes from the same site (INT); in red, on testing volumes from different
sites (EXT). Performed 7,,,, shows a statistically significant difference (marked with *)
between INT and EXT (p,,. < le”>).

(b) Performance of multi-sites models (MS): in green, results on testing volumes
from the same sites (INT); in red, on testing volumes from different sites (EXT) (no
statistically significant difference between INT and EXT p,,,, = 0.11).

that models trained on multiple sites almost reaches on EXT data the
same performance of SS models tested on unseen volumes from their
training sites, while exhibiting far superior generalisation ability (i.e.,
a non-significant performance difference between INT and EXT data in
Fig. 8(b)).

5.2.3. SIMON dataset

As segmentation performance can vary for both scanner intensity
distribution and variability in participants’ anatomy, here we attempt
to disentangle the two components. We therefore test our model on a
left-out dataset where, in the context of a multi-centre study (Duchesne
et al., 2019), a single subject has been scanned many times and sites
during his lifetime from 29 to 46 years old. The dataset includes
73 sessions (94 volumes), 33 world locations, 15 different models of
scanner, covering the 3 major MR vendors (GE, Philips, and Siemens).
Fig. 7(b) results show an impressively high coherence among a large
variety of scanner models by different vendors.
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https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
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5.2.4. Robustness to challenging anatomical variations

To test the robustness of the anatomical prior learnt, we test our
model on a challenging scenario: a dataset with five individuals who
had undergone surgical removal of one hemisphere (Kliemann et al.,
2019). In Fig. 9(a), we show the visual results obtained by LOD-Brain
compared with five competing deep learning methods and three atlas-
based methods FSL, SPM, and CAT12, in addition to FreeSurfer. While
FreeSurfer — and in general atlas-based methods - fails to generalise
to such severe anatomical singularities, often inferencing non-existing
structures, LOD-Brain reliably segments such cases, proving a high
level of robustness to anatomical variations. In Fig. 9(b), we report
different activation maps for three subjects of this dataset coming from
different levels (i.e., layers) of the network. Skull stripping and cortex
extraction is coarsely done already in LOD, (bottom layer) and then
the information is propagated along the network upper levels. This
result gives an intuition on how the coarse level acts as a prior, giving
guidance to LOD, for finer segmentation.

5.2.5. Invariance to bias

To investigate the fairness of our segmentation model, we assess
LOD-Brain for potential bias regarding demographic characteristics
such as sex and age, or other technical characteristics of the scanner
including scanner model, vendor, magnet strength, and slide thickness.
Despite the training data imbalance for some of these characteristics
(see those in Figs. 2g/h/i), on the test-set of 5976 volumes we observe
no salient differences in Dice performance between different groups.
Results are reported on the project website and in the Supplementary
material (Fig. 2).

5.3. Quantitative method comparisons

A comparative assessment of our method against state-of-the-art
techniques is proposed here in terms of both brain segmentation perfor-
mance and model complexity. The selected methods are chosen based
on stringent evaluation criteria, encompassing not only segmentation
accuracy but also robustness to various challenges and practical appli-
cability. Furthermore, our choice aims at ensuring a well-rounded as-
sessment across various categories of segmentation techniques: for algo-
rithms operating on 2D slices, we included QuickNat (Roy et al., 2019)
as best method; for methods working with coronal, axial, and sagittal
2D slice stacks, we selected FastSurferCNN (Henschel et al., 2020);
in the category of fully 3D methods, we evaluated CEREBRUM (Bon-
tempi et al., 2020) and the baseline 3D-UNet (Cicek et al., 2016);
for synthetic data-driven methods, we incorporated SynthSeg (Billot
et al,, 2021). Fig. 10(a) shows the obtained results on the whole
testing set grouped by segmented brain structure. Fig. 10(b) focuses
instead on the comparative performance of different methods on ex-
ternal datasets only. Obtained results highlight LOD-Brain as one of
the most competing methods on all brain labels, as it yields the best
scores in almost all target structures and on the majority of external
datasets with acceptable GT. The number of parameters for each model
is also reported, highlighting LOD-Brain (337,719 parameters only)
as the best overall model in terms of performance-to-complexity ratio.
It is also relevant to note that LOD-Brain first outperforms all other
methods on BrainWeb, a synthetic dataset that usually serves as a gold
standard because of its correctly segmented ground truth. Furthermore,
it achieves high performance on the ABCD dataset, despite it includes
volumes from 32 diverse scanners that were previously skull-stripped
and aligned to MNI152 reference space (a common situation in the
field).
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Fig. 9. Results on individuals who had undergone surgical removal of one hemi-
sphere (Kliemann et al., 2019). (a) Inference for 5 subjects are shown for all methods,
both DL- and atlas-based. (b) Activation maps for 3 subjects at different LODs i.e.,
layers in the network (zoom in for better view).

5.3.1. Robustness to motion artefacts

During the image acquisition process, the quality of MRI images

can be compromised by motion artefacts, which may adversely affect
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Fig. 10. Performance comparison: QuickNat (Roy et al.,, 2019), SynthSeg (Billot
et al,, 2021), 3D-UNet (Cicek et al., 2016), CEREBRUM (Bontempi et al., 2020),
FastSurferCNN (Henschel et al., 2020), and our method. (a) Results are computed on
the test set of 5976 volumes, using FreeSurfer as GT reference and grouped for brain
structure. (b) Results on external sites only, divided in acceptable vs. low-quality vs.
synthetic ground-truth. Numbers of parameters for each model are also reported.

clinical diagnoses and automated image analysis. Therefore, ensur-
ing the robustness of a segmentation method to motion artefacts is
crucial. To assess the effectiveness of our approach in handling mo-
tion artefacts, we employ a method proposed by Shaw et al. (2020),
which allows for the generation of realistic motion artefacts on exist-
ing MRI data. Specifically, we apply this technique to 754 randomly
selected testing volumes. In Fig. 11(a), we provide examples of T1lw
images with increasing motion artefacts. Subsequently, in Fig. 11(b),
we present a comparative analysis of LOD-Brain’s performance, along
with competing methods. It is worth noting that while other existing
methods struggle to deliver satisfactory results in the presence of mo-
tion artefacts, LOD-Brain demonstrates remarkable robustness even
when subjected to larger distortion artefacts, as shown in the right
columns of Fig. 11(a). Interestingly, other than LOD-Brain, the other
methods that demonstrate significant robustness to motion artefacts are
CEREBRUM and the 3D-UNet baseline. Both are trained with the same
quantity of data from numerous and various different sites. Conversely,
as we suggest in Fig. 4(b), methods that have not seen data from many
different sites experience a significant drop in performance.

5.4. Qualitative comparisons

We here incorporate a comprehensive array of visual results ob-
tained with different methods, which represents a clear insight into
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Fig. 11. Display of motion artefacts (a) changing parameters (zoom in for better view)
and (b) performance comparison.

performance. In Fig. 16 we show a qualitative comparison performed
on the 12 worst numerical results obtained with LOD-Brain (one
for dataset — blue dots in Fig. 7(a)). We display FreeSurfer seg-
mentation masks in the first row, and LOD-Brain in the second,
with segmentation masks overlayed to the correspondent T1w. Despite
the poor numerical results computed against FreeSurfer’s masks, the
segmentation boundaries returned by LOD-Brain show less errors and
are much smoother than the silver GT produced by FreeSurfer.
Furthermore, in Figs. 12 and 13 we showcase the 30 MRI volumes
with the highest variance in DICE scores computed on the segmentation
masks. This approach aims to maximise the visual distinctions among
different anatomical structures, ensuring that a visual comparison pro-
vides a clear and informative perspective on the effectiveness of our
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Fig. 12. Comparison on the first half of 30 volumes (vol. 1-15) with highest disagreement on segmentation masks among difference methods. Zoom in for better view.

method with respect to the selected atlas- and deep learning-based 5.4.1. Surface analysis
We include a surface analysis obtained by all competing Deep Learn-
methods. ing (DL) methods on both the inner grey matter surface (in Fig. 14(a))

10
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Fig. 13. Comparison on the second half of 30 volumes (vol. 16-30) with highest disagreement on segmentation masks among difference methods. Zoom in for better view.

and the outer grey matter surface (in Fig. 14(b)). The analysis is carried we offer a more comprehensive assessment of our method’s ability
out on the MRI volumes with the maximum level of disagreement in

. K to capture anatomical brain structures, while allowing for a direct
segmentation masks as generated by all competing DL methods. By

presenting these 3D surface representations generated with nii2mesh, comparison of our approach with benchmark methods.
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Fig. 14. (a) Inner and (b) Outer Grey Matter surface on the four volumes with the maximum DICE variance in the testing set (zoom in for better view).

5.5. Error analysis

To provide a more comprehensive analysis and investigate potential
areas of underperformance, we generate brain maps for error assess-
ment. To accomplish this, we compute the error (in native space)
between the silver ground-truth generated by FreeSurfer and the results
produced by LOD-Brain on 10 MRI volumes from each of the testing
sites, resulting in a total of 719 volumes. Subsequently, we align the
Tlw and error volumes with the MNI atlas and plot the results in
MNI space. These findings are presented in Fig. 15, where we can
observe the excellent results obtained by LOD-Brain in the brain
cortex region.

For a more detailed breakdown of the error assessment, we in-
clude additional brain maps in the Supplementary material (Fig. 1).
These additional maps offer a label-specific analysis of misclassified
voxels, providing a more granular understanding of LOD-Brain’s
performance. They shed light on areas where misclassification occurs
and where it excels. It is worth noting that LOD-Brain’s underperfor-
mance in specific brain regions, such as the basal ganglia and ventricles,
is primarily attributed to the poor silver ground-truth segmentation
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Fig. 15. Brain maps for error assessment.

in these areas, as demonstrated in another figure in the Supplemen-
tary material (Fig. 3), where we compare FreeSurfer and LOD-Brain
segmentation masks.

6. Conclusion

In this work, we introduce LOD-Brain, a progressive level-of-
detail network tailored for training a robust brain MRI segmentation
model. Our multi-level approach is designed to achieve distinctive
performance in capturing essential brain structures and accommo-
dating site-specific and anatomical variations. The outcomes of our
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Fig. 16. We select 12 volumes with the worst numerical result (max one for dataset), and display FreeSurfer (first row) and LOD-Brain (second row) segmentation masks
overlayed to the correspondent T1lw image. Despite low numerical performance, the segmentation masks returned by LOD-Brain are more accurate than Freesurfer (yellow
arrows indicate errors), which is indicative of low-quality ground-truth. Full 3D volumes are displayed on the project website.

research exhibit exceptional consistency across various scanners and
sites, showcasing robust performance even in the face of challenging
anatomical complexities. While its inherent resilience to artefacts and
adaptability across different scanners and sites make it a powerful
tool for researchers and clinicians, LOD-Brain focuses on adult brain
MRI volumes only, and it may not be the most appropriate solution
for segmenting the brains of children under the age of 2 years (see
Supplementary material), due to the distinct anatomical differences in
this population.

Conversely, one of the most valuable traits of LOD-Brain is its
accessibility and ease of use. To ensure that our method is readily
available to the broader research community, we have developed a
user-friendly online demo where by simply drag and drop a nifti MRI
brain Tlw volume, it is possible to appreciate LOD-Brain capabil-
ities without any software setup. In fact, LOD-Brain is designed
to accept MRI volumes directly from the scanner, eliminating the
need for labor-intensive pre-processing steps. To consider transparency
and reproducibility, the complete python source code and instructions
for LOD-Brain usage are available on our project page. Finally,
LOD-Brain is a parameter-free method: it operates without the need
for intricate parameter adjustments, ensuring that users can derive
accurate segmentations effortless.
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