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Rationale: Metabolism and diet quality play an important role in determining delay

mechanisms between an animal ingesting an element and depositing the associated

isotope signal in tissue. While many isotope mixing models assume instantaneous

reflection of diet in an animal– tissue, this is rarely the case. Here we use data from

wildebeest to measure the lag time between ingestion of 34S and its detection in tail

hair.

Methods: We use time-lagged regression analysis of δ34S data from GPS-collared

blue wildebeest from the Serengeti ecosystem in combination with δ34S isoscape

data to estimate the lag time between an animal ingesting and depositing 34S in

tail hair.

Results: The best fitting regression model of δ34S in tail hair and an individual–

position on the δ34S isoscape is generated assuming an average time delay of

78 days between ingestion and detection in tail hair. This suggests that sulfur may

undergo multiple metabolic transitions before being deposited in tissue.

Conclusion: Our findings help to unravel the underlying complexities associated with

sulfur metabolism and are broadly consistent with results from other species. These

findings will help to inform research aiming to apply the variation of δ34S in inert

biological material for geolocation or understanding dietary changes, especially for

fast moving migratory ungulates such as wildebeest.

1 | INTRODUCTION

While the application of sulfur stable isotope ratios (δ34S) in

ecological studies is not new (e.g. Peterson et al1), it has increased

over the past two decades,2 mainly due to technological advances in

mass spectrometry.3,4 Specifically, the applicability of δ34S

in reconstructing animal movement trajectories and diet shows

promise for ecologists. For example, δ34S has been used in dietary

studies about marine and marsh food webs,5 and δ34S in hair has been

applied to study movement of animals in terrestrial6 and marine

habitats.7 However, the delay between an animal ingesting and

depositing sulfur in inert biological materials such as hair has rarely

been explored or quantified, which limits the applicability of using

δ34S for geolocation particularly for migratory animals.

Sulfur stable isotope ratios are generally considered to have small

fractionation factor (i.e. diet–tissue difference in δ34S) during

incorporation into both plant and animal tissues,8–10 and the δ34S

values tend to vary with local geology.2,11,12 For instance, the

reported fractionation factors for δ34S isotopes between diet and

animal tissues are between �3‰ and +4‰2,10,13–16 and between
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�8‰ and +4‰ between soil and plants,8 although there are some

outlying values as high as +7‰ that have been reported.10 The small

fractionation factor of δ34S makes it a good tracer of animal

movement and diet in tissues because the values of δ34S in tissues

stably reflect the δ34S in the local environment.

When applying stable isotopes to study animal movement, there

are several requirements to meet and principles to consider.17,18 For

example, the first step is to have a tissue of interest from a consumer

(e.g. muscle, feathers, blood or hair). This is because stable isotopes

reflect the dietary history of organisms through their tissues.19,20 The

second is the time period of the tissue growth through which

the spatial isotopic signature is retained. This is used to estimate the

amount of movement information that can be studied over the tissue

growth period. For instance, metabolically active tissues such as hair

or feathers can provide a moving window of dietary information

throughout the period of its growth,21–23 while an inactive tissue such

as muscle or blood reflects a short period of its growth. One

advantage of using metabolically inert biological material is that it can

provide unique time-series δ34S data from which animal movement

and diet can be inferred.22,24 This is because as animals move

between different habitats, the information of past and present

feeding is recorded and retained in these actively growing tissues,

enabling scientists to infer movement history or diet change over

time.25 Furthermore, biologically inert material is stable over long

periods of time following synthesis, making it a useful archive of

diet.25 Tail hairs are particularly interesting as longer lengths of hair

can provide information over an extended period of time.22,23,26

However, the use of stable isotopes in animal tissues to infer

movement requires the consideration of two important aspects. The

first is establishing the diet–tissue discrimination factor which accounts

for how the isotope value differs between tissue and diet.27,28 The

second is estimating the temporal lag between ingestion and the

appearance of an isotopic change in animal tissue. Animal tissue does

not immediately reflect the isotopic composition of diet, given that

metabolism has an important role to play in determining the time before

isotopic changes in diet and corresponding changes in tissues.29 This is

because different elements are likely to be metabolised differently, and

different tissues have different turnover and growth rates, so different

delay effects can be expected.29 For example, sulfur is metabolised

differently from carbon and nitrogen and across different tissues and

species, because it occurs at low concentration in animals' tissues, and it

is mostly bound within amino acids.29 However, some isotope mixing

models (e.g. Stock et al30 and Parnell et al31) assume that the isotope

composition of animal tissue is in short-term equilibrium with diet

(i.e. there is instantaneous reflection of diet in animals' tissue). This is not

always the case and could mislead interpretation of isotopic results.32–34

Therefore, understanding the delay mechanisms associated with sulfur

utilisation in inert biological materials is an important prerequisite to

using the variation of δ34S to study different ecological processes.

In this study, we use δ34S data from GPS-collared wildebeest from

the Serengeti ecosystem to demonstrate the delay mechanisms involving

incorporation of the δ34S isotope signal in tail hairs. We use GPS-collared

wildebeest to obtain the exact georeferenced location of animals in the

landscape and compare the corresponding δ34S isoscape values against

those values observed in the tail hair during the time of growth. We

compare regression models between the landscape and the tail hair

lagged over a period of up to 5 months. Our study provides insights into

the processes behind δ34S signal delays in tail hair and helps to improve

interpretation of δ34S results when making ecological inferences.

2 | MATERIALS AND METHODS

Wildebeest tail hair samples were collected from the Serengeti-Mara

ecosystem in East Africa (Figure 1), between 34� and 36� E, and 1� and

3� N covering northern part of Tanzania and southern part of Kenya.

The area is characterised by wet and dry seasons with rainfall of

between 500 and 1200 mm per year (Figure 1A). Normally the dry

season lasts for 5 months (June–October) and the wet season for

5 months (December–April) with November and May being transition

months from dry to wet and vice versa, respectively.35 The ecosystem

has a high gradient of soil fertility caused by heterogeneity of the

underlying geology from young mineral-rich pyroclastic material to

ancient leached and eroded granite material36 (Figure 1B). These

different soil types provide the ecosystem with a strong gradient of

sulfur stable isotope ratios as reflected in the grass isoscape (Figure 2).6

The Serengeti grass sulfur isoscape ranges in δ34S values between

�5‰ and 30‰ with measured δ34S values in grass ranging between

+2.82‰ and +13.04‰.6 At any given site and any single time, δ34S

values in grass have been characterised as having a standard deviation

of �1.21 δ units (i.e. a 95% CI of about the mean � 2.41 δ units).6

The ecosystem is home to 27 species of African ungulates

including wildebeest which is the largest population of ungulates in

the system (�1.3 million).35,36 The wildebeest population is comprised

of a mixture of migratory (�1.2 million) and resident individuals.

Migrants move along a north–south trajectory (Figure 2A) which

enables animals to capitalise on the grazing resources associated with

the rainfall and soil fertility gradients.36

2.1 | Collection and processing of biological
materials

We collected tail hair samples from 11 GPS-collared individual

wildebeest (6 residents and 5 migratory individuals; Figure S1,

supporting information). At the time of first capture, wildebeest were

equipped with a GPS collar and the right side of their tail was shaved

to skin level. The date, age, sex and reproductive status (i.e. whether

pregnant or lactating) were recorded for each animal before it was

released. After approximately a year, the collared animals were

recaptured, and the regrown tail hair was collected along with the

ancillary data as described above. The regrown tail hair from each

animal was aligned and packed in paper envelopes pending laboratory

analysis. The start and end dates of the sample allowed us to estimate

tail hair growth rate, and the GPS data provided daily locations of the

animal for the entire period of regrowth.

A small bundle of approximately 25 tail hairs from each individual

were tied together so the proximal ends were aligned. Each bundle
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F IGURE 2 Variation of δ34S across the Serengeti ecosystem measured in the grass (data from Kabalika et al6). (A) Migratory route for the
migratory wildebeest and (B) home range sizes for the resident wildebeest from both western corridor (WB 551, 552, 553) and Mara (WB 578,
580, 582). [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 1 Map of Serengeti ecosystem showing (A) mean annual precipitation (MAP; data from CHIRPS repository: https://www.chc.ucsb.
edu/data/chirps) and (B) the underlying parent material (data from Tanzania geological survey: https://www.gmis-tanzania.com/). Protected area
boundaries are shown in black solid lines. [Color figure can be viewed at wileyonlinelibrary.com]
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was prepared by washing in 2:1 chloroform–methanol and rinsed with

double-distilled water to remove the remnants of solvent.6,23 Samples

were dried for 48 h at room temperature. After drying, the total

length of the tail hair was measured. This was to be used to calculate

the tail hair growth rate. Tail hair samples were sectioned into 8 mm

segments which correspond to approximately 2 weeks growth. The

sectioning proceeded from the most recent part of the hair (proximal

end) to the oldest (distal end). The segments were then powdered in a

Retch MM400 (Germany) ball grinder using metal grinding tubes. The

metal grinding tubes were immersed in liquid nitrogen for 60 s to

embrittle the hair for easy powdering. The samples were ground for

90 s at 600 rpm. The powdered samples were weighed using a

microbalance (Mettler Toledo, Model MX5, calibrated to three digits).

Samples were weighed between 1.0 and 1.3 mg.

Samples were analysed for δ34S using a Pyrocube elemental

analyser (Elementar Analysensysteme, Langenselbold, Germany)

coupled to a VisION mass spectrometer (Elementar UK, Cheadle

Hulme, Stockport, UK). The samples were analysed over three non-

consecutive runs spanning a 6 month period. Across these three runs

we ran a number of laboratory and international standards as

unknowns and obtained the following results. Laboratory standard

ANR (powdered fish muscle), δ34S average value 18.335‰ (accepted

value 18.81‰), standard deviation 0.748 (n = 47); international

standards NIST S1, δ34S average value 0.20‰ (accepted value

0.30‰), standard deviation 0.40 (n = 20); NIST S2, δ34S average

value 22.28‰ (accepted value 22.62‰), standard deviation 0.65

(n = 19); and NIST S3, δ34S average value 32.54‰ (accepted value

32.49‰), standard deviation 0.76 (n = 17). Laboratory standards

were repeated with every 10 samples and were used to correct for

linearity and instrument drift over a 72 h analytical run. The isotope

ratios are expressed in the delta (δ) notation in parts per million (‰):

δX = [(Rsample/Rstandard) � 1], where X = 34S and R = the ratio of
34S/32S isotopes in a given sample compared with V-CDT

(Vienna – Canyon Diablo Troilite).

2.2 | Estimating tail hair growth rate

We calculated tail hair growth rate in order to estimate the

location of each individual wildebeest at the time the tail hair

sample was growing. To calculate growth rate of a tail hair, we

divided the total length of a tail hair for each individual by the

number of days that a hair grew (i.e. the difference between

collaring and recapture dates). To assess whether older hair might

fragment at a faster rate than younger hair (Figure S2), we tested

if the growth rate was different between individuals whose hair

grew for longer than 13 months (i.e. 395 days) against the ones

whose hair grew for shorter than this time using a generalised

linear model. We also calculated what proportion of tail hair

growth period occurs during wet and dry seasons as well as during

the lactation period (Table 1) (note that wildebeest reproduction is

highly synchronous with calving in February and weaning in

September, which enables us to estimate the lactation period for

each animal). We included this information in the generalised linear

model to test if tail hair growth rate differed by season and

reproductive status.

2.3 | Establishing the lag time for δ34S absorption
in tail hair for migratory wildebeest

To establish the lag time for δ34S absorption between ingestion

and deposition in tail hair of migratory wildebeest (N = 5), we

georeferenced each segment of the tail hair (N = 118), conditional

on an assumed wildebeest specific growth rate, and extracted the

corresponding mean δ34S isotope value from the Serengeti sulfur

isoscape.6 The growth rate for each wildebeest was taken from a

normal distribution parameterised by the mean and standard

deviation of the observed net growth rate. We extracted the δ34S

values for every GPS point during the period of growth of each

TABLE 1 Net tail hair growth rate per day for each individual wildebeest and a mean growth rate for all 11 GPS-collared wildebeest.

ID Start date End date

No.

segments

Tail length

(mm)

Growth

days

Days

dry

Days

wet

Days

lactating

Net growth rate

(mm/day)

WB_417 08/06/2013 02/07/2014 25 200 389 135 254 120 0.514

Wb_418 09/06/2013 03/07/2014 23 184 389 150 239 0 0.473

WB_419 08/06/2013 05/07/2014 24 192 392 144 248 120 0.489

WB_420 10/06/2013 06/07/2014 26 208 391 165 226 120 0.531

WB_422 10/06/2013 06/07/2014 21 168 391 180 211 120 0.429

WB_551 26/05/2016 30/11/2017 37 296 553 345 208 240 0.535

WB_552 26/05/2016 30/11/2017 39 312 553 345 208 0 0.564

WB_553 26/05/2016 29/11/2017 33 264 552 345 207 240 0.478

WB_578 24/03/2018 23/06/2019 36 288 456 210 246 120 0.631

WB_580 27/04/2017 24/06/2019 40 320 788 210 578 120 0.406

WB_582 24/03/2018 25/06/2019 33 264 458 195 263 0 0.576

Net growth rate (mm/day) mean: 0.511

SD: 0.062
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section of tail hair to estimate the mean value for the 8 mm

section as a whole. We then fitted a linear regression in which the

slope was fixed to be one between the isotope value of the tail

hair segment against the corresponding mean isotope value from

the isoscape at lags ranging from 0 to 160 days at 10-day

intervals. We used the r-squared metric from each regression to

determine the lag that generated the best fitting regression model.

We repeated this process 5000 times (bootstrapping the individual

wildebeest tail hair growth rates) to generate the mean and 95th

percentile intervals (PIs) on the estimated lag time.

3 | RESULTS

3.1 | Tail hair growth rate

Individual net rate of growth of tail hair from GPS-collared

wildebeest varied between 0.40 and 0.63 mm per day

(mean = 0.511, SD = 0.062) (Table 1). We did not observe any

significant effect of either season (coefficient = �0.178, t = 0.819,

p = 0.439) or reproductive status (coefficient = �0.077, t = 0.544,

p = 0.603) on the wildebeest net tail hair growth rate. There was

no evidence that net growth rate of hair that grew for more than

13 months was different from that of hair that grew for less than

13 months (coefficient = 0.022, t = 0.049, p = 0.662), suggesting

that net growth rate remains relatively constant. However, we

note that if the distal end of the tail hair is fragmenting

(i.e. eroding; see Figure S2) independently of the age of the hair,

then our estimated net growth rate is likely to be lower than the

true growth rate.

3.2 | Estimates of lag time and baseline
fractionation factor for δ34S in tail hair for migratory
wildebeest

The best fitting regression model between δ34S in the tail hair and

δ34S on the isoscape was found assuming a lag time of 78 days (95th

PI 60–110 days; Figure 3A) and a baseline fractionation factor of

2.118‰ (95th PI 2.000–2.156‰; Figure 3B). The lag estimate is

insensitive to lower tail hair growth rates but increases by about

10 days for every unit standard deviation (0.062) tail hair growth rate

is increased by. Slopes of more or less than one can be imposed on

the analysis, generating fits with equivalently well-fitting models, and

slightly different lag times (e.g. a slope of 0.75 generates lower lags of

around 60 days, and 1.25 generates higher lags of around 90 days).

Fitting both the intercept and slope results in very marginally better

fitting model and a lower lag estimate of closer to 40 days but an

unrealistically high discrimination factor of about 5.

4 | DISCUSSION

The primary result from this study suggests the delay between

ingestion and deposition of δ34S isotopes in the tail hair is substantial

and here estimated to be about 78 days. This suggests that sulfur in

the animal's body passes through two or more metabolic processes

before being deposited in the tail hair. These findings are important

because understanding how metabolic delays and processing speed

influence the variation of δ34S in biological material such as hair has

important implications for making inferences about animal

movements or dietary changes. Secondary results indicate that

F IGURE 3 (A) r-squared values from regression models relating δ34S in tail with georeferenced δ34S isoscape values at different time lags and
(B) the regression plot of our optimum 78 day lagged model (including individual as a random effect indicates an individual level standard
deviation on discrimination factor of �0.8). [Color figure can be viewed at wileyonlinelibrary.com]
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wildebeest tail hair grows at a constant rate invariant of season and

pregnancy status, and there is no evidence of differential distal fraying

or disintegration, and that tail hair length maps straightforwardly

onto time.

There are several metabolic processes in the body that use sulfur

and which may account for the long lags we observed between

ingestion and deposition of 34S in tail hair as indicated by our results.

For example, Fry and Arnold37 suggested isotopic turnover to be a

result of two processes: tissue growth and catabolic turnover. The

slow δ34S turnover rate we observe could represent the fact that S is

not directly involved in the process of obtaining metabolic energy,

unlike C and N.38 For example, sulfur in the hair is primarily derived

from cysteine and methionine.29,39 Methionine is a nutritionally

indispensable amino acid that is usually acquired entirely from dietary

sources.40 Methionine is also used as a precursor for cysteine, which

is a nonessential amino acid (i.e. it is synthesised from other amino

acids).40 For ruminants, methionine might not be an entirely

nutritionally indispensable amino acid because rumen microbes can

synthesise methionine.41 However, supplementing ruminants' diet

with the S-containing diet has proven to improve the metabolism of

amino acids.42 Therefore, the observed levels of δ34S in the tail hair

are likely to result from a combination of recent food intake and

turnover of proteins in tissues derived from foods that were

consumed over longer time scales, and observed lag times may reflect

a balance in the preponderance of these two processes. Indeed, it is

likely that the lag is better represented by a form of weighted

distribution than a single value. We attempted to estimate such

distributions using a variety of different approaches that generated a

large number of alternative distributed lag models, but while we

found many that fitted the data nearly as well as a single fixed lag

time, we did not find one that fitted the data better.

The isotopic turnover rate not only is a function of the metabolic

processes and tissues but also scales with body mass29,43 which may

compromise the utility of S isotopes for geolocating large animals.

Small animals such as mice44 integrate isotope signals over a short

period of time compared with large animals.45 For instance, Bahar

et al38 reported the turnover rate of δ34S in the longissimus muscle of

beef cattle is in excess of 219 days (approximate weight: 500 kg),

while our study estimates 78 days for δ34S in wildebeest tail hair

(approximate weight: 160 kg) suggesting that the turnover rate of

δ34S in small ungulates may be faster than in large ungulates.

Therefore, using δ34S in tail hair to study animal movement may only

be useful in small- to medium-sized animals with relatively long hair

but may not be applicable for animals with short hair or very large

herbivores such as elephant.

The rate at which δ34S is processed in herbivores may also be a

function of diet quality which itself is likely to vary seasonally. For

instance, forage with high protein content such as C3 forbs is

processed differently from forage with low protein such as C4 grass.
46

Variations in dietary protein also alter the isotopic discrimination2,16

between different tissues within the body such as muscle, blood or

skeletal tissue.47 For example, Richards et al2 switched the diet of two

horses from their long-term 34S-rich diet (δ34S = 10.8‰) to a 34S-

poor diet (δ34S = �1.9‰) for a period of 21 weeks, before switching

back to a 34S-rich diet (δ34S = 10.5‰) for a further 19 weeks. Tail

hair was collected from each individual and analysed for δ34S. They

noted that the C3 and C4 diets with which they supplied the horses

were isonitrogenous but had different protein content with the C3-

based feed having higher protein content than the C4-based one. The

authors reported a larger diet–hair fractionation when horses were

fed the protein-poor C4-based feed but lower fractionation levels

when fed with C3 hays. The lower digestible protein in the C4 feed

could be associated with increased recycling of body proteins

constructed while on the C3 feed. Perhaps the time lag we report for

wildebeest could also be controlled by diet type. For example,

individuals who feed on a relatively similar diet in the same area for a

relatively long time, such as cattle,6 may have δ34S values in the tail

hair that accurately reflect the δ34S of their diet (Figure S3). However,

wildebeest have been reported to be mostly grazers, feeding on C4

grass,48–50 but have also been reported to supplement their diet with

C3 plants,51 providing further support for the idea of a distributed

lag time.

The spatial variation of forage quality is a function of soil

properties such as parent material or cation exchange capacity46;

however, parent material also determines δ34S.2 Therefore, in areas

with diverse parent material such as Serengeti, the protein content of

the forage may be correlated with δ34S isotopes52 (Figure S4). In

these instances, using δ34S to make ecological inferences about

animal movement may be complicated by the quality of the diet as

well as collinearities between forage protein and δ34S.

5 | CONCLUSION AND FUTURE STUDIES

Our analysis demonstrates the underlying complexities when using

δ34S to estimate animal movement. These complexities are likely

caused by a mixture of animal physiology (metabolism) and diet

quality. Since wildebeest are eating a mixture of both low- and high-

protein diets seasonally as they migrate between areas of high and

low δ34S, the δ34S deposited in the hair likely represents an averaged

value. Therefore, δ34S in the tail is a challenging approach for

geolocation of wildebeest because of the long time lags between δ34S

ingestion and deposition, lags that may also depend on changing

forage quality over time. However, if animals were moving across an S

isoscape but were on a single diet with stable protein concentrations

then these challenges may be overcome. A possible avenue for future

studies might be to explore the contribution of δ34S as incorporated

from diet only. The δ34S from diet may be a truer reflection of δ34S in

the landscape. Currently, the δ34S we observe in the tail hair of

wildebeest is composed of both essential (from diet) and nonessential

amino acids that are embedded within forage of different protein

concentrations which complicates the applicability of using δ34S as a

geolocator for fast moving migratory animals. This calls for more

controlled diet studies in which we can establish the influence and

timing of dietary shifts for both wild and domesticated ungulates to

ascertain this information. Furthermore, an understanding of the
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timing of dietary shift in wildebeest might also help to improve

the estimates of our lag time, particularly by identifying the patterns

of seasonal variation in isotopic discrimination values between grass

and hair due to changes in food quantity, food quality or energy use.
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