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Abstract

Pulmonary hypertension is a cardiovascular disorder manifested by elevated

mean arterial blood pressure (>20 mmHg) together with vessel wall stiffening

and thickening due to alterations in collagen, elastin, and smooth muscle cells.

Hypoxia-induced (type 3) pulmonary hypertension can be studied in animals

exposed to a low oxygen environment for prolonged time periods leading to bio-

mechanical alterations in vessel wall structure. This study introduces a novel

approach to formulating a reduced order nonlinear elastic structural wall model

for a large pulmonary artery. The model relating blood pressure and area is cali-

brated using ex vivo measurements of vessel diameter and wall thickness

changes, under controlled pressure conditions, in left pulmonary arteries isolated

from control and hypertensive mice. A two-layer, hyperelastic, and anisotropic

model incorporating residual stresses is formulated using the Holzapfel–Gasser–
Ogden model. Complex relations predicting vessel area and wall thickness with

increasing blood pressure are derived and calibrated using the data. Sensitivity

analysis, parameter estimation, subset selection, and physical plausibility argu-

ments are used to systematically reduce the 16-parameter model to one in which

a much smaller subset of identifiable parameters is estimated via solution of an

inverse problem. Our final reduced one layer model includes a single set of three

elastic moduli. Estimated ranges of these parameters demonstrate that nonlinear

stiffening is dominated by elastin in the control animals and by collagen in the

hypertensive animals. The pressure–area relation developed in this novel manner

has potential impact on one-dimensional fluids network models of vessel wall

remodeling in the presence of cardiovascular disease.
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1 | INTRODUCTION

Pulmonary hypertension (PH), encompassing several cardiovascular disorders manifested by a mean pulmonary arterial
blood pressure (BP) above 20 mmHg, is commonly classified into five disease groups.1,2 One of these, group 3, “pulmo-
nary hypertension due to lung disease,” includes patients with PH induced by hypoxia (HPH). This disease type can be
studied in mice with PH induced by placing animals in a low oxygen (hypoxic) environment. The response of the car-
diovascular system is stiffening and thickening of the pulmonary arteries accompanied by an increase in BP to PH
levels. The aim of this study is to use data-driven mathematical modeling to devise a well-calibrated reduced model cap-
turing the relationship between BP and changes in vessel lumen area and wall thickness that characterizes the struc-
tural remodeling of the underlying tissues. For this PH group, vascular remodeling typically starts in the small arteries,
proceeding to the large arteries as the disease advances.3,4 The arterial wall comprises three layers, the intima, a single
layer of endothelial cells, the media which contains large amounts of elastin and smooth muscle cells, and the adventi-
tia mainly composed of collagen (Figure 1A). In animal models of group 3 PH, vessels stiffen due to collagen
accumulation,6,7 and smooth muscle cell proliferation, which are known to increase the thickness of the vessel wall.8

Furthermore, wall thickening in the media and adventitia are known to occur by different rates and due to different
underlying mechanisms of tissue remodeling. For example, adventitial thickening typical occurs earlier and is more
pronounced, with medial thickening lagging behind.9

One advantage of characterizing how PH impacts the pressure–area relationship is that the resulting model can be
incorporated into one-dimensional (1D) fluid dynamics network models used extensively to study hemodynamics in
both systemic10–15 and pulmonary16–18 arteries. 1D fluid dynamics models are especially well suited to predict flow dis-
tribution and wave-propagation along the network, but accurate predictions require appropriate specification of the
pressure–area interaction. Moreover, 1D models can be readily calibrated to in vivo geometry, flow and/or BP measure-
ments.19,20 The 1D fluid dynamics models are derived from the Navier–Stokes equations combined with a state equa-
tion relating BP and vessel area, often formulated using an empirical or simple elastic wall model. These simpler
models have the advantage of being specified using a small number of parameters,14,21–23 but how tissue remodeling is
modulated with disease is unclear. While complex tissue mechanics models exist,5,24,25 they have not been integrated
with 1D fluid dynamics models. One state-of-the-art tissue mechanics model is the two-layer nonlinear hyperelastic
model developed by Holzapfel, Gasser, and Ogden5 (HGO model) that captures ex vivo biomechanical deformation of
the vessel wall. While this model is complex, it includes parameters that more directly and realistically represent struc-
tural elements and constituents within the two primary tissue layers that are known to remodel in large pulmonary
arteries under hypoxic conditions.

In this study, we introduce a novel data-driven approach to formulating and systematically reducing a nonlinear
hyperelastic structural wall model for the large pulmonary arteries, generating a reduced pressure–area relation that
can characterize remodeling in HPH. The model is calibrated to ex vivo biomechanical deformation and wall thickness

FIGURE 1 Foundations of the nonlinear hyperelastic wall model: (A) Illustration of a cross-section of a large artery wall (redrawn

from5); (B) the stress-free reference state Ω0 defined in Equation (1) where Rin is the inner radius, Rout is the outer radius, H is the wall

thickness, L is the axial length and α is the opening angle; (C) the current configuration Ω defined in Equation (2). Note that the (deformed)

inner radius rinð Þ, outer radius routð Þ, and axial length (l) are all determined after the model equations are solved.
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measurements from control (CTL) and hypertensive mice. Our approach to effective calibration and reduction is to start
with a model having structural features that are physiologically motivated. We then fix some parameters based on pro-
cedures in the experiments and literature values appropriate to the vessel and species in our data. Using subset selec-
tion, based on local sensitivities, we systematically fix or eliminate additional model parameters that are practically
unidentifiable, without violating physical plausibility of the reduced model.

To this end, we first formulate a two-layer, anisotropic vessel wall model using the HGO model formulation,5 which
disregards the intima. In addition to anisotropy and multiple layers, this model accounts for residual stresses, known to
be significant in large pulmonary arteries as evidenced by a large opening angle arising when rings from excised vessels
are cut. The rings are obtained from cutting “a slice” normal to the axial direction, and the opening angle is determined
from a radial cut through the ring's circumference.26,27 Complex relations determining the dependence of vessel area
and wall thickness on BP are derived. Our initial model is calibrated to ex vivo measurements of vessel diameter and
wall thickness as functions of pressure in the left pulmonary artery (LPA) in CTL and hypertensive (HPH) mice.28 The
full model is complex, containing 16 parameters, making calibration and model reduction using data challenging. Our
approach to effective model calibration and reduction combines sensitivity analysis, subset selection29–32 and physical
plausibility arguments to identify the simplest reduced model and a set of sensitive and identifiable parameters that can
be estimated using the model and available data.

2 | MODELS AND METHODS

1D cardiovascular fluid dynamics network models require a constitutive relation coupling the transmural BP p(z,t)
(mmHg) (the difference between BP in the vessel and the surrounding tissue) to the vessel lumen area a(z,t) (cm2). We
represent the vessel wall as a hyperelastic material integrating the two-layer model by Holzapfel, Gasser and Ogden,
often referred to as the HGO model.5 This model incorporates nonlinear effects of residual stresses, anisotropy, material
and geometric nonlinearities, and contributions of key wall constituents (collagen and elastin) within the vessel wall
layers. A schematic of the wall constituents is shown in Figure 1, and Table A1 lists the model parameters and their
units.

2.1 | Deformation of the arterial wall

The model is formulated in terms of three configurations of the vessel wall: (i) a stress-free reference state Ω0

(Figure 1B) represented by a continuous arc of a cylindrical ring free of all residual stresses; (ii) an intermediate load-
free configuration (not shown) represented by a closed cylindrical ring in the absence of transmural pressure; and (iii) a
current configuration Ω (Figure 1C) representing the pressurized vessel under an isochoric deformation as fluid flows
through the vessel lumen in an ex vivo or in vivo setting.

2.1.1 | Stress-free reference state

Ω0 approximates the process of excising a vessel segment, extracting a cross-section approximated as a thin cylindrical
ring, and then making a single radial cut along the ring's circumference. It is denoted by,

Ω0 ¼ R,Θ,Zð Þ� Rin,Rout½ �� 0,2π�α½ �� 0,L½ �f g, ð1Þ

where R,Θ,Zð Þ are Lagrangian cylindrical (polar) coordinates, α is the opening angle, L is the reference axial length,
and Rin and Rout are the inner and outer radii, respectively.

2.1.2 | Current configuration

Ω (shown in Figure 1C) is associated with the deformed vessel representing the coupled state under fluid flow and pres-
sure and defined as,
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Ω¼ r,θ,zð Þ� rin,rout½ �� 0,2π½ �� 0, l½ �f g, ð2Þ

where the deformation determines the (unknown) inner radius rinð Þ, the outer radius routð Þ, and the vessel length lð Þ.
Finally, an isochoric deformation arising from combining inflation, axial extension, and torsion within an elastic

tube is denoted by,

r,θ,zð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�Rin

2

kλz
þ rin2

s
,kΘþZ

Φ

L
,λzZ

0@ 1A, ð3Þ

where k¼ 2π
2π�α, λz is the (constant) axial stretch and Φ is the twist angle. As reported in Ref. 28 for the data used in this

study λz ¼ 1:4 for both the CTL and hypertensive animals, corresponding to the observed ratio of the axial length of a
vessel segment before and after excision. We note that λz >1 due to residual stresses in vivo. The ex vivo measurements
of deformation, after introducing fluid flow through the vessel, are performed in vessels stretched and mounted to
match this measured ratio.

2.2 | Two-layer hyperelastic model

Within the HGO framework, a two-layer hyperelastic wall model accounting for the media γ¼Mð Þ and adventitia
γ¼Að Þ (Figure 1A) is formulated by representing the Cauchy stress σ¼ σM þσA as the sum of the stress in each layer,5

σγ ¼ cγdev J�
2
3b

� �
þ2

∂Ψγ

∂eI4γ dev a1γ
O

a1γ
� �

þ2
∂Ψγ

∂eI6γ dev a2γ
O

a2γ
� �

, γ¼M,A, ð4Þ

where Ψγ , the Helmholtz free energy for each layer, has the form,

Ψγ ¼ k1γ
2k2γ

ek2γ
eI4γ�1

� �2

þek2γ
eI6γ�1

� �2

�2

� �
, γ¼M,A: ð5Þ

In Equation (4), cγ represents the elastic moduli for the isotropic constituents (mostly elastin) in each layer,
J ¼ det Fð Þ is the Jacobian where F is the deformation gradient of Equation (3), b¼FFT , and eIlγ ¼Alγ :C where
C¼ J�2=3C, C¼FTF, and Alγ ¼ a0lγ

N
a0lγ l¼ 1,2, γ¼M,Að Þ. In Equation (5), k1γ and k2γ are elastic parameters for the

anisotropic constituents (mostly collagen) in each layer (Figure 1A). Lastly, Eulerian and Lagrangian vectors, alγ and
a0lγ (respectively), associated with collagen fiber directions are γ¼M,Að Þ.

alγ ¼ J�
1
3Fa0lγ , a0lγ ¼

0

cos βγ
� �

�sin βγ
� �

0B@
1CA, l¼ 1,2, ð6Þ

where βγ are the collagen fiber angles, assumed to be constant in each layer (Figure 1A).

2.3 | Pressure–area relation

We obtain a hyperelastic pressure–area relation by integrating the radial component of the stress equilibrium equation.
Neglecting inertial terms and assuming a quasi-static state this stress equilibrium equation, expressed in the current
configuration, is given by,

dσrr
dr

þσrr�σθθ
r

¼ 0, rin < r< rout, ð7Þ
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where rin ¼ r Rinð Þ and rout ¼ r RinþHð Þ, and σrr ,σθθ are the radial and circumferential normal stress components,
respectively. Here, H denotes the undeformed vessel wall thickness (Figure 1B).

Balance of forces between the transmural BP and the radial component of the normal stress in the wall is enforced
by the condition,

p¼�σrr jr¼rin ) p¼
Zrout
rin

σrr�σθθ
r

dr: ð8Þ

Equations (3 and 4) are used to formulate the integrand in Equation (8), which is evaluated with the aid of symbolic
computation software (MAPLE 2019).

The resulting pressure–area relation can be written as,

p¼
ZrMA

rin

ℱM rin,rð Þdrþ
Zrout
rMA

ℱA rin,rð Þdr, where rMA ¼ r RinþHMð Þ, ð9Þ

and HM is the (reference) thickness of the media. Recall that the relation rin ¼
ffiffiffiffiffiffiffiffi
a=π

p
is used to express the inner radius

in Equation (9) in terms of the vessel area. For brevity, the mathematical forms of the integrands ℱM and ℱA are not
included here, as these are lengthy expressions imported from MAPLE into MATLAB (R2021b). The integral is evalu-
ated numerically using the MATLAB “integral” command, which employs global adaptive quadrature.33

This final pressure–area relation (Equation 9) contains 16 model parameters,

q¼ Rin,Rout,H,HM ,α,L,Φ,λz,cM ,k1M ,k2M ,βM ,cA,k1A,k2A,βA½ �, ð10Þ

listed with units and values in the Table A1. For any given set of values of these parameters, the model prediction of
wall thickness is evaluated using Equations (3) and (9) via the difference r RinþHð Þ� r Rinð Þ.

2.4 | Ex vivo murine data

The model is calibrated to murine data made available by Naomi Chesler (UC Irvine). The majority of the data along
with detailed descriptions of the experiments can be found in the study by Tabima and Chesler.28 All protocols and pro-
cedures described in Ref. 28 were approved by the University of Wisconsin Institutional Animal Care and Use
Committee.

Data measuring lumen area and wall thickness changes with increasing transmural BP were measured under
ex vivo biomechanical testing in excised LPA vessel segments from male C57BL6 mice under CTL and 10-day hypoxia-
induced (380 mmHg) hypertensive (HPH) conditions.28 In both the CTL and hypertensive (HPH) vessel segments, 11
measurements i¼ 1,…,11ð Þ relate vessel outer diameter Ddata

i

� �
to increasing pressure pdatai

� �
, and 3 measurements

j¼ 1,2,3ð Þ relate vessel wall thickness Tdata
j

� �
to increasing pressure pdataj

� �
. For each group, these measurements rep-

resent averages over four CTL and five hypertensive (HPH) animals under controlled pressure conditions with pres-
sures in the range of 0–50mmHg. Specific pressure values for each group are noted in Figure 2A,B.

2.5 | Model parameters

Several of our model parameters are fixed at representative values using literature values or details of the experiments
used to calibrate the models. First, we assume that the vessels have no twist, that is Φ¼ 0 and that the opening angle in
the stress-free reference state is α¼ 94:2. The latter value is obtained from literature reporting measurements in rings
extracted from healthy murine LPA vessels.27 To mimic the in vivo setting, excised vessels were stretched to match their
length after extraction prior to mechanical testing,28 that is, λz ¼ 1:4 in Equation (3).
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2.5.1 | CTL animal parameters

Since detailed histology for the murine LPA is not available, we use a recent literature value estimating a mean diago-
nal collagen fiber angle of 35.55� (measured from the axial direction) in the right pulmonary artery (RPA) of normoxic
mice,34 corresponding to a value of βM ¼ βA ¼ 54:45 in our control animal model (CTL). In addition, from the same
study,34 we assume that the media occupies 63% of the vessel wall thickness in the stress-free reference state for our
CTL model.

2.5.2 | Hypertensive animal parameters

For our hypertensive model, two cases are considered. In the first case (HPHa), the fiber angle and media thickness per-
centage values are the same as in the CTL case. In the second case (HPHb), the fiber angle values are fixed at
βM ¼ βA ¼ 56:58 and the media thickness percentage is fixed at 60%. Because our data set is based on 10-days of hypoxic
exposure, these values are calculated as a 30% perturbation in the direction of the hypertensive values reported in Ref.
34, where murine RPA was exposed to 3–6weeks of hypoxic conditions; the values in Ref. 34 are a mean diagonal fiber
angle of 28.45� (measured from the axial direction) and a media thickness percentage of 53%. For both hypertensive
cases that we consider, the opening angle value (α= 94.227) is chosen to be the same as in the CTL model, based on the
only known measurements of this quantity in a similar vessel and species after 10-days of hypoxic conditions26. The
fixed parameter values are summarized in the Table A1.

Accounting for these assumptions, for the parameter dependency Rout ¼RinþH, and observing that the model is
independent of L yields the following eight parameters to be estimated,

q8 ¼ Rin,H,cM ,k1M ,k2M ,cA,k1A,k2A½ �: ð11Þ

2.6 | Parameter estimation, sensitivity, identifiability, and model reduction

Given the model and data, we formulate a parameter estimation problem determining m parameters q� minimizing the
least squares cost J as,

q� ¼ arg min
q � ℝm

≥ 0

J qð Þ, where : J qð Þ¼ s qð ÞTs qð Þ: ð12Þ

The 14-component residual vector s qð Þ is given by,

FIGURE 2 Results from estimating eight parameters (listed in Table 1) for the control animals. (A) pressure versus area, model

predictions of the outer area (black) versus data (circles) and the inner area (red); (B) wall thickness versus pressure model predictions

compared with the 3 data points (squares); (C) the residual vector in Equation (13) across the 14 data points.
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s qð Þ¼ s1,s2½ �,

s1 ¼ 1ffiffiffiffiffi
n1

p p ain,ið Þ�pdatai

p�

	 

,

s2 ¼ 1ffiffiffiffiffi
n2

p
T pdataj

� �
�Tdata

j

Tdata
1

0@ 1A,

ð13Þ

with i¼ 1,…,n1 and j¼ 1,…,n2, with n1 ¼ 11 and n2 ¼ 3 (see Section 2.4). The optimization problem is solved using a
Nelder–Mead direct search simplex algorithm35 minimizing J qð Þ in Equation (12) using the routine “fminsearch” in
Matlab.

The mathematical model is used to evaluate the term ain,i by first converting the outer diameter data Ddata
i

� �
to an

inner radius using Equation (3) and then using Equation (9) to determine the values p ain,ið Þ. The term T pdataj

� �
is eval-

uated as outlined at the end of Section 2.3. Calibration of the model to data is done in an iterative manner, gradually
reducing the model complexity and number of parameters estimated using sensitivity analysis and subset selection.

Sensitivity analysis is performed after parameter estimation (with n data points) using local methods calculating the
n�m sensitivity matrix χ¼rqs qð Þ using a first-order finite-difference scheme. Prior to calculation of sensitivity deriva-
tives, a linear mapping is used to normalize across scales. Specifically, a perturbed interval (perturbation α) about the
kth component of the parameter estimate 1�αð Þq�k, 1þαð Þq�k

� �
is mapped to 0,1½ � via the linear transformation

y¼ 1
2α α�1þ x

q�k

� �
. This yields, via the Chain rule, the derivative transformation ∂

∂x¼ dy
dx

∂
∂y, resulting in a multiplying fac-

tor 2αq�k used for transforming raw sensitivities to their scaled counterparts. A value α¼ 0:1 is prescribed and all sensi-
tivity derivatives above are approximated using first-order finite-difference approximations with a step size chosen
sufficiently small 10�7ð Þ. This choice ensures numerical convergence of all scaled parameter sensitivity derivative com-
putations across all cases considered in this study.

Subset selection and model reduction is performed using the eigenvalue method29–32 that analyzes the magnitude of
eigenvalues and corresponding eigenvectors for the m�m Fisher information matrix approximated as χTχ at q¼q�.36

In our study, the eigenvalue subset selection method is also guided by physical plausibility of our model at each stage of
the overall process. At q¼q�, the subset selection analysis and model reduction uses the following iterative procedure:

1. Determine the eigenvalues of the Fisher information matrix χTχ.
2. Check if the smallest eigenvalue of χTχ is below a specified threshold η (see, e.g., Figure 4).
3. If step 2 is satisfied, examine the eigenvector corresponding to the smallest eigenvalue.

FIGURE 3 Normalized parameter sensitivities for the control animals with 8 estimated parameters across the 14 data points.

HAIDER ET AL. 7 of 17

 20407947, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3798 by N
es, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [12/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4. Mark the order 1 components of the eigenvector in step 3.
5. Parameters corresponding to the marked vector components in step 4 are potentially unidentifiable and considered

as candidates for fixing at nominal values, or uncovering parameter dependencies.
6. If possible, we reduce the model by fixing or eliminating unidentifiable parameters.

During the course of this iterative procedure, we ensure that the cost J q�ð Þ is preserved. This approach strikes a
balance between model reduction and robust optimization, preserving the quality of curve-fits within the context of the
given data set as the process advances. We defer parameter estimation for the HPH animals until identifiability analysis
and model reduction are carried out for the CTL animals. This approach ensures that the healthy and diseased cases
are compared by solving a more robust inverse problem on an equal footing, which is with the same set of
unidentifiable parameters fixed or eliminated.

3 | RESULTS

We apply the following iterative approach for estimating the non-fixed parameters in Equation (11):

1. Section 3.1 estimates the eight non-fixed parameters for the CTL animals. Results of parameter estimation, sensitiv-
ity analysis, and subset selection yield a reduced model with six parameters.

2. Section 3.2 estimates these six parameters for the CTL animals using the reduced model. Results of this analysis
enable further model reduction, yielding a reduced-order model with equal elastic moduli in the two layers. The
resulting model has five parameters.

3. Section 3.3 estimates these five parameters in the reduced-order model for both CTL and hypertensive animals.
Results indicate that the remaining parameters may be correlated. Fixing one of the correlated parameters yields the
final 4-parameter reduced-order model.

4. Section 3.4 examines parameter dependencies in a 4-parameter reduced-order model. To investigate effects of fixing
one of the correlated parameters identified in Section 3.3, we evaluate impacts of varying the fixed parameter. We
report parameter ranges for successful results, that is, those preserving physical plausibility and quality of curve-fits
via bounds on the least squares error for both CTL and hypertensive animals.

3.1 | Baseline CTL animal model (eight parameters)

We first estimate the eight non-fixed parameters for the CTL animals,

q8 ¼ Rin,H,cM ,k1M ,k2M ,cA,k1A,k2A½ �: ð14Þ

FIGURE 4 Identifiability results using the eigendecomposition of the information matrix χTχð Þ for the control animals with eight

estimated parameters: (A) log-plot of the eigenvalues of χTχ; (B) components of the eigenvector of χTχ corresponding to the smallest

eigenvalue of χTχ η≈ 10�14ð Þ (asterisk).
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Initial and estimated parameter values for this case are reported in Table 1 (initial values are also given in
Table A1).

The initial value of Rin (1mm) is set using an order of magnitude estimate for the LPA. The initial value for the ref-
erence wall thickness H, which is highly sensitive to the wall thickness data, is set by systematically multiplying the
data measurement at 10mmHg in the experiments (see Figure 2B) by a factor between 1 and 1.5, in increments of .05
(11 values). Setting initial values for the remaining six parameters is challenging given that experiments do not measure
these parameters, but outcomes of the model (the wall thickness and the pressure–area dynamics). These parameters have
physical interpretations, but they represent quantities that cannot be directly measured experimentally. The isotropic elastic
moduli cM ,cA are set to initial values of 10 kPa, an accurate order of magnitude estimate for this type of biological soft
tissue. Initial values for the remaining parameters are determined by systematic variation of initial parameter choices,
rejecting combinations yielding a high cost J . This results in a set of initial values with a curve fit to the data of good
quality. The combination of initial values for k1M and k1A is 1 and .3 kPa, respectively and the initial values for the
(dimensionless) parameters k2M and k2A are based on those reported in the HGO study5 from measurements in rabbit
carotid arteries. This combination of initial values yields the most consistent set of results across all cases considered.

Model predictions with estimated parameters depicting pressure versus area and the wall thickness versus pressure
(shown in Figure 2A,B) provide excellent fits to the CTL animal data. Inspection of estimated parameters reveals that
the adventitia parameter k1A is very small (k1A� cA, Table 1). This finding implies that we can eliminate the anisotropic
terms for the adventitia (the last two terms in Equation (4)) since their mechanical contribution to the response is insig-
nificant. In particular, when k1A is set to zero, the adventitia parameter k2A is structurally unidentifiable since it can be
varied arbitrarily when Equation (5) is substituted into Equation (4).

The Fisher information matrix χTχ is used to evaluate the eigenvalues depicted in Figure 4A. Examination of the
eigenvector of χTχ (Figure 4C) corresponding to its smallest eigenvalue η≈ 10�14ð Þ flags the parameter k1A (has an order
1 component), indicating that this parameter is unidentifiable. This designation is consistent with results of sensitivity
analysis (shown in Figure 3), which demonstrate that the sensitivities for k1A (and cA) are small relative to the other
parameters.

Taken together, these findings suggest a physically motivated model reduction in which k1A ¼ k2A ¼ 0. Thus, in the
next step we analyze a 6-parameter reduced model eliminating the anisotropic terms for the adventitia in the stress–
strain law.

3.2 | Reduced CTL animal model (six parameters)

Parameter values are initialized as described in Section 3.1. The six parameters to be estimated for the CTL animals are,

TABLE 1 Estimated parameter values for the control animals with the 8-parameter model (column 5) and the reduced 6-parameter

model (column 6).

Parameters Units Initial Baseline (Section 3.1) Reduced (Section 3.2)

m 8 6

Geometric Rin μm 1000 376.711 376.666

H μm Tdata
1 	 1,1þ γ½ � 45.428 45.430

γ¼ 1:0,1:5½ �ð Þ γ¼ :1ð Þ γ¼ :4ð Þ
Media cM kPa 10 24.835 25.057

k1M kPa 1 .271 .299

k2M - .839 2.064 2.083

Adventitia cA kPa 10 16.460 15.990

k1A kPa .3 .035 .000 (fixed)

k2A - .711 2.734 .000 (fixed)

J �10�4ð Þ - 1.7306 1.7324
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q6 ¼ Rin,H,cM ,k1M ,k2M ,cA½ �: ð15Þ

Estimated values for these parameters are reported in Table 1. Again, for the CTL animals the quality of curve fits
of the model to the pressure versus area data (Figure 5A) and the wall thickness versus pressure data (Figure 5B) is pre-
served. A very slight increase in the overall cost from J ¼ 1:731�10�4 to J ¼ 1:732�10�4 is observed. The estimated
values of the geometric parameters Rin,Hð Þ are preserved within :02%. The elastic modulus cM exhibits an :9% increase,
the elastic modulus k1M exhibits a 10.3% increase while the elastic modulus cA exhibits a 2.9% reduction. Finally, the
dimensionless parameter k2M increases by 0:9%.

Examination of the eigenvector of χTχ (Figure 6H) corresponding to its smallest eigenvalue η≈ 10�7ð Þ shown in
Figure 6G flags two parameters cA and cM with order 1 components; cA is the dominant parameter. The sensitivity for
cA is also small relative to the other parameters (Figure 6A–F). While the overall identifiability of estimated parameters
in our model improves (Figures 4A vs. 6G), these findings motivate a further reduced 5-parameter model examined in
the next stage of the process.

Since two of the remaining five parameters are geometric parameters, we retain three elastic parameters describing
the isotropic and anisotropic responses in the model in terms of a single (combined) layer. The reduced-order model
analyzed in the next section has elastic moduli and collagen fiber orientation angles in the media and adventitia that
are set equal. Thus, only a single set of elastic parameters are estimated in the next step. For convenience, these three
estimated parameters are denoted by cM ,k1M and k2M .

3.3 | Reduced-order CTL and hypertensive animal model (five parameters)

In the reduced-order 5-parameter model, elastic parameters in the two layers are assumed equal, that is, cA ¼ cM ,
k1A ¼ k1M , and k2A ¼ k2M . The parameter vector estimated for this model is,

q5 ¼ Rin,H,cM ,k1M ,k2M½ �: ð16Þ

This model is fitted to data from both the CTL and hypertensive (HPH) animals. Values of the five model parame-
ters are initialized as described in Section 3.1 and the estimated parameter values are reported in Table 2. For compari-
son, results of the 6-parameter model are also included in the table. Note that the estimated values of cM ,k1M , and k2M
should be interpreted as aggregate elastic parameters for the entire vessel wall, that is, representing both layers.

For the CTL animals, the quality of curve fits of the model to the pressure versus area data (Figure 7A) and the wall
thickness versus pressure data (Figure 7B) are preserved, with a reduction in overall cost from J ¼ 1:732�10�4 to
J ¼ 1:693�10�4. All 11 initial values of the wall thickness parameter (H) result in identical parameter estimates, indi-
cating increased robustness of the optimization subsequent to model reduction via identifiability analysis. The curve fits
for both hypertensive models have significantly lower costs J ¼ :5297�10�4and J ¼ :5298�10�4ð Þ due, in part, to the
smaller range of variation in the pressure–area curve caused by vessel wall stiffening (Figure 7A and Table 2). In the

FIGURE 5 Parameter estimation results for the reduced model for the control animals with six estimated parameters: (A) pressure

versus area model predictions of the outer area (black) versus data (circles) and the inner area (red); (B) wall thickness versus pressure

model predictions compared with the 3 data points (squares); (C) plot of the residual vector in Equation (13) across the 14 data points.
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hypertensive animals, geometric parameters exhibit an increase in vessel wall inner radius Rin (514 and 498 μm vs.
377 μm) and an (expected) increase in reference wall thickness H (49 and 50 μm vs. 45 μm). The altered dynamics in the
hypertensive animals are reflected by a substantial increase in the elastic modulus k1M (3.06 and 1.90 kPa vs. .18 kPa)

FIGURE 6 Identifiability results computed using eigendecomposition of the information matrix χTχð Þ for the reduced six parameter

model with data from the control animals: (A–F) normalized parameter sensitivities for the 6 estimated parameters across the 14 data points;

(G) log-plot of the eigenvalues of χTχ; (H) components of the eigenvector of χTχ corresponding to the smallest eigenvalue of χTχ η≈ 10�7ð Þ
(asterisk).

FIGURE 7 Parameter estimation and identifiability results for the reduced 5-parameter model for the control (CTL) and hypertensive

animals, illustrated for case HPHb: (A) pressure versus area model predictions of the outer area (black) versus data (circles) and the inner

area (red); (B) wall thickness versus pressure model predictions compared with the 3 data points (squares); (C) plot of the residual vector in

Equation (13) across the 14 data points; (D, F) log-plot of the eigenvalues of χTχ in the normotensive (D) and hypertensive (F) animals; (E,

G) components of the eigenvector of χTχ corresponding to the smallest eigenvalue of χTχ (asterisk) in the CTL (E) and hypertensive (G)

animals.
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and in the dimensionless parameter k2M (7.08 and 7.12 vs. 2.19), both associated with collagen stiffness. Concurrently,
in the hypertensive animals there is a substantial drop in the elastic modulus cM (5.07 and 5.33 kPa vs. 21.98 kPa), asso-
ciated with elastin, relative to the CTL animals. In the hypertensive case, 7 of 11 initial values of the wall thickness
parameter (H) result in identical parameter estimates (Table 2), with the other 4 cases resulting in curve fits of poor
quality.

For this reduced model, subset selection evaluating the eigenvalues and eigenvectors of χTχ (Figure 7D–G) for the
estimated parameters (Table 2, Figure 7D–G) reveals that identifiability of the estimated parameters improves signifi-
cantly (Figure 4D,F). Nevertheless, it is instructive to examine the eigenvectors for the smallest eigenvalue
(Figure 7E,G). Based on the observations that k1M is a dominant component in the CTL case (Figure 7E) and that k1M
and cM share the same units, we examine the possibility of a parameter dependency in the next section using our final
4-parameter reduced order model.

3.4 | Parameter dependencies in reduced-order model (four parameters)

We study the implications of fixing one of these two parameters, for both the CTL and hypertensive animals. The final
model fixes cM while still estimating k1M , that is, analysis in this section estimates the four parameters,

q4 ¼ Rin,H,k1M ,k2M½ �: ð17Þ

The fixed parameter cM is varied about its estimated value in the 5-parameter model. For brevity, in the hyperten-
sive animals results are shown only for case HPHb. Curve fits using this hypertensive model with an estimated value of
H less than 1:05�45:456 μm (Table 2, CTL, m= 5) are rejected to ensure (some) wall thickening. Since we do not have
data from independent experiments for cM , we repeat optimization while varying this parameter about its estimated
value in the HPHb model with m¼ 5 (Table 2, last column). To preserve quality of the curve fits, parameter ranges are
determined by enforcing the cost increase to be no more than 10% (to two decimal places) relative to the values in
Table 2, and across the range of initial values for H (see Table A1). Based on these criteria, the maximum cost used as a
cutoff is set to J ¼ 1:86�10�4 (CTL) and J ¼ :58�10�4 (HPHb).

The resulting estimated parameter ranges are reported in Table 3. The corresponding curve fits are not shown, as
they were visually identical to those shown in Figure 3. For the hypertensive animals, the estimated value of k1M varies
directly with the (fixed) value of cM and inversely with the estimated value of k2M . For the CTL animals, the estimated
value of k1M varies inversely with both the (fixed) value of cM and with the estimated value of k2M , albeit over a smaller

TABLE 2 Estimated parameter values for the reduced 5-parameter model for control (CTL) (column 6) and hypertensive (HPH)

(columns 7-8) animals.

Parameters Units Initial
CTL
(Section 3.2)

CTL
(Section 3.3)

HPHa

(Section 3.3)
HPHb

(Section 3.3)

m 6 5 5 5

Geometric Rin μm 1000 376.666 377.378 513.688 497.959

H μm Tdata
1 	 1,1þ γ½ � 45.430 45.356 48.557 49.953

(γ = [.0, .5]) (γ = .4) (γ = [.0, .5]) (γ = [.0, .3]) (γ = [.0, .3])

Media cM kPa 10 25.057 21.984 5.073 5.327

k1M kPa 1 .299 .185 3.060 1.899

k2M - .839 2.083 2.188 7.082 7.119

Adventitia cA kPa 10 15.990 ¼ cM ¼ cM ¼ cM

k1A kPa (fixed at .0) ¼ k1M ¼ k1M ¼ k1M

k2A - (fixed at .0) ¼ k2M ¼ k2M ¼ k2M

J �10�4ð Þ - 1.7324 1.6931 .5297 .5298

Note: For comparison, results for the reduced 6-parameter model are also shown (column 5).
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range of k2M when compared with the hypertensive case. For the hypertensive animals, the geometric parameter ranges
exhibit significant increases in both vessel wall inner radius Rin and reference wall thickness H. Furthermore, the
ranges of values for the hypertensive elastic moduli associated with collagen k1M ,k2Mð Þ are substantially higher while
the range of values for the modulus associated with elastin cMð Þ is substantially lower, compared to the CTL animals.

4 | DISCUSSION

This study presents a novel data-driven approach yielding a reduced-order model predicting pressure-induced changes
in lumen area and wall thickness by encoding a two-layer nonlinear hyperelastic HGO model incorporating residual
stresses and anisotropy. This model is obtained by calibrating dynamics to pressure and wall thickness data from Ref. 28 for
CTL and hypertensive mice. In the hypertensive animals, PH is induced by placing the animals in a hyperbaric chamber
exposing them to hypoxia for 10 days. Model calibration and systematic model reduction are achieved by combining sensitiv-
ity analysis, subset selection, parameter estimation, and physical plausibility arguments. The results demonstrate that this
detailed structural continuum mechanics model, containing a large number of parameters, can be systematically reduced to
capture differences in key model parameters between CTL and hypertensive animals. We note that our full (initial) model,
which contains several unidentifiable parameters, could be integrated into 1D cardiovascular network models by fixing these
parameters at nominal values. For example, choices of such nominal values could be motivated by physiological hypotheses
for mechanisms of remodeling due to disease; the identifiable parameters would still be estimated via optimization. Overall,
the presence of several unidentifiable parameters can have adverse consequences when values calibrated on one type of
biomechanical loading are used to simulate or predict responses under different loading conditions. This risk is much less
when the model parameters retained, and estimated using data, are both identifiable and structurally meaningful, as is the
outcome of the methodology presented in this study.

To our knowledge, this is the first study to carry out robust parameter estimation and local sensitivity based model
reduction by simultaneously predicting the increase in lumen area and the decrease in wall thickness as pressure is
increased in both healthy and diseased animals. While prior studies (e.g., Ref. 37 in the mouse carotid artery) have dem-
onstrated that HGO models can be overparameterized in the context of data, the analysis in Ref. 37 was carried out in
an ad hoc or observational manner; by contrast our approach is systematic and more mathematically robust. A different
study that applied the HGO model to healthy porcine pulmonary arteries assumed equal material properties in the
media and adventitia a priori.38 In another study, local sensitivity analysis methods were combined with optimization
to investigate healthy myocardium,39 but systematic model reduction in the context of data comparing measurements
from healthy and diseased samples was not considered.

Our results reveal that coupled biomechanical responses for both vessel lumen and vessel wall deformation can be
accurately captured using a model that retains a single set of three elastic moduli delineating the contributions of colla-
gen and elastin under the loading protocol of the associated experiments. Specifically, the material parameter associated

TABLE 3 Estimated parameter ranges for the final model in both the control (CTL) and hypertensive (HPHb) animals based on

optimization with 4 parameters.

Parameters Units Initial CTL (Section 3.4) HPHb (Section 3.4)

m 4 4

Geometric Rin μm 1000 374.46–380.45 426.50–522.97

H μm Tdata
1 	 1,1þ γ½ � 44.73–45.91 47.77–57.35

(γ = [.0, .5]) (γ = [.0, .5]) (γ = [.0, .3])

Media cM kPa 20.12–23.85 (fixed) 4.79–7.62 (fixed)

k1M kPa 1 .11–.31 1.77–1.84

k2M - .839 1.96–2.43 5.01–8.03

Adventitia cA kPa ¼ cM ¼ cM

k1A kPa ¼ k1M ¼ k1M

k2A - ¼ k2M ¼ k2M

J �10�4ð Þ - 1.69–1.86 .53–.58

Note: The cost J was allowed to increase by no more than 10% in establishing the estimated parameter ranges.
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with elastin cMð Þ is the dominant contributor to nonlinear stiffening in the CTL animals. By contrast, in the hyperten-
sive animals, the contribution of cM is much less. Nonlinear stiffening is dominated by material parameters associated
with collagen k1M ,k2Mð Þ. Taken together, these findings are consistent with well-known increases in collagen content
in the wall of large pulmonary arteries with hypoxia-induced PH.6,7

Our analysis considers two hypertensive cases (HPHa and HPHb). While one case (HPHb) is based on the only
known measurements of collagen fiber angles in a (right) pulmonary artery,34 we note that their hypoxic exposure was
for a much longer and more variable duration (3–6 weeks) across the mice. Our data is from the LPA and based on a
less variable hypoxic exposure of 10 days per mouse (Section 2.4). A comparative study in calves subjected to 14 days of
hypoxic exposure found less evidence of remodeling in the RPA versus the LPA in the same animals.40 Another study
reported different remodeling rates in the RPA and the LPA, but based on a linear elastic response function within the
quasilinear viscoelastic modeling framework.41 Taken together, these studies potentially support the lack of evidence of
hypoxia-induced RPA wall thickening in Ref. 34. By contrast, our data and analysis demonstrate clear evidence
of murine LPA wall thickening under 10 days of hypoxic exposure. A limitation of our model is the assumption of fixed
collagen fiber angles, whereas future studies could extend the model to more realistically account for fiber dispersion in
the vessel wall.42

The robustness of our model and approach is evidenced by its accurate and simultaneous prediction of both pres-
sure and wall thickness changes under deformation, for both CTL and hypertensive data sets. Our systematic approach
to parameter identifiability, subset selection and model reduction decreased the overall number of parameters in the
model while preserving the quality of curve-fits to the data at each stage of the iterative procedure. Overall, our method-
ological approach extracts information from the data that can be challenging to observe qualitatively. For example, in
moving from the two-layer 8-parameter model to the two-layer 6-parameter model, parameter identifiability improved
significantly. This improvement is evidenced by the large drop in the magnitude of the smallest eigenvalues
(Figures 4A vs. 6G). Hence, while our calibrated two-layer model could be used to formulate a pressure–area relation
with a delineated media and adventitia, we contend that such a model is less well-calibrated due to the outstanding
unidentifiable parameter (Figure 6H). In particular, the robustness and accuracy of parameter estimates and ensuing
simulations decreases as the number of parameters deemed to be unidentifiable (and thus fixed at nominal values)
increases.

Limitations include common parameter estimation challenges when the number of model parameters and/or vari-
ables is greater than the number of variables for which data is available, as well as the lack of known nominal values
for some model parameters in large pulmonary arteries. One challenge is nonuniqueness of parameter estimates due to
the infeasability of guaranteeing a solution of the optimization problem that is a global minimum of the cost function
across the parameter landscape. A second challenge is the local nature of sensitivity measures underlying the
identifiability techniques used in this study, that is, the final reduced model is not guaranteed to be unique. This can be
a problem if translating the model to other diseases or vessels composed of the same tissues, but with different distribu-
tion of tissue components. The accuracy and robustness of the approaches presented in this study can be enhanced
through both extended ex vivo and in vivo studies informed by the model presented here. Our approach for sensitivity
and identifiability analysis and model reduction is rooted in prior works describing parameter subset selection tech-
niques29,30,32,43 using an eigendecomposition of the matrix χTχ, but similar results could likely be obtained using other
methods. While global sensitivity analysis techniques exist,44–46 most subset selection techniques are local. The method
for identifiability analysis used here is based on eigenvalues but, as discussed in several previous studies, similar results
can be obtained using other methods.31,47,48 Overall, sensitivities or unidentifiable parameters for particular variables or
quantities of interest can suggest which types of data will be most influential in an expanded data set. Where practical,
examples of extensions include augmentation of ex vivo biomechanical testing to include measurement of the vessel
opening angle, as well as incorporation of in vivo data measuring BP, flow and lumen area prior to sacrifice of the
animal(s). Our model is also based on assumptions of hyperelastic deformation and geometric idealization of the stress-
free reference state (Figure 1B) as a segment of a cylindrical ring; in reality, the vessel wall may exhibit viscoelastic
effects under pressurization and/or deviate from circular arcs in the cut open rings.

5 | CONCLUSIONS

This study develops a data-driven reduced-order nonlinear elastic structural wall model for a healthy and hypertensive
murine LPA. Our methodology provides a systematic reduction of the two layer formulation to a single layer model that
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accurately fits data for both pressure–area dynamics and wall thickness changes, as functions of pressure. Our findings
demonstrate that elastin parameters dominate nonlinear stiffening in the CTL animals while collagen parameters are
much more influential in the hypertensive animals. The reduced order pressure–area relation developed in this study
has the potential for incorporation into 1D cardiovascular network models of coupled fluid–solid dynamics in large pul-
monary arteries. Some possible approaches include direct incorporation and coupling of the pressure–area relation
within the 1D fluids network solver or, alternatively, using the pressure–area relation as a high fidelity model for emu-
lation using simpler empirical models14,21,23 or statistical models. Overall, the techniques and findings presented here
demonstrate the potential for development and systematic reduction of more realistic models of key relations
(e.g., pressure–area) through the integration of data-driven mathematical approaches for ex vivo experiments with
modeling approaches predicting in vivo dynamics in cardiovascular biomechanics.
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APPENDIX A

A.1 | COMPLETE SET OF MODEL PARAMETERS
For convenience, the full set of model parameters, their descriptions, units, designation of parameter type (estimated,
fixed, dependent, or eliminated) and the associated fixed or initial values are summarized in Table A1.

TABLE A1 List of all parameters for the model developed in this study. Each parameter is denoted as estimated (E), fixed (F),

dependent (D), or eliminated (El.). When different values are used for the hypertensive case, values are denoted as c (normotensive), ha for

the HPH-A model and hb for the HPH-B model. Estimated parameters listed with an asterisk (*) are ultimately fixed (during the course of

the model reduction). Note that the model no longer depends on the parameter L when the twist angle Φ is assumed to be zero (see

Equation (3)).

Type Parameters Description Units Role Fixed value Initial value

Geometric Rin Inner radius in Ω0 μm E 100028

Rout Outer radius in Ω0 μm D RinþH N/A

H Vessel wall thickness in Ω0 μm E 1,1:5½ � 	Tdata
1

28

HM Media thickness in Ω0 μm F .63H/.63H/.60H (c/ha/hb)34 N/A

α Opening angle in Ω0 degree F 94.227 (c),26 (ha, hb)

L Axial length in Ω0 μm El. N/A

λz Axial stretch in deformation - F 1.428

Φ Twist angle in deformation - F .0

Media cM Elastic modulus (iso.) kPa E 10

k1M Elastic modulus (aniso.) kPa E 1

k2M Elastic parameter (aniso.) - E .8395

βM Collagen fiber angle degree F 54.45/54.45/56.58 (c/ha/hb)34

Adventitia cA Elastic modulus (iso.) kPa E* 10

k1A Elastic modulus (aniso.) kPa E* .3

k2A Elastic parameter (aniso.) - E* .7115

βA Collagen fiber angle degree F 54.45/54.45/56.58 (c/ha/hb)34

HAIDER ET AL. 17 of 17

 20407947, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3798 by N
es, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [12/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.1002/cnm.3798

	Application and reduction of a nonlinear hyperelastic wall model capturing ex vivo relationships between fluid pressure, ar...
	1  INTRODUCTION
	2  MODELS AND METHODS
	2.1  Deformation of the arterial wall
	2.1.1  Stress-free reference state
	2.1.2  Current configuration

	2.2  Two-layer hyperelastic model
	2.3  Pressure-area relation
	2.4  Ex vivo murine data
	2.5  Model parameters
	2.5.1  CTL animal parameters
	2.5.2  Hypertensive animal parameters

	2.6  Parameter estimation, sensitivity, identifiability, and model reduction

	3  RESULTS
	3.1  Baseline CTL animal model (eight parameters)
	3.2  Reduced CTL animal model (six parameters)
	3.3  Reduced-order CTL and hypertensive animal model (five parameters)
	3.4  Parameter dependencies in reduced-order model (four parameters)

	4  DISCUSSION
	5  CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	Endnote
	REFERENCES
	APPENDIX A
	  COMPLETE SET OF MODEL PARAMETERS



