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Abstract

We reanalyse the quantum damped harmonic oscillator, introducing three less than common
features. These are (i) the use of a continuum model of the reservoir rather than an ensemble of
discrete oscillators, (ii) an exact diagonalisation of the Hamiltonian by adapting a technique pioneered
by Fano, and (iii) the use of the thermofield technique for describing a finite temperature reservoir.
Werecover in this way a number of well-known and some, perhaps, less familiar results. An example
of the latter is an ab initio proof that the oscillator relaxes to the mean-force Gibbs state. We find that
special care is necessary when comparing the damped oscillator with its undamped counterpart as the
former has two distinct natural frequencies, one associated with short time evolution and the other
with longer times.

Preface: an apology

There can surely be no more intensively studied open quantum system than the damped harmonic oscillator.
This makes it all but impossible to do justice to the vast literature on the subject, and authors seeking to write on
this system need to tread carefully and to acknowledge, freely, that much of the relevant literature will be,
unintentionally but inevitably, overlooked. The task is made yet more hazardous by the fact that different
communities in physics have covered similar ground more or less independently. Nevertheless, this special issue
offers the opportunity to reexamine this well-studied system, with the aim of demonstrating some techniques
that should, perhaps, be better known.

1. Introduction

Recent technological advances make it possible to realise simple mechanical devices in the microscopic and
nanoscopic regimes, the properties of which are determined by quantum effects [1]. The existence of these
represents a remarkable opportunity for fundamental studies of light—matter interactions [2] and also the
potential for practical application to quantum communications and information processing [3]. Yet they
present also a challenge to existing methods of analysis, many of which were developed to treat more rapidly
oscillating systems with weaker couplings. The strong coupling regime brings with it some surprises, such as the
possibility that quantum entanglement might persist in the high-temperature limit [4].

The quantum theory of machines is built, to a large extent on the theory of oscillators and strongly coupled
oscillators, which are coupled to one or more environments, each of which is at a characteristic temperature [5-7].
Thebehaviour of these quantum systems is governed not simply by average properties but also fluctuations, and
has been informed by the development of fluctuation theorems for quantum open systems [8, 9]. Such
considerations underpin developments in the rapidly advancing field of quantum thermodynamics [10, 11].

The coupling to the environment needs to be handled with some care because of the possibility of quantum
coherence and the development of entanglement between the system of interest and its environment, with the
result that apparently unphysical behaviours may emerge [12]. The requirement to treat the coupling to the
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reservoirs with care provides the incentive to return to the problem of a single strongly-damped oscillator and to
treat this model exactly, using the techniques identified in the abstract.

There exist at present very many mathematically and physically acceptable methods for treating damped
harmonic oscillators. Common to most, if not all, of these developments is the treatment of the surrounding
environment, or reservoir, as an ensemble of harmonic oscillators with a broad spectrum of oscillator
frequencies. It is the dephasing brought about by this spread of frequencies that introduces the damping, or
irreversibility, in the oscillator dynamics. The environmental harmonic oscillators may be physical oscillators or
vibration modes, as in the Caldeira-Leggett model [ 13, 14], or the modes of the quantised electromagnetic field,
as in many quantum optics applications [15-29].

For weakly damped oscillators, such as those encountered regularly in quantum optics, there are master
equations and the corresponding Heisenberg-picture operator Langevin equations. Even in this weakly damped
regime, the dissipative dynamics can be challenging with a rich structure of asymptotic states [30, 31]. For more
strongly damped systems memory effects become important and there is a departure from Markovian evolution
[32—-39]. Yet stronger coupling requires the inclusion of counter-rotating interactions, which do not conserve
the number of quanta. Among the many and varied approaches adopted are the aforementioned Schrédinger-
picture master equations for the oscillator density operator [40, 41] and Heisenberg-Langevin operator
equations for oscillator observables driven by environmental fluctuations [42—44]. Also widely used are
Feynman-Vernon path integral and related techniques [14, 45—49]. For finite temperatures the environmental
oscillators are considered to be prepared initially in thermal states with Bose—Einstein statistics appropriate to
the reservoir temperature. This leads, in the Schrodinger picture, to the reservoir acting both as a source as well
as a sink of quanta. The techniques for treating this include a product of thermal density operators for the
reservoir modes [16, 18,20-22], imaginary time methods and thermal Green functions [50—-52] and also
thermofield dynamics [53—58]. In addition to these methods, there has also been work done on diagonalising the
oscillator-reservoir Hamiltonian in which the reservoir is formed from a collection of harmonic oscillators
[60, 61]. Our analysis develops and expands upon material in an earlier preprint [62] (see also [63—66]),which
treats the environment as a continuum. It is complementary to that adopted by Philbin who has tackled this
problem of the oscillator evolution using Green’s functions [67]. We hope that the combination of his work and
ours will provide a more complete understanding.

2.Background

The harmonic oscillator has a special place in physics as one of the simplest and most widely employed of
physical models. The reasons for its ubiquity, no doubt, are its simplicity and the fact that it is readily analysed. In
the quantum domain, the harmonic oscillator is barely more difficult to treat than its classical counterpart and
was one of the first dynamical systems to which Schrodinger applied his equation [68]. Today, both the classical
and quantum forms appear in elementary courses on classical and quantum mechanics.

The damped harmonic oscillator loses energy as a result of coupling to the surrounding environment. In the
classical domain it often suffices to describe this in terms of a simple damping coefficient, v, and an associated
stochastic or Langevin force [69], F(t), which models the effect of environmental fluctuations on the oscillator
[70-74]. The dynamics is described by a simple linear differential equation of the form

x+7x+w3x=m, 1)
m
where m is the mass of the oscillating particle. There is no requirement for detailed knowledge of the fluctuating
force, which may be considered to have a very short correlation time with a magnitude determined by the
requirements of thermodynamic equilibrium.

The damped quantum harmonic oscillator requires that explicit account be taken of the quantum nature of the
environmental degrees of freedom [ 15], which are most simply described by an ensemble of harmonic oscillators
[16]. If the damping is very weak, so that v < wy, then we can neglect rapidly oscillating terms in the coupling
between the oscillator and the environmental oscillators by making the rotating wave approximation, which
corresponds to enforcing the conservation of the total number of vibrational quanta, and then the Born and Markov
approximations associated with weak coupling and loss of memory in the reservoir [17]. This leads to the master
equations and Heisenberg-Langevin equations that are ubiquitous, most especially, in quantum optics [17-29].

If the coupling is somewhat stronger then it may not be possible to make the rotating wave approximation
and we then need to retain in the Hamiltonian terms that can create or annihilate a pair of quanta, one in the
damped oscillator and, at the same time, one in the environment. This leads to the Caldeira-Leggett model
[13, 14,60, 67,75-77], which we describe in the following section, and which has been applied to study a wide
variety of quantum open systems [25, 29]. A variant on the model has been applied to the quantum theory of
light in dielectric [63, 64] and magneto-dielectric media [78—81]. An important complication that seems to be an
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Figure 1. Representation of a single harmonic oscillator (in red) coupled harmonically to a bath of oscillators (in blue).

inevitable consequence working in this strong-coupling regime is the failure of the Markov approximation;
attempts to enforce this approximation lead to a master equation that is unphysical in that there exist initial
states for which the dynamics leads to negative probabilities [25, 82—85]. Of course non-Markovian behaviour
can also emerge in weakly damped systems in which the rotating-wave approximation is made. It is possible to
derive a master equation but the resulting equation is one that has within it non-trivial time-dependent
coefficients [40, 60]. This time-dependence is a clear signature of the non-Markovian nature of the associated
evolution. It seems that this non-Markovian character is an inevitable feature of the strongly-damped quantum
harmonic oscillator.

3. Hamiltonian for the strongly-damped harmonic oscillator

Consider a harmonic oscillator that is strongly coupled to its environment, ultimately to be treated as a
thermodynamic reservoir, modelled as large collection of oscillators, with a range of frequencies, through their
respective positions as depicted in figure 1. We write the Hamiltonian for the combined oscillator-reservoir
system in the form [13, 60]
N ho
A= 4+ —mQix* + > 4 —muwi Aﬁ -> muwi)\uﬁuﬁ. 2)
2m 2 o\ 2my, 2 P
If we complete the square we can rewrite this in a minimal-coupling form to arrive at the alternative form:

A2

A ﬁz 1 242 p,u 1 2/n 2\2
A=+ —mwlt?+ + —myuwi (X, — A\, (3)
o T 3o %: om, | 2 1 X 1
where
my,
wh =08 — Z ! wi )\i. 4)
Lom

Each term in our Hamiltonian (3) is strictly positive only if this quantity is positive, corresponding to a real
frequency wy. If it is negative then the second term is also negative and the Hamiltonian is not bounded from
below and hence not allowed physically. Hence the positivity of the Hamiltonian places a physical restriction on
the strength of the coupling

i
b
e

m
S ST PY 5)
I
while wy can take any positive value.*

4 In the literature the change from the Hamiltonian (2) to (3) is often described as adding a counter term [25, 42]. We find no need to speak of
adding counter terms as both of the natural frequencies wy and §2, play a role in the dynamics.
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At this point it is necessary to pause and consider the fact that our damped harmonic oscillator seems to have
two possible natural frequencies, {2y and wy. These appear as the potential energy in our two forms of the
Hamiltonian given in equations (2) and (3). It is reasonable, therefore, to ask which of these (if either)
corresponds to the ‘true’ natural frequency. In order to address this important point, we step aside from our
principal objective of diagonalizing the Hamiltonian to derive the Heisenberg-Langevin equation for the
oscillator position operator.

3.1. Heisenberg-Langevin equation: a tale of two frequencies

We find that both the frequencies wy and €2 have roles to play in the dynamics of the oscillator and that, in this
sense, both fulfil the roles of natural frequency of the damped oscillator, albeit in different time domains. To
demonstrate this we can derive from our Hamiltonian a Heisenberg-Langevin equation of motion for the
position operator of our oscillator. The details are given in appendix A. We find

N

§0 + [ w— O+ (©F — KO0 + 5(020) = T2, ©)
0 m
where r(%) is the memory kernel:
OED> %wi A2 cos(wyt) @
"
and F (¢) is the Langevin force:
R 5 R 13# ((ON
F@t) = Wu)‘u %, (0)cos(w,t) + sin(w,t) |- (8)
my,wy,

Note that this equation of motion is (essentially) exact. In order to interpret the various terms it suffices to
consider the expectation value of this operator equation:

(@) + jg Kt — (&) dt + (2 — k(0)(R(D) + k() (£(0)) =0, )
and note that we can also write this in the form
(X)) + j;t k(t — ) (&) dE + Wi (x@®) + k(1) (X(0)) = 0. (10)

The first of these equations is written in terms of the frequency {2, and the second in terms of wy. It remains to
determine the physical role of each of these, which we can do by considering very short and longer time scales.

3.1.1. Ultra-short time scales
To better appreciate what happens at very short times, we first perform integration by parts on the expectation
value of equation (6) and write this in the form

. t
FO) + [ k= O + R EO) =0 (11)
For a very short time, ¢z, this becomes

(X(6t)) + QR (S)) + O(6t%) = 0. 12)

The integral term in equation (11) is of order &#* by virtue of equation (7) as for short times f is of order &t. The
combination of equation (12) and X = p/m, which is always true, leads to the ultra-short time behaviour

2oy = o) + L,

(p(60) = (p(0)) — mQ(%(0)) 6. (13)

This is the short-time behaviour of a harmonic oscillator of frequency €. It is clear that this is the frequency of
the oscillator in the non-Markovian regime.

3.1.2. Longer time scales

Our first task is to firm up what we mean by longer time. To do so we note that the function x(f) involves a
summation of oscillating cosines of different frequencies, one for each environment oscillator, and that these
will dephase, causing () to decay. We define the longer-time regime as that for which we can approximate
(#) & 0. In this regime, our equation of motion (10) becomes

4
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&) + [ = ) A+ W (x (1) = O. (14)

This equation retains the possibility of non-Markovian effects in the (second) damping term but it is clear that
the natural frequency of the oscillator in this time regime is w, and not €2. Thus the question of whether our
Hamiltonian applies in the over-damped regime depends on the relationship between the damping and wj and
not €.

We are now in a position to address the issue of whether our model Hamiltonian can be applied in the over-
damped regime. To enter this regime, we need to reduce the natural frequency of the oscillator so that it is below
the damping rate. Itis clear from the inequality (5) that there is always a lower bound below which 2, cannot be
reduced. However there is no such bound on wy and, indeed, we can set w, = 0" without invalidating our model.
Asitis wy and not ) that is the natural frequency of the oscillator beyond the ultra-short time regime, it is clear
that we can use our model to describe an oscillator in the strongly over-damped regime.

A simple example might help to illustrate the ideas presented above. We consider the simplest case of Ohmic
damping, or Ohmic friction [29]. To this end, we introduce the spectral density

J(W) = gz Ml N6 (@ — w,) (15)
m
so that
Kk(t) = ifoo J (W) cos(wt) dw, (16)
am Jo w

and go to the continuum limit with
J(w) = mywe ™/, (17)

Note that it is essential to include a frequency cut-off in this case as, without this, we cannot satisfy the inequality
(5). We find that

2 2
K (t) = 2w #(0) = e
242
Tl + wit 0

(18)

This also demonstrates the necessity of a cut-off frequency.

Recall that the ultra-short time regime corresponds to times for which we retain the term (¢)(x(0)) in (9).
This means times for which t < w;l, which fits with the familiar idea that the time needs to be short compared
with the inverse bandwidth of the reservoir. As there needs to be, in the exact theory, a short-time non-
Markovian regime, we need the cut-off frequency in our bath coupling.

For longer times, for which (f) & 0, our equation for the expectation value of the position reduces to (14). If
the coupling to the reservoir is sufficiently weak that the expectation value (x) does not vary significantly on the
timescale w_ !, then we can make the approximation

ft K (t — t’)(a’c(t’))dt’z(a&(t))ft Kt — tydt!
0 0
— 3 (x(0). (19)

It then follows that our equation for the expectation value of the position becomes (in this Markovian, longer-
time regime)

(E®) + 7 (E®) + wilx®) =0, (20)
which is the familiar equation for a damped harmonic oscillator. Note however, that it is the frequency wy and
not €2 that appears. We enter the over-damped regime when wy < /2. The constraints on the natural
frequencies in (4) correspond in this Ohmic damping example to

ﬂ, Q1)

wi>0 and O > k(0) =
We see that there is no lower bound on wj (although it must be real and greater than zero) but there is a bound on
Qo: it must exceed the geometric mean of the damping rate vy and the cut-off frequency w, multiplied by 2 /7.
Thus we see again that we cannot allow the cut-off frequency to tend to infinity. Similarly the frequency 2 will
lie somewhere between «yand the rather larger w, so we cannot have €2, less than v. What saves the model in the
strongly damped regime is the fact that it is wy rather than 2, that corresponds to the natural frequency of the
damped oscillator.

As a final note in this section, we note that the presence of at least two candidate natural frequencies is all but
inevitable for a strongly damped oscillator, as such system will, in general, always experience a non-Markovian
short-time evolution. As we shall see, the existence of these two frequencies also complicates the question of the
amount of energy associated with the oscillator during its evolution, but especially in its steady state.

5
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3.2. Continuum reservoir
Our first, perhaps, less familiar feature is to replace the discrete reservoir of oscillators by a continuum. To
proceed, we first rewrite our Hamiltonian in terms of the familiar annihilation and creation operators:

P m) f4 ip
27 on

A m,, w, 113
b= |22 %, + —£ 22
! 27 (x# my,wy, 22)

In terms of these operators our Hamiltonian, equation (2), becomes

N R At A fl/ R R N ~F
H = ﬁQ()aTﬂ + Z fi{"}/tb’u, b/L + Z EVu(a + aT)(b,u + b/t,) (23)
1 1
when unimportant constant shifts in the ground-state energies are removed and
m,w
‘/u = - L Wy >\/1,- (24)
T’I’IQO

When written in terms of this quantity, our positivity condition (5) becomes
V2
Qo > > L. (25)
ow WN

At this stage we can seek to diagonalise the full Hamiltonian to find, in effect, the normal modes of the oscillator
coupled to the reservoir. This is the approach taken by Haake and Reibold and by Ford et al [60, 61]. The
dynamics are then reminiscent of the Bixon-Jortner model, with recurrences occurring on a timescale given by
the inverse of the frequency spacing of the reservoir oscillators [ 17, 86—90], as is characteristic of periodic and
almost periodic functions [91].”

We find it both simpler and also more powerful to first recast our model in terms of a continuum description
of the reservoir. To this end we first write, in terms of the spectral density J(w), equation (15),

1

— Yo muwi NS — w,) = L](u) (26)

V23(w) =
( ) 0 ’/TmQ()

and introduce the continuum annihilation and creation operators, b(w)and b f (w), satisfying the commutation
relations

[b(w), b (W] = §(w — ). 27)

In the continuum limit our Hamiltonian becomes [64]

0= /0% + f " dw 2wh ()b (w)
0

00 73 A N
+ [T dw Zv@i@+ i @ + bl (28)
0 2
and the positivity condition is then
0 2
Q> f PRAC) (29)
0 w
or, equivalently,
? s 2 f ROl (30)
mm Jo w

Our Hamiltonian is quadratic in the annihilation and creation operators for the oscillator and the reservoir and
hence leads to linear coupled equations of motion for these operators. We could seek to solve these equations of
motion and this would lead to an operator Heisenberg-Langevin equation similar to that derived above and in a
number of earlier texts [42—44]. Here we adopt the different approach of diagonalising the Hamiltonian.

3.3. Hamiltonian diagonalisation

Our second less familiar element is the exact diagonalisation of the oscillator-reservoir Hamiltonian. We shall
find that this can be achieved with greater generality than is possible for the model with discrete reservoir
oscillators simply because there is greater freedom in the evaluation of integrals than summations. Our task is to

Asis often the case in science, the Bixon-Jortner model itself had an anticipation in the early work of Fano [92]. We are grateful to Jan Petter
Hansen for bringing Fano’s paper to our attention.
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diagonalise the Hamiltonian by finding a complete set of eigenoperators, B(w) and their conjugates B’ (w) that
satisfy the operator equations

[B(w), A= /wB(w)
[B'(w), H] = —/wB (W) (31)

for all positive frequencies w. These eigenoperators are complete if, in addition to these they also satisfy the
condition

[B(w), B'(Wh] = 6(w — ). (32)

These operator equations are the natural analogues of the more familiar eigenvalue and completeness conditions
for the eigenstates of a Hamiltonian [17, 93]. In analogy with the eigenvalue problem, we expand each of the
eigenoperators as a superposition of a complete set of operators:

Bw) = a(w)d + fw)a" + f;m dw' [y (w, Wb + 8w, )b (W], (33)

and then use the eigenoperator equations and completeness condition to determine the coefficients in this
expansion. The calculation is a little involved but the main points are summarised in appendix B.

We can express any of the annihilation and creation operators for the oscillator or the reservoir in terms of
our eigenoperators. To do this we write the desired operator as a superposition of all the B(w)and B (w)
operators and then use the commutation relations to extract the coefficients in this expansion. For the oscillator
operators we find

i= [ do@ @B - BB @)
0

4t — f ¥ dw(aw)B W) — BXw)Bw)). (34)
0

The requirement that these operators satisfy the familiar boson commutation relation, [4, 4] = 1, providesa
constraint on the functions a(w) and G(w) in the form
o0 o0 490(4}
J detla@r — 18@P1 = [ deta)P

(2 + w)?

where we have used (B10). It is interesting to note that the correctness of this may be verified explicitly by
contour integration and that the proof makes explicit use of the positivity condition (29) [64].

The integrand in (35) is clearly positive (or zero) for all frequencies and is also normalized, and hence it has
the mathematical form of a frequency probability distribution:

=1, (35)

49()&)

. 36
(o + w)? (0

T(w) = (W)

A number of further constraints on this quantity emerge naturally from thinking of it as a probability
distribution and from our diagonalization. We note that the same concept has been described before:
Georgievskii and Pollak introduce an effective density of states for the diagonalized Caldeira-Leggett model [94],
while Ratchov et al have expressed the properties of the damped harmonic oscillator in terms of such a
probability density [95], see also [96].

3.4. Physical constraints

We leave until the next section a discussion of the physical interpretation of the probability density 7(w) but
consider here what can be inferred from the fact that it has the mathematical properties of a probability
distribution. To this end let us denote the average value of a function of frequency for this distribution by

(e = [ " duf ()T (W). (37)

we note that |a(w)|? is finite for all wand it follows, therefore, from (36) that the average value ((w ™)) is finite.
It follows from the eigenoperator equations (3 1) that we can write the Hamiltonian in the form

f= f " dw Jw B @)BW) + G, (38)
0

where Cis an unimportant constant (even though it is formally divergent). We can substitute into this
Hamiltonian our expression for the eigenoperators (33). We require that the coefficients of 4> and @2 should
vanish so that
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00 f w—Q Y TWw), 5 2 _
j; dw w]a(w)| (T—l—@o) fo dw—4QO (w Q) =0, (39)

where we have again used (B10). This implies that
((w?) = Q. (40)

The fact that the square of the mean value cannot exceed the mean value of the square for any probability
distribution leads us to deduce that

({w)) < Qo (41)
Finally we can apply the Cauchy—Schwartz inequality to provide a lower bound on the value of ({(w™")):

(W) (W) =1

(W) > —

> o (42)

These inequalities are useful in determining the properties of the ground state.

4. Ground-state

It is immediately clear from the form of the Hamiltonian (28) that the ground state of the oscillator is not that of
the undamped oscillator, that is the state annihilated by 4. To see this we need only note that the interaction term
ath’ (w) acts on the combined ground state of the non-interacting oscillator and reservoir, adding a quantum to
each. This suggests that the true ground state should be a superposition of states with varying numbers of quanta
in both the oscillator and the reservoir and hence an entangled state. This situation is reminiscent of the ground
state of an atom in quantum electrodynamics, which is dressed by virtual photons [97]. The dressing of the
ground-state atom is responsible for a number of important effects including the Casimir—Polder interaction
[98-100] and the form of the polarizability of the atom [101, 102]. It is reasonable to expect that it will be
similarly significant for our strongly damped oscillator.

The true ground state, which we denote by the ket |0), is the zero-eigenvalue eigenstate of all the annihilation
operators ﬁ(w)z

B(w)|o) =0 vV ow. (43)

The ground-state properties of the oscillator in this pure state are described by a mixed state density operator
obtained by tracing out the environmental degrees of freedom:

ﬁOsc = TrEnv(|0> <0| ) (44)
The most straightforward way to determine the form of this mixed state is to use the characteristic function [17]:

X (&) = Tr[pexp(éa’ — £*a)]
= (0] exp (&' — £¥a)|0). (45)

This function provides a complete description of the state and all of its statistical properties. A brief summary of
the principal properties of this characteristic function is given in appendix C. To evaluate the characteristic
function we express @ and a" in terms of the eigenoperators®

X () = (0] exp { j; T dwl(Ea + EB)B W) — (¥ + 89 BW)] } 0)
= exp(—% fo ” dwlgaw) + f*ﬂ(u)F). (46)

This simple form, Gaussian in &, is characteristic of a squeezed thermal state. We can rewrite this characteristic
function in terms of our probability density in the form

6 We make use of the operator ordering theorem [17]
. N N N 1 ~ &
exp(A + B) = exp(A)exp(B)exp (75 [A, B] ),

which holds if the two operators A and B both commute with their commutator [A, B].
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_ B W Qo
x(f)—eXp[ Zfo dw w(w)(QOEﬁ w&)]

= exp [—%(«Qﬁﬁf + ((w™) Qo 5?)], (47)

0

where &, and &; are the real and imaginary parts of £ respectively. We note, in passing, that the quadrature
operators for the oscillator (familiar from quantum optics [17]) have unequal uncertainties:

A(a + ﬁ*) {(w™)

V2 2
—i@—ah)_ [{{w)
A( V2 ) N2 “9)

The product of these two exceeds %, asit must, by virtue of the Cauchy—Schwartz inequality (42).

4.1. Ground-state energy
The ground-state energy of the undamped harmonic oscillator is simply %ﬁwo, where wy is the natural angular

frequency of the oscillator. For an underdamped oscillator, the oscillation frequencyis \/w§ — 72/4, which is
less than the frequency of the undamped oscillator and this suggests, perhaps, that the ground-state energy is
similarly reduced [103]. Although plausible, this would clearly run into difficulties in the over-damped regime in
which this characteristic frequency becomes imaginary. We shall see that the ground-state energy of the
oscillator, however we define it, increases as a consequence of the damping.

We have established that in the ground state, the reduced state of the oscillator is Gaussian in position and
momentum and, as such, is completely determined by the first and second moments of the position and
momentum. These moments are

(0]%10) = 0
(0lplo) = 0
)
folsp0) = 4
(oipi0) = 2
(01p% + p&I0) = 0. (49)

Expressions of this form were derived previously by Grabert and Weiss in their theory of the damped harmonic
oscillator [42]. We note that the frequency of the undamped oscillator, be it wy or €2y, makes no explicit
appearance in these expectation values, but the averages ((w)) and ((w™')) will depend on these frequencies.

We have seen that the quantum damped harmonic oscillator is characterised by two natural frequencies, wy
and {2, and it is natural to define the energy of the oscillator in terms of one or other of these:

= 24 L, (50)
© oam 2 70

where fo = wj or £2y. We shall consider a third possible natural frequency, wgiag, and the associated energy below.
The ground-state expectation values, equation (49), mean that we can write the expectation value of the energy
in the form

. 7
(O 10) = i(M + <<w1>>fo)- 6D
4 f
Recall that the Cauchy—Schwartz inequality requires that
(oD 21 = (@) > —— 52

{{w))

and it follows that the ground-state energy is bounded by

N oy [ {((w)) fo
<0|Hf0|0> P T(To + ) ) (53)
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The global minimum of this expression occurs for ((w)) = f, and hence
(OIFL410) > 4, (54)
for any choice of frequency in the expression for the oscillator energy:
(011 j0) > 0%
(0|H,,|0) > %ﬁwo. (55)

The fact that both of these exceed the ground-state energy of the corresponding undamped oscillator is a
reflection of the fact that there is an energy cost to be paid in order to decouple the oscillator from its
environment [12]. This increase conflicts, however, with the reduction in ground-state energy that has
previously been reported [103]. We note, further, that the mean kinetic energy and potential energy for the
oscillator alone do not have the same value and that this is in marked contrast to the ground state of the
undamped oscillator.

4.2. Diagonal form of the oscillator ground state

We can diagonalise the density operator for the oscillator alone, p,., by means of a squeezing transformation
[17] or, equivalently, introducing a new pair of annihilation and creation operators corresponding to a third
candidate natural oscillation frequency, Wgjag:

mwg; D
c= diag X+ p
27 mwdiag
mwg; D
G Y S | (56)
27 MWdiag

To complete the diagonalisation we need only choose wgi,g such that the expectation values of ¢2 and £2 are
Zero:

Mwa: N2
(0le20y = 208 o2 - oy — g
2fi mzwdiag

{{w)

= Wdiag = . (57)

{((w™)

This frequency is the geometric mean of the two frequencies ({w)) and ((w™')) "' and it is, by virtue of (41) and
(42), less than €.
The mean number of c-quanta in the oscillator ground-state is

i, = (0]eel0) = %(\/<<w>><<w*>> —, (58)

which exceeds 0, as it should, by virtue of (42). When written in terms of the c-quanta, the steady-state density
operator takes the form of a thermal Bose—Einstein state, which we can write in the form

1 i Y©
Deyee = < . 59)
Pose ﬁc—&-l(ﬁc—i—l) (

We may interpret this state as a thermal state for the oscillator at the shifted frequency w ;g and at an effective
‘temperature’

mdiag

TR ) ©0

Tee
We should note, however, that the true temperature in the ground-state is zero and that this quantity and the
frequency wgj,g are at most only parameters with which to quantify the state of the oscillator and its entanglement
with the environment. In particular, the von-Neumann entropy associated with the steady state of the oscillator
is

S(Osc) = (i, + DIn(#, + 1) — A In7i. (61)

By virtue of the Araki-Lieb inequality [104—106] and the fact that the full state is pure, this means that this is also
the total entropy of the environment:

10
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S(Env) = S(Osc) (62)

and that the quantum mutual information [106], or index of correlation [107], between the oscillator and the
environment is

S(Osc: Env) = S(Env) 4+ S(Osc) — S(Osc, Env) = 25(Osc). (63)

5. Physical meaning of w(w)

We have seen that the physical properties of the oscillator ground state may readily be expressed in terms of
moments of the frequency given the probability distribution 7(w). Here we present the case for identifying this
probability density with the contribution from the dressed modes, associated with the eigenoperators B(w), to
the state of the oscillator. It is, in essence, in the spectrum of the true ground-state (continuum) modes
contributing to the oscillator state. We present three arguments to support this interpretation.

Our first justification arises from the form of the expectation values (49). We know that the ground state of a
harmonic oscillator of frequency whas

o N
(x >_ 2mw
(57) =2 (64)

If we treat the state of the oscillator as a mixture of oscillators of different frequencies, each in its ground state,
and contribution with weight 7(w) then the resulting average mean-square values will be

"2> — 00 dw 71'((4}) 4 ﬁ<<w_1>>

(@) = -
0 2mw 2m
PO e fimw  fim({w))
(%)= fo dw m(w) i (65)

which correspond to those obtained above. Note that the requirement that (%) must be finite imposes the
condition that at zero frequency

m(0) = 0. (66)
Our second point arises from the form of the Hamiltonian for the oscillator
Y}
A 1
Hg, = £ + —mQ2R% (67)
2m 2

We can, by virtue of (40), write this as a combination of potentials corresponding to different frequencies but
weighted by m(w):

. | o0
Hpy=— + —mf dw T(w)w?k?
2m 2 0

_r 1 2\ 2
=1+ m((w?))E2 (68)
2m 2

Finally we note that the effective mean energy of the oscillator, which is associated with the diagonal form of
the density operator (59) is

_ 1 1 b 1 1
(nc + E)ﬁwdiag = Eﬁj:) dw T(W)w = 5/2/ ((w)) < Eﬁﬂo’ (69)

which neatly combines the characteristic ground state energies of the dressed oscillators, weighted by the
probability distribution 7(w). We note that this mean energy is less than %/z“ Qo by virtue of equation (41), It is,
however, always positive irrespective of whether the oscillator evolution is under- or over-damped. The general
question of whether the ground-state energy of the damped oscillator is greater or less than that of the undamped
oscillator is difficult to answer definitively as there is no unique form in the damped oscillator Hamiltonian for
the free or undamped oscillator frequency.

The combination of these three features (the expectation values (£2) and (p?), the form of the oscillator
Hamiltonian and the effective mean energy) leads us to interpret 7(w) as the proportion of the corresponding
dressed oscillators contributing to the properties of the damped oscillator. We emphasise that the mathematical
results obtained in the preceding section do not require us to adopt this interpretation of m(w) but we find it
helpful to do so.

11
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6. Equilibrium state at finite temperature

We require the forms of the steady state and the dynamics for our damped harmonic oscillator in an
environment at finite temperature. In evaluating this, we show that the equilibrium state is precisely the mean-
force Gibbs state found by tracing out the environmental degrees of freedom from the global equilibrium Gibbs
state. The analysis presents a problem as we cannot assign a thermal state density operator in the continuum
limit model of the environment. We could take a step back and and return to a description in terms of discrete
reservoir modes, but it is more natural to adopt the thermofield technique devised for the treatment of problems
in finite temperature quantum field theory [53—58]. This is our third less familiar element, and as thermofields
will be a novelty for much of intended readership, we present a brief account of the thermofield technique in D.

Itis essential to realise, however, that we have not as yet established that this equilibrium state is also the
steady state of the strongly damped oscillator. We turn to this in the following section.

We can determine the properties of the anticipated steady state by following the same method as employed
to study the ground state. The key idea is to replace the vacuum state |0) of the coupled system, see equation (43)
with the thermal vacuum state in a doubled space, which is related to the true vacuum state in the doubled space,
|0, 0), by a unitary transformation:

10(3)) = $(01wD10, 0)
= exp [ o 08 B @B @) — BBy |10, 0) (70)
This state has the same single reservoir expectation values as the thermal state and may therefore be used in its
place. Ifthe coupled oscillator-reservoir system relaxes to the thermal state of the coupled system (and we have
yet to establish this) then we can use this thermal vacuum state.

The corresponding thermal steady state of the harmonic oscillator, the mean force Gibbs state [108, 109],
will be a mixed state density operator obtained by tracing over the environment:

Pose,r = Treav[0(3)) (O(D) 1. (71)

As with the zero temperature ground state, we can determine the form of this using the characteristic function:

1 (©) = (0] exp (" — £0)10(5)
= o@lewp { [ dwléa + EDE @) — € + g39B@I }0(3)). (72)

We can transform this into a vacuum expectation value by applying a unitary transformation to the annihilation
and creation operators B(w) and B’ (w):

B(w) — B(w)cosh0(3, w) + ﬁf(w)sinhQ(ﬁ, w)
BY(w) — B' (w)cosh (8, w) + B(w)sinh (8, w). (73)

Applying this transformation to our characteristic function replaces (72) by an equivalent vacuum expectation
value. Evaluating this gives

xr(€) = exp(—% fdw |éa(w) + EFB(w)[*[cosh?H(B3, w) + sinh?6(S3, w)])

:exp(—% f dw |€a(w) + EB(W)P coth(ﬁﬁw/Z)). (74)

As with the zero-temperature steady state, this is a simple Gaussian in £ and, again, is characteristic of a squeezed
thermal state. When expressed in terms of our probability density, m(w), we find:

Xr(€) = exp[—% f dw w(w)coth(ﬁm/m(gioéf + %E?)]

= exp [_l( <<w COthéﬁﬁlU/z)» 53 + QO<<UJ_1 COth(ﬁm/Z)»g’z) ] (75)
0

We note that this has the same general form as the characteristic function for the ground state, equation (47), but
with the probability density m(w) replaced by a thermally-weighted density 7 (w) coth(G7w/2). With this
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substitution, we can simply modify the properties of the ground state so that, for example, the lowest moments
of the position and momentum operators in this state become

(X)r=0
(P)r =
(£ = 7 {{w™ coth(B/w/2)))
2m
)y = fim ({w cotlzl(ﬁfz’w/2)>>
(%P + pR)r = 0. (76)

We have seen that the oscillator is characterised by (at least) two different natural frequencies, {29 and wy. In
terms of these, the mean energy of the oscillator alone is

P m®\ 7y ((wcoth(5w/2)))
2m 2 . 4 fo

+ ((w™ coth(B/aw/ 2)>>fo)> (77)

where fo = wp or €. This is the natural generalisation of the ground-state energy of the oscillator given in
equation (51)

Itis interesting to pause at this point and to consider the behaviour of the oscillator kinetic and potential
energies in the high temperature limit. For a weakly damped oscillator, we would expect both of these quantities
to approach %kB T, the value suggested by the equipartition of energy. To check this, we need only note thatin
the high temperature limit

2 2kg T
coth(flw/2) » — = —. 78
(Blww/2) e e (78)
It follows that the high temperature limits of the kinetic and potential energies are, respectively:
<ﬁ> _kT
2m [ 2
mfy %2 ks T
0 B 2 _2
= — w9)). 79
< ) = 79

The kinetic energy of the oscillator tends to the expected high-temperature value, but the potential energy does
not, and requires an explanation. In pursuit of this, we note that the Cauchy—Schwartz inequality requires that
(W) {w ™)) = 1and, as ((w?)) = QF, it follows that Q3 ((w=2)) > 1,50 that the potential energy, when
expressed in terms of €2, exceeds that assigned by equipartition. The natural way to understand this is that the
oscillator is strongly rather than weakly coupled to its environment and the excess thermal energy has its origin
in the interaction energy with the environment. The issue is less clear, however, if we express the potential energy
in terms of wy. We shall see below that in the limit of weak damping, when €2, and wjy tend to a common value,
the probability distribution 7(w) becomes sharply peaked around w = €2 so that the equipartition of energy for
the potential energy is restored.

7. Oscillator dynamics

It remains to consider the evolution of the oscillator towards equilibrium. This will be important in practical
applications of the theory but also for a fundamental reason; we have obtained equilibrium states at zero and at
finite temperature, but have not as yet proven that the dynamics of the oscillator causes it to evolve towards this
state. Establishing this, without approximation, is a principal aim of this section.

The exact diagonalisation of the Hamiltonian makes it straightforward to evaluate the time-evolution of any
desired property of the oscillator. All that we need do is to express the desired observable in terms of the
eigenoperators, B(w)and B’ (w) and then use the time evolution of these operators, the form of which is an
elementary consequence of the fact that they are energy eigenoperators:

B(w, t) = B(w, 0)e~ ™!
Bi(w, ) = B (w, 0)e'. (80)
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In particular, we can determine the time-evolution of the annihilation operator for the oscillator in this way:

at) = j;oo dw[a*(w)B(w, 0)e ™" — B(w)B' (w, 0)e]
= f‘OC dw{ a*(w)e—iut[a(w)d(o) 4 ﬂ(w)ﬁT(O)
0

+ [T d(w, B, 0) + 8, B W, )
0

— Bw)e [ak(w)aT(0) + FH(w)a(0)

+ f - dw' (v (w, WNB (W, 0) + 8w, Wb (W, 0)] } (81)
0

This may be used, together with the initial state of the oscillator and the environment, to evaluate the expectation
value of any desired property. Note that we have chosen the initial state to be one in which the oscillator and the
reservoir are uncorrelated. We allow the oscillator to be prepared in any chosen state, but the reservoirisin a
thermal state, which we describe using a thermal vacuum state for the reservoir degrees of freedom, as given in
equation (D11). As the environment is in a stationary state, so that (5 (w, 0)) = 0 = (l;T (w, 0)), the expectation
values of the position and momentum operators take a pleasingly simple form:

(R(®)) = ({cos(wn))) (£(0)) + %((w‘lsin(wt»} (p(0))
(p(1)) = ((cos(wt))) (p(0)) — m((wsin(wt))) (£(0)), (82)

where the double angle brackets denote, as before, averages over our probability distribution 7(w) as in (37). The
generality of this evolution follows simply from the linearity of the dynamics and has been noted before, in
particular by Haake and Reibold in their treatment of an oscillator coupled to a quasi-continuum of oscillators
[60]. The form of these equations adds further support to our interpretation of m(w) as a frequency probability
distribution for the damped oscillator, as they may be viewed as the evolution of an undamped oscillator with a
frequency waveraged using this probability distribution. The dissipation arises simply from a dephasing
amongst the different frequency components.

The evolution of the mean position and momentum, as given in (82), has the necessary short-time form of
that for an undamped oscillator

(%(56)) = (£(0)) + @:’f» 6t
(p60) = (p(0)) — mQ{(2(0)) 61, (83)

where we have used the identity ( (w?)) = Q2. The effects of the coupling to the environment enter at order &’
and this is an indication of the essentially non-Markovian nature of the strongly-damped oscillator. Our primary
interest is in strongly damped oscillators and so we should note that (82) includes the possibilities of both
critically-damped and over-damped evolution. The equations contain, moreover, a simple criterion for these,
which we may express in terms of our probability distribution. The motion will be oscillatory if { { cos(wt))) has
stationary points at times other than at t = 0. Alternatively, we may state that the motion is under-damped if the
derivative of this quantity, that is ({w sin(wt))), is zero for any time other than t = 0. Ifit is zero only at t = 0 then
the motion is critically-damped or over-damped. We shall find, however, that an alternative criterion is more
useful in general: that the motion is over-damped if the characteristic evolution rates are all positive with no
imaginary parts. For the classic damped oscillator, familiar from mechanics, these criteria are equivalent.

7.1. Steady state

Our expression for the evolved annihilation operator (81), together with the corresponding one for the creation
operator provide a full description of the oscillator dynamics. This is true for any initial state of the oscillator and,
moreover, for any environmental state including, of course, that associated with a finite temperature. As an
illustration let us examine the evolution of the characteristic function for an arbitrary initial state of the oscillator
coupled to a finite-temperature environment at time t = 0. The zero-temperature behaviour follows, simply, in
thelimit T— 0 or § — oo . With alittle effort we find (using the method of characteristics [17])

1 :
xrlé t] = xr[£(1), O]exp [—EL dw’ ]> (84)

foc dw p(w, W', t)
0
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where

£(t) = fo ¥ Ao, D6 W) — 1w, DBW))
plw, W', 1) = n(w, 7w, ') — n¥w, HE*w, W)
n(w, t) = [(a(w) + £*B(w)]coth(B/w/2)e™". (85)

This characteristic function encodes the full dynamics and statistics of the oscillator. As a simple illustration of
this we can determine, directly, the form of the steady state. To see this we first note £(¢) tends to zero as t tends to
infinity and the different frequency components dephase so that the prefactor in equation (84), corresponding to
the initial state of the oscillator tends to

which means that all memory of the initial state of the oscillator is lost. Evaluating the long-time limit of the
exponential factor in (84) requires some care in the handling of the delta-function and principal part
components. We find

[T a| [T o pe, o, 00) = [ dwlga@) + €8NP coth(3hw/2), (87)
0 0 0
so the steady-state characteristic function is

X(§ 00) = eXP(*% j;oc dw |Ea(w) + EB WP coth(ﬁfw/Z)), (83)

which we recognise as the characteristic function for the oscillator in the global thermal equilibrium state (74).
This is a most satisfactory and exact result.

It also means that the steady state of the oscillator is the mean-force Gibbs state. To see this we need only note
thatitis given by the trace over the environment of the full thermal equilibrium state, equation (71). Proof of this
equivalence has also been shown in [59] by demonstrating the equality of steady state multi-time open system
correlation functions obtained by Heisenberg-Langevin equation of motion methods to those of the closed
system thermal Gibbs state.

7.2. The classic evolution

We might expect that, in a suitable limit, our model should reproduce the classic (not necessarily classical)
evolution familiar from mechanics texts [111, 112]. In this case the mean oscillator position, x(¢) = (£(¢)),
satisfied the simple differential equation

X+t + wix =0 (89)
and the solution with the initial conditions x(0) = x,and x(0) = 01is
x(t) A

— = Mt T et (90)
X0 A — >\+ A — )\+
where
2
° Y 2
Ay = =+ [— — wj. 91
=5 . 0 D

We can test this evolution against our model by comparing x()/x, with ({ cos(wt))) and using this to determine,
via Fourier transform, the associated form for 7(w). Following this procedure we find
2 A+ AN

) = T oW+ A (w? + A

(92)

Itis immediately clear that this is incompatible with our constraints on 7(w) as we require a finite value for
{{(w™")) so that the mean-square displacement in steady state, (£2(c0)) is also finite. It follows that any attempt to
derive precisely this classic motion from our coupled oscillator model is questionable. Rather than this, we seek
to get close to the classic behaviour by modifying 7m(w) in equation (92) so that it satisfies the required physical
constraints.

7.3. An example evolution

We have seen that both the dynamics and the steady-state of our damped harmonic oscillator are governed by
the form of the function 7(w). Determining this, together with the initial conditions, provides all the
information required. We can calculate 7(w) directly from the frequency-dependence of the coupling between
the oscillator and its environment or, more simply, select a form for 7m(w) and proceed from this. This is the
approach we adopt here.
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As a starting point we consider the disallowed form of 7(w) derived in the preceding section. To provide a
finite value for ((w™')) we require 7(0) = 0 and to enforce this, we multiply the function by w?. To keep ((w?))
finite, as it must be, we also add an additional Lorentzian factor and so arrive at the form

2w (O + DA + )

. 93
T (W T W+ YD) W+ D) ©)

m(w) =

This is, perhaps, the simplest example that satisfies the necessary physical constraints: (i) it is normalised, (ii) 7
(0) = 0, and (iii) {w?)) is finite. It is necessary, in order that 7(w) is real and positive, that we choose I to be real
and positive, with v, and y_ either both real and positive or complex conjugates of each other with positive real

parts. It is straightforward to calculate moments of the frequency from this 7(w). For example the averages ({w))
and ((w™')) are

(=2 722 In(y-/v) + v T2In(0/1) + T4 In(y, /T)
T =0 =)0 = D)
2 I2In(y/v) + 73 In@/v) + 42 In(y/T)
T =0 =)0 = D)
from which we can derive the expectation values of £2and p? in the ground state of the damped oscillator’.
We can calculate the steady-state properties of the oscillator and also the evolution of the mean position
directly from 7(w). Before doing so, however, it is instructive to compare the dynamics given in terms of m(w)

with that given by the Heisenberg-Langevin equation described in section 3.1. There we found a second-order
general equation of motion for the mean position in the form

()=

s
2 (94)
s

%+ j: k(t — t)x(tdt' + wix(t) + k()x(0) = 0, (95)

where we have again written x(¢) for the expectation value (£()). If we compare the solution of this equation
with that in terms of m(w), equation (82), we are led to the form of the memory kernel:

_ (i + )T + 0=+ 1) e~ T+7, 7t

k() (96)
'+ Y+ =
We can relate this directly to the environmental coupling as represented by J(w) by using the inverse Fourier
transform of equation (16). We find
J(w) = mwf K (t)cos(wt)dt
0
_mw(y + )T+ )=+ 1)
- : 97)
W+ @+ + )
We can compare this with the well-known Drude form for J(w), usually written as [29]
mywhHw
J(w) = S (98)
w* + wp

where wp is the Drude cut-off frequency and yis a decay rate. Comparing these two forms for J(w) leads us to the
identifications

wp =T+ +
_ e+ )@+ (e + 1)

(99)
@+ 5 + )
These provide a simple relationship between our two oscillator frequencies:
Q% — w(z) = Ywp, (100)

which emphasises the need for a finite cutoff frequency. Further, we can obtain the form of Q2 directly from 7

(w):

0 = (W) =y + 1T+ Ty (101)
from which we find
= — L (102)
I+ Y+ + Y-

” When 7. are complex, we can write these in the form 7. = |, [e**?, where ¢ = tan™'[J(1,)/R(1)].
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Figure 2. Evolution of { cos(wt) )) for small I'. a) Over-damped regime, with parametersI" = 0.017ys, 7, = %ys, = i'ys; b) Under-

damped regime with parameters I = 0.017s, 7, = (% + Si)'ys. (Vs =74 + 7).

We can determine the evolution of the expectation values of the position and momentum from
equation (82) by evaluating the averages ({ cos(wt))), ({w™! sin(wt))) and ({w sin(wt))):

Tovt) oy @4
T =)0 —-D @ =) =)
0 Ol e 0 B
(= =Dy — 1)

(o singn) = [ " ((cos(wt)) dt"

({cos(wr))) =

({w sin(wt))) = —%((cos(wt))) (103)

We expect to find something approximating the classic evolution of the damped harmonic oscillator in the limit
of small I', for which our 7(w), given in equation (93), approaches the classic form, equation (92), but departures
from this for larger values. In figure 2 we plot the evolution of ({ cos(wt))) for a small value of I in terms of

¥s =Yy + 7_. [tisinteresting to note, however, that in this limit w, — 0 and that the classic evolution arises not
as a solution of the familiar differential equation (89) but rather as a solution of the memory differential equation

i+ fot k(t — x()dt' + k(t)x(0) = 0. (104)

Asanticipated, we find over-damped like behaviour for real values of v, and v_, and underdamped behaviour
for complex values. Indeed we can conveniently define the over-damped regime as being that in which -y, and
~_ are purely real. Note, however, that there is a small over-shoot in the over-damped regime, which would
certainly be absent in the over-damped classic evolution of the oscillator. This can be traced back to the e * *
term which, although small, decays slowly and so has a residual influence at long times. This is especially clear in
the large I regime, depicted in figure 3. There we see that there is a significant over-shoot of the mean position in
what, in the classic evolution, would be the over-damped regime with ({ cos(wt))) always greater than zero. In
the under-damped regime, however, the ¢ "' term has a less dramatic effect; the evolution for I' = 0.01 (in
figure 2(b)) and for I' = 10 (figure 3(b)) are qualitatively rather similar.
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Figure 3. Evolution of {{ cos(wt))) forlarge I". (a) Overdamped regime, with parameters I' = 10~s, 7, = %75, = iws; (b)
Underdamped regime with parameters I' = 10s, 7, = (% + Si)'ys. (vs =Y+ + 72

—— Fully diagonalised quantum model
----- Classic damped harmonic oscillator

<<cos (w t)>>
1.0

0.8f
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0.4
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Figure 4. Comparison of short-time behaviour in the coupled oscillators quantum model and classic evolutions. The exact solution
for short times is plotted as a solid line, with 7(w) as given in equation (93), and parameters I = 10s, 7, = (% + Si) ~s; the dashed
line shows the limit I' — 0, in which classic damped simple harmonic motion is recovered, with the other parameters unchanged.
(Ys=74+ +7-)

We have seen that the existence of two natural frequencies for the oscillator, wy and €y, is particularly
important when comparing the short and long time behaviour of the oscillator: wy behaves as the natural
frequency, but at short times it is €2, that takes on this role. In figure 4 we plot the short-time evolution of
({cos(wt))) (solid line) and compare this with the classic evolution for a damped harmonic oscillator with
natural frequency wy. It is clear that the former falls off more quickly as it must, because €25 > wy. For the
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parameters chosen, {1 is just over twice the value of wy. It is interesting to note that we can match the two
evolutions up to very short times if we allow for a short-time slip so that as ¢ tends to zero, { cos(wt) ) becomes
larger than unity [60]. This is unnecessary, however, if we take account of the existence of two natural
frequencies as we have done here.

8. Weak-coupling limit

The theory developed above was designed to treat the strongly-damped harmonic oscillator, but should also be
applicable to the more familiar weakly damped oscillator, for which the oft-employed Born and Markov
approximations are applicable and the steady state of the oscillator should be its ground state. We show here that
this is indeed the case.

We start by considering the form of the function a((w) in the weak coupling limit. To aid our analysis we
rewrite the form givenin (B18) as

a(w) =

(105)

w + V(w)
Q \VWPYW) —inlV(w]?)

The weak damping limit corresponds to choosing the coupling to the environment to be small or, more
specifically, to | V(w)|* < . Itis clear that in this limit, |a(w)|* will be a sharply peaked function centred around
the frequency for which Y(w) = 0. If the integral part in Y(w), as given in (B15) is small” then this frequency will
be close to €2 and we can write

V(W)Y (w) =~ 4(w — Q) — 4F (w), (106)
where
4F (w) = foo dw’( P___1 )|V(w’)|2. (107)
0 w—w w4+
This leads, in turn, to a corresponding approximate form for av(w):
aw) ~ LW ! (108)

2 w- Q- F - VP’

where we have set w = {2y everywhere except in the denominator. We note that this is of the form that arises from
the Fano diagonalisation of our problem if we make the rotating wave approximation by omitting from our
original Hamiltonian all terms that are products of two creation operators or of two annihilation
operators [17,93].

Consistency with the above approximation, which led us to set w = €2 leads us to set (w) to zero:

B(w) ~ 0, (109)

so that the integral over all frequency of |a(w)|* is unity. Moreover, for weak damping the thermal function
coth(B/x,/2) will also be slowly varying compared to the rapid variation of |a(w)|* in the vicinity of w = Qy and
we may replace this function by its value at {2,. Hence in this limit the steady-state characteristic function for our
oscillator is

(6 50) = exp(—émz coth(ﬂmo/z)) - exp(—§|f|2<zﬁ + 1)), (110)

where 77 is the mean thermal excitation number. We recognise (110) as the symmetrically ordered characteristic
function for the thermal state of the undamped oscillator [17], as it must be. Further, we note that in this limit
our probability distribution function, 7(w) & |a(w)|?, approaches a Lorentzian centred on g, with some

width ”. Thus all the complexity of of the original problem is reduced, in the weak-damping limit to just three
parameters: a natural oscillation frequency, a damping rate and a temperature.

It was important to confirm that our more general treatment coincided, in the right limit, with the
approximate methods used for weakly damped oscillators. We should note that even if we are working in the
weakly damped regime, then our approach offers a systematic way to treat corrections to the results obtained
using the Born and Markov approximations, which may play an important role in modelling measurements at
the limits of sensitivity.

Ifitis not then we will need to invoke ideas of renormalisation, a manageable complication, but one we wish to avoid.

This is not strictly true in the wings of the distribution, of course, as even in this limit we require ((w?)) = QZ, but the corresponding
quantity for a true Lorentzian is divergent.
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9. Conclusion

We have presented an exact diagonalisation of a simple quantum model of the damped harmonic oscillator, one
that is applicable, in particular, to any strength of the damping. As a result we have recovered the fact that much
of the behaviour of the oscillator and many of its properties can be described in terms of a single probability
function, m(w), which we may interpret as the contribution of corresponding dressed mode, at frequency wto
the oscillator. These properties include the steady state of the oscillator at both at zero and at finite temperature,
the entanglement between the oscillator and its environment and also its evolution, both in the familiar under-
damped regime but also in the more problematic over-damped regime.

We have applied our diagonalisation to study the properties of the true ground state and have shown that the
oscillator part of this pure entangled state coincides with the steady-state of the oscillator in a zero-temperature
environment. The diagonalisation is not specific to any particular state of the reservoir, however, and we have
shown how it can be be applied to environments at finite temperature. The extension to more exotic states, such
as squeezed reservoirs presents no obvious difficulties. It may be extended, moreover, to include driving forces,
coupled oscillators and multiple reservoirs, with the latter perhaps being at different temperatures [110]. This
may provide some insights into important questions of principle in the nascent fields of quantum machines and
quantum thermodynamics [10, 11, 113-117].
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Appendix A. Heisenberg equations of motion

The Heisenberg equations of motion follow directly from the Hamiltonian, and we obtain these using the
Hamiltonian in the form of (2). (We could equally well have used the identical Hamiltonian (3)).

A

P

m

& 25 24
p=-—mpr+ > my,wi, X,
1

.
I

A pp
X, =—
m,
A 2 A 2 ~
b, = —myw, X, + my,wi, Ay X (Al)

We seek an equation of motion for the position operator and so first eliminate the momentum operators
between the first and second and the third and fourth equations:

.. m
R4 wir =) —Lwl\.%, (A2)
L m
X+ wiky = wp AR (A3)

The next step is to integrate the second of these equations of motion. The complementary function is

£,(0
JQHCF = %, (0)cos(w,t) + »©

sin(w;, t)
Wy

N

. 5,0)
= %, (0)cos(w,t) + sin(w, t). (A4)
My, Wy,
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To find the particular integral we need to make a small addition to (A3) by adding a very weak damping term to
give:

xﬂ—|—6xu—|—w £ = wy, /\ X, (A5)

and work in the limit as the strictly positive quantity € tends to zero. It is this choice of a positive (if very small)
value for ¢ that provides the irreversibility and hence the arrow of time.

Solving (A5) for the particular integral requires some care and so we pause for a moment to provide the
details. Let us introduce the Fourier transform of £, in the form

1o
5@ = —— J swedr, (A6)

with a similar expression for the Fourier transform of %. It follows that the Fourier transform of the particular
integral part of the position is given by

2% 2y &
WK, — 15x#—|—w Xy = W AuX

_ W;ZL/\Mz
:>X/1 = 72—2 (A7)
W= w, + tew
It follows then follows that
API(t) o wz)\ ( ) ﬂwtd (A8)
= —— —x w)e w,
2m Joo w? — w + dew

which is the Fourier transform of the product of two functions of w. We can use the convolution theorem to
write this in terms of the transforms To exploit this we write the Fourier transform of the first function as the
time-derivative of a function K(¢):

2
. 1 > wi A .
Ku(t) = f +eﬂwtdw
21 oo w? — wy, + dew

= —w, A\ e sin(w,t) (A9)

ift > 0 and is zero otherwise. We can now take the limit as ¢ — 0 to give

K, = —wy Ay sinw, t)
=K, = A, cos(w,t). (A10)

It then follows that
= —foo Izu(w)x(w)e’wdw
_ _f°° K,(D)&(t — T)dT
— —[K(D)&(t — T)], + ft K (T)i;e(t — T)dT
0 o dT
t .
= —K,(1)2(0) + K,(0)x(t) — f K, (t — thx("at, (A1)
0
where we have used the facts that K(T) = 0 for T < 0 and we may take X (7) = 0 for 7 < 0.

Pulling this altogether we arrive at our desired Heisenberg-Langevin equation for the damped harmonic
oscillator. From (A3) we have

() + ft k(t — A A + (QF — k(O)E(1) + Kk(t)X(0) = % (A12)
0
where
m
k(D)= —NK(®)
p M
= Z —wuxf, cos(wy1) (A13)
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and F(t) is the Langevin force:

A

R 0
E@t) = wi)\u(ﬁﬂ(O)COS(wﬂt) + 5O sin(wut)]. (A14)
my, Wy,

Appendix B. Fano diagonalisation

We present a brief account of the exact diagonalisation of our Hamiltonian based on methods developed by
Fano for the study of configuration interactions [118]. This idea was applied extended to weakly-coupled
oscillators in a quantum study of damped cavity modes [17, 93]. The extension to stronger couplings, with the
inclusion of counter-rotating couplings, has been given before and applied to the quantum theory of light in
dielectric media [63, 64]. We summarise here the analysis presented in [64].

Our task is to diagonalise the damped harmonic oscillator Hamiltonian'’, equation (28)

A 00 A N
A=iQita+ [ do fih' @)hw)
0
00 fz R At ~F % ~
+ [ aw @+ V@D @) + VbW, (B1)
0
by which we mean rewriting it in the form of a continuum of uncoupled or dressed oscillators:
A= " do o B'@b@ + G (B2)
0

where Cis an unimportant constant. We proceed by writing the dressed annihilation operators, B(w), as linear
combinations of the bare operators for the oscillator and bath modes:

Bw) = a(w)i + Bw)a’ + fo YA Iy (@, bW + 8w )b W], (B3)

where aw, f(w), v(w, w') and § (w, w’) are to be determined.

We require the operator B(w) to be associated with an uncoupled or dressed oscillator of angular frequency
w. This requires us to find its form such that the following pair of operator equations are satisfied for every
frequency, w:

[B(w), H] = /wB(w) (B4)
[Bw), B'(W)] = §(w — ). (B5)

Substituting the ansatz (B3) into (B4) and comparing coefficients of the bare creation and annihilation operators
leads to the set of coupled equations:

aw) + % fo ” dw' [y (w, WV (W) = 6w, W) VHW)] = a(w)w (B6)
8@+ 2 [ AT VW) = 8 VN = B (B7)
V*;“') [a(@) — BE)] + 7w, &)’ = Y(w, Ww (BS)
Y faw) - ] - 8w = 8, (B9)

Our method of solution is use these to determine the functions S(w), v (w, w') and 6 (w, w’) in terms of a(w) and
then to determine this remaining function by enforcing the commutation relation (B5). From (B6) and (B7) we
see that

Bw) = Z’—% a(w). (B10)

+ Q

If we use this to substitute for S(w) into the remaining equations then we find

YA QO — / !
14 (W)iw n Qoa(w) Y (W, W) (w — w') (B11)

10 For the Hamiltonian of interest in this paper the coupling, V(w), is real but treating the problem with a more general complex coupling
presents no additional difficulties.
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V() £ a(w) = 6(w, W) (w + ). (B12)
w + Qo

Solving the second of these presents no difficulty and we find

6(w, w’):( !
w +

)V(w’) i) a(w). (B13)
w’ w + Qo

The first, however, requires careful handling because the behaviour at w = w’. Following Fano [118], we adopt
the method proposed by Dirac [119] and write

P

w—w

¥ (w, W) = ( + Y(Ww)b(w — w’))V*(w’) QOQ a(w), (B14)

w + {

where [P denotes that the principal partis to be taken on integration and Y(w) is a real function, which we
determine by substituting (B14) into (B6). We find

rs -J, - V- B15
“ V()P [ Qo fo No—o ot V@l (B15)

If we substitute our operators, B(w), expressed in terms of the function a((w) into the commutation relation
(B6) then we find

[é(w), B\T(w/)] — Oé(CU)Oé*(w/){l _ (w — QO)((U/ _ QO)
w + Qo w! + QO

+f°o dw”[( P LYWW w”))(Lﬂ Y (W) — w”))
0 w

w— W’ w' —
( 1 )( 1 ) |V (W) P} (B16)
w+ " N\ + ") [+ Q) + Q)|
Evaluating the integrals and setting the result equal to § (w — w’) gives''
w + Q)2 1
la()]? = (2 0)2 - - (B17)
WV PP\ Y (w) + 7

Note that the diagonalisation does not fix the phase of the complex function cv(w) and we are free to choose this
as we wish. A convenient choice is to set

w + Q() 1
= . B
aw QOV*(w)(Y(w) - iw) ®1

Appendix C. The symmetrically ordered characteristic function

We have made use of the symmetrically ordered characteristic function,
X(§) = Tr[pexp (&’ — £Fa)l, (CDH

to investigate both the dynamics and the steady state of the damped harmonic oscillator. For completeness, we
summarise here the main properties of this function. Further details of this and also of related characteristic
functions can be found in [17].

The characteristic function is always defined and also well-behaved for any oscillator state. As € = 0 it
reduces to the trace of p and it follows that x(0) = 1. More generally, it is the expectation value of the unitary
displacement operator:

D(§) = exp (&’ — £*a). (€2)
This operator, by virtue of its unitarity, has only eigenvalues of modulus 1 and it follows that
IX(OI < 1, (C3)

with the maximum at £ = 0.

1 This requires the use of the following formula for the product of two principal parts [17]:

P F __F ( F__ F ”) + 725w — W' — ).

w—w - W\ - W —w
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The most important property is that the density operator and the symmetrically ordered characteristic
function exist in one to one correspondence, analogous to a Fourier transform pair. Cahill and Glauber [120]
(seealso [121]) exploited a theorem of Weyl [122] to show that

¢ A A
p= [TrappEnde-o. (4
s

We can extract from the characteristic function the expectation value of any symmetrically ordered
combination of 4 and a':

: oN'(_ oY
S{atmgny =1 —| | ——— C5
(][ o
=0
By symmetrically ordered, we mean the average of all possible orderings, for example:
S(ata) = %(afa + aa'
S(at%?) = %(&TZ&Z + a'aa’a + a'a*a’ + aata + aataat + a%at). (Co)

Appendix D. Thermofields

Itis simplest to consider first an isolated discrete oscillator with annihilation and creation operators b and b .
For such an oscillator in a thermal state at temperature T the density operator has the simple, diagonal form:

0
pr =1 — e )3 emn) (n], (D1)
n=0
where 3 = (kg T)~!is the inverse temperature. The mean number of excitations is
1
i=— (D2)
e 1
and we can write the density operator in terms of this mean:

pr = — i( i )"|n><n|. (D3)

i+ 17\ +1

The thermofield technique [53-58] starts with the observation that we can write a pure state that has the same
statistical properties as the thermal mixed state (D1). To construct this state we consider a doubled state space in

which we introduce a second oscillator with annihilation and creation operators b and b . The two-mode pure
state, the thermal vacuum:

|0(ﬂ)> — (1 _ e*Hﬁm)l/zi e*Hﬁm/zm’ ﬁ> (D4)

n=0

has precisely the same single-mode properties as the single-mode thermal state:

O@If b, 6H10(8)) = Tr(f (b, b). (D5)

Itis straightforward to show that a similar procedure can be applied can be applied to express any mixed state in
terms of a pure state in a doubled state space [56]. When this procedure was rediscovered in quantum
information theory, it acquired the name purification [106].

The benefit of introducing the thermal vacuum state comes from the fact that it is related to the two-mode
vacuum state, |0, 6), via a unitary transformation:

0(8)) = $(6)10, 0)
—exp 0B 5 — bb)110, 7). (D6)
This transformation produces the desired state if we select 8(/3) such that
sinh?0(3) = 7. (D7)

Readers with a background in quantum optics may recognise |0(53)) as a two-mode squeezed vacuum state
[17,123]. The unitary nature of this transformation means that we can convert, by means of the inverse
transformation, our effective thermal state into a vacuum state, accompanied by a modified Hamiltonian. Before
we can do this, however, we require a Hamiltonian for the tilde oscillator. The natural way to introduce this is as
an inverted oscillator, so that our free oscillator Hamiltonian becomes
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2tz

Ay = Qb6 — b b), (D8)

which has the advantage that it commutes with the unitary transformation. It is essential, moreover, to avoid
introducing undesired couplings between the original and the tilde operators.

If our oscillator is coupled to another quantum system via its annihilation and creation operators, then the
required unitary transformation effects the replacement

b— $O)bS"(0) = b cosh0(B3) — b sinh0(3)
6" = $0)5'570) = b cosh6(B3) — b sinh6(3). (D9)

Asasimpleillustration we note that the expectation value of b'bis

(3 [6'B10(B))) = (0, 0](b" coshB(B) — b sinh6(3))

~ 2F ~
X (b cosh8(8) — b sinhH(03))0, 0)
= sinh?0(3). (D10)
In place of a coupling to a single harmonic oscillator in a thermal state with inverse temperature 3, the
transformed Hamiltonian has a coupling to a regular oscillator in its ground state with a coupling strength
increased by cosh 6(3) and a coupling to a second inverted oscillator in its most highly excited state, with the
original coupling multiplied by sinh 6 (3). The inverted oscillator can only inject quanta (at least initially) while
the regular oscillator can only extract them.
To complete the picture we need only generalise this description to our continuum operators. We do this by
using our continuum thermal vacuum state in the form

o) = $@[wD]o, 0)
27 A A 2 -
= exp [f dw (8, (b @)b' (W) — b(w)b(w))]w, 0), (D11)
where |0, 0) now denotes the doubled continuum vacuum state and lj (w) is the annihilation operator

corresponding to adding a quantum of frequency wto the inverted, tilde reservoir. As with the discrete oscillator,
we can transform into an equivalent vacuum picture with the free Hamiltonian for the reservoir changed to

~ A~ A~ 2F 2
Hy = fdw Fw® ()b (W) — b (Wb (W), (D12)
and the continuum annihilation and creation operators transformed by the inverse unitary transformation

bW — SOTWDb(W)ST(O[w]) = b(w)coshO(B, ') — ﬁT(w/)sinhe(ﬂ, W’
b (W) — SO (WS (O[w]) = b (W)cosh (B, W) — b(w)sinh (B, o), (D13)

so that the expectation value of b (w) b (W)is

(BB (@)b(wH[0(3)) = (0, 0](5 (w)cosh B(B, w) — b(w)sinh (B, w))

x (b(w')cosh0(B, w') — gT(w’)sinhQ(ﬁ, w))|0, 0)
=i(w)d(w — ). (D14)
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