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Abstract
We reanalyse the quantumdamped harmonic oscillator, introducing three less than common
features. These are (i) the use of a continuummodel of the reservoir rather than an ensemble of
discrete oscillators, (ii) an exact diagonalisation of theHamiltonian by adapting a technique pioneered
by Fano, and (iii) the use of the thermofield technique for describing afinite temperature reservoir.
We recover in this way a number of well-known and some, perhaps, less familiar results. An example
of the latter is an ab initio proof that the oscillator relaxes to themean-force Gibbs state.We find that
special care is necessary when comparing the damped oscillatorwith its undamped counterpart as the
former has two distinct natural frequencies, one associatedwith short time evolution and the other
with longer times.

Preface: an apology

There can surely be nomore intensively studied open quantum system than the damped harmonic oscillator.
Thismakes it all but impossible to do justice to the vast literature on the subject, and authors seeking towrite on
this systemneed to tread carefully and to acknowledge, freely, thatmuch of the relevant literature will be,
unintentionally but inevitably, overlooked. The task ismade yetmore hazardous by the fact that different
communities in physics have covered similar groundmore or less independently. Nevertheless, this special issue
offers the opportunity to reexamine this well-studied system,with the aimof demonstrating some techniques
that should, perhaps, be better known.

1. Introduction

Recent technological advancesmake it possible to realise simplemechanical devices in themicroscopic and
nanoscopic regimes, the properties of which are determined by quantum effects [1]. The existence of these
represents a remarkable opportunity for fundamental studies of light–matter interactions [2] and also the
potential for practical application to quantum communications and information processing [3]. Yet they
present also a challenge to existingmethods of analysis,many of whichwere developed to treatmore rapidly
oscillating systemswithweaker couplings. The strong coupling regime brings with it some surprises, such as the
possibility that quantum entanglementmight persist in the high-temperature limit [4].

The quantum theory ofmachines is built, to a large extent on the theory of oscillators and strongly coupled
oscillators, which are coupled to one ormore environments, eachofwhich is at a characteristic temperature [5–7].
Thebehaviour of these quantumsystems is governednot simply by average properties but alsofluctuations, and
has been informedby the development offluctuation theorems for quantumopen systems [8, 9]. Such
considerationsunderpindevelopments in the rapidly advancingfield of quantum thermodynamics [10, 11].

The coupling to the environment needs to be handledwith some care because of the possibility of quantum
coherence and the development of entanglement between the systemof interest and its environment, with the
result that apparently unphysical behavioursmay emerge [12]. The requirement to treat the coupling to the
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reservoirs with care provides the incentive to return to the problemof a single strongly-damped oscillator and to
treat thismodel exactly, using the techniques identified in the abstract.

There exist at present verymanymathematically and physically acceptablemethods for treating damped
harmonic oscillators. Common tomost, if not all, of these developments is the treatment of the surrounding
environment, or reservoir, as an ensemble of harmonic oscillators with a broad spectrumof oscillator
frequencies. It is the dephasing brought about by this spread of frequencies that introduces the damping, or
irreversibility, in the oscillator dynamics. The environmental harmonic oscillatorsmay be physical oscillators or
vibrationmodes, as in theCaldeira-Leggettmodel [13, 14], or themodes of the quantised electromagnetic field,
as inmany quantumoptics applications [15–29].

For weakly damped oscillators, such as those encountered regularly in quantumoptics, there aremaster
equations and the correspondingHeisenberg-picture operator Langevin equations. Even in this weakly damped
regime, the dissipative dynamics can be challengingwith a rich structure of asymptotic states [30, 31]. Formore
strongly damped systemsmemory effects become important and there is a departure fromMarkovian evolution
[32–39]. Yet stronger coupling requires the inclusion of counter-rotating interactions, which do not conserve
the number of quanta. Among themany and varied approaches adopted are the aforementioned Schrödinger-
picturemaster equations for the oscillator density operator [40, 41] andHeisenberg-Langevin operator
equations for oscillator observables driven by environmental fluctuations [42–44]. Alsowidely used are
Feynman-Vernon path integral and related techniques [14, 45–49]. For finite temperatures the environmental
oscillators are considered to be prepared initially in thermal states with Bose–Einstein statistics appropriate to
the reservoir temperature. This leads, in the Schrödinger picture, to the reservoir acting both as a source as well
as a sink of quanta. The techniques for treating this include a product of thermal density operators for the
reservoirmodes [16, 18, 20–22], imaginary timemethods and thermalGreen functions [50–52] and also
thermofield dynamics [53–58]. In addition to thesemethods, there has also beenwork done on diagonalising the
oscillator-reservoir Hamiltonian inwhich the reservoir is formed from a collection of harmonic oscillators
[60, 61]. Our analysis develops and expands uponmaterial in an earlier preprint [62] (see also [63–66]),which
treats the environment as a continuum. It is complementary to that adopted by Philbinwho has tackled this
problemof the oscillator evolution usingGreen’s functions [67].We hope that the combination of his work and
ourswill provide amore complete understanding.

2. Background

The harmonic oscillator has a special place in physics as one of the simplest andmost widely employed of
physicalmodels. The reasons for its ubiquity, no doubt, are its simplicity and the fact that it is readily analysed. In
the quantumdomain, the harmonic oscillator is barelymore difficult to treat than its classical counterpart and
was one of thefirst dynamical systems towhich Schrödinger applied his equation [68]. Today, both the classical
and quantum forms appear in elementary courses on classical and quantummechanics.

The damped harmonic oscillator loses energy as a result of coupling to the surrounding environment. In the
classical domain it often suffices to describe this in terms of a simple damping coefficient, γ, and an associated
stochastic or Langevin force [69], F(t), whichmodels the effect of environmental fluctuations on the oscillator
[70–74]. The dynamics is described by a simple linear differential equation of the form

g w+ + =x x x
F t

m
, 10

2̈ ( ) ( )

wherem is themass of the oscillating particle. There is no requirement for detailed knowledge of the fluctuating
force, whichmay be considered to have a very short correlation timewith amagnitude determined by the
requirements of thermodynamic equilibrium.

Thedampedquantumharmonic oscillator requires that explicit account be takenof the quantumnature of the
environmental degrees of freedom [15], which aremost simplydescribedby an ensemble of harmonic oscillators
[16]. If the damping is veryweak, so thatγ=ω0, thenwe canneglect rapidly oscillating terms in the coupling
between the oscillator and the environmental oscillators bymaking the rotatingwave approximation,which
corresponds to enforcing the conservationof the total number of vibrational quanta, and then theBorn andMarkov
approximations associatedwithweak coupling and loss ofmemory in the reservoir [17]. This leads to themaster
equations andHeisenberg-Langevin equations that are ubiquitous,most especially, in quantumoptics [17–29].

If the coupling is somewhat stronger then itmay not be possible tomake the rotatingwave approximation
andwe then need to retain in theHamiltonian terms that can create or annihilate a pair of quanta, one in the
damped oscillator and, at the same time, one in the environment. This leads to theCaldeira-Leggettmodel
[13, 14, 60, 67, 75–77], whichwe describe in the following section, andwhich has been applied to study awide
variety of quantumopen systems [25, 29]. A variant on themodel has been applied to the quantum theory of
light in dielectric [63, 64] andmagneto-dielectricmedia [78–81]. An important complication that seems to be an

2
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inevitable consequence working in this strong-coupling regime is the failure of theMarkov approximation;
attempts to enforce this approximation lead to amaster equation that is unphysical in that there exist initial
states for which the dynamics leads to negative probabilities [25, 82–85]. Of course non-Markovian behaviour
can also emerge inweakly damped systems inwhich the rotating-wave approximation ismade. It is possible to
derive amaster equation but the resulting equation is one that has within it non-trivial time-dependent
coefficients [40, 60]. This time-dependence is a clear signature of the non-Markovian nature of the associated
evolution. It seems that this non-Markovian character is an inevitable feature of the strongly-damped quantum
harmonic oscillator.

3.Hamiltonian for the strongly-damped harmonic oscillator

Consider a harmonic oscillator that is strongly coupled to its environment, ultimately to be treated as a
thermodynamic reservoir,modelled as large collection of oscillators, with a range of frequencies, through their
respective positions as depicted infigure 1.Wewrite theHamiltonian for the combined oscillator-reservoir
system in the form [13, 60]

å åw w l= + W + + -
m

m

m
m m m

m
m m m mH

p

m
m x

p

m
m x m x x

2

1

2 2

1

2
. 2

2
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2 2

2

2 2 2⎛

⎝
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⎠
⎟

ˆ ˆ
ˆ

ˆ
ˆ ˆ ˆ ( )

If we complete the squarewe can rewrite this in aminimal-coupling form to arrive at the alternative form:

åw w l= + + + -
m

m

m
m m m mH

p

m
m x

p

m
m x x

2
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⎥ˆ ˆ

ˆ
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( ˆ ˆ) ( )

where

åw w l= W -
m

m
m m

m

m
. 40

2
0
2 2 2 ( )

Each term in ourHamiltonian (3) is strictly positive only if this quantity is positive, corresponding to a real
frequencyω0. If it is negative then the second term is also negative and theHamiltonian is not bounded from
below and hence not allowed physically. Hence the positivity of theHamiltonian places a physical restriction on
the strength of the coupling

å w lW >
m

m
m m

m

m
, 50

2 2 2 ( )

whileω0 can take any positive value.
4

Figure 1.Representation of a single harmonic oscillator (in red) coupled harmonically to a bath of oscillators (in blue).

4
In the literature the change from theHamiltonian (2) to (3) is often described as adding a counter term [25, 42].Wefind noneed to speak of

adding counter terms as both of the natural frequenciesω0 andΩ0 play a role in the dynamics.

3
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At this point it is necessary to pause and consider the fact that our damped harmonic oscillator seems to have
two possible natural frequencies,Ω0 andω0. These appear as the potential energy in our two forms of the
Hamiltonian given in equations (2) and (3). It is reasonable, therefore, to askwhich of these (if either)
corresponds to the ‘true’natural frequency. In order to address this important point, we step aside fromour
principal objective of diagonalizing theHamiltonian to derive theHeisenberg-Langevin equation for the
oscillator position operator.

3.1.Heisenberg-Langevin equation: a tale of two frequencies
Wefind that both the frequenciesω0 andΩ0 have roles to play in the dynamics of the oscillator and that, in this
sense, both fulfil the roles of natural frequency of the damped oscillator, albeit in different time domains. To
demonstrate this we can derive fromourHamiltonian aHeisenberg-Langevin equation ofmotion for the
position operator of our oscillator. The details are given in appendix A.Wefind

ò k k k+ - ¢ ¢ ¢ + W - + =x t t t x t dt x t t x
F t

m
0 0 , 6

t

0
0
2ˆ ̈( ) ( ) ˆ ( ) ( ( )) ˆ ( ) ( ) ˆ ( )

ˆ ( ) ( )

whereκ(t) is thememory kernel:

åk w l w=
m

m
m m mt

m

m
tcos 72 2( ) ( ) ( )

and F tˆ ( ) is the Langevin force:

w l w
w

w= +m m m m
m

m m
mF t x t

p

m
t0 cos

0
sin . 82

⎜ ⎟
⎛

⎝

⎞

⎠
ˆ ( ) ˆ ( ) ( )

ˆ ( )
( ) ( )

Note that this equation ofmotion is (essentially) exact. In order to interpret the various terms it suffices to
consider the expectation value of this operator equation:

ò k k ká ñ + - ¢ á ¢ ñ ¢ + W - á ñ + á ñ =x t t t x t dt x t t x0 0 0, 9
t

0
0
2ˆ ̈( ) ( ) ˆ ( ) ( ( )) ˆ ( ) ( ) ˆ ( ) ( )

and note that we can alsowrite this in the form

ò k w ká ñ + - ¢ á ¢ ñ ¢ + á ñ + á ñ =x t t t x t dt x t t x 0 0. 10
t

0
0
2ˆ ̈( ) ( ) ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( )

Thefirst of these equations is written in terms of the frequencyΩ0 and the second in terms ofω0. It remains to
determine the physical role of each of these, whichwe can do by considering very short and longer time scales.

3.1.1. Ultra-short time scales
To better appreciate what happens at very short times, wefirst perform integration by parts on the expectation
value of equation (6) andwrite this in the form

ò ká ñ + - ¢ á ¢ ñ ¢ + W á ñ =x t t t x t dt x t 0. 11
t

0
0
2ˆ ̈( ) ( ) ˆ ( ) ˆ ( ) ( )

For a very short time, δt, this becomes

d d dá ñ + W á ñ + =x t x t O t 0. 120
2 2ˆ ̈( ) ˆ ( ) ( ) ( )

The integral term in equation (11) is of order δt2 by virtue of equation (7) as for short times k is of order δt. The
combination of equation (12) and =x p mˆ ˆ , which is always true, leads to the ultra-short time behaviour

d d

d d

á ñ = á ñ +
á ñ

á ñ= á ñ - W á ñ

x t x
p

m
t

p t p m x t

0
0

0 0 . 130
2

ˆ ( ) ˆ ( )
ˆ ( )

ˆ ( ) ˆ ( ) ˆ ( ) ( )

This is the short-time behaviour of a harmonic oscillator of frequencyΩ0. It is clear that this is the frequency of
the oscillator in the non-Markovian regime.

3.1.2. Longer time scales
Ourfirst task is tofirmupwhat wemean by longer time. To do sowe note that the functionκ(t) involves a
summation of oscillating cosines of different frequencies, one for each environment oscillator, and that these
will dephase, causingκ(t) to decay.We define the longer-time regime as that for whichwe can approximateκ
(t)≈ 0. In this regime, our equation ofmotion (10) becomes

4
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ò k wá ñ + - ¢ á ¢ ñ ¢ + á ñ =x t t t x t dt x t 0. 14
t

0
0
2̈ ( ) ( ) ( ) ( ) ( )

This equation retains the possibility of non-Markovian effects in the (second)damping termbut it is clear that
the natural frequency of the oscillator in this time regime isω0 and notΩ0. Thus the question of whether our
Hamiltonian applies in the over-damped regime depends on the relationship between the damping andω0 and
notΩ0.

We are now in a position to address the issue of whether ourmodelHamiltonian can be applied in the over-
damped regime. To enter this regime, we need to reduce the natural frequency of the oscillator so that it is below
the damping rate. It is clear from the inequality (5) that there is always a lower bound belowwhichΩ0 cannot be
reduced.However there is no such bound onω0 and, indeed, we can setω0= 0+without invalidating ourmodel.
As it isω0 and notΩ0 that is the natural frequency of the oscillator beyond the ultra-short time regime, it is clear
thatwe can use ourmodel to describe an oscillator in the strongly over-damped regime.

A simple examplemight help to illustrate the ideas presented above.We consider the simplest case ofOhmic
damping, orOhmic friction [29]. To this end, we introduce the spectral density

åw
p

w l d w w= -
m

m m m mJ m
2

153 2( ) ( ) ( )

so that

òk
p

w
w

w w=
¥

t
m

J
t d

2
cos , 16

0
( ) ( ) ( ) ( )

and go to the continuum limit with

w gw= w w-J m e . 17c( ) ( )

Note that it is essential to include a frequency cut-off in this case as, without this, we cannot satisfy the inequality
(5).Wefind that

k
p

gw
w

k
gw
p

=
+

 =t
t

2

1
0

2
. 18c

c

c
2 2

( ) ( ) ( )

This also demonstrates the necessity of a cut-off frequency.
Recall that the ultra-short time regime corresponds to times forwhichwe retain the termκ(t)〈x(0)〉 in (9).

Thismeans times forwhich w< -t c
1, whichfits with the familiar idea that the time needs to be short compared

with the inverse bandwidth of the reservoir. As there needs to be, in the exact theory, a short-time non-
Markovian regime, we need the cut-off frequency in our bath coupling.

For longer times, for whichκ(t)≈ 0, our equation for the expectation value of the position reduces to (14). If
the coupling to the reservoir is sufficiently weak that the expectation value á ñx does not vary significantly on the
timescale w-

c
1, thenwe canmake the approximation

ò òk k

g

- ¢ á ¢ ñ ¢ » á ñ - ¢ ¢

= á ñ

t t x t dt x t t t dt

x t . 19

t t

0 0
( ) ( ) ( ) ( )

( ) ( )

 



It then follows that our equation for the expectation value of the position becomes (in thisMarkovian, longer-
time regime)

g wá ñ + á ñ + á ñ =x t x t x t 0, 200
2̈ ( ) ( ) ( ) ( )

which is the familiar equation for a damped harmonic oscillator. Note however, that it is the frequencyω0 and
notΩ0 that appears.We enter the over-damped regimewhenω0< γ/2. The constraints on the natural
frequencies in (4) correspond in thisOhmic damping example to

w k
gw
p

> W > =0 and 0
2

. 21c
0
2

0
2 ( ) ( )

We see that there is no lower bound onω0 (although itmust be real and greater than zero) but there is a bound on
Ω0: itmust exceed the geometricmean of the damping rate γ and the cut-off frequencyωcmultiplied by 2/π.
Thuswe see again that we cannot allow the cut-off frequency to tend to infinity. Similarly the frequencyΩ0 will
lie somewhere between γ and the rather largerωc sowe cannot haveΩ0 less than γ.What saves themodel in the
strongly damped regime is the fact that it isω0 rather thanΩ0 that corresponds to the natural frequency of the
damped oscillator.

As a final note in this section, we note that the presence of at least two candidate natural frequencies is all but
inevitable for a strongly damped oscillator, as such systemwill, in general, always experience a non-Markovian
short-time evolution. Aswe shall see, the existence of these two frequencies also complicates the question of the
amount of energy associatedwith the oscillator during its evolution, but especially in its steady state.

5
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3.2. Continuum reservoir
Ourfirst, perhaps, less familiar feature is to replace the discrete reservoir of oscillators by a continuum. To
proceed, we first rewrite ourHamiltonian in terms of the familiar annihilation and creation operators:

w
w

=
W

+
W

= +m
m m

m
m

m m





a
m

x
ip

m

b
m

x
ip

m

2

2
22

0

0

⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠

ˆ ˆ
ˆ

ˆ ˆ
ˆ

( )

In terms of these operators ourHamiltonian, equation (2), becomes

å åw= W + + + +
m

m m m
m

m m m  
H a a b b V a a b b

2
230ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ )( ˆ ˆ ) ( )† † † †

when unimportant constant shifts in the ground-state energies are removed and

w
w l= -

W
m

m m
m mV

m

m
. 24

0

( )

Whenwritten in terms of this quantity, our positivity condition (5) becomes

å w
W >

m

m

m

V
. 250

2

( )

At this stage we can seek to diagonalise the full Hamiltonian tofind, in effect, the normalmodes of the oscillator
coupled to the reservoir. This is the approach taken byHaake andReibold and by Ford et al [60, 61]. The
dynamics are then reminiscent of the Bixon-Jortnermodel, with recurrences occurring on a timescale given by
the inverse of the frequency spacing of the reservoir oscillators [17, 86–90], as is characteristic of periodic and
almost periodic functions [91].5

Wefind it both simpler and alsomore powerful tofirst recast ourmodel in terms of a continuumdescription
of the reservoir. To this endwe first write, in terms of the spectral density J(ω), equation (15),

åw w l d w w
p

w=
W

- =
Wm

m m m mV
m

m
m

J
1 2

262

0

3 2

0

( ) ( ) ( ) ( )

and introduce the continuumannihilation and creation operators, wb̂ ( ) and wb̂ ( )†
, satisfying the commutation

relations

w w d w w¢ = - ¢b b, . 27[ ˆ ( ) ˆ ( )] ( ) ( )†

In the continuum limit ourHamiltonian becomes [64]

ò

ò

w w w w

w w w w

= W +

+ + +

¥

¥

 



H a a d b b

d V a a b b
2
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0
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( )( ˆ ˆ )[ ˆ ( ) ˆ ( )] ( )

† †

† †

and the positivity condition is then

ò w
w

w
W >

¥
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V
290

0

2( ) ( )

or, equivalently,

òp
w

w
w

W >
¥

m
d

J2
. 300

2

0

( ) ( )

OurHamiltonian is quadratic in the annihilation and creation operators for the oscillator and the reservoir and
hence leads to linear coupled equations ofmotion for these operators.We could seek to solve these equations of
motion and this would lead to an operatorHeisenberg-Langevin equation similar to that derived above and in a
number of earlier texts [42–44]. Herewe adopt the different approach of diagonalising theHamiltonian.

3.3.Hamiltonian diagonalisation
Our second less familiar element is the exact diagonalisation of the oscillator-reservoir Hamiltonian.We shall
find that this can be achievedwith greater generality than is possible for themodel with discrete reservoir
oscillators simply because there is greater freedom in the evaluation of integrals than summations. Our task is to

5
As is often the case in science, the Bixon-Jortnermodel itself had an anticipation in the early work of Fano [92].We are grateful to Jan Petter

Hansen for bringing Fano’s paper to our attention.
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diagonalise theHamiltonian by finding a complete set of eigenoperators, wB̂ ( ) and their conjugates wB̂ ( )†
that

satisfy the operator equations

w w w

w w w

=

=-





B H B

B H B

,

, 31

[ ˆ ( ) ˆ ] ˆ ( )
[ ˆ ( ) ˆ ] ˆ ( ) ( )† †

for all positive frequenciesω. These eigenoperators are complete if, in addition to these they also satisfy the
condition

w w d w w¢ = - ¢B B, . 32[ ˆ ( ) ˆ ( )] ( ) ( )†

These operator equations are the natural analogues of themore familiar eigenvalue and completeness conditions
for the eigenstates of aHamiltonian [17, 93]. In analogywith the eigenvalue problem,we expand each of the
eigenoperators as a superposition of a complete set of operators:

òw a w b w w g w w w d w w w= + + ¢ ¢ ¢ + ¢ ¢
¥

B a a d b b, , , 33
0

ˆ ( ) ( ) ˆ ( ) ˆ [ ( ) ˆ ( ) ( ) ˆ ( )] ( )† †

and then use the eigenoperator equations and completeness condition to determine the coefficients in this
expansion. The calculation is a little involved but themain points are summarised in appendix B.

We can express any of the annihilation and creation operators for the oscillator or the reservoir in terms of

our eigenoperators. To do this wewrite the desired operator as a superposition of all the wB̂ ( ) and wB̂ ( )†

operators and then use the commutation relations to extract the coefficients in this expansion. For the oscillator
operators we find

ò
ò

w a w w b w w

w a w w b w w

= -

= -

¥

¥

a d B B

a d B B . 34

0

0

ˆ ( ( ) ˆ ( ) ( ) ˆ ( ))

ˆ ( ( ) ˆ ( ) ( ) ˆ ( )) ( )

†

† †

*

*

The requirement that these operators satisfy the familiar boson commutation relation, =a a, 1[ ˆ ˆ ]† , provides a
constraint on the functionsα(ω) andβ(ω) in the form

ò òw a w b w w a w
w
w

- =
W

W +
=

¥ ¥
d d

4
1, 35

0

2 2

0

2 0

0
2

[∣ ( )∣ ∣ ( )∣ ] ∣ ( )∣
( )

( )

wherewe have used (B10). It is interesting to note that the correctness of thismay be verified explicitly by
contour integration and that the proofmakes explicit use of the positivity condition (29) [64].

The integrand in (35) is clearly positive (or zero) for all frequencies and is also normalized, and hence it has
themathematical formof a frequency probability distribution:

p w a w
w
w

=
W

W +
4

. 362 0

0
2

( ) ∣ ( )∣
( )

( )

Anumber of further constraints on this quantity emerge naturally from thinking of it as a probability
distribution and fromour diagonalization.Wenote that the same concept has been described before:
Georgievskii and Pollak introduce an effective density of states for the diagonalizedCaldeira-Leggettmodel [94],
while Ratchov et alhave expressed the properties of the damped harmonic oscillator in terms of such a
probability density [95], see also [96].

3.4. Physical constraints
We leave until the next section a discussion of the physical interpretation of the probability densityπ(ω) but
consider herewhat can be inferred from the fact that it has themathematical properties of a probability
distribution. To this end let us denote the average value of a function of frequency for this distribution by

òw w w p wáá ññ =
¥

f d f . 37
0

( ) ( ) ( ) ( )

wenote that |α(ω)|2 isfinite for allω and it follows, therefore, from (36) that the average value 〈〈ω−1〉〉 isfinite.
It follows from the eigenoperator equations (31) that we canwrite theHamiltonian in the form

ò w w w w= +
¥

H d B B C, 38
0

ˆ ˆ ( ) ˆ ( ) ( )†

whereC is an unimportant constant (even though it is formally divergent).We can substitute into this
Hamiltonian our expression for the eigenoperators (33).We require that the coefficients of a2ˆ and a 2ˆ† should
vanish so that
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ò òw w a w
w
w

w
p w

w
- W
+ W

=
W

- W =
¥ ¥

d d
4

0, 39
0

2 0

0 0 0

2
0
2

⎜ ⎟
⎛
⎝

⎞
⎠

∣ ( )∣ ( ) ( ) ( )

wherewe have again used (B10). This implies that

wáá = W . 402
0
2⟫ ( )

The fact that the square of themean value cannot exceed themean value of the square for any probability
distribution leads us to deduce that

wáá ññ < W . 410 ( )

Finally we can apply theCauchy–Schwartz inequality to provide a lower bound on the value of 〈〈ω−1〉〉:

w w

w

áá ññáá ññ

áá ññ >
W

-

-

1

1
. 42

1

1

0

( )



These inequalities are useful in determining the properties of the ground state.

4.Ground-state

It is immediately clear from the formof theHamiltonian (28) that the ground state of the oscillator is not that of
the undamped oscillator, that is the state annihilated by â. To see this we need only note that the interaction term

wa bˆ ˆ ( )† †
acts on the combined ground state of the non-interacting oscillator and reservoir, adding a quantum to

each. This suggests that the true ground state should be a superposition of states with varying numbers of quanta
in both the oscillator and the reservoir and hence an entangled state. This situation is reminiscent of the ground
state of an atom in quantum electrodynamics, which is dressed by virtual photons [97]. The dressing of the
ground-state atom is responsible for a number of important effects including theCasimir–Polder interaction
[98–100] and the formof the polarizability of the atom [101, 102]. It is reasonable to expect that it will be
similarly significant for our strongly damped oscillator.

The true ground state, whichwe denote by the ket |0〉, is the zero-eigenvalue eigenstate of all the annihilation
operators wB̂ ( ):

w wñ = "B 0 0 . 43ˆ ( )∣ ( )

The ground-state properties of the oscillator in this pure state are described by amixed state density operator
obtained by tracing out the environmental degrees of freedom:

r = ñáTr 0 0 . 44Osc Envˆ (∣ ∣) ( )

Themost straightforwardway to determine the formof thismixed state is to use the characteristic function [17]:

c x r x x
x x

= -
= á - ñ

a a

a a

Tr exp

0 exp 0 . 45

( ) [ ˆ ( ˆ ˆ)]
∣ ( ˆ ˆ)∣ ( )

†

†

*
*

This function provides a complete description of the state and all of its statistical properties. A brief summary of
the principal properties of this characteristic function is given in appendix C. To evaluate the characteristic
functionwe express â and â† in terms of the eigenoperators6

ò

ò

c x w xa x b w x a xb w

w xa w x b w

= á + - + ñ

= - +

¥

¥

d B B

d

0 exp 0

exp
1

2
. 46

0

0

2⎛
⎝

⎞
⎠

{ }( ) ∣ [( ) ˆ ( ) ( ) ˆ ( )] ∣

∣ ( ) ( )∣ ( )

†* * * *

*

This simple form,Gaussian in ξ, is characteristic of a squeezed thermal state.We can rewrite this characteristic
function in terms of our probability density in the form

6
Wemake use of the operator ordering theorem [17]

+ = -A B A B A Bexp exp exp exp
1

2
, ,⎛

⎝
⎞
⎠

( ˆ ˆ) ( ˆ) ( ˆ) [ ˆ ˆ]

which holds if the two operators Â and B̂ both commutewith their commutator A B,[ ˆ ˆ].

8

Phys. Scr. 99 (2024) 025109 SMBarnett et al



òc x w p w
w
x

w
x

w
x w x

= -
W

+
W

= -
áá ññ
W

+ áá ññW

¥

-

dexp
1

2

exp
1

2
, 47

r i

r i

0 0

2 0 2

0

2 1
0

2

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( )

( )

where ξr and ξi are the real and imaginary parts of ξ respectively.We note, in passing, that the quadrature
operators for the oscillator (familiar fromquantumoptics [17]) have unequal uncertainties:

w

w

D
+

=
áá ññW

D
- -

=
áá ññ

W

-a a

i a a

2 2

2 2
. 48

1
0

0

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ˆ ˆ

( ˆ ˆ ) ( )

†

†

The product of these two exceeds 1

2
, as itmust, by virtue of theCauchy–Schwartz inequality (42).

4.1. Ground-state energy
The ground-state energy of the undamped harmonic oscillator is simply w1

2 0, whereω0 is the natural angular

frequency of the oscillator. For an underdamped oscillator, the oscillation frequency is w g- 40
2 2 , which is

less than the frequency of the undamped oscillator and this suggests, perhaps, that the ground-state energy is
similarly reduced [103]. Although plausible, this would clearly run into difficulties in the over-damped regime in
which this characteristic frequency becomes imaginary.We shall see that the ground-state energy of the
oscillator, howeverwe define it, increases as a consequence of the damping.

We have established that in the ground state, the reduced state of the oscillator is Gaussian in position and
momentum and, as such, is completely determined by the first and secondmoments of the position and
momentum. Thesemoments are

w

w

á ñ =
á ñ=

á ñ=
áá ññ

á ñ =
áá ññ

á + ñ=

-



x

p

x
m

p
m

px px

0 0 0

0 0 0

0 0
2

0 0
2

0 0 0. 49

2
1

2

∣ ˆ∣
∣ ˆ∣

∣ ˆ ∣

∣ ˆ ∣

∣ ˆ ˆ ˆ ˆ∣ ( )

Expressions of this formwere derived previously byGrabert andWeiss in their theory of the damped harmonic
oscillator [42].We note that the frequency of the undamped oscillator, be itω0 orΩ0,makes no explicit
appearance in these expectation values, but the averages 〈〈ω〉〉 and 〈〈ω−1〉〉will depend on these frequencies.

We have seen that the quantumdamped harmonic oscillator is characterised by two natural frequencies,ω0

andΩ0, and it is natural to define the energy of the oscillator in terms of one or other of these:

= +H
p

m
mf x

2

1

2
, 50f

2

0
2 2

0
ˆ ˆ

ˆ ( )

where f0= ω0 orΩ0.We shall consider a third possible natural frequency,ωdiag, and the associated energy below.
The ground-state expectation values, equation (49), mean thatwe canwrite the expectation value of the energy
in the form

w
wá ñ =

áá ññ
+ áá ññ-

H
f

f
f0 0

4
. 51f

0

0

1
00 ⎜ ⎟

⎛
⎝

⎞
⎠

∣ ˆ ∣ ( )

Recall that the Cauchy–Schwartz inequality requires that

w w w
w

áá ññáá ññ  áá ññ
áá ññ

- -1
1

521 1 ( ) 

and it follows that the ground-state energy is bounded by

w
w

á ñ
áá ññ

+
áá ññ


H

f

f

f
0 0

4
. 53f

0

0

0
0 ⎜ ⎟

⎛
⎝

⎞
⎠

∣ ˆ ∣ ( )
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The globalminimumof this expression occurs for 〈〈ω〉〉= f0 and hence

á ñ H f0 0
1

2
54f 00

∣ ˆ ∣ ( )

for any choice of frequency in the expression for the oscillator energy:

w

á ñ W

á ñw

W 



H

H

0 0
1

2

0 0
1

2
. 55

0

0

0

0

∣ ˆ ∣

∣ ˆ ∣ ( )





The fact that both of these exceed the ground-state energy of the corresponding undamped oscillator is a
reflection of the fact that there is an energy cost to be paid in order to decouple the oscillator from its
environment [12]. This increase conflicts, however, with the reduction in ground-state energy that has
previously been reported [103].We note, further, that themean kinetic energy and potential energy for the
oscillator alone do not have the same value and that this is inmarked contrast to the ground state of the
undamped oscillator.

4.2.Diagonal formof the oscillator ground state
Wecan diagonalise the density operator for the oscillator alone, rOscˆ , bymeans of a squeezing transformation
[17] or, equivalently, introducing a newpair of annihilation and creation operators corresponding to a third
candidate natural oscillation frequency,ωdiag:

w
w

w
w

= +

= -





c
m

x i
p

m

c
m

x i
p

m

2

2
. 56

diag

diag

diag

diag

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

ˆ ˆ
ˆ

ˆ ˆ
ˆ

( )†

To complete the diagonalisationwe need only chooseωdiag such that the expectation values of c 2ˆ and c 2ˆ† are
zero:

w

w

w
w
w

á ñ = á - ñ =

 =
áá ññ
áá ññ-


c

m
x

p

m
0 0

2
0 0 0

. 57

2 diag 2
2

2
diag
2

diag 1

∣ˆ ∣ ∣ ˆ
ˆ

∣

( )

This frequency is the geometricmean of the two frequencies 〈〈ω〉〉 and 〈〈ω−1〉〉−1 and it is, by virtue of (41) and
(42), less thanΩ0.

Themean number of c-quanta in the oscillator ground-state is

w w= á ñ = áá ññáá ññ --n c c0 0
1

2
1 , 58c

1¯ ∣ˆ ˆ∣ ( ) ( )†

which exceeds 0, as it should, by virtue of (42).Whenwritten in terms of the c-quanta, the steady-state density
operator takes the formof a thermal Bose–Einstein state, whichwe canwrite in the form

r =
+ +n

n

n

1

1 1
. 59

c

c

c

c c

Osc ⎜ ⎟
⎛
⎝

⎞
⎠

ˆ
¯

¯
¯

( )
ˆ ˆ†

Wemay interpret this state as a thermal state for the oscillator at the shifted frequencyωdiag and at an effective
‘temperature’

w
=

+ -


T

k nln 1
. 60

B c
eff

diag

1( ¯ )
( )

We should note, however, that the true temperature in the ground-state is zero and that this quantity and the
frequencyωdiag are atmost only parameters withwhich to quantify the state of the oscillator and its entanglement
with the environment. In particular, the von-Neumann entropy associatedwith the steady state of the oscillator
is

= + + -S n n n nOsc 1 ln 1 ln . 61c c c c( ) ( ¯ ) ( ¯ ) ¯ ¯ ( )

By virtue of theAraki-Lieb inequality [104–106] and the fact that the full state is pure, thismeans that this is also
the total entropy of the environment:
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=S SEnv Osc 62( ) ( ) ( )

and that the quantummutual information [106], or index of correlation [107], between the oscillator and the
environment is

= + - =S S S S SOsc: Env Env Osc Osc, Env 2 Osc . 63( ) ( ) ( ) ( ) ( ) ( )

5. Physicalmeaning ofπ(ω)

Wehave seen that the physical properties of the oscillator ground statemay readily be expressed in terms of
moments of the frequency given the probability distribution π(ω). Herewe present the case for identifying this
probability density with the contribution from the dressedmodes, associatedwith the eigenoperators wB̂ ( ), to
the state of the oscillator. It is, in essence, in the spectrumof the true ground-state (continuum)modes
contributing to the oscillator state.We present three arguments to support this interpretation.

Our first justification arises from the formof the expectation values (49).We know that the ground state of a
harmonic oscillator of frequencyω has

w
w

á ñ =

á ñ=





x
m

p
m

2

2
. 64

2

2

ˆ

ˆ ( )

If we treat the state of the oscillator as amixture of oscillators of different frequencies, each in its ground state,
and contributionwithweightπ(ω) then the resulting averagemean-square values will be

ò

ò

w p w
w

w

w p w
w w

á ñ = =
áá ññ

á ñ = =
áá ññ

¥ -

¥

 

 

x d
m m

p d
m m

2 2

2 2
, 65

2

0

1

2

0

ˆ ( )

ˆ ( ) ( )

which correspond to those obtained above. Note that the requirement that á ñx2ˆ must befinite imposes the
condition that at zero frequency

p =0 0. 66( ) ( )

Our second point arises from the formof theHamiltonian for the oscillator

= + WWH
p

m
m x

2

1

2
. 67

2

0
2 2

0
ˆ ˆ

ˆ ( )

Wecan, by virtue of (40), write this as a combination of potentials corresponding to different frequencies but
weighted byπ(ω):

ò w p w w

w

= +

= + áá ññ

W

¥
H

p

m
m d x

p

m
m x

2

1

2

2

1

2
. 68

2

0

2 2

2
2 2

0
ˆ ˆ

( ) ˆ

ˆ
ˆ ( )

Finally we note that the effectivemean energy of the oscillator, which is associatedwith the diagonal formof
the density operator (59) is

òw w p w w w+ = = áá ññ < W
¥

   n d
1

2

1

2

1

2

1

2
, 69c diag

0
0⎛

⎝
⎞
⎠

¯ ( ) ( )

which neatly combines the characteristic ground state energies of the dressed oscillators, weighted by the
probability distributionπ(ω).We note that thismean energy is less than W1

2 0 by virtue of equation (41), It is,
however, always positive irrespective of whether the oscillator evolution is under- or over-damped. The general
question of whether the ground-state energy of the damped oscillator is greater or less than that of the undamped
oscillator is difficult to answer definitively as there is no unique form in the damped oscillatorHamiltonian for
the free or undamped oscillator frequency.

The combination of these three features (the expectation values á ñx2ˆ and á ñp2ˆ , the formof the oscillator
Hamiltonian and the effectivemean energy) leads us to interpretπ(ω) as the proportion of the corresponding
dressed oscillators contributing to the properties of the damped oscillator.We emphasise that themathematical
results obtained in the preceding section do not require us to adopt this interpretation ofπ(ω) butwefind it
helpful to do so.
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6. Equilibrium state atfinite temperature

We require the forms of the steady state and the dynamics for our damped harmonic oscillator in an
environment atfinite temperature. In evaluating this, we show that the equilibrium state is precisely themean-
forceGibbs state found by tracing out the environmental degrees of freedom from the global equilibriumGibbs
state. The analysis presents a problem aswe cannot assign a thermal state density operator in the continuum
limitmodel of the environment.We could take a step back and and return to a description in terms of discrete
reservoirmodes, but it ismore natural to adopt the thermofield technique devised for the treatment of problems
infinite temperature quantumfield theory [53–58]. This is our third less familiar element, and as thermofields
will be a novelty formuch of intended readership, we present a brief account of the thermofield technique inD.

It is essential to realise, however, that we have not as yet established that this equilibrium state is also the
steady state of the strongly damped oscillator.We turn to this in the following section.

We can determine the properties of the anticipated steady state by following the samemethod as employed
to study the ground state. The key idea is to replace the vacuum state |0〉 of the coupled system, see equation (43)
with the thermal vacuum state in a doubled space, which is related to the true vacuum state in the doubled space,

ñ0, 0∣ ˜ , by a unitary transformation:

ò
b q w

w q b w w w w w

ñ = ñ

= - ñ

S

d B B B B

0 0, 0

exp , 0, 0 . 70⎡
⎣

⎤
⎦

∣ ( ) ˆ ( [ ])∣ ˜

( )( ˜̂ ( ) ˆ ( ) ˆ ( ) ˜̂ ( )) ∣ ˜ ( )
† †

This state has the same single reservoir expectation values as the thermal state andmay therefore be used in its
place. If the coupled oscillator-reservoir system relaxes to the thermal state of the coupled system (andwe have
yet to establish this) thenwe can use this thermal vacuum state.

The corresponding thermal steady state of the harmonic oscillator, themean forceGibbs state [108, 109],
will be amixed state density operator obtained by tracing over the environment:

r b b= ñáTr 0 0 . 71TOsc, Envˆ [∣ ( ) ( )∣] ( )

Aswith the zero temperature ground state, we can determine the formof this using the characteristic function:

ò
c x b x x b

b w xa x b w x a xb w b

= á - ñ

= á + - + ñ

a a

d B B

0 exp 0

0 exp 0 . 72

T

{ }
( ) ( )∣ ( ˆ ˆ)∣ ( )

( )∣ [( ) ˆ ( ) ( ) ˆ ( )] ∣ ( ) ( )

†

†

*

* * * *

Wecan transform this into a vacuum expectation value by applying a unitary transformation to the annihilation
and creation operators wB̂ ( ) and wB̂ ( )†

:

w w q b w w q b w

w w q b w w q b w

 +

 +

B B B

B B B

cosh , sinh ,

cosh , sinh , . 73

ˆ ( ) ˆ ( ) ( ) ˜̂ ( ) ( )
ˆ ( ) ˆ ( ) ( ) ˜̂ ( ) ( ) ( )

†

† †

Applying this transformation to our characteristic function replaces (72) by an equivalent vacuum expectation
value. Evaluating this gives

ò

ò

c x w xa w x b w q b w q b w

w xa w x b w b w

= - + +

= - + 

d

d

exp
1

2
cosh , sinh ,

exp
1

2
coth 2 . 74

T
2 2 2

2

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ∣ ( ) ( )∣ [ ( ) ( )]

∣ ( ) ( )∣ ( ) ( )

*

*

Aswith the zero-temperature steady state, this is a simpleGaussian in ξ and, again, is characteristic of a squeezed
thermal state.When expressed in terms of our probability density, π(ω), wefind:

òc x w p w b w
w
x

w
x

w b w
x w b w x

= -
W

+
W

= -
áá ññ

W
+ W áá ññ-






dexp
1

2
coth 2

exp
1

2

coth 2
coth 2 . 75

T r i

r i

0

2 0 2

0

2
0

1 2

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( ) ( )

( ) ( ) ( )

Wenote that this has the same general form as the characteristic function for the ground state, equation (47), but
with the probability densityπ(ω) replaced by a thermally-weighted density p w b wcoth 2( ) ( ).With this
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substitution, we can simplymodify the properties of the ground state so that, for example, the lowestmoments
of the position andmomentumoperators in this state become

w b w

w b w

á ñ =
á ñ =

á ñ =
áá ññ

á ñ =
áá ññ

á + ñ =

- 
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x

p

x
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p
m

xp px
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coth 2

2
coth 2

2
0. 76

T

T

T

T

T

2
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ˆ
ˆ

ˆ ( )

ˆ ( )

ˆ ˆ ˆ ˆ ( )

Wehave seen that the oscillator is characterised by (at least) two different natural frequencies,Ω0 andω0. In
terms of these, themean energy of the oscillator alone is

w b w
w b w+ =

áá ññ
+ áá ññ- 


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⎛
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⎞
⎠

ˆ ˆ ( ) ( ) ( )

where f0= ω0 orΩ0. This is the natural generalisation of the ground-state energy of the oscillator given in
equation (51)

It is interesting to pause at this point and to consider the behaviour of the oscillator kinetic and potential
energies in the high temperature limit. For aweakly damped oscillator, wewould expect both of these quantities
to approach k TB

1

2
, the value suggested by the equipartition of energy. To check this, we need only note that in

the high temperature limit

b w
b w w

 =
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k T
coth 2

2 2
. 78B( ) ( )

It follows that the high temperature limits of the kinetic and potential energies are, respectively:
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The kinetic energy of the oscillator tends to the expected high-temperature value, but the potential energy does
not, and requires an explanation. In pursuit of this, we note that theCauchy–Schwartz inequality requires that
〈〈ω2〉〉〈〈ω−2〉〉� 1 and, as wáá ññ = W2

0
2, it follows that wW áá ññ- 10

2 2  , so that the potential energy, when
expressed in terms ofΩ0, exceeds that assigned by equipartition. The natural way to understand this is that the
oscillator is strongly rather thanweakly coupled to its environment and the excess thermal energy has its origin
in the interaction energywith the environment. The issue is less clear, however, if we express the potential energy
in terms ofω0.We shall see below that in the limit of weak damping, whenΩ0 andω0 tend to a common value,
the probability distributionπ(ω) becomes sharply peaked aroundω=Ω0 so that the equipartition of energy for
the potential energy is restored.

7.Oscillator dynamics

It remains to consider the evolution of the oscillator towards equilibrium. This will be important in practical
applications of the theory but also for a fundamental reason; we have obtained equilibrium states at zero and at
finite temperature, but have not as yet proven that the dynamics of the oscillator causes it to evolve towards this
state. Establishing this, without approximation, is a principal aimof this section.

The exact diagonalisation of theHamiltonianmakes it straightforward to evaluate the time-evolution of any
desired property of the oscillator. All that we need do is to express the desired observable in terms of the

eigenoperators, wB̂ ( ) and wB̂ ( )†
and then use the time evolution of these operators, the formofwhich is an

elementary consequence of the fact that they are energy eigenoperators:

w w

w w
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In particular, we can determine the time-evolution of the annihilation operator for the oscillator in this way:
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Thismay be used, togetherwith the initial state of the oscillator and the environment, to evaluate the expectation
value of any desired property. Note that we have chosen the initial state to be one inwhich the oscillator and the
reservoir are uncorrelated.We allow the oscillator to be prepared in any chosen state, but the reservoir is in a
thermal state, whichwe describe using a thermal vacuum state for the reservoir degrees of freedom, as given in

equation (D11). As the environment is in a stationary state, so that w wá ñ = = á ñb b, 0 0 , 0ˆ ( ) ˆ ( )†
, the expectation

values of the position andmomentumoperators take a pleasingly simple form:

w w w

w w w

á ñ = áá ññá ñ + áá ññá ñ

á ñ = áá ññá ñ - áá ññá ñ

-x t t x
m

t p
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1

sin 0

cos 0 sin 0 , 82

1ˆ ( ) ( ) ˆ ( ) ( ) ˆ ( )

ˆ ( ) ( ) ˆ ( ) ( ) ˆ ( ) ( )

where the double angle brackets denote, as before, averages over our probability distributionπ(ω) as in (37). The
generality of this evolution follows simply from the linearity of the dynamics and has been noted before, in
particular byHaake andReibold in their treatment of an oscillator coupled to a quasi-continuumof oscillators
[60]. The formof these equations adds further support to our interpretation ofπ(ω) as a frequency probability
distribution for the damped oscillator, as theymay be viewed as the evolution of an undamped oscillator with a
frequencyω averaged using this probability distribution. The dissipation arises simply from a dephasing
amongst the different frequency components.

The evolution of themean position andmomentum, as given in (82), has the necessary short-time formof
that for an undamped oscillator

d d

d d

á ñ = á ñ +
á ñ

á ñ= á ñ - W á ñ

x t x
p

m
t

p t p m x t

0
0

0 0 , 830
2
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ˆ ( ) ˆ ( ) ˆ ( ) ( )

wherewe have used the identity wáá ññ = W2
0
2. The effects of the coupling to the environment enter at order δt3

and this is an indication of the essentially non-Markovian nature of the strongly-damped oscillator. Our primary
interest is in strongly damped oscillators and sowe should note that (82) includes the possibilities of both
critically-damped and over-damped evolution. The equations contain,moreover, a simple criterion for these,
whichwemay express in terms of our probability distribution. Themotionwill be oscillatory if wáá ññtcos( ) has
stationary points at times other than at t= 0. Alternatively, wemay state that themotion is under-damped if the
derivative of this quantity, that is w wáá ññtsin( ) , is zero for any time other than t= 0. If it is zero only at t= 0 then
themotion is critically-damped or over-damped.We shallfind, however, that an alternative criterion ismore
useful in general: that themotion is over-damped if the characteristic evolution rates are all positive with no
imaginary parts. For the classic damped oscillator, familiar frommechanics, these criteria are equivalent.

7.1. Steady state
Our expression for the evolved annihilation operator (81), togetherwith the corresponding one for the creation
operator provide a full description of the oscillator dynamics. This is true for any initial state of the oscillator and,
moreover, for any environmental state including, of course, that associatedwith afinite temperature. As an
illustration let us examine the evolution of the characteristic function for an arbitrary initial state of the oscillator
coupled to afinite-temperature environment at time t= 0. The zero-temperature behaviour follows, simply, in
the limitT→ 0 orβ→∞ .With a little effort we find (using themethod of characteristics [17])
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2
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where
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This characteristic function encodes the full dynamics and statistics of the oscillator. As a simple illustration of
this we can determine, directly, the formof the steady state. To see this wefirst note ξ(t) tends to zero as t tends to
infinity and the different frequency components dephase so that the prefactor in equation (84), corresponding to
the initial state of the oscillator tends to

c x c¥ = =, 0 0, 0 1, 86[ ( ) ] [ ] ( )

whichmeans that allmemory of the initial state of the oscillator is lost. Evaluating the long-time limit of the
exponential factor in (84) requires some care in the handling of the delta-function and principal part
components.Wefind
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so the steady-state characteristic function is
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whichwe recognise as the characteristic function for the oscillator in the global thermal equilibrium state (74).
This is amost satisfactory and exact result.

It alsomeans that the steady state of the oscillator is themean-force Gibbs state. To see this we need only note
that it is given by the trace over the environment of the full thermal equilibrium state, equation (71). Proof of this
equivalence has also been shown in [59] by demonstrating the equality of steady statemulti-time open system
correlation functions obtained byHeisenberg-Langevin equation ofmotionmethods to those of the closed
system thermal Gibbs state.

7.2. The classic evolution
Wemight expect that, in a suitable limit, ourmodel should reproduce the classic (not necessarily classical)
evolution familiar frommechanics texts [111, 112]. In this case themean oscillator position, = á ñx t x t( ) ˆ ( ) ,
satisfied the simple differential equation

g w+ + =x x x 0 890
2̈ ( )

and the solutionwith the initial conditions x(0)= x0 and =x 0 0( ) is
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2
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Wecan test this evolution against ourmodel by comparing x(t)/x0 with wáá ññtcos( ) and using this to determine,
via Fourier transform, the associated form forπ(ω). Following this procedure wefind

p w
p

l l l l
w l w l

=
+

+ +
+ - + -

+ -

2
. 92

2 2 2 2
( ) · ( )

( )( )
( )

It is immediately clear that this is incompatible with our constraints onπ(ω) as we require a finite value for
〈〈ω−1〉〉 so that themean-square displacement in steady state, á ¥ ñx2ˆ ( ) is alsofinite. It follows that any attempt to
derive precisely this classicmotion fromour coupled oscillatormodel is questionable. Rather than this, we seek
to get close to the classic behaviour bymodifyingπ(ω) in equation (92) so that it satisfies the required physical
constraints.

7.3. An example evolution
Wehave seen that both the dynamics and the steady-state of our damped harmonic oscillator are governed by
the formof the functionπ(ω). Determining this, together with the initial conditions, provides all the
information required.We can calculateπ(ω) directly from the frequency-dependence of the coupling between
the oscillator and its environment or,more simply, select a form forπ(ω) and proceed from this. This is the
approachwe adopt here.

15

Phys. Scr. 99 (2024) 025109 SMBarnett et al



As a starting point we consider the disallowed formofπ(ω) derived in the preceding section. To provide a
finite value for 〈〈ω−1〉〉we requireπ(0)= 0 and to enforce this, wemultiply the function byω2. To keep 〈〈ω2〉〉
finite, as itmust be, we also add an additional Lorentzian factor and so arrive at the form

p w
w
p

g g g g
w w g w g
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+ - - +
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2
. 93

2

2 2 2 2 2 2
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( )( )( )
( )

This is, perhaps, the simplest example that satisfies the necessary physical constraints: (i) it is normalised, (ii)π
(0)= 0, and (iii)⟪ω2⟫ isfinite. It is necessary, in order thatπ(ω) is real and positive, that we chooseΓ to be real
and positive, with γ+ and γ− either both real and positive or complex conjugates of each other with positive real
parts. It is straightforward to calculatemoments of the frequency from thisπ(ω). For example the averages 〈〈ω〉〉
and 〈〈ω−1〉〉 are

w
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fromwhichwe can derive the expectation values of x2ˆ and p2ˆ in the ground state of the damped oscillator7.
We can calculate the steady-state properties of the oscillator and also the evolution of themean position

directly fromπ(ω). Before doing so, however, it is instructive to compare the dynamics given in terms ofπ(ω)
with that given by theHeisenberg-Langevin equation described in section 3.1. There we found a second-order
general equation ofmotion for themean position in the form

ò k w k+ - ¢ ¢ ¢ + + =x t t x t dt x t t x 0 0, 95
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0
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wherewe have againwritten x(t) for the expectation value á ñx tˆ ( ) . If we compare the solution of this equation
with that in terms ofπ(ω), equation (82), we are led to the formof thememory kernel:

k
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Wecan relate this directly to the environmental coupling as represented by J(ω) by using the inverse Fourier
transformof equation (16).We find
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Wecan compare this with thewell-knownDrude form for J(ω), usually written as [29]
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whereωD is theDrude cut-off frequency and γ is a decay rate. Comparing these two forms for J(ω) leads us to the
identifications
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These provide a simple relationship between our two oscillator frequencies:
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which emphasises the need for afinite cutoff frequency. Further, we can obtain the formof W0
2 directly fromπ

(ω):
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When γ± are complex, we canwrite these in the form γ± = |γ+|e

± if, where I Rf g g= -
+ +tan 1[ ( ) ( )].
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Wecan determine the evolution of the expectation values of the position andmomentum from
equation (82) by evaluating the averages wáá ññtcos( ) , w wáá ññ- tsin1 ( ) and w wáá ññtsin( ) :
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Weexpect tofind something approximating the classic evolution of the damped harmonic oscillator in the limit
of smallΓ, for which ourπ(ω), given in equation (93), approaches the classic form, equation (92), but departures
from this for larger values. Infigure 2we plot the evolution of wáá ññtcos( ) for a small value ofΓ in terms of
γS= γ++ γ−. It is interesting to note, however, that in this limitω0→ 0 and that the classic evolution arises not
as a solution of the familiar differential equation (89) but rather as a solution of thememory differential equation

ò k k+ - ¢ ¢ ¢ + =x t t x t dt t x 0 0. 104
t

0
̈ ( ) ( ) ( ) ( ) ( )

As anticipated, we find over-damped like behaviour for real values of γ+ and γ−, and underdamped behaviour
for complex values. Indeedwe can conveniently define the over-damped regime as being that inwhich γ+ and
γ− are purely real. Note, however, that there is a small over-shoot in the over-damped regime, whichwould
certainly be absent in the over-damped classic evolution of the oscillator. This can be traced back to the e−Γ t

termwhich, although small, decays slowly and so has a residual influence at long times. This is especially clear in
the largeΓ regime, depicted infigure 3. Therewe see that there is a significant over-shoot of themean position in
what, in the classic evolution, would be the over-damped regimewith wáá ññtcos( ) always greater than zero. In
the under-damped regime, however, the e−Γ t termhas a less dramatic effect; the evolution forΓ= 0.01 (in
figure 2(b)) and forΓ= 10 (figure 3(b)) are qualitatively rather similar.

Figure 2.Evolution of wtcos⟪ ( )⟫ for smallΓ. a)Over-damped regime, with parametersΓ = 0.01γS, g g=+ S
3

4
, g g=- ;S

1

4
b)Under-

damped regimewith parametersΓ = 0.01γS, g g=  i5 S
1

2( ) . (γS = γ+ + γ−).
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Wehave seen that the existence of two natural frequencies for the oscillator,ω0 andΩ0, is particularly
important when comparing the short and long time behaviour of the oscillator:ω0 behaves as the natural
frequency, but at short times it isΩ0 that takes on this role. Infigure 4we plot the short-time evolution of

wáá ññtcos( ) (solid line) and compare this with the classic evolution for a damped harmonic oscillator with
natural frequencyω0. It is clear that the former falls offmore quickly as itmust, becauseΩ0> ω0. For the

Figure 3.Evolution of wtcos⟪ ( )⟫ for largeΓ. (a)Overdamped regime, with parametersΓ = 10γS, g g=+ S
3

4
, g g=- ;S

1

4
(b)

Underdamped regimewith parametersΓ = 10γS, g g=  i5 S
1

2( ) . (γS = γ+ + γ−).

Figure 4.Comparison of short-time behaviour in the coupled oscillators quantummodel and classic evolutions. The exact solution

for short times is plotted as a solid line, withπ(ω) as given in equation (93), and parametersΓ = 10γS, g g=  i5 ;S
1

2( ) the dashed

line shows the limitΓ → 0, inwhich classic damped simple harmonicmotion is recovered, with the other parameters unchanged.
(γS = γ+ + γ−).
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parameters chosen,Ω0 is just over twice the value ofω0. It is interesting to note that we canmatch the two
evolutions up to very short times if we allow for a short-time slip so that as t tends to zero, wtcos⟪ ( )⟫becomes
larger than unity [60]. This is unnecessary, however, if we take account of the existence of two natural
frequencies as we have done here.

8.Weak-coupling limit

The theory developed abovewas designed to treat the strongly-damped harmonic oscillator, but should also be
applicable to themore familiar weakly damped oscillator, for which the oft-employed Born andMarkov
approximations are applicable and the steady state of the oscillator should be its ground state.We showhere that
this is indeed the case.

We start by considering the formof the functionα(ω) in theweak coupling limit. To aid our analysis we
rewrite the form given in (B18) as
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Theweak damping limit corresponds to choosing the coupling to the environment to be small or,more
specifically, to |V(ω)|2=Ω0. It is clear that in this limit, |α(ω)|2 will be a sharply peaked function centred around
the frequency forwhichY(ω)= 0. If the integral part inY(ω), as given in (B15) is small8 then this frequencywill
be close toΩ0 andwe canwrite
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This leads, in turn, to a corresponding approximate form forα(ω):
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wherewe have setω=Ω0 everywhere except in the denominator.We note that this is of the form that arises from
the Fano diagonalisation of our problem if wemake the rotatingwave approximation by omitting fromour
originalHamiltonian all terms that are products of two creation operators or of two annihilation
operators [17, 93].

Consistencywith the above approximation, which led us to setω=Ω0 leads us to setβ(ω) to zero:

b w » 0, 109( ) ( )

so that the integral over all frequency of |α(ω)|2 is unity.Moreover, for weak damping the thermal function
b wcoth 2( )will also be slowly varying compared to the rapid variation of |α(ω)|2 in the vicinity ofω=Ω0 and

wemay replace this function by its value atΩ0. Hence in this limit the steady-state characteristic function for our
oscillator is
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where n̄ is themean thermal excitation number.We recognise (110) as the symmetrically ordered characteristic
function for the thermal state of the undamped oscillator [17], as itmust be. Further, we note that in this limit
our probability distribution function,π(ω)≈ |α(ω)|2, approaches a Lorentzian centred onΩ0, with some
width γ 9. Thus all the complexity of of the original problem is reduced, in theweak-damping limit to just three
parameters: a natural oscillation frequency, a damping rate and a temperature.

It was important to confirm that ourmore general treatment coincided, in the right limit, with the
approximatemethods used forweakly damped oscillators.We should note that even if we are working in the
weakly damped regime, then our approach offers a systematic way to treat corrections to the results obtained
using the Born andMarkov approximations, whichmay play an important role inmodellingmeasurements at
the limits of sensitivity.

8
If it is not thenwewill need to invoke ideas of renormalisation, amanageable complication, but onewewish to avoid.

9
This is not strictly true in thewings of the distribution, of course, as even in this limit we require wáá ññ = W2

0
2, but the corresponding

quantity for a true Lorentzian is divergent.
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9. Conclusion

Wehave presented an exact diagonalisation of a simple quantummodel of the damped harmonic oscillator, one
that is applicable, in particular, to any strength of the damping. As a result we have recovered the fact thatmuch
of the behaviour of the oscillator andmany of its properties can be described in terms of a single probability
function,π(ω), whichwemay interpret as the contribution of corresponding dressedmode, at frequencyω to
the oscillator. These properties include the steady state of the oscillator at both at zero and atfinite temperature,
the entanglement between the oscillator and its environment and also its evolution, both in the familiar under-
damped regime but also in themore problematic over-damped regime.

We have applied our diagonalisation to study the properties of the true ground state and have shown that the
oscillator part of this pure entangled state coincides with the steady-state of the oscillator in a zero-temperature
environment. The diagonalisation is not specific to any particular state of the reservoir, however, andwe have
shownhow it can be be applied to environments atfinite temperature. The extension tomore exotic states, such
as squeezed reservoirs presents no obvious difficulties. Itmay be extended,moreover, to include driving forces,
coupled oscillators andmultiple reservoirs, with the latter perhaps being at different temperatures [110]. This
may provide some insights into important questions of principle in the nascent fields of quantummachines and
quantum thermodynamics [10, 11, 113–117].

Acknowledgments

It is a pleasure to dedicate this paper to our friend and colleague, Igor Jex, in celebration of his 60th birthday.
TheHamiltoniandiagonalisationuponwhichmuchof thiswork is basedwasfirst calculated byBrunoHuttner,

in collaborationwith SMB, 30 years ago in theirworkon the quantumelectrodynamics of dielectricmedia.Weare
most grateful to himand also toPaulRadmore andClaireGilson for helpful comments and suggestions. Thiswork
was supported, in part, by theRoyal Society through the award to SMBof aResearchProfessorship,RP150122.

Data availability statement

Nonewdatawere created or analysed in this study.

AppendixA.Heisenberg equations ofmotion

TheHeisenberg equations ofmotion follow directly from theHamiltonian, andwe obtain these using the
Hamiltonian in the formof (2). (Wecould equally well have used the identical Hamiltonian (3)).
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We seek an equation ofmotion for the position operator and sofirst eliminate themomentumoperators
between the first and second and the third and fourth equations:
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The next step is to integrate the second of these equations ofmotion. The complementary function is
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Tofind the particular integral we need tomake a small addition to (A3) by adding a veryweak damping term to
give:

e w w l+ + =m m m m m mx x x x, A52 2ˆ ̈ ˆ ˆ ˆ ( )

andwork in the limit as the strictly positive quantity ε tends to zero. It is this choice of a positive (if very small)
value for ε that provides the irreversibility and hence the arrow of time.

Solving (A5) for the particular integral requires some care and sowe pause for amoment to provide the
details. Let us introduce the Fourier transformof mx̂ in the form

òw
p

=m m
w

-¥

¥
x x t e dt

1

2
, A6i t¯ ( ) ˆ ( ) ( )

with a similar expression for the Fourier transformof x̂. It follows that the Fourier transformof the particular
integral part of the position is given by

w e w w l

w l

w w ew

- - + =

 =-
- +

m m m m m m

m
m m

m

x i x x x

x
x

i
. A7

2 2 2

2

2 2

¯ ¯ ¯ ¯

¯
¯

( )

It follows then follows that

òp

w l

w w ew
w w= -

- +m
m m

m

w

-¥

¥
-x t

i
x e d

1

2
, A8i tPI

2

2 2
ˆ ( ) ¯ ( ) ( )

which is the Fourier transformof the product of two functions ofω.We can use the convolution theorem to
write this in terms of the transformsTo exploit this wewrite the Fourier transformof the first function as the
time-derivative of a functionK(t):

òp

w l

w w ew
w

w l w

=
- +

=-

m
m m

m

w

m m
e

m

-¥

¥
-

-

K t
i

e d

e t

1

2

sin A9

i t

t

2

2 2

2

( )

( ) ( )



if t> 0 and is zero otherwise.We can now take the limit as ε→ 0 to give

w l w
l w

=-
 =

m m m m

m m m

K t

K t

sin

cos . A10

( )
( ) ( )



It then follows that

ò
ò

ò

ò

w w w=-

=- -

=- - + -

=- + - - ¢ ¢ ¢

m m
w

m

m

m m m

-¥

¥
-

-¥

¥

x t K x e d

K T x t T dT

K T x t T K T
d

dT
x t T dT

K t x K x t K t t x t dt0 0 , A11

i t

t
t

t

PI

0
0

0

ˆ ( ) ¯ ( ) ¯ ( )

( ) ˆ ( )

[ ( ) ˆ ( )] ( ) ˆ ( )

( ) ˆ ( ) ( ) ˆ ( ) ( ) ˆ ( ) ( )







wherewe have used the facts thatK(T)= 0 forT< 0 andwemay take t =x 0ˆ ( ) for τ< 0.
Pulling this altogetherwe arrive at our desiredHeisenberg-Langevin equation for the damped harmonic

oscillator. From (A3)we have

ò k k k+ - ¢ ¢ ¢ + W - + =x t t t x t dt x t t x
F t

m
0 0 , A12

t

0
0
2ˆ ̈( ) ( ) ˆ ( ) ( ( )) ˆ ( ) ( ) ˆ ( )

ˆ ( ) ( )

where

å

å

k l

w l w

= W

=

m

m
m m

m

m
m m m

t
m

m
K t

m

m
tcos A13

2

2 2

( ) ( )

( ) ( )
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and F(t) is the Langevin force:

w l w
w

w= +m m m m
m

m m
mF t x t

p

m
t0 cos

0
sin . A142

⎜ ⎟
⎛

⎝

⎞

⎠
ˆ ( ) ˆ ( ) ( )

ˆ ( )
( ) ( )

Appendix B. Fano diagonalisation

Wepresent a brief account of the exact diagonalisation of ourHamiltonian based onmethods developed by
Fano for the study of configuration interactions [118]. This ideawas applied extended toweakly-coupled
oscillators in a quantum study of damped cavitymodes [17, 93]. The extension to stronger couplings, with the
inclusion of counter-rotating couplings, has been given before and applied to the quantum theory of light in
dielectricmedia [63, 64].We summarise here the analysis presented in [64].

Our task is to diagonalise the damped harmonic oscillatorHamiltonian10, equation (28)

ò

ò

w w w w

w w w w w

= W +

+ + +

¥

¥

 



H a a d b b

d a a V b V b
2

, B1

0
0

0

ˆ ˆ ˆ ˆ ( ) ˆ ( )

( ˆ ˆ )[ ( ) ˆ ( ) ( ) ˆ ( )] ( )

† †

† † *

bywhichwemean rewriting it in the formof a continuumof uncoupled or dressed oscillators:

ò w w w w= +
¥

H d B B C, B2
0

ˆ ˆ ( ) ˆ ( ) ( )†

whereC is an unimportant constant.We proceed bywriting the dressed annihilation operators, wB̂ ( ), as linear
combinations of the bare operators for the oscillator and bathmodes:

òw a w b w w g w w w d w w w= + + ¢ ¢ ¢ + ¢ ¢
¥

B a a d b b, , , B3
0

ˆ ( ) ( ) ˆ ( ) ˆ [ ( ) ˆ ( ) ( ) ˆ ( )] ( )† †

whereαω,β(ω), g w w¢,( ) and d w w¢,( ) are to be determined.
We require the operator wB̂ ( ) to be associatedwith an uncoupled or dressed oscillator of angular frequency

ω. This requires us tofind its form such that the following pair of operator equations are satisfied for every
frequency,ω:

w w w= B H B, B4[ ˆ ( ) ˆ ] ˆ ( ) ( )

w w d w w¢ = - ¢B B, . B5[ ˆ ( ) ˆ ( )] ( ) ( )†

Substituting the ansatz (B3) into (B4) and comparing coefficients of the bare creation and annihilation operators
leads to the set of coupled equations:

òa w w g w w w d w w w a w wW + ¢ ¢ ¢ - ¢ ¢ =
¥

d V V
1

2
, , B60

0
( ) [ ( ) ( ) ( ) ( )] ( ) ( )*

òb w w g w w w d w w w b w w- W + ¢ ¢ ¢ - ¢ ¢ =
¥

d V V
1

2
, , B70

0
( ) [ ( ) ( ) ( ) ( )] ( ) ( )*

w
a w b w g w w w g w w w

¢
- + ¢ ¢ = ¢

V

2
, , B8

( ) [ ( ) ( )] ( ) ( ) ( )*

w
a w b w d w w w d w w w

¢
- - ¢ ¢ = ¢

V

2
, , . B9

( ) [ ( ) ( )] ( ) ( ) ( )

Ourmethod of solution is use these to determine the functionsβ(ω), g w w¢,( ) and d w w¢,( ) in terms ofα(ω) and
then to determine this remaining function by enforcing the commutation relation (B5). From (B6) and (B7)we
see that

b w
w
w

a w=
- W
+ W

. B100

0

( ) ( ) ( )

If we use this to substitute forβ(ω) into the remaining equations thenwefind

w
w

a w g w w w w¢
W
+ W

= ¢ - ¢V , B110

0

( ) ( ) ( )( ) ( )*

10
For theHamiltonian of interest in this paper the coupling,V(ω), is real but treating the problemwith amore general complex coupling

presents no additional difficulties.
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w
w

a w d w w w w¢
W
+ W

= ¢ + ¢V , . B120

0

( ) ( ) ( )( ) ( )

Solving the second of these presents no difficulty andwefind

d w w
w w

w
w

a w¢ =
+ ¢

¢
W
+ W

V,
1

. B130

0

⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )

Thefirst, however, requires careful handling because the behaviour at w w= ¢. Following Fano [118], we adopt
themethod proposed byDirac [119] andwrite

g w w
w w

w d w w w
w

a w¢ =
- ¢

+ - ¢ ¢
W
+ W

Y V, , B140

0

⎛
⎝

⎞
⎠

( ) ( ) ( ) ( ) ( ) ( ) *

where  denotes that the principal part is to be taken on integration andY(ω) is a real function, whichwe
determine by substituting (B14) into (B6).Wefind

òw
w

w
w

w w w w
w=

- W
W

- ¢
- ¢

-
+ ¢

¢
¥

Y
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d V
1 2 1
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2

2
0
2

0 0

2⎡
⎣⎢

⎛
⎝
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( )
∣ ( )∣

( ) ∣ ( )∣ ( )

If we substitute our operators, wB̂ ( ), expressed in terms of the functionα(ω) into the commutation relation
(B6) thenwefind

ò

w w a w a w
w
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w
w

w
w w

w d w w
w w

w d w w

w w w w
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w w
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*

Evaluating the integrals and setting the result equal to d w w- ¢( ) gives11

a w
w

w w p
=

+ W
W +V Y

1
. B172 0

2

0
2 2 2 2
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⎛
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Note that the diagonalisation does notfix the phase of the complex functionα(ω) andwe are free to choose this
as wewish. A convenient choice is to set

a w
w

w w p
=

+ W
W -V Y i

1
. B180

0

⎜ ⎟
⎛
⎝

⎞
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AppendixC. The symmetrically ordered characteristic function

Wehavemade use of the symmetrically ordered characteristic function,

c x r x x= -a aTr exp , C1( ) [ ˆ ( ˆ ˆ)] ( )† *

to investigate both the dynamics and the steady state of the damped harmonic oscillator. For completeness, we
summarise here themain properties of this function. Further details of this and also of related characteristic
functions can be found in [17].

The characteristic function is always defined and alsowell-behaved for any oscillator state. As ξ= 0 it
reduces to the trace of r̂ and it follows thatχ(0)= 1.More generally, it is the expectation value of the unitary
displacement operator:

x x x= -D a aexp . C2ˆ ( ) ( ˆ ˆ) ( )† *

This operator, by virtue of its unitarity, has only eigenvalues ofmodulus 1 and it follows that

c x 1, C3∣ ( )∣ ( )

with themaximumat ξ= 0.

11
This requires the use of the following formula for the product of two principal parts [17]:

w w w w w w w w w w
p d w w d w w

-  ¢ - 
=

¢ - - 
-

¢ - 
+ -  ¢ -  .2⎛

⎝
⎞
⎠

( ) ( )    
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Themost important property is that the density operator and the symmetrically ordered characteristic
function exist in one to one correspondence, analogous to a Fourier transformpair. Cahill andGlauber [120]
(see also [121]) exploited a theoremofWeyl [122] to show that

òr
p

r x x= -
xd

D DTr . C4ˆ [ ˆ ˆ ( )] ˆ ( ) ( )

Wecan extract from the characteristic function the expectation value of any symmetrically ordered
combination of â and â†:

x x
c xá ñ =

¶
¶

-
¶
¶

x=

S a a . C5m n
m n

0

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ˆ ˆ ( ) ( )†
*

By symmetrically ordered, wemean the average of all possible orderings, for example:

á ñ = +

á ñ= + + + + +

S a a a a aa

S a a a a a aa a a a a aa a aa aa a a

1

2
1

6
. C62 2 2 2 2 2 2 2

ˆ ˆ ( ˆ ˆ ˆ ˆ )

ˆ ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( )

† † †

† † † † † † † † † †

AppendixD. Thermofields

It is simplest to consider first an isolated discrete oscillator with annihilation and creation operators b̂ and b̂
†
.

For such an oscillator in a thermal state at temperatureT the density operator has the simple, diagonal form:

år = - ñáb w b w-

=

¥
- e e n n1 , D1T

n

n

0

ˆ ( ) ∣ ∣ ( )

where b = -k TB
1( ) is the inverse temperature. Themean number of excitations is

=
-b w

n
e

1

1
D2¯ ( )

andwe canwrite the density operator in terms of thismean:

år =
+ +

ñá
=

¥

n

n

n
n n

1

1 1
. D3T

n

n

0

⎛
⎝

⎞
⎠

ˆ
¯

¯
¯

∣ ∣ ( )

The thermofield technique [53–58] starts with the observation that we canwrite a pure state that has the same
statistical properties as the thermalmixed state (D1). To construct this state we consider a doubled state space in

whichwe introduce a second oscillator with annihilation and creation operators b̃̂ and b̃̂
†
. The two-mode pure

state, the thermal vacuum:

åb ñ = - ñb w b w-

=

¥
- e e n n0 1 , D4

n

1 2

0

2∣ ( ) ( ) ∣ ˜ ( )

has precisely the same single-mode properties as the single-mode thermal state:

b bá ñ =f b b f b b0 , 0 Tr , . D5( )∣ ( ˆ ˆ )∣ ( ) ( ( ˆ ˆ )) ( )† †

It is straightforward to show that a similar procedure can be applied can be applied to express anymixed state in
terms of a pure state in a doubled state space [56].When this procedure was rediscovered in quantum
information theory, it acquired the name purification [106].

The benefit of introducing the thermal vacuum state comes from the fact that it is related to the two-mode
vacuum state, ñ0, 0∣ ˜ , via a unitary transformation:

b q

q b

ñ = ñ

= - ñ

S

b b bb

0 0, 0

exp 0, 0 . D6

∣ ( ) ˆ ( )∣ ˜

[ ( )( ˜̂ ˆ ˆ ˜̂)]∣ ˜ ( )
† †

This transformation produces the desired state if we select θ(β) such that

q b = nsinh . D72 ( ) ¯ ( )

Readers with a background in quantumopticsmay recognise |0(β)〉 as a two-mode squeezed vacuum state
[17, 123]. The unitary nature of this transformationmeans that we can convert, bymeans of the inverse
transformation, our effective thermal state into a vacuum state, accompanied by amodifiedHamiltonian. Before
we can do this, however, we require aHamiltonian for the tilde oscillator. The natural way to introduce this is as
an inverted oscillator, so that our free oscillatorHamiltonian becomes
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= W -H b b b b , D80 0ˆ ( ˆ ˆ ˜̂ ˜̂) ( )† †

which has the advantage that it commutes with the unitary transformation. It is essential,moreover, to avoid
introducing undesired couplings between the original and the tilde operators.

If our oscillator is coupled to another quantum system via its annihilation and creation operators, then the
required unitary transformation effects the replacement

q q q b q b

q q q b q b

 = -

 = -

b S bS b b

b S b S b b

cosh sinh

cosh sinh . D9

ˆ ˆ ( ) ˆ ˆ ( ) ˆ ( ) ˜̂ ( )
ˆ ˆ ( ) ˆ ˆ ( ) ˆ ( ) ˜̂ ( ) ( )

† †

† † † †

As a simple illustrationwe note that the expectation value of b bˆ ˆ†
is

b b q b q b

q b q b
q b

á ññ = á -

´ - ñ
=

b b b b

b b

0 0 0, 0 cosh sinh

cosh sinh 0, 0

sinh . D102

( )∣ ˆ ˆ∣ ( ) ˜∣( ˆ ( ) ˜̂ ( ))

( ˆ ( ) ˜̂ ( ))∣ ˜

( ) ( )

† †

†

In place of a coupling to a single harmonic oscillator in a thermal state with inverse temperatureβ, the
transformedHamiltonian has a coupling to a regular oscillator in its ground statewith a coupling strength
increased by q bcosh ( ) and a coupling to a second inverted oscillator in itsmost highly excited state, with the
original couplingmultiplied by q bsinh ( ). The inverted oscillator can only inject quanta (at least initially)while
the regular oscillator can only extract them.

To complete the picturewe need only generalise this description to our continuumoperators.We do this by
using our continuum thermal vacuum state in the form

ò

b q w

w q b w w w w w

ñ = ñ

= - ñ

S

d b b b b

0 0, 0

exp , 0, 0 , D11⎡
⎣

⎤
⎦

∣ ( ) ˆ ( [ ])∣ ˜

( )( ˜̂ ( ) ˆ ( ) ˆ ( ) ˜̂ ( )) ∣ ˜ ( )
† †

where ñ0, 0∣ ˜ nowdenotes the doubled continuumvacuum state and wb̃̂ ( ) is the annihilation operator
corresponding to adding a quantumof frequencyω to the inverted, tilde reservoir. Aswith the discrete oscillator,
we can transform into an equivalent vacuumpicturewith the freeHamiltonian for the reservoir changed to

ò w w w w w w= -H d b b b b , D120ˆ ( ˆ ( ) ˆ ( ) ˜̂ ( ) ˜̂ ( )) ( )† †

and the continuum annihilation and creation operators transformed by the inverse unitary transformation

w q w w q w w q b w w q b w

w q w w q w w q b w w q b w

¢  ¢ = ¢ ¢ - ¢ ¢

¢  ¢ = ¢ ¢ - ¢ ¢

b S b S b b

b S b S b b

cosh , sinh ,

cosh , sinh , , D13

ˆ ( ) ˆ ( [ ]) ˆ ( ) ˆ ( [ ]) ˆ ( ) ( ) ˜̂ ( ) ( )
ˆ ( ) ˆ ( [ ]) ˆ ( ) ˆ ( [ ]) ˆ ( ) ( ) ˜̂ ( ) ( ) ( )

† †
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so that the expectation value of w w¢b bˆ ( ) ˆ ( )†
is

b w w b w q b w w q b w
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w d w w

á ¢ ñ = á -
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