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attrition (Shay and Wright 2019). By far the majority 
of this work has been on human and model organism 
cells in a laboratory setting. The field has been driven 
forward by recognition of the importance of telomere 
dynamics in human health, disease and age-related 
deterioration (Lopez-Otin et  al. 2023). It has been 
demonstrated that telomere attrition and dysfunc-
tion are both a cause and a consequence of cellular 
and molecular ageing. Telomere loss is considered 
by the biomedical and ageing research community to 
be a primary hallmark of ageing, and pathways that 
link telomere dysfunction to age related disease and 
to other established hallmarks of ageing have been 
elucidated (Chakravarti et al. 2021; Lopez-Otin et al. 
2023). It is only relatively recently that co-operation 
across disciplinary divides has resulted in a broaden-
ing of telomere biology to encompass how this highly 
conserved process has been shaped by evolution to 
suit the requirements of species that differ in their 
habitats, life histories, body sizes, longevity, regener-
ative capacity and environmental challenges (Mona-
ghan et al. 2022). In this perspective piece, I discuss 
how evolutionary ecologists have studied telomere 
dynamics in diverse species to examine the variation 
within and among individuals, populations and spe-
cies, and what this can contribute to our understand-
ing of their evolution, life histories and health.

There has been a rapid increase in the number 
of published papers that involve studies of telomere 
dynamics in non-model animal species in the wild 
since the late 1990s (Salmon and Burraco 2022). As 

Abstract  This perspectives paper considers the 
value of studying telomere biology outside of a bio-
medical context. I provide illustrative examples of 
the kinds of questions that evolutionary ecologists 
have addressed in studies of telomere dynamics in 
non-model species, primarily metazoan animals, and 
what this can contribute to our understanding of their 
evolution, life histories and health. I also discuss why 
the predicted relationships between telomere dynam-
ics and life history traits, based on the detailed cel-
lular studies in humans and model organisms, are not 
always found in studies in other species.
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Introduction

Since Alexey Olovnikov recognised that the shorten-
ing of chromosome ends in eukaryotes during DNA 
replication could limit the replicative potential of 
cells (Olovnikov 1973), enormous strides have been 
made in our understanding of the cellular processes 
responsible for telomere maintenance, regulation and 
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outlined in a recent over view (Tobler et  al. 2022), 
this research is carried out primarily by organismal-
level biologists and evolutionary ecologists, with 
interests in understanding processes that drive the 
evolution and diversity of species and individual life 
histories. It largely centres on how variation in tel-
omere dynamics is related to variation in organismal 
level performance, linking telomere length and loss 
to environmental conditions and key life history traits 
such as growth, reproductive success and survival, 
and thereby to Darwinian fitness outcomes. The work 
involves both observational and experimental work 
with an increasing diversity of species, carried out in 
the laboratory and in the field. The predominant use 
of blood samples in these studies is in part because 
such samples are much easier to obtain relatively non-
invasively, and, in non-mammalian vertebrates, the 
nucleated red blood cells mean that large amounts of 
DNA can be obtained from very small samples. Also, 
when looking at age-related changes in traits, evolu-
tionary ecologists have been much more concerned 
than biomedical researchers about the biases that can 
occur due to ‘selective disappearance’ of phenotypes 
in cross sectional studies; patterns of change with age 
can appear or be masked by differential survival of 
individuals with long or short telomeres. Hence the 
desire to look at within-individual changes where 
possible, using minimally invasive approaches that 
enable individuals to be sampled repeatedly and ena-
ble species of high conservation concern to be studied 
(Nussey et al. 2014).

The study of diversity in telomere dynamics is now 
of considerable interest to a broad church of biolo-
gists and interdisciplinary collaboration is increasing, 
as reflected in recent journal special issues (e.g. see 
special issues of Philosophical Transactions of the 
Royal Society Understanding Diversity in Telomere 
Dynamics (Monaghan et  al. 2018) and Molecular 
Ecology Telomeres in Ecology and Evolution (Mona-
ghan et al. 2022). The recent examples I give below 
illustrate the general approach of evolutionary biolo-
gists and ecologists studying telomere dynamics and 
the kinds of questions addressed. I also consider to 
what extent telomere dynamics might help us iden-
tify species and life stages whose welfare is most 
compromised, and those that are at most risk of being 
driven to extinction by the current rapid pace of envi-
ronmental change. The basic biology of telomeres 
is highly conserved by evolution. Yet, the expected 

patterns and organismal level outcomes of changes 
in telomere length, based on the studies by biomedi-
cal scientists in humans and model organisms, are not 
always found. I therefore also discuss why this is so.

Can telomere length provide information 
on individual age?

The idea that telomere length might provide a use-
ful measure of the chronological age of individual 
animals, where actual age is unknown, was put for-
ward in a pioneering paper by Haussman and Vleck 
(2002). However, while it was clear from their initial 
studies with zebra finches Taeniopygia guttata that 
telomere length showed a measurable change with 
age that could be repeatedly measured using DNA 
from red blood cells, it became clear that, within 
species, there is generally too much variation in tel-
omere length among individuals of the same chrono-
logical age for telomere length to give a sufficiently 
accurate measure. This variation itself however was 
recognised as being of great interest (Monaghan and 
Haussmann 2006). In fact, there can be significant 
differences in telomere length among populations or 
ecotypes of the same species, as for example in the 
different reproductive morphs of the common lizard 
Zootoca vivipara (McLennan et al. 2019) in the wild. 
Laboratory populations of mice have much longer tel-
omeres than their wild counterparts, and such elon-
gation of telomeres in captivity is even seen in the 
model organism, the budding yeast Saccharomyces 
cervisiae, in which there is also heterogeneity in tel-
omere length among natural strains linked to aspects 
of mitochondrial metabolism (D’Angiolo et al. 2023). 
Why telomere elongation occurs in captivity is 
unclear but is presumably related to the preferential 
breeding of individuals that tolerate these conditions 
well.

In a recent meta-analysis of the association 
between telomere length and age across 98 species of 
vertebrates, Remot et al. (2022) found an overall neg-
ative relationship, but this was weak and varied across 
the vertebrate classes. While factors such as the 
method used to measure telomere length, and publi-
cation bias, play a role, only in birds did they detect a 
reasonably strong effect. This is not unexpected. The 
pattern of change in telomere length with age will 
vary among species as a consequence of variation in 
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its effects on Dawinian fitness. Epigenetic clocks may 
prove to be more useful indicators of chronological 
age (Lu et al. 2023). Studies in humans suggest that 
changes in DNA methylation and telomere length are 
not closely related (Marioni et al. 2016), though lim-
ited data to date suggest that this is not always so: for 
example, the expected negative relationship between 
the change in DNA methylation and telomere loss is 
present in wild zebra finches in early life (Sheldon 
et al. 2022). It will be interesting to see if such rela-
tionships change across the life course, since the two 
measures might be differentially influenced by envi-
ronmental circumstances later in life.

Is variation in telomere length and/or loss rate 
related to variation in longevity within and among 
species?

Within species

The expected negative relationship between telomere 
length and mortality risk has been demonstrated at 
the individual level in a wide range of species. This 
relationship seems to be particularly evident in endo-
therms, especially birds, for which there are most data 
(e.g. Gomes et al. 2011; Wilbourn et al. 2018). How-
ever, a negative relationship is not seen in all endo-
therm species studied so far, and is much less evident 
in ectotherms than in endotherms, perhaps because 
there is more variation in the extent to which telom-
erase is expressed in ectotherm somatic tissues (Ols-
son et al. 2018). Within the endotherms, an important 
difference between studies of mammals and birds is 
that, even when blood samples are used, in birds the 
DNA generally comes from their nucleated red blood 
cells but in mammals it is from white blood cells. 
Particularly in the wild, changes in the composition 
of the white blood cell population can occur with age, 
sex, infection status and social circumstances (Nus-
sey et  al. 2012). Furthermore, the many sources of 
variation in natural systems, among individuals, spe-
cies and environments and the greater exposure of 
wild animals to infection and stressors, make stand-
ardising studies, using white blood cells,  in the wild 
very difficult. A within-individual study in a cohort 
of captive zebra finches, followed from birth to death 
and experiencing the same consistent environmental 
conditions, showed that telomere length at the end of 

the growth period was the best predictor of longevity 
(Heidinger et al. 2012). On the other hand, a detailed, 
long-term, individual-based study of an isolated feral 
population of Soay sheep Ovis aries found no asso-
ciation between leucocyte telomere loss and mortal-
ity risk (Froy et  al. 2021). This difference might be 
due to taxon specific effects, to the difference between 
patterns in white and red blood cells, or to the more 
variable and challenging environment experienced 
in the wild where there is more exposure to stress-
ors disease and extrinsic sources of mortality. Inter-
estingly, in the sheep study, differences among indi-
viduals in their lifetime average telomere length were 
linked to longevity, and these differences were found 
to have a heritable component, suggesting that inher-
ited variation in telomere length is indicative of indi-
vidual quality in this species.

Telomere loss is more difficult to study than tel-
omere length, since animals need to be re-captured, 
the elapsed time between samples can be long or 
short relative to the animal’s lifespan, and certain 
phenotypes are absent in the older age groups due to 
their poorer survival. In a detailed study of a long-
lived seabird, the common tern Sterna hirundo, Ved-
der et al. (2022) found that there was a very consistent 
pattern of telomere loss with age among individuals; 
telomere length on the other hand varied among indi-
viduals and again, as in the sheep, this was a highly 
heritable trait. That some individuals start life with 
shorter telomere length than others could have impor-
tant effects on their longevity, since adverse effects of 
telomere dysfunction would be expected to start at an 
earlier age in such individuals. Offspring of older age 
mothers and fathers have been found to have reduced 
lifespans in many species (Monaghan et  al. 2020), 
which could arise if their offspring inherit shorter tel-
omeres, as has been reported for offspring of old par-
ents of both sexes in birds (Noguera et al. 2018; Mar-
asco et al. 2019). Variation in the age of breeders is 
therefore an additional source of variation in telomere 
length.

However, heritability of telomere length is not 
always found to be high (Dugdale and Richardson 
2018). Differences in developmental and growth 
conditions, and in the age, life stage and elapsed 
period over which individuals are sampled, will all be 
important sources in variability, as will the stability 
and harshness of the environment (Monaghan 2014; 
Dugdale and Richardson 2018; Entringer et al. 2018).
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Among species

Consistent interspecific differences in telomere length 
and loss can be considerable even among closely 
related species, as for example in killifish (Reichard 
et al. 2022). Consequently several authors have exam-
ined the relationships between telomere dynamics 
and lifespan across species in a quest to find general 
relationships. Such comparative analyses generally 
require data from a large number of species in order 
to have sufficient power to include as co-variates the 
many differences in species biology and their degree 
of common ancestry. Standardising the sampling and 
measurement protocols from different species is very 
challenging, since there can be substantial differences 
in the age range,  life history stages sampled, the tis-
sue used and the measurement method. There can 
also be population, cohort and environmental effects. 
For example, using phylogenetically corrected data 
on telomeres from cultured fibroblast cells, collected 
from a range of tissues in over 60 species of mam-
mals and grown in a variety of media, an impressive 
comparative study was carried out by Gomes et  al. 
(2011). They suggested that the ancestral mamma-
lian system was short telomeres and downregulated 
somatic telomerase; telomere length was inversely 
correlated with maximum lifespan, while telomerase 
expression co-evolved with body size, with large bod-
ied species having less somatic telomerase expression 
than smaller bodied species, in line with prior find-
ings in rodents (Gorbunova et al. 2007). Gomes et al. 
also suggested that this ancestral mammalian sys-
tem initially evolved as an adaptative response to the 
need to limit cell replicative potential, driven by the 
increased mutation rate arising from homeothermy. 
This suggestion is very interesting but has received 
little subsequent attention. A recent re-analysis of 
Gomes et  al.’s data supported the inverse relation-
ship between telomere length and maximum lifespan 
(Pepke and Eisenberg 2022), with the resulting cur-
tailment of cell replicative potential being thought to 
be tumour protective. However, the extent to which 
data from cells cultured in vitro are truly representa-
tive is problematic, since telomere shortening rate 
appears to be significantly higher in vitro than in vivo 
(Lai et al. 2018).

In contrast, Tricola et  al. found no association 
between the average species telomere length and 
maximum lifespan in birds, based on cross-sectional 

data from red blood cell samples from 19 species of 
long-lived birds in natural populations (Tricola et al. 
2018). However, they did find that telomere loss rate 
was strongly negatively associated with maximum 
lifespan across species. Criscuolo et  al. (2021) per-
formed a meta-analysis of variation in mean telomere 
length in chicks and adults of different bird species, 
and mean change in telomere length in relation to 
maximum lifespan and a range of other life history 
traits (body size, growth rate, speed of development 
pre-and post-natally and reproductive rate). They 
used data from 53 species, from 13 orders and 29 
families. They found little phylogenetic or life his-
tory association for telomere length. Telomere loss 
rate, on the other hand, did show a strong phyloge-
netic signal, which they suggested was probably 
related to the tendency for closely related species to 
have similar life histories. They found that, across 
the species they examined, telomere loss was slower 
in long lived species that have slow reproductive and 
embryonic growth rates. Telomere loss rate has sim-
ilarly been found to be slower in long-lived than in 
short-lived mammals and birds (Dantzer and Fletcher 
2015). Dobson et al. (2022) also recently reported no 
association between telomere length and measures of 
longevity based on 30 species of birds. However, they 
did find that telomere loss rate was strongly related to 
body mass independent lifespan, which they suggest 
is related to pace of life. In another recent analysis 
based on 57 bird species, it was found that mean early 
life telomere length was shorter in species with low 
reproductive rates and long lifespans (Le Pepke et al. 
2022); the life stage at which telomere length meas-
urements are made may therefore be very important. 
Overall, the picture at present suggests that telomere 
loss rather than length per se is more likely to be 
related to maximal lifespan across species. It should 
be noted however, that in many studies by evolution-
ary ecologists, relative rather than absolute telomere 
length is used, often due to sample number and sam-
pling difficulties (Nussey et al. 2014). This limits the 
scope for comparative studies of telomere length.

Is variation in growth and reproductive rate 
related to differences in telomere dynamics?

In general, most animals do not grow at their fast-
est possible rate, and growth rate is optimised by 



Biogerontology	

1 3
Vol.: (0123456789)

natural selection rather than maximised, due to the 
costs associated with rapid growth. These costs are 
often manifest in reduced longevity (Metcalfe and 
Monaghan 2001, 2003). The most consistent and 
significant pattern that Criscuolo et al. found in their 
cross-species comparison mentioned above, was that 
slow growth and low reproductive rate were associ-
ated with lower rates of telomere loss. Experimental 
acceleration of growth within species has also been 
shown to increase telomere loss (Monaghan and 
Ozanne 2018; Salmon et al. 2021). Pre-natal growth 
conditions are likely to be very important and there 
seems to be heterogeneity among species in the extent 
to which telomere length does (Noguera et al. 2016) 
or does not (Vedder et  al. 2017) vary with hatching 
order in avian broods, most probably related to the 
degree of variation in egg composition, which will 
affect variation in pre-natal growth rate.

There is clearly considerable complexity in the 
effect of growth conditions on telomere loss, and 
measurement stage as well as species life histories are 
important. For example, in an experimental study in 
the wild, it has been found that Atlantic salmon Salmo 
salar from the same families have shorter telomere 
lengths when growing in harsher environments than 
their siblings growing to the same size in better qual-
ity environments (McLennan et  al. 2016). However, 
in contrast, growing fast in good environmental con-
ditions has been associated with shorter juvenile tel-
omere length in the Seychelles warbler Acrocephalus 
sechellensis (van de Crommenacker et al. 2022); tel-
omere lengthening in adulthood has also be reported 
to occur in this warbler species, so the effect of rapid 
early growth may not be lifelong (Brown et al. 2022). 
Telomere lengthening has also been reported in other 
species. In wild European badgers Meles meles for 
example, it appears that there is a complex pattern of 
loss and restoration of telomere length over the first 
three years of life, related to social and environmen-
tal conditions. Nonetheless, even when these factors 
are taken into account, there is still a positive associa-
tion between badger cub survival and telomere length 
(van Lieshout et al. 2022).

With respect to reproductive rate, relatively few 
detailed studies in non-model species have been 
carried out, which is surprising given that repro-
ductive costs are an important aspect of life history 
evolution. Telomere loss is potentially a very useful 
tool to investigate these costs and the evolution of 

reproductive strategies. However, studying reproduc-
tive trade-offs is complex. Individuals differ in the 
resources they have available, which will influence 
the extent to which costs can be borne. Accordingly, 
reproductive effort needs to be experimentally manip-
ulated to uncover physiological costs, deflecting indi-
viduals from their optimal investment level (Metcalfe 
and Monaghan 2013).

Sudyka (2019) carried out a comprehensive exami-
nation of the relationship between telomeres and 
reproductive rates in sexually reproducing species. 
She found that out of 33 studies, only 7 were experi-
mental, and the majority of these (5/7) supported 
reproduction-related telomere loss. For correlational 
studies, the evidence was mixed, as expected. The 
timescale over which reproductive costs are borne 
also needs to be taken into account. When zebra 
finches were allowed to breed from 0 to 5 times a 
year, telomere loss was greater in the groups that bred 
compared with the group that did not, irrespective of 
whether birds bred 1, 3 or five times per year (Hei-
dinger et al. 2012). However, the effect was transient, 
and no longer evident when telomere length in the 
same individuals was measured again two years later. 
Furthermore, the variation in reproductive rate did 
not affect survival. However, the birds in this study 
were breeding in captivity, which might have influ-
enced both reproductive costs and extent to which the 
birds could recover.

In what ways are telomere dynamics subject 
to natural selection?

For variation in telomere dynamics to be subject to 
evolution, the variation needs to be both heritable 
and have Darwinian fitness consequences. Obvi-
ously, the exquisite nature of the telomeric system, 
preventing as it does the inappropriate triggering 
of DNA damage responses in species with linear 
chromosomes, has arisen because of the fitness ben-
efits it confers. Adverse effects are clearly evident 
when the system malfunctions. But what selec-
tion pressures drive the diversity that we see in the 
detail – in telomere length, and the pattern of loss 
and restoration, in telomere structure, in the associ-
ated proteins and so on? Is management of telomere 
attrition a high priority that plays a role in life his-
tory evolution under natural conditions? Much will 
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depend on the fitness costs of telomere mainte-
nance, about which we know relatively little.

Heritability of telomere length is very impor-
tant in this context, but difficult to study in the 
wild. The approach used varies from simple parent 
offspring regressions to more sophisticated quan-
titative genetics using the pedigree-based ‘animal 
model’ (Dugdale and Richardson 2018). The latter 
is becoming increasingly common in evolutionary 
ecology, as data from long-term individual-based 
studies become available. For example, Vedder 
et  al. (2022) in their study of common terns men-
tioned earlier, used a quantitative genetic approach 
based on within-individual telomere data collected 
in adults over a 10-year period from a wild popu-
lation. Common terns can live over 30 years, and 
breeders in this population have an average lifes-
pan of 10 years. This population has been studied 
in detail since 1994 and there are many individually 
marked individuals whose age and relatedness are 
known. Thus Vedder et al. had a comprehensive and 
reliable pedigree to work with. Telomere length was 
variable but highly heritable, was strongly geneti-
cally correlated with lifespan, the rate of telomere 
loss varied very little among individuals, and envi-
ronmental effects were limited. Using a similar 
animal model approach in a similar data set from 
another long-lived bird in the wild, the jackdaw 
Corvus monedula, in which telomere length and 
loss was studied based on two measurements taken 
during the nestling stage, Bauch et  al. also found 
relatively high heritability of telomere length, but 
more variable shortening rates with low heritabil-
ity (Bauch et  al. 2022). A recent meta-analysis of 
heritability of telomere length based on 43 stud-
ies of 18 vertebrate species reported considerable 
heterogeneity (Chik et  al. 2022). Many factors are 
involved in generating differences among species 
and studies. In addition to their different adapta-
tions and evolutionary histories, species might dif-
fer also in the degree of variability in the adult and 
nestling environments. Studies will also vary in the 
stage over which telomere loss was measured and 
the method used to measure telomere length. More 
data are likely to be available from a broader range 
of species as long-term studies progress. More con-
trolled studies of the fitness consequences of differ-
ences in telomere length and loss among and within 
species are clearly needed.

Can we use telomere dynamics in a conservation 
and welfare contexts?

Exposure to environmental stressors is known to 
increase telomere loss. This has been studied in a 
wide range of species and environmental circum-
stances (Haussmann and Marchetto 2010; Monaghan 
2014; Angelier et  al. 2018). Telomere dynamics are 
therefore potentially of great interest in conservation 
and animal welfare contexts, since this could help 
identify individuals, species and populations threat-
ened by the many challenges posed by rapidly envi-
ronmental change. Chatelain et al. (2020) conducted 
a meta-analysis examining the effect of a very broad 
range of stressful circumstances, both natural and 
anthropogenic, on telomere length and loss in non-
human vertebrates in field and laboratory studies; 
they found an unequivocally negative effect, consist-
ent across taxa and stressors. Salmon and Burraco 
(2022) recently also carried out a meta-analysis of the 
studies investigating how changes in telomere dynam-
ics in wild/wild-derived animals can provide useful 
indicators of the effect of anthropogenic pollutants 
(mainly chemical, but also radiation, light and noise) 
in natural conditions. They concluded that currently, 
while there is a negative effect overall on telomere 
length, this is pollutant specific, with the number of 
studies still being small and the effect weak. They 
also suggested that the effect could be more marked 
in endotherms, but the data on ectotherms is very 
limited. Temperature stress and extreme weather as a 
consequence of rapid global warming are likely to be 
faced by many more species, and the pace of change 
is generally too fast to enable evolutionary adaptation. 
Some species may be able to migrate to more suitable 
areas, but many more will face very stressful circum-
stances which, even if not lethal, will adversely affect 
their physiology. Such effects may be particularly 
marked in ectotherms, which are likely to be espe-
cially sensitive to thermal stress (Burraco et al. 2020). 
Changes in telomere loss are likely to provide useful 
indicators of this stress exposure, and more studies 
of this are needed. Long lived and large bodied ecto-
therms do not down-regulate the somatic expression 
of telomerase to the same extent as many endotherms, 
and their telomere dynamics are understudied. Using 
an experimental approach, Zhang et  al. (2018) 
showed that experimental exposure to simulated heat 
waves appeared to rapidly increase telomere loss in 
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a desert lizard Phrynocephalus przewalskii. Dupoue 
et al. (2022) showed a similar effect in natural popula-
tions. They examined telomere length over a 10-year 
period in three age classes of lizards Zootoca vivipara 
in 22 wild populations facing varying degrees of 
climate-induced extinction risk. They found that, in 
declining populations, lizards showed reduced tel-
omere length at all stages, and young lizards in threat-
ened populations inherited already short telomeres. In 
corals, experimentally induced loss of symbionts is 
associated with increased telomere loss (Rouan et al. 
2022), as is temperature variation (Rouan et al. 2023), 
indicating that comparisons of telomere length are 
likely to provide useful indicators of coral reef health. 
Friesen et al. (2022) recently suggested using indices 
of thermal sensitivity of ectotherms based on thermal 
performance curves to aid the study of of this type of 
stress on ectotherm telomeres.

Effects of high temperatures on telomere length 
have also been reported in endotherms, being asso-
ciated with reduced telomere length in nestlings of 
an endangered bird, the purple-crowned fairy wren 
Malurus coronatus in the wild (Eastwood et  al. 
2022). Such effects may be stage specific, as seen in 
zebra finch chicks transitioning during development 
from ectothermy to endothermy (Ton et al. 2023). In 
long-lived bats, yearly fluctuation in individual tel-
omere lengths were found to be related to weather 
factors, suggesting that such changes might provide 
an index of the level of stress to which individuals are 
exposed (Foley et  al. 2018; Power et  al. 2023). It is 
more likely that telomere dynamics will be adversely 
affected by exposure to new environmental chal-
lenges. Adaptation of aspects of telomere biology to 
extreme environments, such as low oxygen levels in 
the underground tunnels of the naked mole-rat Heter-
ocephalus glaber, can clearly occur (Augereau et al. 
2021). But the degree of within-individual flexibil-
ity is unclear and evolutionary adaptation is likely to 
take many generations. Whether species facing rapid 
environmental change, such as freshwater fish experi-
encing low oxygen levels in warmer water, with very 
little dispersal options, will be able to respond quickly 
enough remains to be seen.

As well as identifying animals at risk, we need 
to combine studies at different biological levels to 
understand processes whereby effective conservation 
measures might be put in place. Reductions in tel-
omere loss can potentially provide a measure of the 

extent to which the environment has been improved. 
For example, as mentioned above McLennan et  al. 
(2016) showed that Atlantic salmon growing fast in 
a harsh environment, in this case nutrient depleted 
nutrient upland streams, had greater telomere loss. 
Importantly, they recently showed that restoration of 
nutrients in such streams mitigates this adverse effect 
(McLennan et al. 2022).

With respect to animal welfare, changes in tel-
omere length have a potential application in assess-
ing the welfare of captive animals in a wide variety of 
situations (Bateson and Poirier 2019), but this has yet 
to be widely applied.

Why do we not always see the expected 
relationships between telomere length and life 
histories?

Interestingly, despite the very impressive amount of 
experimental cellular and genetic work establishing 
causal pathways in humans and model organisms, 
and demonstration that telomere loss and dysfunction 
are involved in ageing and age-related disease (Shay 
and Wright 2019; Lopez-Otin et al. 2023), evolution-
ary ecologists have sometimes questioned the causal 
role of telomere attrition in age-related deterioration 
(Simons 2015). This arises because expected patterns 
of variation and associations with lifespan are not 
always seen. However, ageing is not a simple process 
with a single cause (Lopez-Otin et  al. 2023). Fur-
thermore, there are many potential sources of error 
in telomere measurements, and we need to improve 
the repeatability and reliability of measurements, 
especially in evolutionary ecology, where, in addi-
tion to the sampling design already mentioned, sam-
ples may be of different size and quality, stored for 
varying amounts of time in sometimes sub-optimal 
conditions, and analysed by different methods. Also, 
the proliferative tissues, such as skin and (mostly red) 
blood cells most often sampled by ecologists, may 
not always be representative of changes in other body 
tissues. Some methods of telomere measurement 
include interstitial repeats of the telomere sequence 
rather than just the target repeats at the chromosome 
ends. Since the number of interstitial repeats can 
vary greatly among species and individuals, this can 
mask important changes at the chromosome ends. 
Most methods used by ecologists are relatively simple 
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measures of average telomere length in the sample 
and sometimes within individual changes in this aver-
age length (Nussey et al. 2014). Measurements of the 
shortest telomeres may well be more informative than 
averages (Dweck and Maitra 2021) but are as yet lit-
tle used in evolutionary ecology. The extent to which 
telomere length and loss are effectively measuring the 
same thing will depend on the degree of heterogene-
ity in initial telomere length in the groups(s) stud-
ied. The life stage at which telomere length or loss 
is measured is also relevant, and early life telomere 
length may be more or less variable due to differences 
in the stability of the environment at this stage. Age 
related variation in stem cell recruitment is also likely 
to occur.

It is also very important to bear in mind that it 
is telomere dysfunction that gives rise to increased 
frailty and disease. Such dysfunction can be triggered 
by short telomeres, and average telomere length or 
the rate of telomere loss is likely to be indicative of 
increased risk of telomere dysfunction, especially in 
older individuals. But not always. Telomere dysfunc-
tion can occur without changes in telomere length, for 
example telomere uncapping due to deficiencies in 
the shelterin proteins involved in blocking the DNA 
damage response (Chakravarti et  al. 2021). Length 
independent telomere damage can occur in non-
mitotic tissues such as cardiomyocytes (Anderson 
et al. 2019). The importance of such length independ-
ent telomere dysfunction may well vary among spe-
cies and life stages. An important area where collabo-
ration between biomedical scientists and evolutionary 
ecologists would be particularly fruitful is in develop-
ing assays for telomere dysfunction that could be used 
in non-model species and applied in wild populations.

But there are fundamental reasons why we 
should not expect to see the same pattern across 
all species, which cannot be addressed by improve-
ments in sampling design and methodology. Evo-
lutionary ecologists now often use meta-analyses 
to look for general patterns across a broad range 
of species. In the context of telomere dynamics, 
this type of analysis is particularly suited to stud-
ies investigating the adverse effects of particular 
environmental factors, such as when the question 
is - does exposure to a particular type of anthropo-
genically generated chemical, which is not part of 
the ‘natural’ environment to which the animals are 
adapted, increase telomere loss? It is not surprising 

therefore that we see the most consistent effects 
across species when we examine the effect of pol-
lutants or temperature. Meta-analyses are much less 
suited in answering questions such as, does varia-
tion in telomere length (or loss) predict lifespan? 
Different species are likely to have evolved differ-
ent solutions to the optimal management of tel-
omere dysfunction. In some species, telomere loss 
will ‘matter’ in fitness terms, while in others it will 
not. When the overall effect size is weak, or effects 
are only apparent in some species but not in others, 
the inconsistency in results should not be taken as 
evidence that changes in telomere dynamics are not 
informative about ageing or life history evolution. 
Rather, it should help us identify when telomere 
length or loss does  and does not ‘matter’. Better 
still, we might construct hypotheses to this effect. 
In species with high mortality risk, where lifespan 
is likely to be very short for most individuals due 
to ephemeral resources or high predation, cells are 
unlikely to undergo sufficient divisions for telomere 
shortening to ’matter’ in evolutionary terms. In this 
case, variation in telomere loss maynot be related 
to fitness traits. Evolutionary ecologists generally 
celebrate variation, since understanding why traits 
differ within and among species is central to our 
discipline. We should expect evolution to have tai-
lored ancestral molecular, morphological and physi-
ological systems to species specific requirements. 
We must therefore expect differences in the extent 
to which telomere length or loss map on to differ-
ences in longevity and other life history traits.

We still know little about why telomere length var-
ies greatly among species, or about the costs associ-
ated with having long telomeres. Does this slow the 
cell cycle and might the costs and benefits of this 
vary? Additionally, much depends on the costs of 
telomere maintenance. Studying a diversity of spe-
cies will not only help us understand fundamental 
telomere biology better, but potentially also provide 
novel insights into the ageing process and age-related 
diseases (Quesada et al. 2019). To do so, we need to 
build more inter-disciplinary bridges.
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