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A B S T R A C T

Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) can be used as a non-invasive method
for the assessment of myocardial perfusion. The acquired images can be utilised to analyse the spatial extent
and severity of myocardial ischaemia (regions with impaired microvascular blood flow). In the present paper,
we propose a novel generalisable spatio-temporal hierarchical Bayesian model (GST-HBM) to automate the
detection of ischaemic lesions and improve the in silico prediction accuracy by systematically integrating
spatio-temporal context information. We present a computational inference procedure with an adequate trade-
off between accuracy and computational efficiency, whereby model parameters are sampled from the posterior
distribution with Gibbs sampling, while lower-level hyperparameters are selected using model selection
strategies based on the Watanabe Akaike information criterion (WAIC). We have assessed our method on both
synthetic (in silico) data with known gold-standard and 12 sets of clinical first-pass myocardial perfusion
DCE-MRI datasets. We have also carried out a comparative performance evaluation with four established
alternative methods: Gaussian mixture model (GMM), opening and closing operations based on Gaussian
mixture model (GMMmax

C&O), Markov random field constrained Gaussian mixture model (GMM-MRF) and model-
based hierarchical Bayesian model (M-HBM). Our results show that the proposed GST-HBM method achieves
much higher in silico prediction accuracy than the established alternative methods. Furthermore, this method
appears to provide a more robust delineation of ischaemic lesions in datasets affected by spatially variant
noise.
1. Introduction

Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-
MRI) is increasingly being used to assess myocardial perfusion (Khalifa
et al., 2014). This is based on the seminal article (Jerosch-Herold,
2010), where model-based and model-independent methods were intro-
duced to quantify myocardial perfusion. Most of these methods focus on
quantifying physiological parameters, especially the myocardial blood
flow (MBF) (Jerosch-Herold, 2010; Jerosch-Herold et al., 2002; Larsson
et al., 1996; Jerosch-Herold et al., 1998). MBF is commonly reported
using a standardised reporting grid (17-segment AHA model (Cerqueira
et al., 2002)). The advantage of this approach lies in its standardisation
and computational simplicity (Fenchel et al., 2005; Tamarappoo et al.,
2010). However, the definition of discrete myocardial segments is

∗ Corresponding author.
E-mail addresses: dirk.husmeier@glasgow.ac.uk (D. Husmeier), aleksandra.radjenovic@glasgow.ac.uk (A. Radjenovic).

subject to operator bias and there is an inevitable loss of granular-
ity caused by signal averaging. Pixel-based methods (Kellman et al.,
2017) avoid these drawbacks, and preserve source DCE-MRI spatial
resolution, although at a substantially increased computational cost.
Recently, Bayesian spatial modelling methods have been applied to im-
prove the accuracy of MBF estimates (Yang et al., 2022a; Scannell et al.,
2020; Schmid and Yang, 2009; Lehnert et al., 2019) by introducing
pixel (voxel) neighbourhood information using Markov random field
priors (Bishop, 2006). The Bayesian spatial regression model (Genkin
et al., 2007; Metzner et al., 2019) has been applied to classify my-
ocardial pixels into ischaemic and healthy groups using the estimated
MBF values in Lehnert et al. (2019). However, the main goal of the
work in Lehnert et al. (2019) is to quantify MBF values, and a separate
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classification step is subsequently performed based on the estimated
MBF assays. Specifically, all pixels with MBF values lower than 60% of
the median MBF values are assigned to the ischaemic group and other
pixels are assigned to the healthy group. The classification methods
for the myocardial pixels using myocardial perfusion DCE-MRI have
been proposed by the authors’ group in recent publications (Yang et al.,
2019, 2022a,b). In Yang et al. (2019), a spatially variant finite mixture
model fitted with an expectation–maximisation (EM) algorithm has
been introduced to improve the classification accuracy of the standard
Gaussian mixture model (GMM). Specifically, this method has made
use of spatial information to reduce the number of singular and spu-
rious small clusters. In Yang et al. (2022b), a Markov random field
constrained Gaussian mixture model (GMM-MRF) has been developed
to classify myocardial pixels. This method aims to use an iterated con-
ditional modes (ICM) algorithm for a maximum a posteriori probability
(MAP) estimation of the classification map. A model-based hierarchical
Bayesian model (HBM) classification approach has been introduced
in Yang et al. (2022a). This method has combined a parametric model
of the MBF, the Fermi model, with spatial prior information using an
HBM to obtain classification and estimation maps of the MBF that have
higher accuracy than the method proposed in Scannell et al. (2020).
However, the model-based HBM proposed in Yang et al. (2022a) has
turned out to be unstable when exposed to spatially variant noise.
This is because the parametric model – the Fermi model – tends to
misestimate the MBF when the early phase of the DCE-MRI time series
(pre-contrast, or baseline phase) has spatially variant noise. Errors in
derived MBF estimates caused by the spatially variant baseline noise
have a negative impact on the accuracy of classification.

Classification methods for myocardial pixels have also been widely
developed based on late gadolinium enhancement (LGE) MRI data.
A thorough comparison among different methods has been reported
in Karim et al. (2016). The authors have compared support vector
machines and level sets (Sethian, 1999), region growing and morphol-
ogy (Hojjatoleslami and Kittler, 1998), conditional random fields (Laf-
ferty et al., 2001), watershed transformations (Hennemuth et al., 2008)
and graph cuts with EM-algorithm (Dai et al., 2015). Except for the
rule-based methods, learning-based methods, e.g. Chen et al. (2020),
de la Rosa et al. (2021) and Ukwatta et al. (2014), have also been
developed for the classification of LGE data. Moreover, classification
methods have also been developed for cardiac cine MRI data (Xu et al.,
2020; Zhang et al., 2019).

The work proposed in the present paper aims to delineate ar-
eas of hypoperfusion (myocardial ischaemia) from dynamic contrast-
enhanced MRI datasets (DCE-MRI). It differs from algorithms that focus
on infarct delineation based on LGE or cine MRI both in terms of
the classification target (ischaemic versus scar tissue), and in terms of
the nature of the source data. Whilst cine MRI is dynamic, it is not
enhanced by exogenous contrast. LGE is contrast enhanced, but it is not
dynamic. Due to the nature of these differences between data types and
classification targets, a direct comparison with cine and LGE methods
is not possible.

In the present paper, we apply and evaluate a novel generalisable
spatio-temporal hierarchical Bayesian model (GST-HBM) using Markov
random field priors to the DCE-MRI myocardial perfusion data. We
aim to classify the myocardial tissues into two categories, healthy
tissue and lesion based on the signal intensity and the spatio-temporal
information of the myocardial pixels. Specifically, given the original
images, the proposed method first generates an initial classification
map. Then, based on the generated classification map, it generates
denoised images. The proposed method repeats this procedure until
it converges. Spatio-temporal Markov random field priors are used
to introduce the spatio-temporal information for each pixel. We have
derived a posterior inference scheme for the parameters in the GST-
HBM model, using a Markov chain Monte Carlo (MCMC) variant (Gibbs
sampling) to approximately draw samples of the parameters from their
2

posterior distributions. For an adequate trade-off between accuracy
and computational efficiency, the hyperparameters are selected using
model selection techniques based on the Watanabe Akaike information
criterion (WAIC) (Watanabe, 2013). The proposed GST-HBM method
is generalisable and therefore applicable to a wide range of dynamic
(time series) contrast enhanced imaging data. We demonstrated its
application to one specific example of such data (DCE-MRI of myocar-
dial perfusion). Moreover, GST-HBM is applicable to lesion detection
and characterisation using DCE-MRI in other diseases, most notably in
oncology (e.g. brain, breast, prostate), where a range of tracer kinetic
models can be deployed (Ingrisch and Sourbron, 2013). In addition to
DCE-MRI, the proposed GST-HBM method is readily applicable to other
imaging modalities, such as dynamic computed tomography (CT) and
positron emission tomography (PET).

Starting with a review of the data and a brief description of the four
established methods that we included in our comparative evaluation
study in Section 2, we propose our new method in Section 3. The
comparative evaluation, with an assessment of our method and a
comparison with the established alternative methods, is presented in
Section 4. Section 5 contains a discussion and an outlook on future
work. Our paper concludes in Section 6.

2. Material and methods

2.1. Myocardial perfusion DCE-MRI

Myocardial perfusion DCE-MRI is a method to noninvasively obtain
the images of the tissue of interest (e.g. myocardium) before, during
and after intravenous administration of exogenous MRI contrast agent
(see Fig. 1). The clinical data used in this work are two-dimensional
mid-ventricular short axis DCE-MRI slices (Carrick et al., 2015).

The contrast agents shorten local T1 (spin-lattice or longitudinal)
relaxation times in proportion to their local tissue concentration. As
a result, in T1 weighted MRI (the data we used in this work), the
signal intensity (SI) for normally perfused regions is higher than for the
hypoperfused (ischaemic) regions during the first-pass of the contrast
agents. The rate of SI increase for relatively hypoperfused regions
is also much slower than the normally perfused regions. The signal
curves in Fig. 2 illustrate this phenomenon. To detect and delineate
myocardial ischaemic lesions, we exploited the differences in patterns
of SI enhancement between normally perfused and hypoperfused tissue
regions.

2.2. Clinical data

The clinical data have been derived from a BHF MR-MI clinical
imaging cohort study (ClinicalTrials.gov, NCT02072850). The patients
from this study were diagnosed with ST-segment elevation myocardial
infarction (STEMI) (Carrick et al., 2015). The cardiac MRI protocol
included the assessment of resting perfusion using a T1-weighted, fast
gradient echo DCE-MRI sequence. The dynamic sequences of the MR
images recorded the signal changes within the heart before, during and
immediately following intravenous administration of contrast agent.

The myocardial perfusion DCE-MRI data (mid-ventricular short-axis
slice) from 12 datasets (data 1–12) were analysed in this work. For one
dataset (data 1), we show all results (model selection, MCMC conver-
gence test, classification maps) in Section 4. For the other datasets, we
present classification maps in the supplementary materials to illustrate
the robustness of the proposed method. The cardiac MRI exams were
performed with a Siemens MAGNETOM Avanto (Erlangen, Germany)
1.5-Tesla scanner with a 12-element phased array cardiac surface coil.
The assessment of resting myocardial perfusion was performed dur-
ing intravenous administration of 0.075 mmol/kg of contrast agent
(gadoterate meglumine, Dotarem, Guebert S.A.). The myocardial tissue
(contouring of the epicardial and endocardial boundary, 500 - 800
pixels in total) was manually delineated by an experienced clinician
using the cardiac image analysis software QMASS 8.1 (Leiden, The

Netherlands) (Carrick et al., 2015).
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Fig. 1. The original images of the myocardial perfusion given different enhancement time points. The temporal resolution of the DCE-MRI datasets is equal to the duration of a
heartbeat (typically around 1 s).
Fig. 2. The line chart shows DCE-MRI signal intensity S(t) before, during and after administration of MRI contrast agent. The three curves represent signal intensity changes of
randomly selected pixels in three regions of interest (ROIs): left ventricle (LV) blood pool, lesion and contralateral ‘‘healthy’’ tissue. The 5 images below the line chart show 5 steps
of myocardial perfusion with time, i.e. pre-contrast, the signal intensity enhancement inside the right ventricle (RV), followed by LV blood pool and myocardium (M) followed by
LV blood pool and the wash out of contrast from the blood pool (t = 28).
2.3. Synthetic data

The synthetic data was designed to mimic clinically observed lesion.
A double exponential curve was used to model the signal intensity with
time (see details in Radjenovic (2003), Chapter 2):

𝑠(𝑡) =
𝑝2𝑝3

(𝑝2 − 𝑝1)
× (𝑒−𝑝1𝑡 − 𝑒−𝑝2𝑡). (1)

Rician noise is usually assumed for MR images according to the work
in Gudbjartsson and Patz (1995). In this way, the synthetic data was
generated based on Eq. (1) by adding Rician noise with different scales.
Specifically, we used different variances of Rayleigh distribution (a
special case of Rician distribution) to design the degrees of noise. The
standard deviation values were 1.5 (low noise), 2 (moderate noise), 2.5
(high noise) and 3 (very high noise). Fig. 3 shows the MBF estimates
obtained by the Fermi method (Jerosch-Herold et al., 1998) with
different noise variances and noise-free ground truth.

In the proposed work, we have designed synthetic images with three
types of lesions.

• The first type is a non-transmural lesion with a standard annulus
shape (see Fig. 4(a)). For this case, the region close to the endo-
cardial boundary was assumed to be a lesion and we also assumed
that there were 50% of lesion pixels and 50% of healthy pixels. In
other words, 180◦ of the myocardium was assumed to be a lesion.
3

• The second type is a fully transmural lesion with a standard
annulus shape (see Fig. 4(b)). Similarly, 180◦ of the myocardium
was assumed to be a lesion.

• The third type is a fully transmural lesion with a realistic ventric-
ular wall obtained from one clinical dataset (see Fig. 4(c,d,e)). For
this case, there were three sizes of lesions in the myocardium. A
small lesion spanning 60◦, a medium-size lesion spanning 120◦,
and a large lesion spanning 180◦ circumferentially. The main
reason for designing different angular spans is that the ratio of
healthy pixels and lesion pixels will also affect the classification
results. Let 𝑟 denote the ratio of healthy pixels and lesion pixels.
This implies: 𝑟 = 1 when the angle is 180◦, 𝑟 = 2 when the angle
is 120◦ and 𝑟 = 5 when the angle is 60◦.

There were a total of 20 combinations based on different lesion types
and values of noise variance. For each combination, 10 separate sets
of synthetic images were simulated to improve the robustness of our
evaluation and reduce the effect of potential outliers.

The parameters in Eq. (1) for healthy tissues and lesions are given
based on empirical experiences. To be specific, we use Eq. (1) to
fit a model to the clinical DCE-MRI data (serial 1) by least-squares
estimation to obtain the values of the parameters. In detail, the values
of parameters in Eq. (1) are set to 𝑝1 = 0.01, 𝑝2 = 0.4, 𝑝3 = 25 for the
healthy tissues. For the lesions, the parameters are set to 𝑝1 = 0.02,
𝑝 = 0.3, 𝑝 = 20.
2 3



Computerized Medical Imaging and Graphics 113 (2024) 102333Y. Yang et al.
Fig. 3. Panels (a) - (d) show the MBF estimates obtained by Fermi method with Rician noise variance 1.52, 22, 2.52 and 32 respectively. The MBF estimates have been standardised
within the range [0, 1]. Panel (e) shows the ground truth of the MBF estimates without any noise.
Fig. 4. Panels (a) - (e) show the design of non-transmural, fully transmural, 60◦, 120◦ and 180◦ lesions respectively. The dark blue region denotes the lesion, and the yellow region
denotes the healthy tissues. Panels (f) and (j) show the MBF estimates without any noise for the five different types of lesions respectively. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
2.4. Benchmark methods

We used four alternative methods as the benchmark methods in this
paper. The first benchmark method was the Gaussian mixture model
classification method (see chapter 9, Bishop (2006)). This method can
separate all myocardial tissues (pixels) into several (two in our work)
different Gaussian distributions based on the SI of the pixels and return
the labels of the respective cluster. The maximum likelihood parameter
estimates of the Gaussian mixture model can be obtained with the EM
algorithm (Bishop, 2006; Moon, 1996). As mentioned in Section 3.1,
this classification method is susceptible to spurious singleton clusters.
This method is named as GMM (see Table 1).

The second benchmark method was an image processing approach
called the ‘‘opening and closing operations’’ (Chen and Haralick, 1995),
referred to as ‘‘GMMmax

C&O’’ (see Table 1). The opening and closing
operations can potentially improve the GMM classification results by re-
ducing spurious singleton clusters. This approach applies mathematical
morphology (erosion and dilation) to reduce the occurrence of spurious
clusters. Both closing and opening operations have been derived from
two fundamental operations called ‘‘erosion’’ and ‘‘dilation’’. In general,
the opening operation can remove small lesion clusters inside healthy
tissues and the closing operation can remove small healthy clusters
inside lesions. However, this method requires a user to specify the
kernel size for the opening and closing operators. Since there is no
objective way to set this parameter, we tried different kernel sizes and
chose the one that achieved the closest agreement with the ground
truth (which happened to be a 2 × 2 kernel). We also discarded all
but the largest lesion, in line with the ground truth. Note that this
procedure gives the GMMmax

C&O method an unfair competitive advantage
over the GST-HBM method that we have proposed, as it uses ground
truth information that would not be available in real applications.
4

Table 1
Descriptions of all methods compared within this paper.

Abbreviation of methods Description

GMM Gaussian mixture model classification

GMMmax
C&O GMM based opening and closing

operations with the largest lesion kept

GMM-MRF The method proposed in Yang et al.
(2022b)

M-HBM The method proposed in Yang et al.
(2022a)

GST-HBM The method proposed in this paper

The third benchmark method was the GMM-MRF model (see Ta-
ble 1) proposed in Yang et al. (2022b). This method is a modification of
the standard GMM which aims to improve the classification accuracy
by suppressing spurious singleton clusters through the use of spatial
context information. The drawback of this method is that it was fitted
by a greedy optimisation method, the ICM algorithm, which is sus-
ceptible to entrapment in local minima. As a consequence, it failed
to eliminate some misclassified pixels that were generated by spatially
variant noise (Yang et al., 2022b).

The fourth benchmark method was the model-based HBM classifi-
cation method proposed in Yang et al. (2022a). This method combines
physiological and spatial information to accurately estimate and clas-
sify the MBF using myocardial perfusion DCE-MRI. This method is
referred to as M-HBM (see Table 1).

We refer to the method proposed in the paper as GST-HBM (see
Table 1).
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3. Theory

3.1. Spatio-temporal information

Spatial methods have been widely applied for quantitative assess-
ment of myocardial perfusion DCE-MRI (Scannell et al., 2020; Schmid
and Yang, 2009; Lehnert et al., 2019; Cordero-Grande et al., 2011).
According to the idea that adjacent tissues show similar properties, we
incorporate spatial information. We also introduce temporal informa-
tion because the myocardial perfusion DCE-MRI data are time-series
images. The signal intensities for a pixel at different times are related,
which is illustrated in Fig. 2. Specifically, there are three stages for
the change of signals of myocardial pixels. In the beginning, the sig-
nal intensity stays relatively low because the contrast agent has not
yet reached the myocardium. Then, it increases steadily because the
contrast agent is flowing into the myocardium. Finally, it begins to
decrease steadily because the contrast agent is washed out from the
myocardium. Therefore, we introduce spatio-temporal information to
the DCE-MR SI images using Markov random field priors, which are
explicitly described in Section 3.3.2.

For some naive applications of standard clustering methods, like
GMM classification, only the signal information can be utilised. Specif-
ically, GMM segmentation assigns all pixels into several groups (two
groups in this case) based on the values of these signals. In this way,
GMM segmentation is susceptible to spurious singleton clusters in some
low signal-to-noise ratio (SNR) cases. This phenomenon is physiologi-
cally unrealistic because the blood supply to myocardial tissues is from
three main coronary arteries. This means that the lesions are highly
likely to be located in continuous areas. The spurious singleton clusters
can be reduced or even eliminated by introducing neighbourhood
information (Yang et al., 2019). We therefore applied Markov random
field priors to the label of each pixel. The details of this application can
be found in Section 3.3.1.

3.2. Hierarchical Bayesian model

Let 𝑦𝑖(𝑡) denote the logarithm of the signal intensity of an MR image
pixel (𝑖 = 1, 2,… , 𝑁) at time point 𝑡 (𝑡 = 1, 2,… ,𝑀), where 𝑁 is the
umber of pixels and 𝑀 is the number of time points. 𝑘𝑖 ∈ {0, 1} is

defined as the state (healthy and lesion) for the 𝑖th pixel.
In this work, a GST-HBM was used to classify the tissues based on

myocardial perfusion DCE-MRI. This model can be found in Fig. 5.
Table 2 shows the description of the parameters in Fig. 5. In Fig. 5,
if there is a link from node A to node B, then node A is the parent of
node B, or in other words, node B is the child of node A. The child
node is conditional on the parent node. The nodes and links indicate
conditional dependence relations between different parameters. Specif-
ically, the observation 𝑦𝑖(𝑡) is conditionally dependent on the true signal
intensity 𝜓 𝑖(𝑡) and variance 𝜎2. The variable 𝜓 𝑖(𝑡) is assumed to be the
denoised signal, and 𝜎2 is the variance of the white noise. Furthermore,
𝜓 𝑖(𝑡) follows a conditional Gaussian distribution. To be specific, the true
signal 𝜓 𝑖(𝑡) given different labels 𝑘𝑖 is Gaussian distributed with mean
𝜇𝑘𝑖 (𝑡) and variance 𝜎2

𝑘𝑖
(𝑡). Moreover, 𝜓 𝑖(𝑡) is constrained by its spatial

neighbour 𝜓−𝑖(𝑡) and temporal neighbour 𝜓 𝑖(𝑡+𝑗), 𝑎𝑘𝑖 (𝑡+𝑗) and 𝐛𝑘𝑖 (𝑡+𝑗)
where 𝑎𝑘𝑖 (𝑡+𝑗) and 𝐛𝑘𝑖 (𝑡+𝑗) are autoregressive parameters (coefficients)
between 𝜓 𝑖(𝑡)and 𝜓 𝑖(𝑡 + 𝑗).

In this way, Fig. 5 explicitly illustrates the relationships between the
parameters in this GST-HBM model. According to the factorisation rule,
which is specified in Bishop (2006) chapter 8, the joint distribution
for this hierarchical Bayesian model is the product of conditional
distributions determined by their respective parent nodes. In this way,
the joint distribution is:

𝑃
(

𝑦𝑖(𝑡), 𝜓 𝑖(𝑡), 𝜎2, 𝜓 𝑖(𝑡 + 𝑗), 𝜓−𝑖(𝑡), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗), 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡),𝜞 , 𝑘
𝑖, 𝑘−𝑖

)

=𝑃
(

𝑦𝑖(𝑡)|𝜓 𝑖(𝑡), 𝜎2
)

𝑃
(

𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝜓−𝑖(𝑡), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗), 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝑘
𝑖, 𝑘−𝑖

)

( 2 ) ( 𝑖 ) ( 2 ) ( 2 )
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𝑃 𝜎 |𝛼∗∗, 𝛽∗∗ 𝑃 𝜓 (𝑡 + 𝑗) 𝑃 𝑎𝑘𝑖 (𝑡 + 𝑗)|𝜇∗∗, 𝜎∗∗ 𝑃 𝐛𝑘𝑖 (𝑡 + 𝑗)|𝜇∗∗, 𝜎∗∗
Table 2
Descriptions of the parameters for the GST-HBM model.

Parameter Description

𝑦𝑖(𝑡) The logarithm (log) of the observed signal for pixel 𝑖 at time 𝑡
𝜓 𝑖(𝑡) The log of the true signal for pixel 𝑖 at time 𝑡
𝜎2 The variance of the IID Gaussian noise
𝑘𝑖 The label for pixel 𝑖
𝑘−𝑖 The labels for the neighbours of pixel 𝑖
𝜓−𝑖(𝑡) The log of the true signals for the neighbours of pixel 𝑖 at time 𝑡
𝜓 𝑖(𝑡 + 𝑗) The log of the true signals for pixel 𝑖 at time 𝑡 + 𝑗
𝑎𝑘𝑖 (𝑡 + 𝑗) Autoregressive parameter (constant) between 𝜓 𝑖(𝑡)and 𝜓 𝑖(𝑡 + 𝑗)
𝐛𝑘𝑖 (𝑡 + 𝑗) Autoregressive parameter (coefficient) between 𝜓 𝑖(𝑡)and 𝜓 𝑖(𝑡 + 𝑗)
𝜇𝑘𝑖 (𝑡) Mean for the true signals conditional on the label at time 𝑡
𝜎2𝑘𝑖 (𝑡) Variance for the true signals conditional on the label at time 𝑡
∗ and ∗∗ The symbols with ∗ and ∗∗ are hyperparameters

𝑃
(

𝜇𝑘𝑖 (𝑡)|𝜇∗, 𝜎2∗
)

𝑃
(

𝜎2𝑘𝑖 (𝑡)|𝛼∗, 𝛽∗
)

𝑃
(

𝜓−𝑖(𝑡)
)

𝑃
(

𝑘𝑖|𝑘−𝑖
)

𝑃
(

𝑘−𝑖
) (2)

where 𝜞 = {𝜇∗, 𝜎2∗ , 𝛼∗, 𝛽∗, 𝜇∗∗, 𝜎
2
∗∗, 𝛼∗∗, 𝛽∗∗} is a vector containing all

hyperparameters. This equation shows how the joint probability of
all variables of the proposed GST-HBM model can be expanded into
a product of less complex conditional probabilities. The analysis of
the full probabilistic model can thus be simplified, in terms of less-
complex conditional distributions of specific parameters. The statistical
inference of the conditional distributions of all parameters in Fig. 5
is presented in Section 3.4. The distributions of the parameters in
Table 2 and their corresponding prior distributions are introduced in
the remaining parts of Sections 3.2 and 3.3.

In this GST-HBM, the logarithm of signal intensity 𝑦𝑖(𝑡) is assumed
to be Gaussian distributed with mean 𝜓 𝑖(𝑡) and variance 𝜎2, which can
be written as:

𝑃
(

𝑦𝑖(𝑡)|𝜓 𝑖(𝑡), 𝜎2
)

= 1
√

2𝜋𝜎
exp

(

−
(

𝑦𝑖(𝑡) − 𝜓 𝑖(𝑡)
)2

2𝜎2

)

(3)

where 𝜓 𝑖(𝑡) indicates the true signal intensity of pixel 𝑖 at time 𝑡. 𝜎2

s assumed to be the variance of the IID Gaussian noise. 𝛼∗∗ = 0.1 and

∗∗ = 0.1 are fairly uninformative hyperparameters for variance 𝜎2. In
his way, the prior distribution for 𝜎2, which is conjugate, is

(𝜎2|𝛼∗∗, 𝛽∗∗) =
𝛽𝛼∗∗∗∗
𝛤 (𝛼∗∗)

(𝜎2)−𝛼∗∗−1 exp
(

−
𝛽∗∗
𝜎2

)

. (4)

The myocardial blood flows for healthy tissues and lesions are different.
Moreover, the myocardial blood flows are positively correlated with the
signal intensities for myocardial tissues. In this way, 𝜓 𝑖(𝑡) is condition-
ally dependent on the label 𝑘𝑖. Specifically, the probability density of
𝜓 𝑖(𝑡) conditional on the label 𝑘𝑖 is

𝑃
(

𝜓 𝑖(𝑡)|𝜇𝜙(𝑡), 𝜎2𝜙(𝑡)
)

= 1
√

2𝜋𝜎𝜙(𝑡)
exp

(

−
(

𝜓 𝑖(𝑡) − 𝜇𝜙(𝑡)
)2

2𝜎2𝜙(𝑡)

)

(5)

ith 𝜙 ∈ {0, 1}. 𝜇𝜙(𝑡) and 𝜎2𝜙(𝑡) are the simple forms of 𝜇𝑘𝑖=𝜙(𝑡) and
2
𝑘𝑖=𝜙

(𝑡). Let 𝝍𝜙(𝑡) = {𝜓 𝑖(𝑡)}𝑖|𝑘𝑖=𝜙, we have:

(

𝝍𝜙(𝑡)|𝜇𝜙(𝑡), 𝜎2𝜙(𝑡)
)

=
(

2𝜋𝜎2𝜙(𝑡)
)−

𝑁𝜙
2 exp

(

−
∑

𝑖|𝑘𝑖=𝜙
(

𝜓 𝑖(𝑡) − 𝜇𝜙(𝑡)
)2

2𝜎2𝜙(𝑡)

)

(6)

with 𝜙 ∈ {0, 1}. 𝑁𝜙 is the number of pixels which satisfy label 𝑘𝑖 = 𝜙. In
a nutshell, all pixels in the myocardium are separated in two categories,
healthy group and lesion group. The pixels in different groups have
different means and standard deviations. 𝜇∗ = 0, 𝜎2∗ = 10, 𝛼∗ = 0.1
and 𝛽 = 0.1 are fairly uninformative hyperparameters for 𝜇 (𝑡) and
∗ 𝑘𝑖
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Fig. 5. This figure shows the structure of the hierarchical Bayesian model proposed in this work. The circle nodes denote variables and the rectangle nodes denote fixed values.
𝜎2
𝑘𝑖
(𝑡). In this way, the prior distributions for 𝜇𝑘𝑖 (𝑡) and 𝜎2

𝑘𝑖
(𝑡), which are

conjugate, are

𝑃
(

𝜇𝑘𝑖 (𝑡)|𝜇∗, 𝜎2∗
)

= 1
√

2𝜋𝜎∗
exp

(−
(

𝜇𝑘𝑖 (𝑡) − 𝜇∗
)2

2𝜎2∗

)

(7)

and

𝑃
(

𝜎2𝑘𝑖 (𝑡)|𝛼∗, 𝛽∗
)

=
𝛽𝛼∗∗
𝛤 (𝛼∗)

(

𝜎2𝑘𝑖 (𝑡)
)−𝛼∗−1

exp
(

−
𝛽∗
𝜎2
𝑘𝑖
(𝑡)

)

. (8)

The true signal 𝜓 𝑖(𝑡) and label 𝑘𝑖 are dependent on their spatial
neighbours 𝜓−𝑖(𝑡) and 𝑘−𝑖 using Markov random fields. We further
applied 𝜓 𝑖(𝑡 + 𝑗) as the temporal neighbours of 𝜓 𝑖(𝑡). The definitions
of 𝜓−𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗) and 𝑘−𝑖 are explicitly illustrated in Section 3.3.

3.3. Markov random fields

3.3.1. Markov random fields for labels
A Markov random field method was used to introduce the

spatial neighbourhood information in this paper. According to the
Hammersley–Clifford theorem, a Markov random field can be written
as a Gibbs distribution (Li, 2009),

𝑃 (𝑘𝑖|𝑘−𝑖) = 1
Q exp

(

−𝑈 (𝑘𝑖|𝑘−𝑖)
)

(9)

where Q is a normalisation constant to ensure the integral of 𝑃 (𝑘𝑖|𝑘−𝑖)
is 1. 𝑘−𝑖 is the set of all other labels excluding 𝑘𝑖, 𝑘−𝑖 = {𝑘𝑚}𝑚≠𝑖. We
defined 𝑈 (𝑘𝑖|𝑘−𝑖) to be:

𝑈 (𝑘𝑖|𝑘−𝑖) = 1
T
∑

𝑖∼𝑚
𝑢(𝑘𝑖|𝑘𝑚), (10)

where T is a weight parameter. 𝑖 ∼ 𝑚 denotes the spatial neighbours of
pixel 𝑖. The definition of 𝑢(𝑘𝑖|𝑘𝑚) is

𝑢(𝑘𝑖|𝑘𝑚) =

⎧

⎪

⎨

⎪

⎩

−
( 1
2

)𝑜−1
𝑘𝑖 = 𝑘𝑚,

( 1
2

)𝑜−1
𝑘𝑖 ≠ 𝑘𝑚

(11)

where 𝑜 indicates the degree of neighbouring. Fig. 6 shows the defini-
tions of spatial and temporal neighbours in this work. The definition
for temporal neighbours will be used in Section 3.3.2. We chose 𝑜 = 1
in this work because it is computationally cheaper than higher degrees,
e.g. 𝑜 = 2. However, our method provides a straightforward mechanism
for the extension to higher degrees.

3.3.2. Markov random fields for true signals
As mentioned in Section 3.1, we introduced spatial Markov random

fields to the true signal 𝜓 𝑖(𝑡). A Markov random field can be written as
6

a Gibbs distribution, we therefore have:

𝑃
(

𝜓 𝑖(𝑡)|𝜓−𝑖(𝑡), 𝑘𝑖, 𝑘−𝑖
)

= 1
𝑄ps

exp
(

−𝑈 (𝜓 𝑖(𝑡)|𝜓−𝑖(𝑡), 𝑘𝑖, 𝑘−𝑖)
)

(12)

where Qps is a normalisation constant. 𝜓−𝑖(𝑡) is the set of all other true
signals excluding 𝜓 𝑖(𝑡), 𝜓−𝑖(𝑡) = {𝜓𝑚(𝑡)}𝑚≠𝑖. We defined 𝑈

(

𝜓 𝑖(𝑡)|𝜓−𝑖(𝑡),
𝑘𝑖, 𝑘−𝑖

)

to be:

𝑈
(

𝜓 𝑖(𝑡)|𝜓−𝑖(𝑡), 𝑘𝑖, 𝑘−𝑖
)

= 1
𝑇ps

∑

𝑖∼𝑚
𝜈𝑖,𝑚

(

𝜓 𝑖(𝑡) − 𝜓𝑚(𝑡)
)2 (13)

where 𝑇ps is a weight parameter and 𝜈𝑖,𝑚 is the edge-preservation
parameter defined by

𝜈𝑖,𝑚 =

{

0 𝑘𝑖 ≠ 𝑘𝑚(𝑡)

1 𝑘𝑖 = 𝑘𝑚(𝑡).
(14)

The edge-preservation parameter 𝜈𝑖,𝑚 is used to prevent the smoothing
effect of the neighbourhood information extend beyond the boundaries
of different tissues, i.e. healthy tissues and lesions (Scannell et al., 2020;
Bardsley, 2012).

In the proposed method, we used an auto-regressive model to
describe the relationship for the true signals between different times.
𝑗 is a non-zero integer to indicate the neighbouring time points. To
be specific, the Markov random fields prior given temporal neighbour
𝜓 𝑖(𝑡 + 𝑗) is

𝑃
(

𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)
)

=
1
𝑄pt

exp
(

−𝑈 (𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗))
)

(15)

where

𝑈
(

𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)
)

=

1
𝑇pt

∑

𝑡∼𝑗

(

𝜓 𝑖(𝑡) −
𝑞
∑

𝑝=0
𝑏𝑝
𝑘𝑖
(𝑡 + 𝑗)𝜓 𝑖(𝑡 + 𝑗) − 𝑎𝑘𝑖 (𝑡 + 𝑗)

)2

(16)

where Qpt is a normalisation constant. Tpt is a weight parameter and
𝐛𝑘𝑖 (𝑡 + 𝑗) = {𝑏0

𝑘𝑖
(𝑡 + 𝑗),… , 𝑏𝑞

𝑘𝑖
(𝑡 + 𝑗)}. In our work, we assumed that the

auto-regressive parameters, 𝐛𝑘𝑖 (𝑡+𝑗) and 𝑎𝑘𝑖 (𝑡+𝑗) are dependent on the
label 𝑘𝑖. This is physiologically realistic. For myocardial perfusion MRI
data, the lesion tissues are hypoperfused and the healthy tissues are
normally perfused. This means that not only are the signal intensities
for the lesion pixels lower than for the healthy tissues but also the
growth rate of the signal intensities for the lesion pixels is lower than
for the healthy tissues. In our work, we chose 𝑗 = −1 and 𝑞 = 0.
Given 𝑞 = 0 and 𝑗 = −1, Gaussian prior distributions are assumed for
both 𝑏0 (𝑡− 1) and 𝑎 (𝑡− 1) with fairly uninformative hyperparameters
𝑘𝑖 𝑘𝑖
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Fig. 6. This figure shows the definitions of spatial and temporal neighbouring pixels in this paper. The blue triangles show the first order of spatial neighbours and the red
triangles show the second order of spatial neighbours. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
𝜇∗∗ = 0 and 𝜎2∗∗ = 10. Specifically, the prior distributions for 𝑏0
𝑘𝑖
(𝑡 − 1)

and 𝑎𝑘𝑖 (𝑡 − 1), which are conjugate, are

𝑃
(

𝑏0𝑘𝑖 (𝑡 − 1)|𝜇∗∗, 𝜎2∗∗
)

= 1
√

2𝜋𝜎∗∗
exp

(−(𝑏0
𝑘𝑖
(𝑡 − 1) − 𝜇∗∗)2

2𝜎2∗∗

)

(17)

and

𝑃
(

𝑎𝑘𝑖 (𝑡 − 1)|𝜇∗∗, 𝜎2∗∗
)

= 1
√

2𝜋𝜎∗∗
exp

(

−(𝑎𝑘𝑖 (𝑡 − 1) − 𝜇∗∗)2

2𝜎2∗∗

)

. (18)

3.4. Posterior inference

The hierarchical Bayesian model in Fig. 5 is a directed acyclic graph.
In a directed acyclic graph, the probability of a selected parameter
conditional on all other parameters is given by the probability of
this parameter conditional on its Markov blanket (its parents, children
and co-parents nodes) (see details in Bishop (2006), Chapter 8). For
example, for parameter 𝜎2, its parent node is (𝛼∗∗, 𝛽∗∗). Its child node
is 𝑦𝑖(𝑡). Its co-parent node is 𝜓 𝑖(𝑡). In this section, the conditional
distributions for 𝜓 𝑖(𝑡), 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝜎

2, 𝑎𝑘𝑖 (𝑡 + 𝑗), 𝐛𝑘𝑖 (𝑡 + 𝑗) and 𝑘𝑖 are
derived using their corresponding Markov blankets. Furthermore, given
the derived conditional distributions, these parameters can be sampled
using a specific MCMC method, i.e. Gibbs sampling.

The Markov blanket for 𝜓 𝑖(𝑡) is {𝑦𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗), 𝐛𝑘𝑖 (𝑡 + 𝑗),
𝑘𝑖, 𝜓−𝑖(𝑡), 𝑘−𝑖, 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝜎

2}. In this way, its conditional distribution
is

𝑃
(

𝜓 𝑖(𝑡)|𝑦𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗), 𝑘𝑖, 𝜓−𝑖(𝑡), 𝑘−𝑖, 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝜎
2)

∝𝑃
(

𝑦𝑖(𝑡)|𝜓 𝑖(𝑡), 𝜎2
)

𝑃
(

𝜓 𝑖(𝑡)|𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡)
)

𝑃
(

𝜓 𝑖(𝑡)|𝜓−𝑖(𝑡), 𝑘𝑖, 𝑘−𝑖
)

𝑃
(

𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)
)

. (19)

𝑃 (𝑦𝑖(𝑡)|𝜓 𝑖(𝑡), 𝜎2) can be found in Eq. (3). Given 𝑘𝑖 = 𝜙 with 𝜙 ∈ {0, 1},
𝑃 (𝜓 𝑖(𝑡)|𝜇𝑘𝑖=𝜙(𝑡), 𝜎2𝑘𝑖=𝜙(𝑡)) can be found in Eq. (5). 𝑃 (𝜓 𝑖(𝑡)|𝜓−𝑖(𝑡), 𝑘𝑖, 𝑘−𝑖)
can be found in Eqs. (12), (13), (14) and 𝑃 (𝜓 𝑖(𝑡)|𝜓−𝑖(𝑡), 𝑎𝑘𝑖 (𝑡+ 𝑗),𝐛𝑘𝑖 (𝑡+
𝑗)) can be found in Eqs. (15), (16). By substituting these equations into
Eq. (19), we have:

𝑃
(

𝜓 𝑖(𝑡)|𝑦𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗), 𝑘𝑖, 𝜓−𝑖(𝑡), 𝑘−𝑖, 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝜎
2
)

∝ exp
(

−𝐴 × (𝜓 𝑖(𝑡))2 + 2𝐵 × 𝜓 𝑖(𝑡)
2𝐶

)

(20)

where

𝐴 = 𝜎2𝜙(𝑡)𝑇ps𝑇pt + 𝜎2𝑇ps𝑇pt + 2𝜎2𝜎2𝜙(𝑡)𝑇pt
∑

𝜈𝑖,𝑚 + 2𝜎2𝜎2𝜙(𝑡)𝑇ps, (21)
7

𝑖∼𝑚
𝐵 = 𝜎2𝜙(𝑡)𝑇ps𝑇pt𝑦
𝑖(𝑡) + 𝜎2𝑇ps𝑇pt𝜇𝜙(𝑡) + 2𝜎2𝜎2𝜙(𝑡)𝑇pt

∑

𝑖∼𝑚
𝜈𝑖,𝑚𝜓

𝑚(𝑡)

+ 2𝜎2𝜎2𝜙(𝑡)𝑇ps

(

𝑏0𝜙(𝑡 − 1)𝜓 𝑖(𝑡 − 1) + 𝑎𝜙(𝑡 − 1)
)

(22)

and

𝐶 = 𝜎2𝜎2𝜙(𝑡)𝑇ps𝑇pt (23)

with 𝜙 ∈ {0, 1}, 𝑞 = 0 and 𝑗 = −1. 𝑎𝜙(𝑡 − 1) and 𝑏0𝜙(𝑡 − 1) are the
simple forms of 𝑎𝑘𝑖=𝜙(𝑡 − 1) and 𝑏0

𝑘𝑖=𝜙
(𝑡 − 1). Therefore, the conditional

distribution for the true signal 𝜓 𝑖(𝑡) is

𝑃
(

𝜓 𝑖(𝑡)|𝑦𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗), 𝑘𝑖, 𝜓−𝑖(𝑡), 𝑘−𝑖, 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝜎
2
)

= 𝑁
(𝐵
𝐴
, 𝐶
𝐴

)

(24)

with 𝜙 ∈ {0, 1}, 𝑞 = 0 and 𝑗 = −1.
The Markov blanket for the parameter 𝜇𝑘𝑖 (𝑡) is {𝜇∗, 𝜎2∗ , 𝜓 𝑖(𝑡), 𝜎2

𝑘𝑖
(𝑡),

𝑘𝑖, 𝜓−𝑖(𝑡), 𝜓 𝑖(𝑡+ 𝑗), 𝑘−𝑖, 𝑎𝑘𝑖 (𝑡+ 𝑗), 𝐛𝑘𝑖 (𝑡+ 𝑗)}. According to Eq. (19), the
parameter 𝜇𝑘𝑖 (𝑡) is independent of 𝜓−𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑘−𝑖, 𝑎𝑘𝑖 (𝑡 + 𝑗) and
𝐛𝑘𝑖 (𝑡 + 𝑗). Therefore, its conditional distribution is

𝑃
(

𝜇𝜙(𝑡)|{𝜓 𝑖(𝑡)}𝑖|𝑘𝑖=𝜙, 𝜎2𝜙(𝑡), 𝜇∗, 𝜎
2
∗ , 𝜓

−𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑘−𝑖, 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)
)

∝ 𝑃
(

𝝍𝜙(𝑡)|𝜇𝜙(𝑡), 𝜎2𝜙(𝑡)
)

𝑃
(

𝜇𝑘𝑖 (𝑡)|𝜇∗, 𝜎2∗
)

(25)

with 𝜙 ∈ {0, 1}. 𝑃 (𝝍𝜙(𝑡)|𝜇𝜙(𝑡), 𝜎2𝜙(𝑡)) can be found in Eq. (6). Meanwhile,
𝑃 (𝜇𝑘𝑖 (𝑡)|𝜇∗, 𝜎2∗) can be found in Eq. (7). Since we choose a conjugate
prior for 𝜇𝑘𝑖 (𝑡), its conditional distribution is

𝑃
(

𝜇𝜙(𝑡)|{𝜓 𝑖(𝑡)}𝑖|𝑘𝑖=𝜙, 𝜎2𝜙(𝑡), 𝜇∗, 𝜎
2
∗

)

=

N
((

1
𝜎2∗

+
𝑁𝜙

𝜎2𝜙(𝑡)

)−1(𝜇∗
𝜎2∗

+
∑

𝑖|𝑘𝑖=𝜙 𝜓
𝑖(𝑡)

𝜎2𝜙(𝑡)

)

,
(

1
𝜎2∗

+
𝑁𝜙

𝜎2𝜙(𝑡)

)−1)

(26)

with 𝜙 ∈ {0, 1} and 𝑁𝜙 is the number of pixels which satisfy label
𝑘𝑖 = 𝜙.

The Markov blanket for the parameter 𝜎2
𝑘𝑖
(𝑡) is {𝛼∗, 𝛽∗, 𝜓 𝑖(𝑡), 𝜇𝑘𝑖 (𝑡),

𝑘𝑖, 𝜓−𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑘−𝑖, 𝑎𝑘𝑖 (𝑡 + 𝑗), 𝐛𝑘𝑖 (𝑡 + 𝑗)}. Similarly, according
to Eq. (19), the parameter 𝜎2

𝑘𝑖
(𝑡) is independent of 𝜓−𝑖(𝑡), 𝜓 𝑖(𝑡+ 𝑗), 𝑘−𝑖,

𝑎𝑘𝑖 (𝑡 + 𝑗) and 𝐛𝑘𝑖 (𝑡 + 𝑗). In this way, its conditional distribution is

𝑃
(

𝜎2𝜙(𝑡)|{𝜓
𝑖(𝑡)}𝑖|𝑘𝑖=𝜙, 𝜇𝜙(𝑡), 𝛼∗, 𝛽∗, 𝜓−𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑘−𝑖, 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)

)

∝ 𝑃
(

𝝍𝜙(𝑡)|𝜇𝜙(𝑡), 𝜎2𝜙(𝑡)
)

𝑃
(

𝜎2𝑘𝑖 (𝑡)|𝛼∗, 𝛽∗
)

(27)

with 𝜙 ∈ {0, 1}. 𝑃
(

𝝍𝜙(𝑡)|𝜇𝜙(𝑡), 𝜎2𝜙(𝑡)
)

can be found in Eq. (6). Mean-

while, 𝑃
(

𝜎2 (𝑡)|𝛼 , 𝛽
)

can be found in Eq. (8). Similarly, we choose

𝑘𝑖 ∗ ∗
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𝑃

𝐛

w

𝐴

𝐵

a

𝐶

𝜇
(
𝛽

∝

𝐛
d

3

a conjugate prior for 𝜎2
𝑘𝑖
(𝑡), i.e. an inverse-gamma (IG) distribution

IG(𝛼∗, 𝛽∗), so that its conditional distribution is
(

𝜎2𝑘𝑖 (𝑡)|{𝜓
𝑖(𝑡)}𝑖|𝑘𝑖=𝜙, 𝜇𝜙(𝑡), 𝛼∗, 𝛽∗

)

= IG
(

𝛼∗ +
𝑁𝜙

2
, 𝛽∗ +

∑

𝑖|𝑘𝑖=𝜙(𝜓 𝑖(𝑡) − 𝜇𝜙(𝑡))2

2

) (28)

with 𝜙 ∈ {0, 1} and 𝑁𝜙 is the number of pixels which satisfy label
𝑘𝑖 = 𝜙.

The Markov blanket for the parameter 𝜎2 is {𝑦𝑖(𝑡), 𝜓 𝑖(𝑡), 𝛼∗∗, 𝛽∗∗}.
Its conditional distribution is

𝑃
(

𝜎2|{𝑦𝑖(𝑡)}𝑖,𝑡, {𝜓 𝑖(𝑡)}𝑖,𝑡, 𝛼∗∗, 𝛽∗∗
)

∝
𝑁
∏

𝑖=1

𝑀
∏

𝑡=1
𝑃
(

𝑦𝑖(𝑡)|𝜓 𝑖(𝑡), 𝜎2
)

𝑃
(

𝜎2|𝛼∗∗, 𝛽∗∗
)

(29)

where 𝑃 (𝑦𝑖(𝑡)|𝜓 𝑖(𝑡), 𝜎2) can be found in Eq. (3) and 𝑃 (𝜎2|𝛼∗∗, 𝛽∗∗) can
be found in Eq. (4). Since we choose a conjugate prior for 𝜎2, its
conditional distribution is

𝑃
(

𝜎2|{𝑦𝑖(𝑡)}𝑖,𝑡, {𝜓 𝑖(𝑡)}𝑖,𝑡, 𝛼∗∗, 𝛽∗∗
)

=IG
(

𝛼∗∗ +
𝑁
2
, 𝛽∗∗ +

∑𝑁
𝑖=1

∑𝑀
𝑡=1

(

𝑦𝑖(𝑡) − 𝜓 𝑖(𝑡)
)2

2

)

. (30)

The Markov blanket for the parameter 𝑎𝑘𝑖 (𝑡 + 𝑗) is {𝜓 𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗),
𝑘𝑖 (𝑡 + 𝑗), 𝜇∗∗, 𝜎2∗∗, 𝑘𝑖, 𝜓−𝑖(𝑡), 𝑘−𝑖, 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡)}. According to Eq. (19),
𝑎𝑘𝑖 (𝑡 + 𝑗) is independent of 𝜓−𝑖(𝑡), 𝑘−𝑖, 𝜇𝑘𝑖 (𝑡) and 𝜎2

𝑘𝑖
(𝑡). Therefore, its

conditional distribution is

𝑃
(

𝑎𝜙(𝑡 + 𝑗)|{𝜓 𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗)}𝑖|𝑘𝑖=𝜙,𝐛𝜙(𝑡 + 𝑗), 𝜇∗∗, 𝜎2∗∗, 𝜓
−𝑖(𝑡), 𝑘−𝑖, 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡)

)

∝
∏

𝑖|𝑘𝑖=𝜙
𝑃 (𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗))𝑃 (𝑎𝑘𝑖 (𝑡 + 𝑗)|𝜇∗∗, 𝜎2∗∗) (31)

where 𝑃
(

𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)
)

can be found in Eqs. (15)
and (16). 𝑃

(

𝑎𝑘𝑖 (𝑡 + 𝑗)|𝜇∗∗, 𝜎2∗∗
)

can be found in Eq. (18). Given 𝑗 = −1
and 𝑞 = 0, the conditional distribution for 𝑎𝜙(𝑡 − 1) is

𝑃
(

𝑎𝜙(𝑡 − 1)|{𝜓 𝑖(𝑡)}𝑖|𝑘𝑖=𝜙, {𝜓 𝑖(𝑡 − 1)}𝑖|𝑘𝑖=𝜙, 𝑏0𝜙(𝑡 − 1), 𝜇∗∗, 𝜎2∗∗
)

= N(𝐷,𝐸)

(32)

where

𝐷 =

(

1
𝜎2∗∗

+
2𝑁𝜙

𝑇pt

)−1 ⎛
⎜

⎜

⎜

⎝

𝜇∗∗
𝜎2∗∗

+
2
∑

𝑖|𝑘𝑖=𝜙

(

𝜓 𝑖(𝑡) − 𝑏0
𝑘𝑖=𝜙

(𝑡 − 1)𝜓 𝑖(𝑡 − 1)
)

𝑇pt

⎞

⎟

⎟

⎟

⎠

(33)

and

𝐸 =

(

1
𝜎2∗∗

+
2𝑁𝜙

𝑇pt(𝑡 − 1)

)−1

(34)

with 𝜙 ∈ {0, 1}.

The Markov blanket for 𝐛𝑘𝑖 (𝑡 + 𝑗) is {𝜓 𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗), 𝜇∗∗,
𝜎2∗∗, 𝑘𝑖, 𝜓−𝑖(𝑡), 𝑘−𝑖, 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡)}. According to Eq. (19), 𝐛𝑘𝑖 (𝑡 + 𝑗) is
independent of 𝜓−𝑖(𝑡), 𝑘−𝑖, 𝜇𝑘𝑖 (𝑡) and 𝜎2

𝑘𝑖
(𝑡). Therefore, its conditional

distribution is

𝑃
(

𝐛𝜙(𝑡 + 𝑗)|{𝜓 𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗)}𝑖|𝑘𝑖=𝜙, 𝑎𝜙(𝑡 + 𝑗), 𝜇∗∗, 𝜎2∗∗, 𝜓
−𝑖(𝑡), 𝑘−𝑖, 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡)

)

∝
∏

𝑖|𝑘𝑖=𝜙
𝑃
(

𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)
)

𝑃
(

𝐛𝑘𝑖 (𝑡 + 𝑗)|𝜇∗∗, 𝜎2∗∗
)

(35)

where 𝑃
(

𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)
)

can be found in Eqs. (15)
and (16). Given 𝑗 = −1 and 𝑞 = 0, 𝑃

(

𝑏0
𝑘𝑖
(𝑡 + 𝑗)|𝜇∗∗, 𝜎2∗∗

)

can be found
in Eq. (17). Therefore, the explicit form of the conditional distribution
for 𝑏0 (𝑡 − 1) is
8

𝑘𝑖=𝜙 t
𝑃
(

𝑏0𝜙(𝑡 − 1)|{𝜓 𝑖(𝑡)}𝑖|𝑘𝑖=𝜙, {𝜓 𝑖(𝑡 − 1)}𝑖|𝑘𝑖=𝜙, 𝑎𝜙(𝑡 − 1), 𝜇∗∗, 𝜎2∗∗
)

= N
(

𝐵′

𝐴′ ,
𝐶 ′

𝐴′

) (36)

here
′ = 𝑇pt + 2𝜎2∗∗

∑

𝑖|𝑘𝑖=𝜙

(

𝜓 𝑖(𝑡 − 1)
)2 (37)

′ = 𝜇∗∗𝑇pt + 2𝜎2∗∗
∑

𝑖|𝑘𝑖=𝜙
𝜓 𝑖

(

𝜓 𝑖(𝑡) − 𝑎𝑘𝑖 (𝑡 − 1)
)

(38)

nd
′ = 𝜎2∗∗𝑇pt (39)

The Markov blanket for 𝑘𝑖 is {𝜓 𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗), 𝐛𝑘𝑖 (𝑡 + 𝑗),
𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝑘

−𝑖, 𝜓−𝑖(𝑡), 𝜇∗, 𝜎2∗ , 𝜇∗∗, 𝜎2∗∗, 𝛼∗, 𝛽∗}. According to Eqs. (7),
8), (17) and (18), 𝑘𝑖 is independent of parameters 𝜇∗, 𝜎2∗ , 𝜇∗∗, 𝜎2∗∗, 𝛼∗,
∗. In this way, its conditional distribution is

𝑃
(

𝑘𝑖 = 𝜙|𝑘−𝑖, {𝜓 𝑖(𝑡), 𝜇𝜙(𝑡), 𝜎2𝜙(𝑡), 𝜓
−𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)}𝑡

)

𝑃 (𝑘𝑖|𝑘−𝑖)
𝑀
∏

𝑡=1
𝑃
(

𝜓 𝑖(𝑡)|𝜇𝜙(𝑡), 𝜎2𝜙(𝑡)
)

𝑃
(

𝜓 𝑖(𝑡)|𝜓−𝑖(𝑡), 𝑘𝑖, 𝑘−𝑖
)

𝑀
∏

𝑡=1
𝑃
(

𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)
)

(40)

where 𝑃 (𝑘𝑖|𝑘−𝑖) can be found in Eqs. (9), (10) and (11). Meanwhile,
𝑃
(

𝜓 𝑖(𝑡)|𝜇𝜙(𝑡), 𝜎2𝜙(𝑡)
)

can be found in Eq. (5). 𝑃
(

𝜓 𝑖(𝑡)|𝜓−𝑖(𝑡), 𝑘𝑖, 𝑘−𝑖
)

can
be found in Eq. (12), (13), (14). 𝑃

(

𝜓 𝑖(𝑡)|𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)
)

can be found in Eqs. (15) and (16). Since 𝑘𝑖 can only be either 0 or
1, we set it to be a Bernoulli distribution conditional on its Markov
blanket. Given 𝑗 = −1 and 𝑞 = 0, when 𝑘𝑖 = 0, we have

𝑞 ∝𝑃
(

𝑘𝑖 = 0|𝑘−𝑖, {𝜓 𝑖(𝑡), 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝜓
−𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)}𝑡

)

∝exp

(

− 1
𝑇

∑

𝑖∼𝑚
𝑢
(

𝑘𝑖|𝑘𝑚
)

)

exp

(

−
𝑀
∑

𝑡=1

(

𝜓 𝑖(𝑡) − 𝜇𝑘𝑖 (𝑡)
)2

2𝜎2𝑘𝑖 (𝑡)

)

exp

(

−
𝑀
∑

𝑡=1

1
𝑇ps

∑

𝑖∼𝑚
𝜈𝑖,𝑚

(

𝜓 𝑖(𝑡) − 𝜓𝑚(𝑡)
)2
)

exp

(

−
𝑀
∑

𝑡=1

1
𝑇pt

(

𝜓 𝑖(𝑡) − 𝑏0𝑘𝑖 (𝑡 − 1)𝜓 𝑖(𝑡 − 1) − 𝑎𝑘𝑖 (𝑡 − 1)
)2
)

. (41)

Similarly, given 𝑗 = −1 and 𝑞 = 0, when 𝑘𝑖 = 1, we have

𝑝 ∝𝑃
(

𝑘𝑖 = 1|𝑘−𝑖, {𝜓 𝑖(𝑡), 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝜓
−𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)}𝑡

)

∝exp

(

− 1
𝑇

∑

𝑖∼𝑚
𝑢
(

𝑘𝑖|𝑘𝑚
)

)

exp

(

−
𝑀
∑

𝑡=1

(

𝜓 𝑖(𝑡) − 𝜇𝑘𝑖 (𝑡)
)2

2𝜎2𝑘𝑖 (𝑡)

)

exp

(

−
𝑀
∑

𝑡=1

1
𝑇ps

∑

𝑖∼𝑚
𝜈𝑖,𝑚

(

𝜓 𝑖(𝑡) − 𝜓𝑚(𝑡)
)2
)

exp

(

−
𝑀
∑

𝑡=1

1
𝑇pt

(

𝜓 𝑖(𝑡) − 𝑏0𝑘𝑖 (𝑡 − 1)𝜓 𝑖(𝑡 − 1) − 𝑎𝑘𝑖 (𝑡 − 1)
)2
)

. (42)

Therefore, the explicit conditional distribution for 𝑘𝑖 is

𝑃 (𝑘𝑖|𝑘−𝑖, {𝜓 𝑖(𝑡), 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝜓
−𝑖(𝑡), 𝜓 𝑖(𝑡 + 𝑗), 𝑎𝑘𝑖 (𝑡 + 𝑗),𝐛𝑘𝑖 (𝑡 + 𝑗)}𝑡) =

(

𝑝
𝑝 + 𝑞

)𝑘𝑖 ( 𝑞
𝑝 + 𝑞

)1−𝑘𝑖

(43)

The conditional distributions of 𝜓 𝑖(𝑡), 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝜎
2, 𝑎𝑘𝑖 (𝑡 + 𝑗),

𝑘𝑖 (𝑡+ 𝑗) and 𝑘𝑖 has been derived in this section, and these conditional
istributions will be used for MCMC simulations.

.5. MCMC simulations

In the present work, we applied the proposed GST-HBM method
o both clinical and synthetic data. In practice, the samples of the
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GST-HBM parameters can be approximately drawn using an MCMC
method, the Gibbs sampling method, from their posterior distributions.
Specifically, we have already derived the conditional distributions of
all GST-HBM parameters in Section 3.4, which is used in the Gibbs
sampling scheme described in detail in Algorithm 1.

Our algorithm has been implemented in Python. Some basic li-
braries, e.g. NumPy, pandas, and Scipy, have been used to implement
the Gibbs sampling routine. The benchmark method ‘‘GMM’’ has been
implemented using the ‘‘sklearn.mixture.GaussianMixture’’ package. All
remaining code has been developed by the first author. The code has
been shared on GitHub https://github.com/legendfuture/GST-HBM/ in
line with editorial policy.

Algorithm 1: Gibbs sampling for the GST-HBM method
Input: Hyperparameters 𝛼∗, 𝛽∗, 𝛼∗∗, 𝛽∗∗, 𝜇∗, 𝜎2∗ , 𝜇∗∗, 𝜎2∗∗, 𝑇 , 𝑇ps, 𝑇pt
Output: {𝜓 𝑖(𝑡)}𝑖,𝑡, {𝜇𝑘𝑖 (𝑡)}𝑡, {𝜎2𝑘𝑖 (𝑡)}𝑡, 𝜎

2, {𝑎𝑘𝑖 (𝑡 + 𝑗)}𝑡, {𝐛𝑘𝑖 (𝑡 + 𝑗)}𝑡
and {𝑘𝑖}𝑖

Data: {𝑦𝑖(𝑡)}𝑖,𝑡 where 𝑖 = 1, 2, ..., 𝑁 and 𝑡 = 1, 2, ...,𝑀
Set the initial values of 𝜓 𝑖(𝑡) to be 𝑦𝑖(𝑡); set the initial value of 𝜎2
to be 1;
for 𝑖 ← 1 to N do

Based on the image at 𝑡m (the time that the signals achieve to
peak values), obtain initial values of 𝑘𝑖, using the EM
algorithm (Gaussian mixture model) (see details from Chapter
9 in Bishop (2006));

end
for 𝑡← 1 to M do

Given 𝑘𝑖 and 𝜓 𝑖(𝑡), obtain the initial values of 𝜇𝑘𝑖 (𝑡) and 𝜎2
𝑘𝑖
(𝑡)

based on maximum likelihood estimation (MLE);
Given 𝑘𝑖 and 𝜓 𝑖(𝑡), obtain the initial values of 𝑎𝑘𝑖 (𝑡 + 𝑗) and
𝐛𝑘𝑖 (𝑡 + 𝑗) using least-squares fitting;

nd
or 𝑝← 1 to 𝑀0 (The number of MCMC samples) do
for 𝑡 ← 1 to M do

for 𝑖 ← 1 to N do
Given 𝑦𝑖(𝑡), 𝜓 𝑖(𝑡+ 𝑗), 𝑎𝑘𝑖 (𝑡+ 𝑗), 𝐛𝑘𝑖 (𝑡+ 𝑗), 𝜇𝑘𝑖 (𝑡), 𝜎2𝑘𝑖 (𝑡), 𝑘

𝑖,
𝑘−𝑖, 𝜓−𝑖(𝑡), 𝑇ps, 𝑇pt and 𝜎2, draw 𝜓 𝑖(𝑡) based on
equation (24);

end
Given {𝜓 𝑖(𝑡)}𝑖, 𝜎2𝑘𝑖 (𝑡), {𝑘

𝑖}𝑖, 𝜇∗ and 𝜎2∗ , draw 𝜇𝑘𝑖 (𝑡) based on
equation (26);

Given {𝜓 𝑖(𝑡)}𝑖, 𝜇𝑘𝑖 (𝑡), {𝑘𝑖}𝑖, 𝛼∗ and 𝛽∗, draw 𝜎2
𝑘𝑖
(𝑡) based on

equation (28);
Given {𝜓 𝑖(𝑡)}𝑖, {𝜓 𝑖(𝑡 + 𝑗)}𝑖, 𝐛𝑘𝑖 (𝑡 + 𝑗), 𝑇pt, 𝑘𝑖, 𝜇∗∗ and 𝜎2∗∗,
draw 𝑎𝑘𝑖 (𝑡 + 𝑗) based on equation (32);

Given {𝜓 𝑖(𝑡)}𝑖, {𝜓 𝑖(𝑡 + 𝑗)}𝑖, 𝑎𝑘𝑖 (𝑡 + 𝑗), 𝑇pt, 𝑘𝑖, 𝜇∗∗ and 𝜎2∗∗,
draw 𝐛𝑘𝑖 (𝑡 + 𝑗) based on equation (36);

end
for 𝑖← 1 to N do

Given {𝜓 𝑖(𝑡)}𝑡, {𝜇𝑘𝑖 (𝑡)}𝑡, {𝜎2𝑘𝑖 (𝑡)}𝑡, 𝑘
−𝑖, {𝜓−𝑖(𝑡)}𝑡, {𝜓 𝑖(𝑡 + 𝑗)}𝑡,

{𝑎𝑘𝑖 (𝑡 + 𝑗)}𝑡, {𝐛𝑘𝑖 (𝑡 + 𝑗)}𝑡, 𝑇 , 𝑇ps and 𝑇pt, draw 𝑘𝑖 based on
equation (43);

end
Given {𝑦𝑖(𝑡)}𝑖,𝑡, {𝜓 𝑖(𝑡)}𝑖,𝑡, 𝛼∗∗ and 𝛽∗∗, draw 𝜎2 based on
equation (30);

end

4. Results

4.1. Results for synthetic data

4.1.1. Model selection for hyperparameters
The values of the hyperparameters of GMM-MRF, M-HBM and GST-

HBM need to be selected based on the training data. For GMM-MRF
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l

and M-HBM, the details are presented in Yang et al. (2022b,a). For
the GST-HBM model proposed in this work, the hyperparameters are
selected based on WAIC, as discussed in Section 4.2.1. The hyperpa-
rameters of different combinations, i.e. lesion type and noise variance,
are independently selected by WAIC.

4.1.2. Visual inspection
The classification results for the synthetic data with high noise

(noise variance 2.52) are presented in Fig. 7. They can be summarised
as follows:

• The classification maps obtained with the GMM are always sub-
stantially different from the ground truth. The reason for this poor
performance is that the GMM only makes use of the SI of the
image, but unlike the other methods included in our study, it does
not exploit spatial information to suppress singular and spurious
small clusters.

• The classification maps of methods GMMmax
C&O and GMM-MRF are

visually similar to the ground truth for fully transmural and 180◦

cases, but noticeably different from the ground truth for non-
transmural, 60◦ and 120◦ cases. This can be explained by the fact
that the method GMMmax

C&O cannot make use of the SI from the
image, and its classification is therefore solely dependent on the
classification map of the GMM. Since the GMM method had high
numbers of misclassified pixels, as seen in Figs. 7(h), (n) and (t),
the corresponding maps generated by GMMmax

C&O, i.e. Figs. 7(i),
(o) and (u), turned out to be also highly inaccurate. The method
GMM-MRF, on the other hand, can make use of the SI from the
image. However, its MAP was obtained using the ICM algorithm,
which is an approximate greedy optimisation method that is
susceptible to entrapment in local optima.

• The classification maps of the two HBM based methods (M-HBM
and GST-HBM) were quite similar to the ground truth visually.
However, the GST-HBM outperformed the M-HBM, with the lat-
ter still suffering from singular and spurious small clusters in
Figs. 7(q) and (w). Panel (w) has a larger version of Fig. 8(a) for
easier inspection.

The accuracy of the different methods for other degrees of noise was
found to be consistent with the high-noise scenario presented above.
The visual inspection can provide subjective and intuitive insight into
the classification performance. For objective quantification, further
comprehensive analysis of the in silico prediction accuracy is presented
in Section 4.1.3.

4.1.3. Prediction accuracy
To quantify the classification accuracy, we first counted the number

of misclassified pixels and then calculated the cross-entropy between
the ground truth labels and the predicted posterior probabilities:

𝐻(𝑝𝑖, 𝑞𝑖) = −
∑

𝑖
[𝑝𝑖 log(𝑞𝑖) + (1 − 𝑝𝑖) log(1 − 𝑞𝑖)]. (44)

In Eq. (44), the subscript 𝑖 indicates the pixel index. 𝑝𝑖 ∈ {0, 1} indi-
ates the true label given the ground truth. 𝑞𝑖 indicates the predicted
osterior probabilities. The reason we used the cross-entropy as an
lternative quantitative criterion, in addition to the misclassification
ate, is to assess if the methods can properly deal with uncertainty
uantification, i.e. correctly predict the uncertainty of their predictions.
his shifts the focus from the classification label to the posterior
robability of finding a pixel in a given class. For example, predicting
he posterior probability of a pixel to be lesion to be 0.51 indicates

considerably lower level of confidence than predicting a posterior
robability of, say, 0.99. This difference is duly captured by the cross-
ntropy, but not the misclassification rate, which would not distinguish
etween the above two scenarios. When the noise level is high, e.g. a
oise variance of 2.52 or 32, the methods may fail to delineate the

esion. The calculated number of misclassified pixels and the average

https://github.com/legendfuture/GST-HBM/
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Fig. 7. These figures show lesion delineations for the synthetic examples with additive i.i.d. Rician noise with variance 2.52 (high noise). The pixels inside and outside of the
myocardium are background (indicated by black). The five rows denote the classification results for fully transmural, non-transmural, 60◦, 120◦ and 180◦ respectively. Panels (a),
(g), (m), (s) and (y) show the ground truth (GT). Panels (b) - (e), (h) - (k), (n) - (q), (t) - (w) and (z) - (ac) show the lesion delineation using alternative methods, which are
explicitly explained in Section 2.4 and Table 1. Panels (f), (l), (r), (x) and (ad) show the lesion delineation using the proposed GST-HBM. The abbreviations and their corresponding
descriptions of the methods can be found in Table 1.
cross-entropy do not provide a complete picture for quantifying method
performance, as they have been averaged over several images. For
example, consider three images and two classification methods, method
A and method B. Assume that for method A, we have obtained the
cross-entropy values 0.1, 0.1 and 10, for each of the three images in
turn, while for method B, the corresponding cross-entropy values are
3, 3 and 3. The average cross-entropy for method A is higher than
for method B. However, now assume that a cross-entropy higher than
1 is an indicator of failure. In that case, method A has achieved two
successful classifications (for images 1 and 2), whereas method B has
none. This motivates the introduction of the number of failure cases
(defined as a cross-entropy higher than 1) as a new performance score.
Since there are 10 separate clinical data sets for each type of design,
a score of 0 means that this method has successfully delineated the
lesions for all cases, whereas a score of 10 indicates that the method
has completely failed to delineate the lesions.

Table 3 shows the average number of misclassified pixels, the cross-
entropy and the number of failure cases. It can be seen that the
10
performance of the studied methods varies across the synthetic data
sets. For the non-transmural case, the in silico prediction accuracy ranks
(from worst to best) are: GMMmax

C&O, GMM, GMM-MRF, M-HBM, GST-
HBM. For the other four types of synthetic data, according to the results
in Table 3, the in silico prediction accuracy ranks (from worst to
best) are: GMM, GMM-MRF, GMMmax

C&O, M-HBM, GST-HBM. Here is a
summary of some interesting patterns:

• The GMM always performed poorly (large number of misclassified
pixels, high cross-entropy and high number of failure cases), and
this conclusion is consistent with the visual inspection.

• The method GMMmax
C&O performed poorly for the non-transmural

case, even when the noise was low (var 1.52 and 22). The reason
is that the myocardial wall is very thin, and the C&O operations
transformed the non-transmural lesion in the GMM classification
map to a spurious fully transmural lesion.

• Although overall the in silico prediction accuracy of GMM-MRF
trailed behind that of GMMmax for four types of synthetic data
C&O
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Table 3
The three values in the table are the average number of misclassified pixels, the
cross-entropy between true labels and predicted posterior probabilities (smaller values
mean better results) and the number of failure cases (cross-entropy higher than 1)
respectively. The entry ‘‘NA’’ means that none of the methods can generate visually
correct classification maps. The smallest value in each column has been marked by
bold fonts, with the following priority order: number of failure cases, cross-entropy
and average number of misclassified pixels.

Fully transmural VAR (Rician noise)

1.52 22 2.52 32

GMM 8.7/0.41/0 63.5/3.06/10 100.6/4.86/10 239.5/11.69/10
GMMmax

C&O 0.3/0.01/0 3.8/0.17/0 7.4/0.34/0 118.6/5.70/10
GMM-MRF 0.2/0.00/0 1.3/0.04/0 12.8/0.61/2 213.9/10.34/6
M-HBM 0.6/0.01/0 2.16/0.03/0 12.1/0.40/0 156/6.10/4
GST-HBM 0.4/0.02/0 0.6/0.03/0 2.4/0.10/0 21.6/1.04/4

Non-transmural VAR (Rician noise)

1.52 22 2.52 32

GMM 10.7/0.5/0 21.4/1.04/7 190.1/9.21/10 504.8/24.4/10
GMMmax

C&O 105.6/5.11/10 134.9/6.53/10 150.5/7.27/10 188.7/9.10/10
GMM-MRF 2.4/0.09/0 6.9/0.31/0 209.6/10.13/10 537.8/26.02/10
M-HBM 7.4/0.09/0 8.7/0.27/0 132.9/2.86/8 421.1/20.39/8
GST-HBM 2.4/0.08/0 5.8/0.27/0 58.1/2.81/10 155.7/3.70/10

60◦ VAR (Rician noise)

1.52 22 2.52 32

GMM 6.9/0.27/0 147.7/5.41/8 698.4/25.60/10 NA
GMMmax

C&O 4.0/0.15/0 9.5/0.36/1 550.9/20.4/10 NA
GMM-MRF 0.6/0.01/0 11.1/0.41/1 792.1/29.1/10 NA
M-HBM 2.5/0.08/0 63.2/0.27/0 139.1/4.00/10 NA
GST-HBM 1.4/0.04/0 5.7/0.22/0 30.1/1.10/4 NA

120◦ VAR (Rician noise)

1.52 22 2.52 32

GMM 10.8/0.41/0 43.2/1.60/10 219.6/8.04/10 379.9/13.94/10
GMMmax

C&O 2.3/0.06/0 11.5/0.43/0 12.5/0.46/0 27.2/0.98/5
GMM-MRF 0.7/0.01/0 1.8/0.04/0 30.9/1.12/2 427.7/15.70/10
M-HBM 0.6/0.00/0 2.0/0.02/0 14.3/0.05/0 163.1/2.29/10
GST-HBM 0.7/0.02/0 1.1/0.02/0 16.2/0.60/0 20.8/0.77/2

180◦ VAR (Rician noise)

1.52 22 2.52 32

GMM 11.4/0.42/0 48.1/1.75/10 175.0/6.43/10 291.7/10.70/10
GMMmax

C&O 0.00/0.00/0 1.4/0.05/0 9.5/0.35/0 44.1/1.63/7
GMM-MRF 0.5/0.00/0 1.4/0.04/0 2.0/0.08/0 202.5/7.40/5
M-HBM 0.9/0.02/0 0.6/0.01/0 10.0/0.31/0 79.2/0.63/5
GST-HBM 0.00/0.00/0 0.9/0.04/0 6.3/0.24/0 28.7/1.28/5

(all except the non-transmural case), GMM-MRF showed a decent
performance when the noise was low (noise variance with 1.52

and 22). In fact, this method performed as well as the two HBM
methods when the noise was low.

• M-HBM has sometimes a large number of misclassified pixels,
e.g. for the non-transmural and 60◦ cases in Table 3, but achieves
a low cross-entropy. The reason is that this method sometimes
predicted large areas of uncertain classification, e.g. in Fig. 7(w).
While this increases the number of misclassified pixels, it leads to
a decrease in cross-entropy.

Note that with the sole exception of GMM, all methods included
n our comparative evaluation depend on various regularisation pa-
ameters. A disadvantage of the mathematical morphology method,
MMmax

C&O, is that the regularisation parameters for this method are
‘user-defined’’, meaning that they have to be set by the user based on
ntuition, experience, and less objective criteria. On the other hand, all
he other methods, i.e. GMM-MRF, M-HBM and GST-HBM, are prob-
bilistic models. The regularisation parameters can be set objectively,
ased on the available data and established statistical information cri-
eria. A more detailed discussion of the disadvantages of the GMMmax

C&O
an be found in the online supplementary materials.
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Both the qualitative (visual inspection) and quantitative (in sil-
co prediction accuracy) analysis of the performance of the different
ethods on different types of synthetic data lead to the following

ecommendations:

• For fully transmural data (standard shape or clinical shape), if the
noise is low, GMM-MRF is recommended because it is as accurate
as the GST-HBM method, but computationally much faster (run-
ning time). If the noise is high, GST-HBM is recommended due to
its highest accuracy.

• For non-transmural data, GST-HBM is recommended because it
has the highest in silico prediction accuracy.

• If physiological parameters, like the MBF, are needed, then M-
HBM is recommended, as it has the second highest in silico
prediction accuracy and provides the option to estimate the phys-
iological parameters.

Both M-HBM and GST-HBM methods can provide quantified uncer-
ainty of the classification maps. The quantified uncertainty, i.e. cal-
ulated posterior probability, can be used to measure the degree of
ertainty of the method. In the present work, the GST-HBM has been
roven to give more certain results compared with the M-HBM. A
ertain result means that the posterior probability of a pixel is located
n [0, 0.05] (lesions) or [0.95, 1] (healthy tissues). On the other hand,

an uncertain result means that the posterior probability of a pixel is
located in the intermediate range (0.05, 0.95). Figs. 8(a) and 8(b) show
the classification maps to the same synthetic dataset using M-HBM and
GST-HBM respectively. It can be seen that the model-based HBM gave
uncertain classifications in the red circles, and the GST-HBM gave very
certain classification.

4.2. Results for clinical data

4.2.1. Model selection for hyperparameters
In the proposed GST-HBM method, there are three user-defined

hyperparameters 𝑇 , 𝑇ps and 𝑇pt, which can be found in Eqs. (10),
(13), (16). Firstly, we used WAIC values to explore the best combi-
nation of the hyperparameters. In principle, they could be sampled
from the posterior distribution with MCMC techniques, along with
the other parameters.To achieve this, they could be given exponential
distributions as prior. These prior distributions are conjugate for their
likelihoods. Therefore, the posteriors are also in the family of exponen-
tial distribution and can be directly sampled. However, this would lead
to a substantial increase in the computational complexity, given that
convergence and mixing of hyperparameters tends to be happening at
much lower rates than for parameters; see e.g. Neal (1996). In this
work, we ran an simulation that 𝑇 , 𝑇ps and 𝑇pt were sampled. The
convergence speed of the sampling case is at least 5 times slower than
the fixed case. Moreover, the values of traceplots are rather unstable,
with several continually occurring outliers at extreme values. This will
dramatically reduce the stability of the MCMC method and increase
the convergence time. The specific details of this simulation can be
found in the supplementary materials. For clinical decision making,
excessive computational costs need to be avoided, and we also want
to better exploit parallel computing resources for computational cost
reduction. This can be achieved by computing advanced information
criteria, like WAIC, for a set of candidate values in parallel, using
high-performance computer clusters, and then selecting the results
corresponding to those hyperparameters that have obtained the lowest
WAIC score. In our work, we have processed Algorithm 1 separately
for different combinations of the hyperparameters on different pro-
cessors. In our simulations, the hyperparmeters highly influenced the
final classification maps. Some typical classification maps are further
presented in the supplementary materials. Table 4 shows the WAIC
values for different combinations of the hyperparameters. We find that

the combination 𝑇 = 1000, 𝑇ps = 0.001 and 𝑇pt = 100 achieves the
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Fig. 8. Panels (a) and (b) show the posterior probability of M-HBM and GST-HBM (they are the same as Figs. 7(w) and 7(x) with added annotations). The light green pixels
inside the red circles indicate areas of uncertain M-HBM classifications in panel (a). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
lowest (i.e. best) WAIC value, and these hyperparameter settings were
used for this set of data. For other sets of data, the hyperparameters are
selected by their WAIC values.

4.2.2. Convergence test
All parameters were sampled from their posterior distributions using

Gibbs sampling according to Algorithm 1. Fig. 9 inspects the conver-
gence of the parameter 𝜎2. The reason we chose this parameter to
assess the convergence of the Gibbs sampling is that it can reveal
the uncertainty of differences between observed and generated signals.
The traceplot for the MCMC samples look reasonable, without any
signs of insufficient convergence. We also use Geweke’s test (Geweke
et al., 1991) to test for convergence. If the Geweke scores consistently
stay within the range (−1.96,1.96), there is no significant evidence for
insufficient convergence. Therefore, given Fig. 9, there is no significant
evidence that the parameter 𝜎2 has not converged. We also repeat the
convergence explorations for other parameters (𝜓 𝑖(𝑡), 𝜇𝑘𝑖 (𝑡), . . . ). There
is no significant evidence for lack of convergence here either. To further
assess the MCMC convergence diagnoses, we have run 5 additional
independent MCMC simulations on the same data with different ran-
dom seeds. We found that the independent MCMC simulations present
visually very similar classification maps to the presented classification
maps in Fig. 10(e). The average Dice score between the proposed
classification map and other independent simulations is 0.986 with
standard deviation 1.1×10−3. This suggests sufficient convergence of the
MCMC simulations. The visualisation of the comparisons can be found
in the supplementary materials.

4.2.3. Classification results
Fig. 10 shows the classification maps obtained with all the methods

included in our study, i.e. GMM, GMMmax
C&O, GMM-MRF, M-HBM and

GST-HBM. The LGE image in panel (f) is used as the ground truth to
indicate the location of the lesion. Although the two types of data,
i.e. the dynamic perfusion sequence and the LGE image, cannot be
overlayed pixel by pixel, the myocardial defects predicted by these two
types of images are positioned in the same part of the myocardium.
For example, in Fig. 10(f), the injured myocardium in the red circle
is located in the inferior (bottom) and inferolateral (right bottom)
segments of the myocardium. Therefore, for the classification maps in
panels (a) - (e), the correct classification should label the inferior and
inferolateral segments of the myocardium as lesion.

Panels (a) - (e) in Fig. 10 show the classification maps predicted by
the various methods. GMM, GMMmax , GMM-MRF and M-HBM have all
12

C&O
delineated spurious segments in the anterior (top) of the myocardium.
However, according to the LGE image in panel (f), there are no lesions
located in the anterior of the myocardium (red circle). This suggests
that the classification map in panel (e), obtained with GST-HBM, is
the most realistic one. The poorer performance of GMM, GMMmax

C&O
and GMM-MRF is consistent with the performance evaluation on the
synthetic data, as discussed in Section 4.1.

The physiological model that forms part of M-HBM is based on the
central volume principle (see details in Zierler (1965)), and the solu-
tion of the equation underlying the central volume principle is highly
affected by the SNR of the baseline pre-contrast phase of the DCE-MRI
time series. The reason for the failure of M-HBM to correctly delineate
the hypoperfused lesion (Fig. 10(d)) is that the noise distribution is
spatially variant, resulting in localised regions with extremely low SNR
(e.g. red ROI in Fig. 11(a)). Such regions are vulnerable to adverse
error propagation that in turn results in severe misestimation of MBF.
As can be seen in Fig. 11(c), M-HBM yields relatively low estimates
of MBF in this location (red ROI) despite any apparent abnormality in
the corresponding location on reference LGE image (Fig. 10(f)), or on
maximum enhancement image in Fig. 11(b).

However, the proposed GST-HBM method overcomes the problem
posed by the presence of the spatially variant noise by efficient use
of spatio-temporal information that results in denoising of the original
images and consequently achieves excellent agreement between the
final classification map and reference LGE images (Figs. 10(e) and (f)
respectively).

5. Discussion

In the present work, we have proposed a classification approach
based on an HBM with spatio-temporal Markov random field prior
for automatic lesion detection in myocardial perfusion DCE-MRI scans.
This method is a fully data driven approach, meaning that all parame-
ters and hyperparameters can be consistently inferred from the data,
without the need for any heuristic user-defined tuning parameters.
While the effectiveness of our classification method is demonstrated
using raw DCE-MRI myocardial data, its formulation is applicable to
any form of calibrated (transformed) datasets, where blood pool signal
is used to derive absolute values of MBF (Kellman et al., 2017). Fur-
thermore, the spatial and temporal constraints proposed in this method
are absolute-value norm distance and autoregressive model of order 1
respectively. Any other definitions of distance or temporal model can

be directly applied to replace the ones given in this paper. This is the
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Fig. 9. These figures inspect the convergence of the MCMC simulation for variance 𝜎2. (a) shows the traceplot of the MCMC samples for parameter 𝜎2 after burn-in. (b) shows
Geweke scores based on the MCMC samples of 𝜎2. The dashed horizontal lines show the value 1.96 and −1.96. If the Geweke scores are within the range (−1.96, 1.96), there is
no significant evidence that this parameter has not converged.
Fig. 10. Panels (a) - (e) show the classification maps predicted by the methods compared in our study: GMM, GMMmax
C&O, GMM-MRF, M-HBM and GST-HBM respectively. Yellow

pixels indicate healthy tissues, while dark green pixels indicate ischaemic lesions. Panel (f) represents the corresponding LGE image. The region inside the red ROI indicates the
location of the infarct. The red circle in panel (d) indicates the misclassification region using the M-HBM method. The yellow circle in panel (f) shows the corresponding region
in the LGE image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Panels (a) and (b) show the original images at the pre-contrast phase and maximum contrast enhancement of the DCE-MRI time series respectively. The grey scale
bars indicate the original signal intensities of pixels. Panel (c) shows the map of the MBF estimation (standardised to [0, 1]) using M-HBM method. The ROI inside the red circle
corresponds to the misclassification region using M-HBM in Fig. 10(d).
reason we named this model ‘‘generalisable spatio-temporal’’ HBM. The
only parts of the proposed method that need to be adjusted when apply-
ing it to other types of data are the modelling of the observations 𝜓 𝑖(𝑡),
spatial dependence 𝜓−𝑖 and temporal dependence 𝜓 𝑖(𝑡+𝑗), 𝑎𝑘𝑖 (𝑡+𝑗) and
𝒃𝑘𝑖 (𝑡+𝑗) in Table 2. For example, the model of the temporal constraints
we used in this work has a form of auto-regressive model. This module
of the GST-HBM method could be replaced by a different model of
myocardial perfusion DCE-MRI (Biglands et al., 2015). Four alternative
established methods, GMM, GMMmax

C&O (GMM with opening and closing
operations), GMM-MRF and model-based HBM, have been applied for
comparison, using both synthetic and clinical data. For the former, the
ground truth is known. This allowed us to compute three objective
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quantitative criteria, the number of misclassified pixels, the cross-
entropy between true and predicted labels and the number of failure
cases. All quantitative criteria demonstrate that the proposed GST-
HBM clearly outperforms the established alternative methods used for
comparison, which we further corroborated with a standard statistical
hypothesis test.

For the clinical myocardial perfusion DCE-MRI images, we evalu-
ated the performance of the methods based on the LGE image from the
same patient. The LGE image has been used to indicate the location
of the myocardial infarction that is expected to be the focus of the
fixed perfusion defect. We have tested our method using 12 datasets.
In some datasets, there is spatially variant noise at the pre-contrast
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Table 4
WAIC (smaller value means better result). The smallest one is marked in bold font and
superscript ∗.

T = 0.01 𝑇pt

𝑇ps

1 10 100 1000

0.0001 104 252 104 124 103 842 98 532

0.001 101 027 100 302 100 305 98 502

0.01 98 807 98 514 98 216 100 917

0.1 102 736 101 210 101 380 105 226

1 111 700 113 505 113 669 123 724

T = 0.1 𝑇pt

𝑇ps

1 10 100 1000

0.0001 97 661 97 304 97 293 97 217

0.001 99 637 99 083 98 708 98 578

0.01 98 677 98 326 98 422 100 556

0.1 102 381 101 644 101 540 105 437

1 111 029 113 386 113 428 124 787

T = 1 𝑇pt

𝑇ps

1 10 100 1000

0.0001 97 329 96 769 97 019 96 149

0.001 96 051 94 841 94 890 95 485

0.01 96 923 96 267 96 158 96 572

0.1 101 281 100 084 99 906 103 518

1 110 814 113 004 113 248 123 764

T = 10 𝑇pt

𝑇ps

1 10 100 1000

0.0001 95 198 95 586 95 002 94 510

0.001 96 177 94 804 94 974 95 249

0.01 102 746 96 357 96 163 96 477

0.1 110 980 102 810 101 778 103 518

1 132 716 128 545 134 199 135 595

T = 100 𝑇pt

𝑇ps

1 10 100 1000

0.0001 95 545 95 314 95 357 94 601

0.001 95 800 94 837 94 739 95 176

0.01 103 013 96 318 95 900 96 394

0.1 110 922 103 495 101 823 103 036

1 132 517 129 165 133 887 163 825

T = 1000 𝑇pt

𝑇ps

1 10 100 1000

0.0001 94 930 94 803 94 795 94 752

0.001 95 653 94 582 𝟗𝟒𝟒𝟖𝟕∗ 95 006

0.01 101 552 95 941 96 051 96 553

0.1 107 653 99 990 98 736 103 363

1 131 629 128 897 137 598 166 143

T = 10000 𝑇pt

𝑇ps

1 10 100 1000

0.0001 95 121 94 982 94 843 94 599

0.001 97 135 95 485 95 780 95 677

0.01 103 827 97 643 96 796 96 796

0.1 112 721 105 003 103 935 103 762

1 134 024 128 067 142 491 143 790

phase of the DCE-MRI time series, and this noise can strongly affect
the performance of any physiological method that is based on the
central volume principle. Consequently, model-based HBM methods
that incorporate this principle fail to correctly delineate the lesion.
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However, the GST-HBM method proposed in this work has proven to
succeed in denoising the original image and correctly delineating the
lesion.

For inference, we have sampled the parameters from the posterior
distribution with Gibbs sampling, while the lower level hyperparame-
ters were selected based on an advanced information criterion (WAIC),
which can be directly computed from the Gibbs samples. The mo-
tivation for this combined approach over a full sampling scheme is
faster mixing and convergence and the facilitation of the exploitation
of parallel computer clusters (see further below).

In summary, there are two main advantages of the proposed GST-
HBM over all other alternative established methods. Firstly, the in
silico prediction accuracy of the proposed GST-HBM is significantly
better than for the alternative established methods using the synthetic
data, based on the three performance criteria of classification error,
cross-entropy and the number of failure cases. Secondly, the proposed
GST-HBM is the only method that is able to deal with the myocardial
perfusion DCE-MRI images that are subject to spatially varying noise
at the pre-contrast phase of the DCE-MRI time series. All alternative
methods included in our comparative evaluation study failed to delin-
eate the lesions properly; the reason is that they depend to some extent
on either the MBF map generated by the physiological models or the
physiological models themselves, which are sensitive to the spatially
varying noise. The proposed GST-HBM method has some further ad-
vantages over the alternative methods. Compared with the GMM, it can
make use of spatial information to remove spurious singleton clusters.
It is more robust and consistent than the GMM based opening and
closing operations, in that it does not depend on any subjective user-
defined tuning parameters. Compared with the GMM-MRF method, its
parameters are sampled using MCMC. This is less susceptible to local
minima than the greedy optimisation on which GMM-MRF is based.

A further advantage of the proposed GST-HBM method is that it can
provide uncertainty quantification, given by the posterior probability
that a pixel belongs to one of the two classes (lesion versus healthy
tissue). These posterior probabilities are obtained with the Gibbs sam-
pling scheme described in Section 3.5. Quantifying uncertainty is a
substantial advantage over a crisp classification of the form ‘‘healthy
versus lesion’’, as it equips a clinician with an important decision
support tool for risk estimation and treatment recommendation.

One disadvantage of the proposed GST-HBM is its higher computa-
tional complexity. The three methods, i.e. GMM, GMM based opening
and closing operations and GMM-MRF, used for comparison are com-
putationally cheap: it typically takes less than a minute to obtain the
results. However, the Gibbs sampling simulations for the proposed
GST-HBM method, like for the model-based HBM, are computationally
expensive. We typically required about 1000 Gibbs sampling steps
to reach an acceptable level of convergence, based on the Geweke
convergence test, which was equivalent to computational costs of about
one hour on the hardware we were using (Intel(R) Core(TM) i9-7900X
CPU @ 3.30 GHz processor with 64 GB memory) The main factors that
influence the computational costs are both number of time points and
image pixels. They are linearly correlated with the product of number
of time points and pixels. The tests information can be found in the
supplementary materials.

A further disadvantage of the proposed GST-HBM is that it assumes
only two types of tissue (healthy tissue versus lesion). In its current
version, the GST-HBM cannot subdivide lesions into different subclasses
corresponding to different degrees of lesion severity. Lesion severity
can be described by two main attributes: lesion morphology (including
location, size and transmurality), and the amplitude of pathological
changes (in this case, the degree of ischaemia in the affected tissue).
Our GST-HBM method currently addresses the first (morphological)
component, and provides the framework for assessing the second. We
derived GST-HBM classification maps from uncalibrated DCE-MRI data,

but these maps could be applied to calibrated MBF data to derive the
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absolute amplitude component of ischaemia and add it to the morpho-
logical assessment. This would provide a comprehensive assessment of
lesion severity using GST-HBM. An extension of the GST-HBM to deal
with more than two classes is conceptually straightforward. Specifi-
cally, the two groups proposed in the GST-HBM method can be further
extended to three groups that contain an additional microvascular
obstruction lesion (MVO) class (Bekkers et al., 2010).

To reduce the computational complexity, we can draw on paralleli-
sation: both the pixel-level computations on which the Gibbs sampling
scheme is based as well as the WAIC computations for hyperparameter
selection can easily be run in parallel. While for the present proof-
of-concept study this parallelisation has not been implemented yet,
it is conceptually straightforward and can be expected to lead to a
substantial reduction in the computational costs.

All methods mentioned in the presented work are dependent on
manually contoured endo- and epicardial boundaries (see Section 2.2).
The proposed method can make use of automatic as well as manual
endo- and epicardial contours without any changes to the algorithm
structure. Significant improvement has been made in the domain of au-
tomated contour detection for quantitative cardiac magnetic resonance
(CMR) analysis in recent years. Automatic contour detection for cardiac
DCE-MRI presents additional challenges compared to other components
of CMR (Kim et al., 2020; Chen et al., 2008), and forms an essential
component of motion-correction. The impact of contouring errors on
quantitative analysis of myocardial perfusion has been investigated
by Biglands et al. (2011). By virtue of reducing the adverse impact
of baseline noise on classification accuracy, our proposed algorithm
may have a higher tolerance to contouring errors compared to other
benchmark methods. We aim to investigate this issue further in our
future work.

6. Conclusion

In the present paper, we have proposed a novel GST-HBM classi-
fication method for lesion detection in DCE-MRI images based on a
hierarchical Bayesian model with a spatial Markov random field prior.
Our method is a fully data driven approach that achieves automatic
detection of myocardial ischaemia from DCE-MRI scans. It has been
proven to outperform several state-of-the-art benchmark methods on
both clinical and synthetic data, and we have quantified the degree of
improvement with three different performance criteria.
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