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Abstract
We prove a sandwiching lemma for inner-exact locally
compact Hausdorff étale groupoids. Our lemma says
that every ideal of the reduced 𝐶∗-algebra of such a
groupoid is sandwiched between the ideals associated
to two uniquely defined open invariant subsets of the
unit space. We obtain a bijection between ideals of the
reduced 𝐶∗-algebra, and triples consisting of two nested
open invariant sets and an ideal in the 𝐶∗-algebra of
the subquotient they determine that has trivial intersec-
tion with the diagonal subalgebra and full support. We
then introduce a generalisation to groupoids of Ara and
Lolk’s relative strong topological freeness condition for
partial actions, and prove that the reduced 𝐶∗-algebras
of inner-exact locally compactHausdorff étale groupoids
satisfying this condition admit an obstruction ideal in
Ara and Lolk’s sense.
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1 INTRODUCTION

The purpose of this paper is to investigate the ideal structure of the reduced 𝐶∗-algebras of
locally compact Hausdorff étale groupoids. This very broad class of 𝐶∗-algebras contains all
reduced crossed products of commutative 𝐶∗-algebras by discrete groups. It also includes graph
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𝐶∗-algebras [18], higher rank graph 𝐶∗-algebras [17], the models described by Spielberg [27] and
Katsura [14] for Kirchberg algebras, the stable and unstable Ruelle algebras of Smale spaces (up
to Morita equivalence), and many self-similar action 𝐶∗-algebras [11].
Among the more natural invariants of a 𝐶∗-algebra, but also among the most difficult to com-

pute, is its lattice of ideals. In the situation of étale groupoid 𝐶∗-algebras, definitive theorems
are available for 𝐶∗-algebras of amenable groupoids that are essentially principal in the sense of
Renault [22], graph 𝐶∗-algebras [12, 13], and for 𝐶∗-algebras of a single local homeomorphisms
[15], but few other truly general results about ideal structure of groupoid𝐶∗-algebras are available.
The analysis of ideals in étale groupoid 𝐶∗-algebras typically has two components. The first

is concerned with what we call here dynamical ideals, and is well-understood. The continuous
functions on the unit space 𝐺(0) of an étale groupoid 𝐺 embed as a 𝜎-unital subalgebra 𝐷 of the
groupoid 𝐶∗-algebra. So, each ideal 𝐼 of 𝐶∗(𝐺) yields an ideal 𝐼 ∩ 𝐷 of𝐷 and hence an open subset
𝑈𝐼 of 𝐺(0) on which it is supported. This 𝑈𝐼 is invariant in the sense that if 𝑠(𝛾) ∈ 𝑈𝐼 then 𝑟(𝛾) ∈
𝑈𝐼 . If 𝐼 is generated as an ideal by 𝐼 ∩ 𝐷, we call it a dynamical ideal. The assignment 𝐼 ↦ 𝑈𝐼 is a
lattice isomorphism between dynamical ideals of 𝐶∗(𝐺) and open invariant sets of 𝐺(0), giving a
complete description of the dynamical ideals. In particular, by identifying the essentially principle
(now sometimes referred to instead as strongly effective) and amenable groupoids for which every
ideal of 𝐶∗𝑟 (𝐺) is dynamical, Renault gives a complete description of the ideal structure for this
class of groupoid 𝐶∗-algebras [22].
The second component of the analysis is more complicated. It amounts to understanding the

collection of all possible ideals that have fixed intersection with 𝐷. For full 𝐶∗-algebras, this is,
in general, hopelessly intractable: there is a zoo of ideals contained in the kernel of the regular
representation, which has trivial intersection with𝐷, alone. So, we are led to restrict our attention
to reduced 𝐶∗-algebras. Another problem arises almost immediately: given an open invariant set
𝑈, the restriction map 𝑓 ↦ 𝑓|𝐺⧵𝐺|𝑈 on 𝐶𝑐(𝐺) extends to a homomorphism 𝐶∗𝑟 (𝐺) → 𝐶∗𝑟 (𝐺 ⧵ 𝐺|𝑈)
whose kernel contains the dynamical ideal 𝐼𝑈 associated to 𝑈. In the setting of full 𝐶∗-algebras,
this containment is an equality, but for reduced 𝐶∗-algebras it need not be: as Willet’s example
[28] shows, the quotient 𝐶∗𝑟 (𝐺)∕𝐼𝑈 can coincide with the full 𝐶∗-algebra 𝐶∗(𝐺 ⧵ 𝐺|𝑈), and we
encounter the same zoo of ideals as before. So, we restrict attention further to groupoids that are
inner-exact in the sense that 𝐶∗𝑟 (𝐺)∕𝐼𝑈 ≅ 𝐶∗𝑟 (𝐺 ⧵ 𝐺|𝑈) for every open invariant set 𝑈. Lest this
seem overly restrictive, note that this includes all amenable étale groupoids 𝐺, and therefore all
nuclear étale groupoid 𝐶∗-algebras [4].
In this setting, existing results rely, explicitly or otherwise, on a kind of sandwiching lemma.

This technique was developed by an Huef and Raeburn [13] to analyse Cuntz–Krieger algebras.
Here the dynamical ideals are better known as gauge-invariant ideals (see Proposition 3.9). To
understand the ideals of a Cuntz–Krieger algebra, an Huef and Raeburn concentrate on primitive
ideals and demonstrate that for each primitive ideal 𝐼 there are a unique smallest gauge-invariant
ideal 𝐾 containing 𝐼 and largest gauge-invariant ideal 𝐽 contained in 𝐼. They then analyse the
quotient 𝐾∕𝐽, which is itself Morita equivalent to a graph algebra (but of a graph consisting of
just one vertex and one edge). The 𝐶∗-algebra of this graph is 𝐶(𝕋), so its ideal structure is well-
understood, and their analysis proceeds from there. A similar idea was used in [12], and again
in [15] to understand ideal structure first for graph 𝐶∗-algebras and then for topological-graph
algebras, viewed as 𝐶∗-algebras associated to singly generated irreversible dynamics.
Another instance of the same idea appears in Ara and Lolk’s very interesting work on partial

actions [5]. They identify a relative strong topological freeness condition that generalises Renault’s
topologically principle condition in the setting of transformation groupoids for partial actions.
They show that relative strong topological freeness guarantees the existence of an obstruction
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ideal: a smallest dynamical ideal of 𝐶∗𝑟 (𝐺) that contains every ideal with trivial intersection with
𝐷. This can again be regarded as a kind of sandwiching result, but with the quantifiers switched:
there exists a pair of dynamical ideals, namely the zero ideal and the obstruction ideal, that sand-
wich every ideal that has trivial intersection with 𝐷. One of our motivations in writing this paper
is that, because this particular aspect of Ara and Lolk’s paper appears as a technical step along the
way to their main objective, it is in danger of receiving less attention than we think it deserves,
and we want to advertise the idea more broadly.
In this paper, we take up the idea of the sandwiching lemma and of Ara and Lolk’s relative

strong topological freeness condition and obstruction ideal. We first establish a general sand-
wiching lemma for groupoid 𝐶∗-algebras (Lemma 3.4): given any inner-exact locally compact
Hausdorff étale groupoid 𝐺, and any ideal 𝐼 of 𝐶∗𝑟 (𝐺), there are a unique smallest dynamical
ideal 𝐾 containing 𝐼 and largest dynamical ideal contained in 𝐼. As a result the ideals of 𝐶∗𝑟 (𝐺)
are parameterised by triples (𝑈, 𝑉, 𝐽) consisting of open invariant sets 𝑈 ⊆ 𝑉 ⊆ 𝐺(0), and an
ideal 𝐽 of 𝐶∗𝑟 (𝐺|𝑉 ⧵ 𝐺|𝑈) that has trivial intersection with 𝐷 and vanishes nowhere on 𝐺|𝑉 ⧵ 𝐺|𝑈
(Theorem 3.7).
We then adaptAra andLolk’s notions of topological freeness and strong topological freeness at a

point (see also Renault’s notion of discretely trivial isotropy [22]), and of relative strong topological
freeness, from their setting of partial actions of groups to the setting of étale groupoids.We identify
a condition on étale groupoids, which we phrase as being jointly effective where they are effective,
that ensures that𝐶∗𝑟 (𝐺) admits an obstruction ideal in the sense of Ara and Lolk (see Theorem4.12
and Corollary 4.14). We also show that this obstruction ideal is minimal in the strong sense that
there exists an ideal that has trivial intersection with 𝐷 and whose support exhausts the support
of the obstruction ideal. We show that any groupoid whose isotropy groups are all either trivial
or infinite cyclic is jointly effective where it is effective. This includes all graph groupoids and
groupoids arising from single local homeomorphisms. In our companion paper [7], we show how
to use our results to give a complete description of the ideal structure of a large class of Deaconu–
Renault groupoid 𝐶∗-algebras, including those considered in [12, 13, 15] and all 𝐶∗-algebras of
rank-2 graphs.
The paper is arranged as follows. We introduce the background we need in Section 2. In Sec-

tion 3, we prove our sandwiching lemma and explore its consequences. In Section 4, we introduce
the notions of a groupoid being effective at a unit, strongly effective at a unit, and being strongly
effective where it is effective. We then prove that such groupoids admit an obstruction ideal, and
discuss some examples. Finally in Section 5, we present examples of groupoids that are jointly
effective where they are effective, and describe the support of the obstruction ideal; in particular,
we devote Subsection 5.2 to showing exactly how our work in Section 4 generalises the ideas of
Ara and Lolk.

2 PRELIMINARIES

2.1 Hausdorff étale groupoids

We will always be working with topological groupoids that are locally compact, Hausdorff, and
étale, and we shall adopt most of the notation and terminology from [25] (see also [21]).
We consider the unit space 𝐺(0) as a locally compact Hausdorff subspace of 𝐺, and we denote

range and source maps by 𝑟, 𝑠 ∶ 𝐺 → 𝐺(0). A bisection is a subset 𝐵 of 𝐺 such that both 𝑟 and 𝑠
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4 of 20 BRIX et al.

restrict to injectivemaps on𝐵. That𝐺 is Hausdorffmeans that the unit space𝐺(0) is a closed subset
of 𝐺, and that 𝐺 is étale (in the sense that the range and source maps are local homeomorphisms)
implies that 𝐺(0) is also open, that 𝐺 has a basis consisting of open bisections, and the range and
source fibres over a unit 𝑥 ∈ 𝐺(0) given by 𝐺𝑥 = {𝛾 ∈ 𝐺 ∶ 𝑟(𝛾) = 𝑥} and 𝐺𝑥 = {𝛾 ∈ 𝐺 ∶ 𝑠(𝛾) = 𝑥},
respectively, are discrete in the relative topology. In particular, the isotropy group over a unit 𝑥 ∈
𝐺(0) given as the intersection

(𝐺)𝑥 = 𝐺𝑥 ∩ 𝐺𝑥 = {𝛾 ∈ 𝐺 ∶ 𝑟(𝛾) = 𝑥 = 𝑠(𝛾)}

is a discrete subgroup of 𝐺. A unit 𝑥 is said to have trivial isotropy if (𝐺)𝑥 = {𝑥}. The isotropy
subgroupoid is then the group bundle

(𝐺) =
⨆

𝑥∈𝐺(0)

(𝐺)𝑥 = {𝛾 ∈ 𝐺 ∶ 𝑟(𝛾) = 𝑠(𝛾)}.

We write ◦(𝐺) for the topological interior of the isotropy of 𝐺. A Hausdorff groupoid 𝐺 is said
to be effective if ◦(𝐺) = 𝐺(0), that is, the interior of the isotropy subgroupoid with the subspace
topology coincides with the unit space. When 𝐺 is second-countable this coincides (using a Baire
category argument) with the notion of 𝐺 being topologically principal in the sense that 𝐺(0) has a
dense set of points with trivial isotropy.

2.2 Reduced groupoid C*-algebra

We will be working with the reduced groupoid 𝐶∗-algebras of locally compact Hausdorff étale
groupoids. We follow the exposition of [25].
The convolution algebra 𝐶𝑐(𝐺) of a locally compact Hausdorff étale groupoid 𝐺 is the set of

compactly supported and complex-valued functions on 𝐺 equipped with the convolution product

𝑓 ∗ g(𝛾) =
∑

𝛼∈𝐺𝑟(𝛾)

𝑓(𝛼)g(𝛼−1𝛾)

for all 𝑓, g ∈ 𝐶𝑐(𝐺) and 𝛾 ∈ 𝐺, and the involution 𝑓∗(𝛾) = 𝑓(𝛾−1) for all 𝑓 ∈ 𝐶𝑐(𝐺) and 𝛾 ∈ 𝐺.
Each unit 𝑥 ∈ 𝐺(0) determines a regular representation 𝜋𝑥 ∶ 𝐶𝑐(𝐺) → 𝐵(𝓁2(𝐺𝑥)) given by

𝜋𝑥(𝑓)𝛿𝛾 =
∑

𝛼∈𝐺𝑟(𝛾)

𝑓(𝛼)𝛿𝛼𝛾,

for all 𝑓 ∈ 𝐶𝑐(𝐺) and 𝛾 ∈ 𝐺𝑥. The reduced groupoid 𝐶∗-algebra 𝐶∗𝑟 (𝐺) of 𝐺 is the completion of⨁
𝑥∈𝐺(0) 𝜋𝑥(𝐶𝑐(𝐺)) in

⨁
𝑥∈𝐺(0) 𝐵(𝓁

2(𝐺𝑥)). As the unit space 𝐺(0) is both open and closed in 𝐺, the
commutative algebra 𝐶0(𝐺(0)) sits naturally as a subalgebra of 𝐶∗𝑟 (𝐺), and we refer to 𝐶0(𝐺) as the
diagonal subalgebra. Note that 𝐶0(𝐺(0)) need not be a 𝐶∗-diagonal (in the sense of Kumjian [16])
nor a Cartan subalgebra (in the sense of Renault [23]).
Renault [21, Proposition II.4.2] shows (Renault makes the standing assumption that the

groupoids considered there are second-countable, but that assumption is not needed for the fol-
lowing) that any element in the reduced groupoid 𝐶∗-algebra may be thought of as a function on
the groupoid. More precisely, there exists a linear and norm-decreasing map 𝑗 ∶ 𝐶∗𝑟 (𝐺) → 𝐶0(𝐺)
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IDEALS IN ÉTALE GROUPOID 𝐶∗-ALGEBRAS 5 of 20

given by

𝑗(𝑎)(𝛾) =
(
𝜋𝑠(𝛾)(𝑎)𝛿𝑠(𝛾) ∣ 𝛿𝛾

)

for all 𝑎 ∈ 𝐶∗𝑟 (𝐺) and 𝛾 ∈ 𝐺, and 𝑗 is the identity on 𝐶𝑐(𝐺). The reduced groupoid 𝐶∗-algebra
admits a faithful conditional expectation𝐸∶ 𝐶∗𝑟 (𝐺) → 𝐶0(𝐺

(0)) onto the diagonal given by restric-
tion of functions in the sense that 𝑗(𝐸(𝑎)) = 𝑗(𝑎)|𝐺(0) for all 𝑎 ∈ 𝐶∗𝑟 (𝐺) [25, Proposition 10.2.6].
Renault shows that for 𝑎, 𝑏 ∈ 𝐶∗𝑟 (𝐺), the convolution formula for 𝑗(𝑎) ∗ 𝑗(𝑏) is a convergent series
that converges to 𝑗(𝑎 ∗ 𝑏).
A subset 𝑈 of 𝐺(0) is 𝐺-invariant (or simply invariant) if 𝑟(𝐺𝑈) ⊆ 𝑈, and the reduction of

𝐺 to 𝑈 is 𝐺|𝑈 = {𝛾 ∈ 𝐺 ∶ 𝑟(𝛾), 𝑠(𝛾) ∈ 𝑈}. If 𝑈 is an open and invariant subset of 𝐺(0), then
𝐺|𝑈 is an open subgroupoid of 𝐺 (and hence locally compact, Hausdorff, and étale), and the
inclusion 𝑖𝑈 ∶ 𝐶𝑐(𝐺|𝑈) → 𝐶𝑐(𝐺) extends to an injective ∗-homomorphism 𝑖𝑈 ∶ 𝐶

∗
𝑟 (𝐺|𝑈) → 𝐶∗𝑟 (𝐺).

We let 𝐼𝑈 ∶= 𝑖𝑈(𝐶
∗
𝑟 (𝐺|𝑈)) be the image of 𝑖𝑈 in 𝐶∗𝑟 (𝐺). This is an ideal with the property that

𝐼𝑈 ∩ 𝐶0(𝐺
(0)) = 𝐶0(𝑈) and 𝐼𝑈 is generated as an ideal by 𝐶0(𝑈). We shall refer to such ideals as

dynamical ideals (see Definition 3.1).
The complement 𝐺(0) ⧵ 𝑈 is a closed invariant set of units, and there is a ∗-homomorphism

𝜋𝑈 ∶ 𝐶
∗
𝑟 (𝐺) → 𝐶∗𝑟 (𝐺|𝐺(0)⧵𝑈) determined by 𝜋𝑈(𝑓) = 𝑓|𝐺|

𝐺(0)⧵𝑈
for all 𝑓 ∈ 𝐶𝑐(𝐺).

Given an ideal 𝐼 in 𝐶∗𝑟 (𝐺), we write supp(𝐼) ∶= {𝛾 ∈ 𝐺 ∶ 𝑗(𝐼)(𝛾) ≠ {0}}. So, supp(𝐼𝑈) = 𝐺|𝑈 for
every open invariant 𝑈 ⊆ 𝐺(0) (for completeness, we prove this in Proposition 3.3).

Lemma 2.1. Let 𝐺 be a locally compact Hausdorff étale groupoid. Suppose that 𝐼 is an ideal of
𝐶∗𝑟 (𝐺). Then supp(𝐼) is invariant under multiplication and inversion in 𝐺.

Proof. Fix 𝛾 ∈ supp(𝐼) and take 𝛼 ∈ 𝐺𝑟(𝛾) and 𝛽 ∈ 𝐺𝑠(𝛾). Fix 𝑎 ∈ 𝐼 such that 𝑗(𝑎)𝛾 ≠ 0. Take
open bisections 𝐵 and 𝐶 containing 𝛼 and 𝛽, respectively, and take ℎ ∈ 𝐶𝑐(𝐵) and 𝑘 ∈ 𝐶𝑐(𝐶)

with ℎ(𝛼) = 𝑘(𝛽) = 1. Then 𝑗(ℎ𝑎𝑘)(𝛼𝛾𝛽) = 𝑗(𝑎)(𝛾) ≠ 0, so 𝛼𝛾𝛽 ∈ supp(𝐼). Putting 𝛽 = 𝑠(𝛾) gives
invariance under left multiplication, putting 𝛼 = 𝑟(𝛾) gives invariance under right multiplication,
and putting 𝛼 = 𝛽 = 𝛾−1 gives invariance under inversion. □

The groupoid 𝐺 is inner-exact if, for every open invariant subset 𝑈 ⊆ 𝐺(0), the resulting
sequence

0 → 𝐶∗𝑟 (𝐺|𝑈) → 𝐶∗𝑟 (𝐺) → 𝐶∗𝑟 (𝐺|𝐺(0)⧵𝑈) → 0 (2.1)

is exact, (see [2, Definition 3.7] and also [6, Definition 3.5]). Any amenable groupoid is inner exact.
Combining [3, Proposition 4.23 and Theorem 7.10], we also see that the (partial) crossed product
groupoid of an exact group acting (partially) on a second-countable locally compact Hausdorff
space is inner-exact. Willett’s example of a non-amenable groupoid whose full and reduced 𝐶∗-
algebras coincide is not inner-exact [28].

Remark 2.2. The empty set satisfies the axioms defining a locally compact Hausdorff étale
groupoid. By convention, we take the 𝐶∗-algebra of the empty groupoid to be the zero 𝐶∗-algebra;
in particular (2.1) collapses to the exact sequence 0 → 𝐶∗𝑟 (𝐺) → 𝐶∗𝑟 (𝐺) → 0 if 𝑈 ∈ {∅,𝐺(0)}. We
thank the referee for pressing us on this point.
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6 of 20 BRIX et al.

3 A SANDWICHING LEMMA FORHAUSDORFF ÉTALE
GROUPOIDS

The characterisations of the primitive-ideal spaces of graph 𝐶∗-algebras of [12] and [13] were
founded on the ‘sandwiching lemmas’ [12, Lemma 2.6] and [13, Lemma 4.5] that show that every
primitive ideal is sandwiched between a pair of uniquely determined gauge-invariant ideals. Here
we observe that a similar sandwiching lemmaholds for ideals of reducedHausdorff étale groupoid
𝐶∗-algebras.

Definition 3.1. We say that an ideal 𝐼 in a reduced groupoid 𝐶∗-algebra 𝐶∗𝑟 (𝐺) is dynamical if it
is generated as an ideal by its intersection with the diagonal subalgebra 𝐶0(𝐺(0)). Equivalently, 𝐼
is dynamical if it is of the form 𝐼𝑈 for an open invariant subset 𝑈 of 𝐺(0). We say that 𝐼 is purely
non-dynamical if 𝐼 ∩ 𝐶0(𝐺(0)) = {0}.

Remark 3.2. According to Definition 3.1, the trivial ideal {0} is the unique ideal of 𝐶∗𝑟 (𝐺) that is
both a dynamical ideal and a purely non-dynamical ideal. Though linguistically unsatisfactory,
this convention simplifies the statements of our key results: in Proposition 3.3 treating {0} as a
dynamical ideal avoids treating the open invariant set∅ as a special case; but later in Theorem 3.7,
treating {0} as a purely non-dynamical ideal avoids treating dynamical ideals as a special case (see
Remark 3.8).

In the context of Deaconu–Renault groupoids, the dynamical ideals are precisely the usual
gauge-invariant ideals (see Proposition 3.9).

Proposition 3.3. Let 𝐺 be a locally compact Hausdorff étale groupoid. The map 𝑈 ↦ 𝐼𝑈 is a
lattice isomorphism from the lattice of open invariant subsets of 𝑋 to the lattice of dynamical ide-
als of 𝐶∗𝑟 (𝐺). For each open invariant 𝑈 ⊆ 𝐺(0), we have 𝐼𝑈 ∩ 𝐶0(𝐺(0)) = 𝐶0(𝑈), and supp(𝐼𝑈)
= 𝐺|𝑈 .
Proof. The map 𝑈 ↦ 𝐼𝑈 is always an injection [25, Theorem 10.3.3], and surjectivity follows
from the definition of dynamical ideals. Proposition 10.3.2 of [25] shows that 𝐼𝑈 is the closure
of 𝐶𝑐(𝐺|𝑈) ⊆ 𝐶𝑐(𝐺). In particular, supp(𝐼𝑈) ⊆ 𝐺|𝑈 , and 𝐼𝑈 ∩ 𝐶0(𝐺(0)) ⊆ 𝐶0(𝑈) by continuity of
𝑗(𝑎) for each 𝑎 ∈ 𝐶∗𝑟 (𝐺). The reverse containments hold because if 𝛾 ∈ 𝐺|𝑈 , then there is a map
𝑓 ∈ 𝐶𝑐(𝐺|𝑈) ⊆ 𝐼𝑈 such that 𝑓(𝛾) ≠ 0, so 𝛾 ∈ supp(𝐼𝑈), and 𝐶𝑐(𝑈) is contained in 𝐶𝑐(𝐺|𝑈), so
𝐶0(𝑈) is contained in 𝐼𝑈 . □

As lattice isomorphisms preserve least upper bounds and greatest lower bounds, it follows from
Proposition 3.3 that, for example, 𝐼𝑈 ∩ 𝐼𝑉 = 𝐼𝑈∩𝑉 and 𝐼𝑈 + 𝐼𝑉 = 𝐼𝑈∪𝑉 for all open invariant 𝑈
and 𝑉.
We now state our sandwiching lemma.

Lemma 3.4 (The sandwiching lemma). Let 𝐺 be a locally compact Hausdorff étale groupoid that
is inner-exact and let 𝐼 be an ideal of 𝐶∗𝑟 (𝐺). Consider the open and invariant subsets

𝑈 = {𝑥 ∈ 𝐺(0) ∶ 𝑓(𝑥) ≠ 0 for some 𝑓 ∈ 𝐼 ∩ 𝐶0(𝐺
(0))}
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IDEALS IN ÉTALE GROUPOID 𝐶∗-ALGEBRAS 7 of 20

and

𝑉 = {𝑥 ∈ 𝐺(0) ∶ 𝑗(𝑎)(𝑥) ≠ 0 for some 𝑎 ∈ 𝐼}.

Then 𝐼𝑈 is the largest dynamical ideal of𝐶∗𝑟 (𝐺) contained in 𝐼 and 𝐼𝑉 is the smallest dynamical ideal
of 𝐶∗𝑟 (𝐺) containing 𝐼.

Proof. The set𝑈 is open because every 𝑓 ∈ 𝐶0(𝐺
(0)) is continuous. To see that𝑈 is invariant, take

𝑥 ∈ 𝑈 and fix 𝛾 ∈ 𝐺𝑥. We will show that 𝑟(𝛾) ∈ 𝑈. As 𝑥 ∈ 𝑈 there exists 𝑓 ∈ 𝐼 ∩ 𝐶0(𝐺
(0)) such

that 𝑓(𝑥) ≠ 0. Let 𝐵 be an open bisection containing 𝛾 and fix ℎ ∈ 𝐶𝑐(𝐵) such that ℎ(𝛾) = 1. Then
ℎ𝑓ℎ∗ ∈ 𝐼 ∩ 𝐶𝑐(𝑟(𝐵)) ⊆ 𝐼 ∩ 𝐶0(𝐺

(0)). Moreover, ℎ𝑓ℎ∗(𝑟(𝛾)) = ℎ(𝛾)𝑓(𝑥)ℎ∗(𝛾−1) = 𝑓(𝑥) ≠ 0, so we
conclude that 𝑟(𝛾) ∈ 𝑈.
For each 𝑥 ∈ 𝑈, choose 𝑓𝑥 ∈ 𝐼 ∩ 𝐶0(𝐺

(0)) such that 𝑓𝑥(𝑥) ≠ 0. Then {𝑓𝑥 ∶ 𝑥 ∈ 𝑈} generates
𝐶0(𝑈) as an ideal of 𝐶0(𝐺(0)), and it is contained in 𝐼. Hence, 𝐼𝑈 ⊆ 𝐼. Suppose that 𝑈′ is an open
subset of 𝐺(0) strictly containing 𝑈 and fix 𝑥 ∈ 𝑈′ ⧵ 𝑈 and 𝑓 ∈ 𝐶𝑐(𝑈

′) with 𝑓(𝑥) ≠ 0. Then 𝑓 ∈
𝐼𝑈′ but 𝑓 ∉ 𝐼𝑈 by definition of 𝐼𝑈 . In particular, 𝑓 ∉ 𝐼, so 𝐼𝑈′ ⊈ 𝐼. This proves that 𝐼𝑈 is the largest
dynamical ideal contained in 𝐼.
The set𝑉 is open because 𝑗(𝑎) is continuous for every 𝑎 ∈ 𝐶∗𝑟 (𝐺).We claim that𝑉 = 𝑠(supp(𝐼)).

That 𝑉 ⊆ 𝑠(supp(𝐼)) is obvious. For the reverse inclusion, suppose that 𝑎 ∈ 𝐼 and 𝑗(𝑎)(𝛾) ≠ 0.
For any open bisection 𝐵 containing 𝛾−1 and any 𝑓 ∈ 𝐶𝑐(𝐵) satisfying 𝑓(𝛾−1) = 1, we have
𝑗(𝑓𝑎)(𝑠(𝛾)) = 𝑗(𝑎)(𝛾) ≠ 0. As 𝑗(𝑎)(𝛾) = 𝑗(𝑎∗)(𝛾−1), we have 𝑟(𝛾) ∈ 𝑉 if and only if 𝑠(𝛾) ∈ 𝑉, so𝑉
is invariant.
We now show that 𝐼 ⊆ 𝐼𝑉 . Let 𝐸∶ 𝐶∗𝑟 (𝐺) → 𝐶0(𝐺

(0)) be the faithful conditional expectation
onto the diagonal and observe that 𝐸(𝐼) ⊆ 𝐶0(𝑉). As 𝐺 is inner-exact, it follows from [6, Lemma
3.6] that 𝐼 is contained in the ideal in𝐶∗𝑟 (𝐺) generated by𝐸(𝐼), so we find that 𝐼 ⊆ 𝐼𝑉 as wanted. To
see that𝑉 isminimalwith this property, suppose that𝑉′ ⊊ 𝑉 is an open invariant set. By definition
of 𝑉 there exists 𝑥 ∈ 𝑉 ⧵ 𝑉′ and 𝑎 ∈ 𝐼 such that 𝚥(𝑎)(𝑥) ≠ 0. Hence, supp(𝐼) ⊈ supp(𝐼𝑉′), so 𝐼 ⊈
𝐼𝑉′ . □

Remark 3.5. If the ideal 𝐼 in Lemma 3.4 is a purely non-dynamical ideal of𝐶∗𝑟 (𝐺), then𝑈 is empty,
and then 𝐼𝑈 = {0}; if 𝐼 is a dynamical ideal, then 𝑉 = 𝑈 and 𝐼𝑈 = 𝐼.

Consider a pair of nested open invariant subsets 𝑈 ⊆ 𝑉 ⊆ 𝐺(0). Recall that we obtain 𝐶∗-
homomorphisms 𝑖𝑉 ∶ 𝐶∗𝑟 (𝐺|𝑉) → 𝐶∗𝑟 (𝐺) and 𝜄𝑉⧵𝑈 ∶ 𝐶∗𝑟 (𝐺|𝑉⧵𝑈) → 𝐶∗𝑟 (𝐺|𝐺(0)⧵𝑈) extending the
canonical inclusion of algebras of compactly supported functions. For these maps, the diagram

commutes.

Lemma 3.6. Let 𝐺 be a locally compact Hausdorff étale groupoid that is inner-exact. Let 𝐼 be an
ideal of 𝐶∗𝑟 (𝐺) and let𝑈 and 𝑉 be the open invariant sets of Lemma 3.4. Then 𝐽 ∶= 𝜋𝑉

𝑈
(𝜄−1
𝑉
(𝐼)) is an

ideal in 𝐶∗𝑟 (𝐺|𝑉⧵𝑈) that is purely non-dynamical and has full support.
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8 of 20 BRIX et al.

Proof. It is clear that 𝐽 is an ideal of 𝐶∗𝑟 (𝐺|𝑉⧵𝑈). To see that 𝐽 is purely non-dynamical, take
𝑓 ∈ 𝐽 ∩ 𝐶𝑐(𝑉 ⧵ 𝑈). Pick 𝑓 ∈ 𝜋−1

𝑈
(𝑓) and note that 𝑓 ∈ 𝐶0(𝑉) extends 𝑓 (because 𝜋𝑉𝑈 implements

restriction of functions). Then 𝜄𝑉(𝑓) ∈ 𝐼 by definition of 𝐽. If 𝑥 ∈ 𝑉 ⧵ 𝑈, then 𝜄𝑉(𝑓)(𝑥) = 0 by
definition of 𝑈, so 𝑓(𝑥) = 0. Hence, 𝑓 = 0. So, 𝐽 is purely non-dynamical.
Next we show that 𝐽 has full support. Clearly, supp(𝐽) ⊆ 𝐺|𝑉⧵𝑈 (as 𝐽 is an ideal of 𝐶∗𝑟 (𝐺|𝑉⧵𝑈)).

Wemust prove the reverse inclusion. Fix 𝛾 ∈ 𝐺 with 𝑠(𝛾) ∈ 𝑉 ⧵ 𝑈. As𝑉 = 𝑠(supp(𝐼)), there exists
𝑎 ∈ 𝐼 such that 𝑗(𝑎)(𝛾) ≠ 0. The inclusion map 𝐶∗𝑟 (𝐺|𝑉) → 𝐼𝑉 ⊆ 𝐶∗𝑟 (𝐺) extends the canonical
inclusion 𝐶𝑐(𝐺𝑉) → 𝐶𝑐(𝐺), so it intertwines the maps 𝑗𝑉 ∶ 𝐶∗𝑟 (𝐺|𝑉) → 𝐶0(𝐺|𝑉) and 𝑗 ∶ 𝐶∗𝑟 (𝐺) →
𝐶0(𝐺). Therefore, 𝑗𝑉(𝜄−1𝑉 (𝑎))(𝛾) = 𝑗(𝑎)(𝛾) ≠ 0, and we conclude that supp(𝐽) = 𝐺|𝑉⧵𝑈 . □

Let  (𝐺) be the collection of triples (𝑈, 𝑉, 𝐽)where𝑈 ⊆ 𝑉 ⊆ 𝐺(0) are nested open and invariant
subsets and 𝐽 is a purely non-dynamical ideal in 𝐶∗𝑟 (𝐺|𝑉⧵𝑈) with full support.
Theorem 3.7. Let 𝐺 be a locally compact Hausdorff étale groupoid that is inner-exact. There is a
bijection Θ from  (𝐺) to the collection of ideals of 𝐶∗𝑟 (𝐺) such that

Θ(𝑈,𝑉, 𝐽) = 𝜋−1𝑈 (𝜄𝑉⧵𝑈(𝐽))

for all (𝑈, 𝑉, 𝐽) ∈  (𝐺). The inverse Θ−1 takes 𝐼 < 𝐶∗𝑟 (𝐺) to the triple (𝑈, 𝑉, 𝐽) ∈  (𝐺) consisting
of the sandwich sets 𝑈 ⊆ 𝑉 and the purely non-dynamical ideal 𝐽 < 𝐶∗𝑟 (𝐺|𝑉⧵𝑈) with full support
of Lemma 3.4.

Remark 3.8. It is important in the statement of Theorem 3.7 that∅ is a groupoid, that its reduced
𝐶∗-algebra is {0}, and that {0} is a purely non-dynamical ideal of 𝐶∗𝑟 (𝐺): the dynamical ideals of
𝐶∗𝑟 (𝐺) are in the range of Θ because each 𝐼𝑈 = Θ(𝑈,𝑈, {0}).

Proof of Theorem 3.7. The map Θ takes values in the ideals of 𝐶∗𝑟 (𝐺) by definition.
To see thatΘ is injective, fix (𝑈, 𝑉, 𝐽) ∈  (𝐺) and let 𝐼 = Θ(𝑈,𝑉, 𝐽).Wewill prove that𝑈 and𝑉

are the sandwiching sets𝑈𝐼, 𝑉𝐼 obtained from Lemma 3.4 applied to 𝐼, and that 𝐽 = 𝜄−1
𝑉⧵𝑈

(𝜋𝑈(𝐼)).
This defines a left inverse to Θ, defined on the image of Θ, which implies that Θ is injective.
We have 𝐼𝑈 = 𝜋−1

𝑈
(0) ⊆ Θ(𝑈,𝑉, 𝐽) by definition ofΘ. If𝑈′ ⊆ 𝐺(0) is an open invariant set con-

taining𝑈 such that 𝐼𝑈′ ⊆ Θ(𝑈,𝑉, 𝐽), then 𝜋𝑈(𝐼𝑈′) ⊆ 𝜋𝑈(Θ(𝑈,𝑉, 𝐽)) = 𝜄𝑉⧵𝑈(𝐽) and the latter has
trivial intersection with 𝐺(0) ⧵ 𝑈 (as 𝐽 is purely non-dynamical). As 𝜋𝑈 implements restriction
of functions, we see that 𝐼𝑈′ ∩ 𝐶0(𝐺

(0)) ⊆ 𝐶0(𝑈), so 𝑈′ = 𝑈. Let 𝐸 be the faithful conditional
expectation of 𝐶∗𝑟 (𝐺) onto 𝐶0(𝐺

(0)). Observe that 𝐸(Θ(𝑈,𝑉, 𝐽)) ⊆ 𝐶0(𝑉). By [6, Lemma 3.6],
Θ(𝑈,𝑉, 𝐽) is contained in the ideal generated by 𝐸(Θ(𝑈,𝑉, 𝐽)), so we see thatΘ(𝑈,𝑉, 𝐽) ⊆ 𝐼𝑉 . In
particular, supp(Θ(𝑈,𝑉, 𝐽)) ⊆ supp(𝐼𝑉) = 𝐺|𝑉 . On the other hand, as supp(𝐽) = 𝐺|𝑉⧵𝑈 we have
𝐺|𝑉 ⊆ supp(Θ(𝑈,𝑉, 𝐽)). Now if 𝑉′ is a proper open invariant subset of 𝑉 such that Θ(𝑈,𝑉, 𝐽) ⊆
𝐼𝑉′ , then 𝐺|𝑉 = supp(Θ(𝑈,𝑉, 𝐽)) = supp(𝐼𝑉′) = 𝐺|𝑉′ ⊊ 𝐺|𝑉 which contradicts our observation
above. Therefore, 𝑉 is the smallest such open invariant subset. Finally, observe that

𝜄−1
𝑉⧵𝑈

(𝜋𝑈(𝐼)) = 𝜄−1
𝑉⧵𝑈

(𝜋𝑈(Θ(𝑈,𝑉, 𝐽))) = 𝜄−1
𝑉⧵𝑈

(𝜄𝑉⧵𝑈(𝐽)) = 𝐽,

and this completes the proof that Θ is injective.
To see that it is surjective, fix an ideal 𝐼 of 𝐶∗𝑟 (𝐺). By Lemma 3.4, there are open invariant sets

𝑈 ⊆ 𝑉 ⊆ 𝐺(0) such that 𝐼𝑈 ⊆ 𝐼 ⊆ 𝐼𝑉 and supp(𝜋𝑉𝑈(𝐼∕𝐼𝑈)) = 𝐺|𝑉⧵𝑈 . As 𝐼 ⊆ 𝐼𝑉 = 𝜄𝑉(𝐶
∗(𝐺|𝑉)), we
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IDEALS IN ÉTALE GROUPOID 𝐶∗-ALGEBRAS 9 of 20

obtain an ideal 𝜄−1
𝑉
(𝐼) of 𝐶∗(𝐺|𝑉). Let 𝐽 ∶= 𝜋𝑉

𝑈
(𝜄−1
𝑉
(𝐼)). We claim that 𝐾 ∶= Θ(𝑈,𝑉, 𝐽) is equal to

𝐼, which will establish surjectivity of Θ. By definition, both 𝐼 and 𝐾 are ideals of 𝐶∗𝑟 (𝐺) that con-
tain 𝐼𝑈 , so it suffices to show that 𝐼∕𝐼𝑈 = 𝐾∕𝐼𝑈 . By inner-exactness, 𝜋𝑈 ∶ 𝐶∗𝑟 (𝐺) → 𝐶∗𝑟 (𝐺|𝐺(0)⧵𝑈)
has kernel 𝐼𝑈 , so it suffices to show that 𝜋𝑈(𝐾) = 𝜋𝑈(Θ(𝑈,𝑉, 𝐽)). By definition of Θ, we have
𝜋𝑈(𝐾) = 𝜄𝑉⧵𝑈(𝐽) = 𝜄𝑉⧵𝑈(𝜋

𝑉
𝑈
(𝜄−1
𝑉
(𝐼))). By definition of the two maps, 𝜄𝑉⧵𝑈◦𝜋𝑉𝑈 = 𝜋𝑈◦𝜄𝑉 , so we

obtain 𝜋𝑈(𝐾) = 𝜋𝑈(𝐼) as required. □

To link Lemma 3.4 back to the results [12, Lemma 2.6] and [13, Lemma 4.5] that inspired it,
we observe that for Deaconu–Renault groupoids, the dynamical ideals employed above are pre-
cisely the gauge-invariant ideals of the 𝐶∗-algebra of a Deaconu–Renault groupoid. The result is
certainly well-known, but we are not aware that it has been recorded explicitly elsewhere in this
generality. For the case of finitely aligned higher rank graphs, this was observed in [20, Lemma
7.5].
Recall that if 𝑇∶ ℕ𝑑 ↷ 𝑋 is an action by 𝑑 local homeomorphisms, then we let 𝐺𝑇 denote the

Deaconu–Renault groupoid of 𝑇 as in, for example, [26, section 3]. An ideal 𝐼 of 𝐶∗(𝐺𝑇) is gauge-
invariant if the canonical gauge action 𝛾 of 𝕋𝑑 on 𝐶∗𝑟 (𝐺𝑇) satisfies 𝛾𝑧(𝐼) ⊆ 𝐼 for all 𝑧 ∈ 𝕋𝑑.

Proposition 3.9. Let𝑋 be a locally compact Hausdorff space and suppose 𝑇∶ ℕ𝑑 ↷ 𝑋 is an action
on𝑋 by 𝑑 commuting local homeomorphisms. The map that carries an open invariant subset𝑈 of𝑋
to the ideal 𝐼𝑈 generated by 𝐶0(𝑈) is a lattice isomorphism from the lattice of open invariant subsets
of 𝑋 to the lattice of gauge-invariant ideals of 𝐶∗(𝐺𝑇).

Proof. As 𝛾𝑧(𝑓) = 𝑓 for all 𝑧 ∈ 𝕋𝑘 and 𝑓 ∈ 𝐶0(𝐺
(0)), the ideals of 𝐶∗(𝐺𝑇) generated by subsets of

𝐶0(𝐺
(0)) are gauge invariant. In particular, each 𝐼𝑈 is gauge-invariant.

The map 𝑈 ↦ 𝐼𝑈 is an injection [25, Theorem 10.3.3]. For surjectivity, we follow the second
paragraph of the proof of [25, Theorem 10.3.3], dropping the assumption that 𝐺 is strongly effec-
tive but fixing a gauge-invariant ideal 𝐼, until its penultimate sentence. At that point, while
𝐺𝑊 need not be effective, we observe that 𝐺𝑊 is identical to the groupoid of the topological
higher rank graph Λ defined by Λ𝑛 = 𝑋 × {𝑛} for all 𝑛, whose range and source maps are given
by 𝑠(𝑥, 𝑛) = (𝑇𝑛(𝑥), 0) and 𝑟(𝑥, 𝑛) = (𝑥, 0) and with the factorisation rules (𝑥,𝑚)(𝑇𝑚(𝑥), 𝑛) =
(𝑥,𝑚 + 𝑛) = (𝑥, 𝑛)(𝑇𝑛(𝑥),𝑚). We may now apply the gauge-invariant uniqueness theorem of [9,
Corollary 5.21] in place of [25, Theorem 10.3.3] to see that 𝜋 is injective, and the surjectivity of
𝑈 ↦ 𝐼𝑈 follows. The final statement follows from Proposition 3.3. □

4 EFFECTIVENESS AT A UNIT AND THE OBSTRUCTION IDEAL

In this section, we introduce the notions of effectiveness at a unit and joint effectiveness at a
unit for étale groupoids. The key property that emerges is that of being jointly effective where
effective. This is inspired by the notions in [5, section 7] of (strong) topological freeness at a point
for a partial group action. The points in the unit space of a groupoid that are not effective comprise
an open invariant set and hence a dynamical ideal that we call the obstruction ideal. Our main
results in this section (Theorem 4.12 and Corollary 4.14) say that if a Hausdorff étale groupoid
is inner-exact and its full and reduced 𝐶∗-algebras coincide (Anantharaman–Delaroche calls this
the weak containment property [2]), then the obstruction ideal contains all purely non-dynamical
ideals, and is minimal with this property.
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10 of 20 BRIX et al.

Recall that a groupoid𝐺 is effective if the interior ◦(𝐺) of the isotropy is equal to the unit space
𝐺(0). For 𝑥 ∈ 𝐺(0), we write ◦(𝐺)𝑥 for the intersection of 𝐺𝑥 with ◦(𝐺).

Definition 4.1. A locally compact Hausdorff étale groupoid 𝐺 is effective at a unit 𝑥 ∈ 𝐺(0) if
◦(𝐺)𝑥 = {𝑥}. Equivalently, 𝐺 is effective at 𝑥 if for any non-trivial isotropy element 𝛾 ∈ (𝐺)𝑥 ⧵

{𝑥} and any open bisection 𝐵 in 𝐺 ⧵ 𝐺(0) containing 𝛾 there exists 𝑦 ∈ 𝑠(𝐵) such that 𝑟(𝐵𝑦) ≠ 𝑦.
When the groupoid is understood, wemay just say that the unit is effective. We let𝐺(0)

ef f
denote the

collection of effective units.

Any unit with trivial isotropy is effective. An isolated unit with non-trivial isotropy is
not effective.
We have the following general description of the units that are not effective. This also shows

that our terminology is consistent with the literature on effective groupoids.

Lemma 4.2. Let 𝐺 be a locally compact Hausdorff étale groupoid. We have

𝐺(0) ⧵ 𝐺
(0)

ef f
= 𝑠(◦(𝐺) ⧵ 𝐺(0)), (4.1)

and this is an open and invariant subset of𝐺(0). Consequently,𝐺(0)
ef f
is closed and invariant.Moreover,

𝐺 is effective if and only if 𝐺 is effective at each of its units.

Proof. Suppose that 𝐺 is not effective at 𝑥 ∈ 𝐺(0). Then 𝑥 has non-trivial isotropy and any
𝛾 ∈ ◦(𝐺)𝑥 ⧵ {𝑥} is contained in an open bisection 𝐵 in ◦(𝐺) ⧵ 𝐺(0). Therefore, 𝑠(𝐵) is an open
neighbourhood of 𝑥 consisting of points that are not effective, so 𝐺(0) ⧵ 𝐺(0)

ef f
is open and con-

tained in 𝑠(◦(𝐺) ⧵ 𝐺(0)). On the other hand, if 𝛾 ∈ ◦(𝐺) ⧵ 𝐺(0), then there is an open bisection
𝐵 in ◦(𝐺) ⧵ 𝐺(0) containing 𝛾. If 𝑥 = 𝑠(𝛾), this means that ◦(𝐺)𝑥 ≠ {𝑥}, so 𝐺 is not effective at 𝑥.
To see invariance, let 𝑥 ∈ 𝑠(◦(𝐺) ⧵ 𝐺(0)) and take 𝛾 ∈ 𝐺 with 𝑥 = 𝑠(𝛾) and 𝑟(𝛾) = 𝑧 ≠ 𝑥. We

will show that 𝑧 is not effective. Let 𝜂 ∈ ◦(𝐺) ⧵ 𝐺(0) with 𝑠(𝜂) = 𝑥 = 𝑟(𝜂). Choose an open
bisection 𝐵𝛾 in 𝐺 ⧵ 𝐺(0) containing 𝛾 and an open bisection 𝐵𝜂 in (𝐺)◦ ⧵ 𝐺(0) containing 𝜂.
Then 𝐵𝛾𝐵𝜂𝐵−1𝛾 is an open bisection containing 𝛾𝜂𝛾−1 (which is isotropy over 𝑧), and it consists
only of isotropy elements, because 𝐵𝜂 consists only of isotropy elements. Therefore, 𝐵𝛾𝐵𝜂𝐵−1𝛾 ⊆

(𝐺)◦ ⧵ 𝐺(0) and 𝑧 ∈ 𝑠(𝐵𝛾𝐵𝜂𝐵
−1
𝛾 ), so 𝑧 is not effective.

The final statement is a direct consequence of (4.1). □

The obstruction ideal defined below will play a central role in Theorem 4.12.

Definition 4.3. Let 𝐺 be a locally compact Hausdorff étale groupoid. The set of all units that are
not effective is an open and invariant subset of 𝐺(0), so it determines a dynamical ideal 𝐼

𝐺(0)⧵𝐺
(0)
ef f

of 𝐶∗𝑟 (𝐺). We call this the obstruction ideal and denote it by 𝐽
ob. This terminology is explained

in Remark 4.16.

We let 𝐺eff denote the reduction of 𝐺 to the closed invariant subset of effective points. The unit
space of 𝐺eff then coincides with 𝐺

(0)

ef f
.

We require a groupoid analogue of the notion of strong topological freeness introduced in [5,
section 7].
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IDEALS IN ÉTALE GROUPOID 𝐶∗-ALGEBRAS 11 of 20

Definition 4.4. A locally compact Hausdorff groupoid 𝐺 is jointly effective at a unit 𝑥 ∈ 𝐺(0)

if for any finite collection of non-trivial isotropy elements 𝛾1, … , 𝛾𝑛 ∈ (𝐺)𝑥 ⧵ {𝑥} and any open
bisections 𝐵1, … , 𝐵𝑛 in 𝐺 ⧵ 𝐺(0) such that 𝛾𝑖 ∈ 𝐵𝑖 there exists 𝑦 ∈

⋂𝑛
𝑖=1 𝑠(𝐵𝑖) such that 𝑟(𝐵𝑖𝑦) ≠ 𝑦

for all 𝑖 = 1, … , 𝑛.

Remark 4.5. If 𝐺 is effective, then it is jointly effective at every unit. More generally, any unit in
an open set of effective points is jointly effective.
For the first assertion, suppose that 𝐺 is effective, and fix 𝑥 ∈ 𝐺(0) and 𝛾1, … , 𝛾𝑛 ∈ (𝐺)𝑥 ⧵ {𝑥}.

Fix open bisections 𝐵𝑖 in 𝐺 ⧵ 𝐺(0) containing 𝛾𝑖 . By shrinking if necessary, we can assume that
𝑊 ∶= 𝑠(𝐵𝑖) = 𝑠(𝐵𝑗) for all 𝑖, 𝑗. As 𝐺 is effective, each 𝐵𝑖 ∩ (𝐺) has empty interior. So, for each
𝑖, the set 𝑊𝑖 ∶= 𝑠(𝐵𝑖 ⧵ (𝐺)) is open and dense in 𝑊. Hence,

⋂
𝑖 𝑊𝑖 is open and dense, and in

particular non-empty. Now any 𝑦 ∈
⋂
𝑖 𝑊𝑖 satisfies 𝑟(𝐵𝑖𝑦) ≠ 𝑦 for all 𝑖.

For the second assertion, suppose only that 𝑈 is an open subset of 𝐺(0) contained in 𝐺(0)
ef f
, and

fix 𝑥 ∈ 𝑈. As 𝐺(0)
ef f

is invariant, 𝑉 ∶= 𝑟(𝐺𝑈) is open and invariant with 𝑈 ⊆ 𝑉 ⊆ 𝐺
(0)

eff . The first
assertion applied to 𝐺|𝑉 shows that 𝑥 is jointly effective in 𝐺|𝑉 , and hence in 𝐺.
It is possible for a groupoid to be effective at a unit but not jointly effective at that unit

(see Example 4.8).

This leads us to an analogue of Ara and Lolk’s notion of relative strong topological freeness.

Definition 4.6. Let 𝐺 be a locally compact Hausdorff étale groupoid. We say that 𝐺 is jointly
effective where it is effective if 𝐺 is jointly effective at every point in 𝐺(0)

ef f
.

Examples 4.7.

(1) By Remark 4.5, if 𝐺 is effective then it is jointly effective where it is effective. In particular, if
𝐺 is principal, then it is jointly effective where it is effective.

(2) Suppose 𝐺 is a Hausdorff étale group bundle (for example, 𝐺 is a non-trivial discrete group).
As 𝐺(0) is clopen, 𝐺 is effective at 𝑥 ∈ 𝐺(0) if and only if 𝐺𝑥 = {𝑥}. As 𝐺 is trivially effective at
𝑥 when𝐺𝑥𝑥 = {𝑥}, it follows that𝐺 is jointly effective where it is effective. We have𝐺(0)

ef f
= {𝑥 ∶

𝐺𝑥 = {𝑥}}, and the obstruction ideal is generated by 𝐶0({𝑥 ∶ 𝐺𝑥 ≠ {𝑥}}).
(3) In particular, Willett’s groupoid [28] consists entirely of isotropy, and hence is jointly effective

where it is effective. It is not inner-exact. The obstruction ideal is the whole reduced groupoid
𝐶∗-algebra.

The next examples show that groupoids need not be jointly effective where they are effective
and that the property of being jointly effective where effective does not necessarily pass to reduc-
tions to closed invariant subsets. This latter permanence property does hold in groupoids all of
whose non-trivial isotropy groups are infinite cyclic (see Subsection 5.1).

Example 4.8 (Exel’s cross). Let 𝑋 = ([−1, 1] × {0}) ∪ ({0} × [−1, 1]) and consider the two homeo-
morphisms 𝜑 and𝜓 on𝑋 given by 𝜑(𝑥, 𝑦) = (−𝑥, 𝑦) and𝜓(𝑥, 𝑦) = (𝑥, −𝑦) for all (𝑥, 𝑦) ∈ 𝑋. These
commuting order-two homeomorphisms define an action 𝜑 ⊕ 𝜓∶ ℤ∕2 ⊕ ℤ∕2ℤ ↷ 𝑋. Let 𝐺𝜑⊕𝜓
be the transformation groupoid 𝑋 ⋊ (ℤ∕2ℤ)2. To keep notation from getting too confusing, we
regard (ℤ∕2ℤ)2 as the abelian group with four elements {𝑒, 𝑎, 𝑏, 𝑎𝑏} (so the group operation is
written multiplicatively), so that 𝑎 = (1, 0) and 𝑏 = (0, 1) are the order-two generators.
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12 of 20 BRIX et al.

In this example, the interior of the isotropy ◦(𝐺𝜑⊕𝜓) is

(𝑋 × {𝑒}) ∪ ((([−1, 0) ∪ (0, 1]) × {0}) × {𝑏}) ∪ (({0} × ([−1, 0) ∪ (0, 1])) × {𝑎}),

and the only effective unit is (0, 0) ∈ 𝑋.
Every point in 𝑋 has non-trivial isotropy (so 𝐺𝜑⊕𝜓 is not effective). More specifically, the

isotropy group of every point that is not the origin is isomorphic toℤ∕2ℤwhile the isotropy group
at the origin is isomorphic to ℤ∕2ℤ⊕ ℤ∕2ℤ. The origin is the only point that is effective, but it is
not jointly effective. Therefore, 𝐺𝜑⊕𝜓 is not jointly effective where it is effective.

Ara and Lolk [5, section 7] exhibit an example of a partial action that shows that their relative
strong topological freeness is not automatic, and their example can be adapted to our groupoid
setting.

Example 4.9. We can extend Exel’s cross to see that being jointly effective where effective does
not pass to closed invariant subgroupoids. To see this, let 𝑋 be as in Exel’s cross, and let 𝑌 =

𝑋 × [−1, 1].
Extend 𝜑 and 𝜓 to homeomorphisms 𝜑 and 𝜓 on 𝑌 by 𝜑(𝑥, 𝑡) = (𝜑(𝑥), −𝑡) and similarly

𝜓(𝑥, 𝑡) = (𝜓(𝑥), −𝑡). Again we regard these as determining an action of ℤ2 ⊕ ℤ2 = {𝑒, 𝑎, 𝑏, 𝑎𝑏}

on 𝑌.
Neither 𝑎 nor 𝑏 fixes any point in 𝑌 ⧵ 𝑋 because both invert the 𝑡-coordinate. As the only

point in 𝑋 fixed by 𝑎𝑏 is the point (0, 0) ∈ 𝑋, the only points in 𝑌 fixed by 𝑎𝑏 are those of the
form ((0, 0), 𝑡). So, 𝐺𝜑,𝜓 ∶= 𝑌 ⋊ (ℤ∕2ℤ)2 is effective, and in particular jointly effective where it is
effective. However, its reduction to the closed invariant set 𝑋 is Exel’s cross, which is not jointly
effective where it is effective.

The next lemma is an easy adaptation of [10, Lemma 29.4] from partial actions of groups to
groupoids, so we give just a fairly succinct proof.

Lemma 4.10. Let 𝐺 be a Hausdorff étale groupoid, let 𝑥 ∈ 𝐺(0) be a unit, and let 𝐵 be an open
bisection such that 𝐵 ∩ (𝐺)𝑥 = ∅. Let 𝑓 ∈ 𝐶𝑐(𝐺) be such that 𝑓 has support in 𝐵. Given 𝜀 > 0 there
exists ℎ ∈ 𝐶0(𝐺

(0)) satisfying 0 ⩽ ℎ ⩽ 1, ℎ is constantly 1 on a neighbourhood of 𝑥, and ‖ℎ𝑓ℎ‖ < 𝜀.

Proof. First suppose that 𝑥 ∉ 𝑠(𝐵). By Urysohn’s lemma we can find ℎ ∈ 𝐶0(𝐺
(0), [0, 1]) that is 1

on a neighbourhood of 𝑥 and vanishes on {𝑠(𝛾) ∶ |𝑓(𝛾)| ⩾ 𝜀} ⊆ 𝑠(𝐵). As 𝑓 is supported on a bisec-
tion, its 𝐶∗-norm agrees with its supremum norm [25, Corollary 9.3.4], and hence ‖ℎ𝑓ℎ‖𝐶∗(𝐺) =
‖ℎ𝑓ℎ‖∞ < 𝜀.
Now suppose that 𝑥 ∈ 𝑠(𝐵). Let 𝛾 be the unique element of 𝐵 with 𝑠(𝛾) = 𝑥. By assumption,

𝑟(𝛾) ≠ 𝑥 so we can choose an open set 𝑉1 containing 𝑥 such that 𝑟(𝑉1) ∩ 𝑉1 = ∅. By Urysohn’s
lemma, there exists ℎ ∈ 𝐶0(𝐺

(0), [0, 1]) such that ℎ = 1 on a neighbourhood of 𝑥 and ℎ vanishes
off 𝑉1. In particular, supp(ℎ) ∩ 𝑟(𝐵 supp(ℎ)) = ∅, and so ℎ𝑓ℎ = 0. □

The next two results say that when an inner-exact groupoid 𝐺 whose full and reduced 𝐶∗-
algebras coincide is jointly effective where it is effective, its obstruction ideal 𝐽ob is the minimal
dynamical ideal that contains all purely non-dynamical ideals of 𝐶∗𝑟 (𝐺). The proof of the first
result closely follows that of [5, Theorem 7.12] (which does not require the weak containment
property) with only minor modifications.
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IDEALS IN ÉTALE GROUPOID 𝐶∗-ALGEBRAS 13 of 20

Remark 4.11. The hypothesis below that the sequence 0 → 𝐽ob → 𝐶∗𝑟 (𝐺) → 𝐶∗𝑟 (𝐺ef f ) → 0 is exact
holds if, for example, 𝐺 is inner-exact (in particular, if it is amenable). However, it also holds
trivially if 𝐺 is effective, and we invoke it in that situation in Proposition 4.15. So, we have
stated Theorem 4.12 accordingly.

Theorem 4.12. Let 𝐺 be a locally compact Hausdorff étale groupoid that is jointly effective where it
is effective. Let 𝐽ob be the obstruction ideal in 𝐶∗𝑟 (𝐺) and suppose the sequence 0 → 𝐽ob → 𝐶∗𝑟 (𝐺) →

𝐶∗𝑟 (𝐺ef f ) → 0 is exact. If 𝐼 is a purely non-dynamical ideal of 𝐶∗𝑟 (𝐺) then 𝐼 ⊆ 𝐽ob.

Proof. We suppose that 𝐼 ⊈ 𝐽ob and derive a contradiction. Fix 𝑎 ∈ 𝐼 ⧵ 𝐽ob. In particular, 𝑎∗𝑎 ∈
𝐼 ⧵ 𝐽ob. Let 𝐸∶ 𝐶∗𝑟 (𝐺) → 𝐶0(𝐺

(0)) be the canonical faithful conditional expectation, let 𝐺eff =
𝐺|

𝐺
(0)
ef f

, and let 𝜋 = 𝜋
𝐺(0)⧵𝐺

(0)
ef f

∶ 𝐶∗𝑟 (𝐺) → 𝐶∗𝑟 (𝐺ef f ) denote the canonical quotient map. Let 𝐸eff be
the canonical faithful conditional expectation associated with 𝐶∗𝑟 (𝐺ef f ). Then the diagram

commutes. By hypothesis, 𝐽ob = ker(𝜋), so 𝜋(𝑎∗𝑎) ≠ 0 because 𝑎∗𝑎 ∉ 𝐽ob. As 𝐸eff is faithful,
𝐸eff (𝜋(𝑎

∗𝑎)) ≠ 0. Hence, 0 ≠ 𝐸eff (𝜋(𝑎
∗𝑎)) = 𝜋(𝐸(𝑎∗𝑎)) by commutativity of the diagram. This

means that 𝑓 ∶= 𝐸(𝑎∗𝑎) ∈ 𝐶0(𝐺
(0)) is non-zero on 𝐺(0)

ef f
. Choose 𝑥0 ∈ 𝐺

(0)

ef f
such that

|𝑓(𝑥0)| = sup
𝑥∈𝐺

(0)
ef f

|𝑓(𝑥)|, (4.2)

and let 0 < 𝜀 <
|𝑓(𝑥0)|
2

. The set𝑉 = {𝑥 ∈ 𝐺(0) ∶ |𝑓(𝑥)| < |𝑓(𝑥0)| + 𝜀∕4} is open in𝐺(0) and contains
𝑥0. By Urysohn’s lemma we may pick a function 𝑢 ∈ 𝐶0(𝐺

(0)) such that 0 ⩽ 𝑢 ⩽ 1, 𝑢(𝑥0) = 1, and
𝑢 vanishes outside 𝑉. Set 𝑧 ∶= 𝑢𝑎∗𝑎 ∈ 𝐼 ⧵ 𝐽ob and observe that 𝐸(𝑧) = 𝑢𝐸(𝑎∗𝑎) = 𝑢𝑓, and

2𝜀 < |𝑓(𝑥0)| ⩽ ‖𝐸(𝑧)‖ ⩽ |𝑓(𝑥0)| + 𝜀∕4. (4.3)

We claim that there exists ℎ ∈ 𝐶0(𝐺
(0)) satisfying 0 ⩽ ℎ ⩽ 1, ℎ(𝑥1) = 1 and

‖𝐸(𝑧)‖ < ‖ℎ𝐸(𝑧)ℎ‖ + 𝜀; (4.4)

‖ℎ𝐸(𝑧)ℎ − ℎ𝑧ℎ‖ < 𝜀. (4.5)

As 𝑧 ∈ 𝐶∗𝑟 (𝐺), there exists g ∈ 𝐶𝑐(𝐺) such that ‖𝑧 − g‖ < 𝜀∕4. In particular, ‖𝐸(𝑧) − 𝐸(g)‖ <
𝜀∕4. Note that 𝐸(g) is supported on 𝐺(0) and g − 𝐸(g) ∈ 𝐶𝑐(𝐺 ⧵ 𝐺

(0)). Choose open bisections
𝐵1, … , 𝐵𝑘 ⊆ 𝐺 ⧵ 𝐺(0) that cover supp(g − 𝐸(g)) and write

g − 𝐸(g) =

𝑘∑
𝑖=1

g𝑖 (4.6)

with g𝑖 ∈ 𝐶0(𝐵𝑖) for each 𝑖.
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14 of 20 BRIX et al.

For each 𝑖 such that 𝐵𝑖 ∩ (𝐺)𝑥0 = ∅, we can apply Lemma 4.10 to obtain a function ℎ𝑖 ∈

𝐶0(𝐺
(0), [0, 1]) that is identically 1 on an open neighbourhood 𝑈𝑖 of 𝑥0 and satisfies ‖ℎ𝑖g𝑖ℎ𝑖‖ ⩽

𝜀∕2𝑘. Consider the open neighbourhood 𝑈 ∶= {𝑥 ∈ 𝐺(0) ∶ |𝐸(g)(𝑥) − 𝐸(g)(𝑥0)| < 𝜀∕4} of 𝑥0. As
𝐺 is jointly effective at 𝑥0 by hypothesis, there exists a unit 𝑥1 ∈ 𝑈 ∩

⋂
𝐵𝑖∩(𝐺)𝑥0=∅

𝑈𝑖 such that
for each 𝑖 satisfying 𝐵𝑖 ∩ (𝐺)𝑥0 ≠ ∅, we have 𝑟(𝐵𝑖𝑥1) ≠ 𝑥1. As 𝑥1 ∈ 𝑈, we have

|𝐸(g)(𝑥1) − 𝐸(g)(𝑥0)| < 𝜀∕4, (4.7)

and for each 𝑖 such that 𝐵𝑖 ∩ (𝐺)𝑥0 = ∅, as 𝑥1 ∈ 𝑈𝑖 we have ℎ𝑖(𝑥1) = 1.
For each 𝑖 such that 𝐵𝑖 ∩ (𝐺)𝑥0 ≠ ∅, Lemma 4.10 for 𝐵𝑖 at 𝑥1 yields a function ℎ𝑖 ∈

𝐶0(𝐺
(0), [0, 1]) satisfying

ℎ𝑖(𝑥1) = 1 and ‖ℎ𝑖g𝑖ℎ𝑖‖ < 𝜀

2𝑘
. (4.8)

Altogether we have constructed functions ℎ1, … , ℎ𝑘 that all satisfy (4.8). Set ℎ ∶=
∏𝑘

𝑖=1 ℎ𝑖 ∈

𝐶0(𝐺
(0)) and note that 0 ⩽ ℎ ⩽ 1 and ℎ(𝑥1) = 1.

It remains to verify (4.4) and (4.5); we do this by direct computation. Using (4.3) and the fact
that 𝑢(𝑥0) = 1, we see that

‖𝐸(𝑧)‖ − 𝜀 ⩽ |𝑓(𝑥0)| − 3𝜀∕4 = |𝐸(𝑧)(𝑥0)| − 3𝜀∕4.
By first using the choice of g and then the choice of 𝑥1 from (4.7), we find

|𝐸(𝑧)(𝑥0)| − 3𝜀∕4 < |𝐸(g)(𝑥0)| − 𝜀∕2 < |𝐸(g)(𝑥1)| − 𝜀∕4.
Remembering that ℎ(𝑥1) = 1, we obtain

|𝐸(g)(𝑥1)| − 𝜀∕4 = |(ℎ𝐸(g)ℎ)(𝑥1)| − 𝜀∕4 ⩽ ‖ℎ𝐸(g)ℎ‖ − 𝜀∕4 < ‖ℎ𝐸(𝑧)ℎ‖.
Thismeans that ‖𝐸(𝑧)‖ − 𝜀 < ‖ℎ𝐸(𝑧)ℎ‖ so (4.4) follows. For (4.5), we use the decomposition (4.6)
and then (4.8) to see that

‖ℎgℎ − ℎ𝐸(g)ℎ‖ = ‖‖‖
𝑘∑
𝑖=1

ℎg𝑖ℎ
‖‖‖ ⩽

𝑘∑
𝑖=1

‖ℎg𝑖ℎ‖ < 𝜀∕2.

Hence,

‖ℎ𝑧ℎ − ℎ𝐸(𝑧)ℎ‖ ⩽ ‖ℎ𝑧ℎ − ℎgℎ‖ + ‖ℎgℎ − ℎ𝐸(g)ℎ‖ + ‖ℎ𝐸(g)ℎ − ℎ𝐸(𝑧)ℎ‖ < 𝜀,

and this proves (4.5).
To complete the proof, consider the canonical quotient map 𝑞∶ 𝐶∗𝑟 (𝐺) → 𝐶∗𝑟 (𝐺)∕𝐼 which is

injective on the diagonal, as 𝐼 ∩ 𝐶0(𝐺(0)) = {0} by hypothesis. As 𝑧 ∈ 𝐼 we have 𝑞(ℎ𝐸(𝑧)ℎ) =
𝑞(ℎ𝐸(𝑧)ℎ − ℎ𝑧ℎ) so

‖ℎ𝐸(𝑧)ℎ‖ = ‖𝑞(ℎ𝐸(𝑧)ℎ)‖ = ‖𝑞(ℎ𝐸(𝑧)ℎ − ℎ𝑧ℎ)‖ ⩽ ‖ℎ𝐸(𝑧)ℎ − ℎ𝑧ℎ‖.

 14697750, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12870 by T

est, W
iley O

nline L
ibrary on [17/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



IDEALS IN ÉTALE GROUPOID 𝐶∗-ALGEBRAS 15 of 20

Applying (4.4), the above inequality, and then (4.5), we obtain

‖𝐸(𝑧)‖ < ‖ℎ𝐸(𝑧)ℎ − ℎ𝑧ℎ‖ + 𝜀 < 2𝜀,

This contradicts the estimate 2𝜀 < ‖𝐸(𝑧)‖ from (4.3). Hence, 𝐼 ⊆ 𝐽ob. □

The lemma below uses the full groupoid 𝐶∗-algebra 𝐶∗(𝐺). We refer the reader to [29] for a
discussion of this 𝐶∗-algebra that does not assume second-countability.

Lemma 4.13. Let 𝐺 be a locally compact Hausdorff étale groupoid whose full and reduced 𝐶∗-
algebras coincide. Let 𝐽ob be the obstruction ideal in 𝐶∗𝑟 (𝐺). There is a

∗-representation 𝜀 of the full
groupoid 𝐶∗-algebra 𝐶∗(𝐺) such that ker(𝜀) is purely non-dynamical and such that supp(𝐽ob) ⊆
supp(ker(𝜀)).

Proof. The proof of [8, Proposition 5.2] shows that for each 𝑥 ∈ 𝐺(0) there is an 𝐼-norm bounded
∗-representation 𝜀𝑥 of𝐶𝑐(𝐺) on the orbit space𝓁2([𝑥]) such that 𝜀𝑥(𝑓)𝑒𝑦 =

∑
𝛾∈𝐺𝑦

𝑓(𝛾)𝑒𝑟(𝛾). By def-
inition of𝐶∗(𝐺), 𝜀𝑥 extends to a representation of𝐶∗(𝐺). Let 𝜀 =

⨁
𝑥∈𝐺(0) 𝜀𝑥 (this representation is

also described on [19, p. 330]). Then 𝜀 is injective on𝐶0(𝐺(0)), because for 𝑓 ∈ 𝐶0(𝐺
(0)) and for 𝑥 ∈

𝐺(0), we have 0 ≠ 𝑓(𝑥) = (𝜀𝑥(𝑓)𝑒𝑥 ∣ 𝑒𝑥) ⩽ ‖𝜀(𝑓)‖. Hence, ker(𝜀) is a purely non-dynamical ideal.
To see that supp(ker(𝜀)) contains supp(𝐽ob), by Lemma 2.1 it suffices to show that 𝐺(0) ⧵ 𝐺(0)

ef f
=

supp(𝐽ob ∩ 𝐺(0)) ⊆ supp(ker(𝜀)). Fix 𝑥 ∈ 𝐺(0) ⧵ 𝐺
(0)
ef f

and choose 𝛾 ∈ ◦(𝐺) ⧵ 𝐺(0) such that 𝑠(𝛾) =
𝑥. Take an open bisection neighbourhood 𝐵 ⊆ ◦(𝐺) ⧵ 𝐺(0) of 𝛾. Choose a non-zero function
𝑓 ∈ 𝐶𝑐(𝑠(𝐵)) with 𝑓(𝑥) ≠ 0 and let 𝑓 ∈ 𝐶𝑐(𝐵) be the function given by 𝑓(𝜂) = 𝑓(𝑠(𝜂)) for all
𝜂 ∈ 𝐵. By extending by zero, both functions can be regarded as elements of 𝐶𝑐(𝐺). Direct cal-
culation on basis elements (see the proof of [8, Proposition 5.5(2)]) shows that 𝑓 − 𝑓 ∈ ker(𝜀). So,
𝑥 ∈ supp(ker(𝜀)). □

Corollary 4.14. Let 𝐺 be a locally compact Hausdorff étale groupoid that is jointly effective where
it is effective. Suppose the sequence 0 → 𝐽ob → 𝐶∗𝑟 (𝐺) → 𝐶∗𝑟 (𝐺ef f ) → 0 is exact and that the full and
reduced groupoid 𝐶∗-algebras of 𝐺 coincide. Then there is a purely non-dynamical ideal whose
support is equal to that of 𝐽ob, and 𝐽ob is the minimal dynamical ideal that contains all purely
non-dynamical ideals of 𝐶∗𝑟 (𝐺).

Proof. Lemma 4.13 gives a purely non-dynamical ideal 𝐼 such that supp(𝐽ob) ⊆ supp(𝐼). The-
orem 4.12 shows that 𝐽ob contains all purely non-dynamical ideals in 𝐶∗𝑟 (𝐺), and in particular
contains 𝐼. Hence, supp(𝐼) ⊆ supp(𝐽ob), and we obtain equality. Now suppose that 𝐼𝑈 is a dynam-
ical ideal that contains every purely non-dynamical ideal. Then, in particular, 𝐼 ⊆ 𝐼𝑈 . Hence,
(𝐺(0) ⧵ 𝐺

(0)

ef f
) ⊆ supp(𝐽ob) = supp(𝑈) ⊆ supp(𝐼𝑈) = 𝐺𝑈 . Thus, Proposition 3.3 implies that 𝐽ob ⊆

𝐼𝑈 . □

To finish the section, we observe that our results can be used to recover [8, Proposition 5.5(2)],
without the assumption that 𝐺 is second-countable. This is not new. For example, it can be recov-
ered from a special case of [19, Theorem 7.29]. We include it here only to illustrate how our results
relate to effective groupoids.

Proposition 4.15. Let 𝐺 be a locally compact Hausdorff étale groupoid.
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16 of 20 BRIX et al.

(1) If 𝐺 is effective, then every non-trivial ideal of 𝐶∗𝑟 (𝐺) contains a non-zero element of 𝐶0(𝐺
(0)).

(2) If every non-trivial ideal of the full 𝐶∗-algebra 𝐶∗(𝐺) contains a non-zero element of 𝐶0(𝐺(0)),
then the full and reduced 𝐶∗-algebras of 𝐺 coincide and 𝐺 is effective.

Proof.

(1) Fix an ideal 𝐼 of 𝐶∗𝑟 (𝐺) that contains no non-zero element of 𝐶0(𝐺
(0)); we show that 𝐼 = {0}.

As 𝐺 is effective, it is jointly effective where it is effective, and 𝐽ob is trivial. The sequence
0 → 𝐽ob → 𝐶∗𝑟 (𝐺) → 𝐶∗𝑟 (𝐺ef f ) → 0 is then trivially exact, and Theorem 4.12 implies that 𝐼 ⊆
𝐽ob = {0}.

(2) We prove the contrapositive. First suppose that the full and reduced 𝐶∗-algebras of 𝐺 do
not coincide. Then the kernel of the regular representation 𝜆 ∶ 𝐶∗(𝐺) → 𝐶∗𝑟 (𝐺) is a non-zero
purely non-dynamical ideal. Now suppose that the full and reduced 𝐶∗-algebras of 𝐺 coin-
cide but that 𝐺 is not effective. Then 𝐽ob is non-trivial, and Lemma 4.13 implies that there is a
purely non-dynamical ideal 𝐼 of 𝐶∗𝑟 (𝐺) whose support contains that of 𝐽

ob, and in particular
is non-zero. □

Remark 4.16. A mainstay of the theory of étale groupoid 𝐶∗-algebras is the diagonal uniqueness
theorem, dating back to [21]: for amenable effective étale groupoids, any ∗-homomorphism that is
injective on the diagonal is injective (see Proposition 4.15). If 𝐺 is a groupoid that does not satisfy
the conclusion of this theorem, then there is a ∗-homomorphism𝜙 of𝐶∗𝑟 (𝐺)whose kernel is purely
non-dynamical. So, if 𝐺 is also inner-exact Hausdorff étale groupoid whose full and reduced 𝐶∗-
algebras coincide, then the kernel of 𝜙 is contained in the obstruction ideal. This justifies the
terminology obstruction ideal: the obstruction ideal measures how far away a groupoid is from
satisfying a diagonal uniqueness theorem.
For example, if𝐺 is the groupoid of a higher rank graph in the sense of [17], then the obstruction

ideal is zero if and only if the higher rank graph is aperiodic (so its 𝐶∗-algebra satisfies the Cuntz–
Krieger uniqueness theorem) [24, Proposition 3.6].

5 EXAMPLES

5.1 Groupoids from local homeomorphisms

First we consider the groupoid constructed from a local homeomorphisms 𝑇 on a locally compact
Hausdorff space 𝑋. The associated semi-direct product groupoid, usually called the Deaconu–
Renault groupoid, is

𝐺𝑇 =
⋃

𝑚,𝑛∈ℕ

{(𝑥,𝑚 − 𝑛, 𝑦) ∈ 𝑋 × {𝑚 − 𝑛} × 𝑋 ∶ 𝑇𝑚𝑥 = 𝑇𝑛𝑦},

where the product of (𝑥, 𝑝, 𝑦) and (𝑦′, 𝑞, 𝑧) is defined precisely if 𝑦 = 𝑦′ in which case
(𝑥, 𝑝, 𝑦)(𝑦, 𝑞, 𝑧) = (𝑥, 𝑝 + 𝑞, 𝑧) while inversion is (𝑥, 𝑝, 𝑦)−1 = (𝑦, −𝑝, 𝑥). The unit space is nat-
urally identified with 𝑋 and the range and source maps are then 𝑟(𝑥, 𝑝, 𝑦) = 𝑥 and 𝑠(𝑥, 𝑝, 𝑦) =
𝑦.
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IDEALS IN ÉTALE GROUPOID 𝐶∗-ALGEBRAS 17 of 20

We first verify that this groupoid is jointly effective where it is effective. For open subsets𝑈 and
𝑉 of 𝑋, the sets of the form

𝑍(𝑈,𝑚, 𝑛, 𝑉) = {(𝑥,𝑚 − 𝑛, 𝑦) ∈ 𝐺𝑇 ∶ 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉}

comprise a basis for a locally compact Hausdorff étale topology on 𝐺𝑇 . The groupoid 𝐺𝑇 is
amenable, and hence inner-exact [26, section 3].
For the rank-one Deaconu–Renault groupoids, we can describe explicitly the points that are

not effective. For 𝑝 ∈ ℕ+, let

𝑝 = {𝑥 ∈ 𝑋 ∶ 𝑇𝑝 pointwise fixes a neighbourhood of 𝑥} (5.1)

and let  =
⋃∞
𝑝=1 𝑝. Then  is open and invariant in 𝑋 and the restricted system ( , 𝑇) is

reversible.

Lemma 5.1. For a local homeomorphism 𝑇 on a locally compact Hausdorff space 𝑋, we have

𝑋 ⧵ 𝑋eff = {𝑥 ∈ 𝑋 ∶ orb𝑇(𝑥) ∩  ≠ ∅}. (5.2)

Proof. Let 𝑉 ∶= {𝑥 ∈ 𝑋 ∶ orb𝑇(𝑥) ∩  ≠ ∅} and let 𝐺 = 𝐺𝑇 be the Deaconu–Renault groupoid of
𝑇. It is straightforward to verify that 𝑉 is open and invariant in 𝑋. We verify (5.2) one inclusion at
a time.
Let 𝑥 ∈ 𝑉 and choose 𝑙 ∈ ℕ such that 𝑥′ ∶= 𝑇𝑙(𝑥) ∈ 𝑝 for some 𝑝 ∈ ℕ+. Pick an open set

𝑈 ⊆ 𝑋 all of whose points are 𝑝-periodic and consider the open bisection given by

𝐵 = {(𝑦, 𝑝, 𝑦) ∈ 𝐺 ∶ 𝑦 ∈ 𝑈}. (5.3)

Note that 𝐵 ⊆ ◦(𝐺) ⧵ 𝑋. In particular, ◦(𝐺)𝑥′ contains (𝑥′, 𝑝, 𝑥′), so 𝑥′ is not effective, and by
invariance 𝑥 is not effective.
For the other inclusion, suppose 𝑥 is not effective. Then (𝑥, 𝑝, 𝑥) ∈ ◦(𝐺)𝑥 for some 𝑝 ∈ ℕ+.

Fix an open bisection 𝐵 in ◦(𝐺) ⧵ 𝑋 containing (𝑥, 𝑝, 𝑥). We may assume that 𝑇𝑝𝑥 = 𝑥, so by
shrinking 𝐵 we may assume that 𝐵 ⊆ 𝑍(𝑈, 𝑝, 0,𝑈) for some open subset 𝑈 of 𝑋. Then 𝑇𝑝𝑦 = 𝑦

for every 𝑦 ∈ 𝑠(𝐵) because 𝐵 ⊆ (𝐺). Therefore, 𝑥 ∈ 𝑉. □

Next we show that any Deaconu–Renault groupoid 𝐺𝑇 is jointly effective where it is effective.
The result actually only depends on the non-trivial isotropy being infinite cyclic, so we record this
more general result here.

Lemma 5.2. Any Hausdorff étale groupoid 𝐺 whose non-trivial isotropy is infinite cyclic is jointly
effective where it is effective.

Proof. Let 𝑥 ∈ 𝐺(0) be a point with non-trivial isotropy and suppose 𝐵1, … , 𝐵𝑁 are open bisections
in𝐺 such that each𝐵𝑖 contains an element 𝛾𝑖 ∈ Iso(𝐺)𝑥 ⧵ 𝐺(0). As the isotropy group at𝑥 is infinite
cyclic there are minimal integers 𝑝1, … , 𝑝𝑁 such that 𝛾𝑝𝑖

𝑖
= 𝛾

𝑝𝑗
𝑗
for all 𝑖, 𝑗 = 1, … ,𝑁. Put 𝛾 ∶= 𝛾

𝑝𝑖
𝑖
.

Then 𝐵 ∶= 𝐵
𝑝1
1
∩⋯ ∩ 𝐵

𝑝𝑁
𝑁

is an open bisection containing 𝛾.
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18 of 20 BRIX et al.

Assume now that 𝑥 is effective. So, whenever 𝑈 ⊆ 𝐺(0) is an open neighbourhood of 𝑥, there
is a point 𝑦 ∈ 𝑈 such that 𝑟(𝐵𝑦) ≠ 𝑦. Applying this to a neighbourhood basis of 𝑥, we can find
a sequence (𝑦𝑛)𝑛 in 𝐺(0) such that 𝑦𝑛 → 𝑥 and 𝑟(𝐵𝑦𝑛) ≠ 𝑦𝑛 for all 𝑛. We show that 𝐺 is jointly
effective at 𝑥. It suffices to show that for large 𝑛, we have 𝑟(𝐵𝑖𝑦𝑛) ≠ 𝑦𝑛 for all 𝑖 = 1, … ,𝑁.
As 𝐵𝑝1

1
contains 𝛾, we have 𝑥 ∈ 𝑠(𝐵

𝑝1
1
) so 𝑦𝑛 ∈ 𝑠(𝐵

𝑝1
1
) for large 𝑛, and as 𝐵 ⊆ 𝐵

𝑝1
1
we see that

𝑟(𝐵
𝑝1
1
𝑦𝑛) = 𝑟(𝐵𝑦𝑛). If 𝑟(𝐵1𝑦𝑛) = 𝑦𝑛, then

𝑦𝑛 = 𝑟(𝐵1𝑦𝑛) = 𝑟(𝐵
𝑝1
1
𝑦𝑛) = 𝑟(𝐵𝑦𝑛),

which contradicts our choice of 𝑦𝑛. So, for large 𝑛 we have 𝑟(𝐵1𝑦𝑛) ≠ 𝑦𝑛 as required. Hence, 𝐺 is
jointly effective at 𝑥. □

As an immediate corollary we see that the groupoids built from a local homeomorphism 𝑇 on
a locally compact Hausdorff space 𝑋, called rank-one Deaconu–Renault groupoids, are covered
by the above result.

Corollary 5.3. Any rank-one Deaconu–Renault groupoid is jointly effective where it is effective.

5.2 Partial actions

Our notion of being jointly effective for groupoids is directly inspired by Ara and Lolk’s notion
of relative strong topological freeness for partial actions [5, section 7]. A partial action 𝜃∶ Γ ↷ 𝑋

of a countable discrete group Γ on a locally compact Hausdorff space 𝑋 is topologically free at
𝑥 ∈ 𝑋 if whenever 𝜃g (𝑥) = 𝑥 for some 1 ≠ g ∈ Γ, for any open neighbourhood𝑈 of 𝑥, there exists
𝑦 ∈ 𝑈 such that 𝜃g (𝑦) ≠ 𝑦. We say 𝜃 is strongly topologically free at 𝑥 if for any finite collection
1 ≠ g1, … , g𝑘 ∈ Γ such that 𝜃g𝑖 (𝑥) = 𝑥 and any neighbourhood 𝑈 around 𝑥, there exists 𝑦 ∈ 𝑈

such that 𝜃g𝑖 (𝑦) ≠ 𝑦 for all 𝑖 = 1, … , 𝑘. Finally, 𝜃 is relatively strong topologically free if it is strongly
topologically free at all points at which it is topologically free.
Following [1, section 2], a partial action 𝜃∶ Γ ↷ 𝑋 has an associated groupoid

𝐺𝜃 = {(𝑥, g , 𝑦) ∈ 𝑋 × Γ × 𝑋 ∣ 𝑦 ∈ dom(g), 𝜃g (𝑦) = 𝑥}

whose unit space 𝐺(0)
𝜃

is naturally identified with 𝑋. Elements (𝑥, g , 𝑦) and (𝑦′, g ′, 𝑧) in 𝐺𝜃
are composable if and only if 𝑦 = 𝑦′ in which case (𝑥, g , 𝑦)(𝑦′, g ′, 𝑧) = (𝑥, gg ′, 𝑧). Inversion is
given by (𝑥, g , 𝑦)−1 = (𝑦, g−1, 𝑥). The source and range maps 𝑠, 𝑟 ∶ 𝐺𝜃 → 𝑋 are 𝑠(𝑥, g , 𝑦) = 𝑦 and
𝑟(𝑥, g , 𝑦) = 𝑥. The groupoid 𝐺𝜃 carries a locally compact and Hausdorff étale topology.

Lemma 5.4. Let 𝜃∶ Γ ↷ 𝑋 be a partial action of a countable discrete group Γ on a locally compact
Hausdorff space𝑋. Then 𝜃 is topologically free at 𝑥 ∈ 𝑋 if and only if𝐺𝜃 is effective at 𝑥. Moreover, 𝜃
is strongly topologically free at 𝑥 if and only if 𝐺𝜃 is jointly effective at 𝑥. In particular, 𝜃 is relatively
strongly topologically free if and only if 𝐺𝜃 is jointly effective where it is effective.

Proof. Suppose that 𝜃 is not strongly topologically free at 𝑥. There exist g1, … , g𝑘 ∈ Γ ⧵ {𝑒} that all
fix 𝑥, and a neighbourhood 𝑈 of 𝑥 such that for every 𝑦 ∈ 𝑈 there exists 𝑖 such that 𝜃g𝑖 (𝑦) = 𝑦.
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For each 𝑖, define

𝐵𝑖 ∶= {(𝜃g𝑖 (𝑦), g𝑖 , 𝑦) ∶ 𝑦 ∈ 𝑈}.

Then each 𝐵𝑖 is a bisection containing (𝑥, g𝑖 , 𝑥), and there is no 𝑦 ∈
⋂
𝑖 𝑠(𝐵𝑖) = 𝑈 such that

𝑟(𝐵𝑖𝑦) ≠ 𝑦 for all 𝑖. So, 𝐺𝜃 is not jointly effective at 𝑥. Taking 𝑘 = 1 shows that if 𝜃 is not
topologically free at 𝑥 then 𝐺𝜃 is not effective at 𝑥.
Now suppose that𝐺𝜃 is not jointly effective at 𝑥. Fix elements 𝛾1, … , 𝛾𝑘 ∈ (𝐺𝜃)𝑥 ⧵ {𝑥} and open

bisections 𝐵𝑖 containing 𝛾𝑖 such that for each 𝑦 ∈
⋂
𝑖 𝑠(𝐵𝑖) there exists 𝑖 such that 𝑟(𝐵𝑖𝑦) = 𝑦. By

definition of 𝐺𝜃, each 𝛾𝑖 = (𝑥, g𝑖 , 𝑥) for some g𝑖 ∈ Γ ⧵ {𝑒}. By definition of the topology on 𝐺𝜃,
for each 𝑖 there is an open neighbourhood 𝑈𝑖 of 𝑥 such that {(𝜃g𝑖 (𝑦), g𝑖 , 𝑦) ∶ 𝑦 ∈ 𝑈𝑖} ⊆ 𝐵𝑖 . Now
𝑈 =

⋂
𝑖 𝑈𝑖 is a neighbourhood of 𝑥 and for each 𝑦 ∈ 𝑈 there exists 𝑖 such that 𝑟(𝐵𝑖𝑦) = 𝑦. That

is, 𝜃g𝑖 (𝑦) = 𝑦. So, 𝜃 is not strongly topologically free at 𝑥. Again, taking 𝑘 = 1 throughout shows
that if 𝐺𝜃 is not effective at 𝑥 then 𝜃 is not topologically free at 𝑥.
The final statement follows by definition. □
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