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Abstract Model identificationof nonlinear timevary-
ing dynamic systems is challenging because the system
behaviours may vary significantly in different opera-
tional conditions. If the changes are insufficiently cap-
tured by training data, the trained model is unable
to capture the system response well when the opera-
tional condition changes. The model performance may
also be deteriorated in real-time implementation due
to the noise in sensors or the environment. This paper
presents a self-adaptive Neuro-Fuzzy (NF) modelling
framework to address these challenges. The NFmodel,
trained offline based on experimental data, combines
the Auto-Regressive with eXogenous (ARX) models
andGaussian activation functions to capture the nonlin-
ear system behaviours. During online implementation,
the ARXmodel parameters are updated using new data
through a recursive generalised least squares method,
which embeds a noise model to eliminate effects of the
noise. The online updating algorithm has a provable
convergence guarantee and enables the proposed NF
model to adapt to changes in system behaviours auto-
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matically. Efficacy of the algorithm is verified through
two numerical examples and an experiment on a com-
mercial automotive engine.
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1 Introduction

Model identification of dynamic systems is challeng-
ing since most engineering systems are nonlinear and
time-varyingwith dynamic uncertainties [6]. The prob-
lem becomes even more difficult for high dimensional
and complex systems [14]. Neural network has been a
popular tool for modelling since it is capable of rep-
resenting the nonlinearity between inputs and outputs
[8,28,42]. However, the lack of transparency and the
curse of dimensionality restrict its implementation, par-
ticularly when it is used for controller designs [1,3].
Fuzzy models have gained popularity in dynamic sys-
tem modelling [12,46,49], by combining prior human
knowledge with information from data. This feature
offers high modelling accuracy with interpretability
and linguistic significance. The Neuro-Fuzzy (NF)
model technique has been proposed in the literature
to incorporate the merits of both neural network and
fuzzy reasoning [4]. The basic idea is to firstly split
the system input space, which describes the system
operational conditions, into several regions. Then for
each region, a local model is used to capture the local
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system behaviour accurately. Finally, nonlinear fuzzy
activation functions are used to aggregate all the local
models to capture the overall system behaviour. The
NF technique has been shown to be highly promising
not only in the area of nonlinear dynamic systemsmod-
elling, but also in various other application areas, such
as observer design [29], control design [18,41,44] and
fault detection [4].

Many NF methods have been proposed for mod-
elling nonlinear systems, such as Takagi-Sugeno fuzzy
neural networks [47], local model networks [37,38],
wavelet fuzzy neural networks [20], local NF mod-
els [34] and adaptive neuro-fuzzy inference systems
(ANFIS) [23,24]. However, challenges still exist when
implementing the built NF models are in real-time sys-
tems operations and control. One challenge is over-
fitting, which refers to the phenomenon that growing
the number of neurons can fit the training data as accu-
rately as possible, but it may deteriorate the model per-
formance when new data is imported [52]. Besides,
since only partial data are used for offline model train-
ing, the model cannot cover the entire system oper-
ational conditions [13]. Hence, an important area of
current research is developing NF models with auton-
omy to evolve their structures and parameters to cap-
ture changes in the system dynamics based on real-time
measurement data. A further challenge is that measure-
ment error or sampling noise, owing to the high intrin-
sic variability in the underlying data, will deteriorate
model performance [22,39]. Therefore, this paper aims
to advance the state-of-the-art NF modelling methods
for nonlinear dynamic systems through developing an
online NF model updating algorithm based on noisy
sensor measurements.

Most of the popular NF modelling methods like the
ANFIS are incapable of online learning [33,51]. The
evolving learning algorithms for Takagi-Sugeno mod-
els are introduced in [2,13,27,30,32], where new fuzzy
rules are generated through online clustering. How-
ever, in these evolving learning methods, all the fuzzy
rules and even those irrelevant to the present measure-
ment are overhauled in each update [31,52], which
violates the minimum disturbance principle for learn-
ing [25,45]. The computational demand of evolving
learning methods is also high [7]. Hence, online update
of local parameters is more preferable than update of
model structure in applications [9,16,50]. The forget-
ting factor technique [26] can update local parameters
with fast convergence and small estimation errors, but

it is limited to simple systems with weak nonlinear-
ity. The work [11] proposes a multi-layer evolving NF
model for complex systems and utilises error back-
propagation to self-update the model parameters. The
recursive least squares method [52] is used to update
only the model parameters relevant to new measure-
ments. However, all the above works do not consider
the effect of noisy data on the effectiveness of the NF
model updating.

The work [40] uses a filtered recursive least squares
method to identify the NF model parameters by using
noisy data with a known distribution. The gener-
alised total least squares method can also be used
for modelling single-input single-output systems [48]
and multi-input single-output systems [43] with noisy
inputs and outputs, but they are not forNFmodel updat-
ing. The generalised total least squares algorithm is
extended in [21] for training an NF model with partial
input signals corrupted by noise and also in [19] con-
sidering multiple types of noises. However, the method
in [21] needs prior knowledge of the noise variances,
while the method in [19] assumes that the noise dis-
tribution is known, which restricts their online appli-
cation. Lughofer [31] proposes a recursive weighted
total least squares method for estimating NF model
parameters with noisy input data without requiring
prior knowledge of the noise variances or distribu-
tion. However, their work needs an extra algorithm
called Incremental Polynomial Kalman Smoother for
recursively estimating the noise covariance matrix,
which improves the design complexity. Moreover, all
the existing methods [19,21,31,40] do not consider
more complex systems with time-varying dynamics
and changing operational conditions. Therefore, there
is a need for new algorithms to update the NF model
parameters for complex nonlinear systems based on
noisy data,without requiring a prior knowledge or com-
plex design for dealing with the noise.

To overcome the above limitations in the existing
methods, this paper presents a novel NF model learn-
ing method. Compared to the state-of-the-art methods
[19,21,31,40], the main contributions of this paper are
summarised as follows:

(1) An online NF modelling strategy is developed for
multi-input single-output dynamic systems based
on noisy data. The strategy addresses modelling
of nonlinear systems with time-varying dynamics
and changing operational conditions, which is not
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studied in [19,21,31,40]. The proposed method
is directly applicable for multi-input multi-output
systems by presenting them using a set of multi-
input single-output models.

(2) A recursive generalised least squares (RGLS) algo-
rithm is proposed for updating theNFmodel param-
eters online to adapt to the time-varying dynamics.
Through embedding a noise model, the proposed
RGLS design is robust tomeasurement noise that is
non-stationary and heteroscedastic, without requir-
ing the known covariances or distribution of noise
as in [19,21,40], or an extra algorithm for estimat-
ing the noise covariances as in [31].

(3) An experimental testing on a commercial heavy-
duty diesel engine is conducted to verify the effi-
cacy and practical applicability of the proposed
modelling method.

The rest of this paper is organised as follows. Sec-
tion2 describes the NF model. Section3 presents the
RGLS-based online learning algorithm, followed by
its convergence analysis provided in Sect. 4. The NF
model learning method is evaluated using two numeri-
cal examples in Sect. 5 and an experimental testing on
a heavy-duty diesel engine in Sect. 6. Conclusions are
made in Sect. 7.

2 Basics of Neuro-Fuzzy model

Consider a dynamic system described in discrete-time
form as

y(k) = f (u, y, k) (1)

where y ∈ R is the true system output without noise.
u ∈ Rp and k denote the inputs and sampling index,
respectively. This system can be represented by an NF
model consisting of several neurons, where each neu-
ron has a local ARX model associated with its fuzzy
activation function. The architecture of the NF model
is illustrated in Fig. 1, with each component detailed in
the following subsections.

2.1 NF model description

Each part of the NF model is described as follows:

(i) Input channels:

Y (k) = [y(k − 1), y(k − 2), · · · , y(k − dy)
]

(2)

Ui (k) = [ui (k−1), ui (k−2), · · · , ui (k−dui )]
(3)

where ui denotes the i-th input; y(k − m), m =
1, . . . , dy , are the m-th delayed term of y(k);
ui (k −m), m = 1, . . . , dui , are the m-th delayed
term of ui (k). The positive integers dy and dui
are the correspondingmaximum lags for y(k) and
ui (k), respectively. The vectors Y (k) and Ui (k),
i = 1, . . . , p, are fixed once themodelling frame-
work is determined.

(ii) Regressor:

ϕ(k) = [1, ȳ(k), ū1(k), · · · , ūi (k), · · · , ū p(k)
]

(4)

ϕ̃(k) = [ỹ(k), ũ1(k), · · · , ũi (k), · · · , ũ p(k)]
(5)

where ϕ(k) ∈ R1+r and ϕ̃(k) ∈ Rr̃ denote the
regressors for the local ARX model and fuzzy
activation function, respectively. The positive
integer r is the number of entries in ϕ(k) exclud-
ing the offset 1 and r̃ is the number of entries
in ϕ̃(k). The regressors satisfy ȳ(k) ⊆ Y (k),
ūi (k) ⊆ Ui (k), ỹ(k) ⊆ Y (k) and ũi (k) ⊆ Ui (k).
The entries in ȳ(k), ỹ(k), ūi (k) and ũi (k) can
be chosen differently, and are fixed during mod-
elling.
All the input channels in (2) and (3) having a

linear effect on the process are gathered in ϕ(k) to
calculate the local model output. The input chan-
nels that influence the process in a nonlinear way
are gathered in ϕ̃(k) to determine theweight value
of the local model output. Since only a part of
the input channels are associated with the nonlin-
earity of the system [36], ϕ̃(k) and ϕ(k) can be
chosen differently.As ϕ̃(k)determines the system
input space, themodel complexity can be reduced
by decreasing the number of entries r̃ in ϕ̃(k).

(iii) Neurons:

(a) The NF model splits the input space of
the dynamic system into several regions.
Local ARX models are used to represent the
dynamic behaviour of the system in each
region. The output of the j-th, j = 1, . . . , N ,
local model is represented as

ŷ j (k) = ϕ�(k)θ j (6)
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Fig. 1 Architecture of the NF model

where θ j = [a j,0, a j,1, · · · , a j,r ]� is the vec-
tor of local model parameters.

(b) Based on the location of the operating point
within the input space, the fuzzy activation
functionψ j (k) defines the contribution of the
local model output ŷ j (k), j = 1, . . . , N , to
the overall NF model output. The activation
functions satisfy

N∑

j=1

ψ j (k) = 1 (7)

where N is the total number of neurons in the
NF model.

(iv) Estimated output: The output of the NF model
ŷ(k) is calculated as a weighted sum of local
model outputs:

ŷ(k) =
N∑

j=1

ψ j (k)ŷ j (k). (8)

The processes of the space partition and local model
construction are described in the following sections.

2.2 Fuzzy rules construction by space partition

A partitioning strategy is required to split the input
space of the system such that the local model (6) repre-
sents the system behaviour in its corresponding region.
Moreover, a smooth transition of local models among
different regions is desired.

To avoid time-consuming nonlinear optimisation,
the incremental tree-construction algorithm [10] is used
to split the input space. The input space defined by the
combination of input channels in ϕ̃(k) can be treated as
a hyperplane. Each input channel determines a poten-
tial plane splitting. The modelling algorithm iteratively

Fig. 2 Input space partitioning of two inputs system: a Fuzzy
inference and b Incremental tree-construction algorithm

bisects each plane in the region holding the worst per-
formance. In each division, the activation functions
representing fuzzy rules are constructed first. Subse-
quently, the parameters for the two newly generated
local models are estimated. The algorithm selects the
best splitting result based on the overall model fidelity.
To illustrate the principle of space partition, we use
Fig. 2 to show the two-dimensional partition of the
static system

y(k) = 1

0.1 + u1(k)
+ (2u2(k))

2 . (9)

Thevalues offivedifferent activation functions describ-
ing the system nonlinearity are shown in Fig. 2a. The
activation functions are denoted as A, B, C , D and
E . The space partition process is illustrated in Fig. 2b.
When u1 = 1, the model accuracy with partition on
u1 dimension is the highest, and vice versa. By using
the above space partition, the normalised Gaussian is
chosen for the activation function in the j-th region and
is defined as

ψ j (k) = μ j (ϕ̃(k))
∑N

i=1 μi (ϕ̃(k))
(10)

with

μ j (ϕ̃(k)) = exp

⎛

⎝
r̃∑

i=1

−1

2

(
ϕ̃i (k) − c j,i

λ j,i

)2
⎞

⎠ (11)
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where ϕ̃i (k) is the i-th entry in ϕ̃(k). The corresponding
centres and standard deviations of the Gaussian func-
tions are denoted by c j,i and λ j,i , respectively. The
calculations of c j,i and λ j,i are based on the lower and
upper boundary of ϕ̃i (k) in the j-th region, the details
of which are referred to [36].

The incremental tree-construction algorithm itera-
tively improves the model accuracy until the termina-
tion criterion is met. The criterion can be the minimum
modelling error or the maximum model complexity.

2.3 Local model parameters estimation

For fixed activation functions, estimation of the local
ARX model parameters can be formulated as a lin-
ear optimisation problem. Two different approaches
are recognised for optimising local model parame-
ters: concurrent estimation and regional estimation. For
the concurrent estimation, all the local model param-
eters are estimated simultaneously through the least
squares (LS) method. The regional estimation neglects
the interactions among the neighboured local models,
and it estimates the parameters of each localmodel sep-
arately via the weighted least squares (WLS) method.
The regional estimation can reduce the variance when
the training data contains noise, resulting in an estima-
tion with better robustness against the noise [38]. It is
therefore adopted for model training in this paper.

The local model in (6) is only valid in the j-th region
where the value ofψ j (k) is close to 1. It means that the
operating point is close to the centre c j,i , i = 1, . . . , r̃ ,
of the activation functions. Therefore, the correspond-
ing ϕ(k) is highly relevant to the estimate θ j . Conse-
quently, theWLS is applied to estimate the local model
parameters.

For a given set of training data with the length of M ,
the local ARX model parameters can be obtained by
minimising the local weighted objective function

J (θ j ) =
[
y − ϕ�θ j

]�
Q j

[
y − ϕ�θ j

]
(12)

with the output vector and the corresponding regression
matrix given by

y =

⎡

⎢⎢⎢
⎣

y(1)
y(2)

...

y(M)

⎤

⎥⎥⎥
⎦

, ϕ =

⎡

⎢⎢⎢
⎣

ϕ�(1)
ϕ�(2)

...

ϕ�(M)

⎤

⎥⎥⎥
⎦

(13)

and the following M × M diagonal weighting matrix
calculated from (10) and (11):

Q j =

⎡

⎢⎢⎢
⎣

ψ j (1) 0 . . . 0
0 ψ j (2) . . . 0
...

...
. . .

...

0 0 . . . ψ j (M)

⎤

⎥⎥⎥
⎦

. (14)

The optimal solution θ j to (12) satisfies ∂ Ji
∂θ j

= 0 and
can be obtained by applying a weighted pseudo-inverse
[2]:

θ j =
(
ϕQ jϕ

�)−1
ϕQ j y. (15)

The weighting factors ψ j (k), k = 1, . . . , M , given by
(10) determines the relevancy of the training data to
the j-th region. If the weighting factor is 1, the WLS
algorithm performs the same as the LS estimation.

3 Recursive-generalised-least-squares (RGLS)
based learning algorithm

The NF model should hold self-learning capability to
guarantee its performance in real-time implementation.
However, updating the complete model structure and
parameters violates the minimum disturbance princi-
ple for learning [25,45]. Hence, the NF model struc-
ture is fixed during online learning. Nevertheless, the
model still needs to be adaptive against noise and small
changes such as encountering new operational condi-
tions. Since the model can adapt to the local context
rapidly by utilising the prior knowledge stored in the
initialmodel, an initialmodel can be constructed offline
first. When the initial model is deployed online, the
RGLS-based learning algorithm is adopted to update
the local model parameters.

The dynamics in (1) under noise are described by

ynoise = f (u, y, k) + w(k) (16)

where ynoise(k) is the measured system output with
noise and w(k) is the heteroscedastic noise which can
be described as

w(k) = 1

c(z)
ν(k) (17)

while ν(k) is the stochastic white noise with zero mean
and c(z) is expressed as

c(z) = 1 + c1z
−1 + c2z

−2 + · · · + cq z
−q (18)

where z is the backshift operator moving the time index
of an observation back by one sampling period, and
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Fig. 3 Schematic of the RGLS-based online NF model learning

the positive integer q denotes the maximum delay.
Since the type of noise considered in this paper is non-
stationary and heteroscedastic, the proposed modelling
method will be applicable to simpler noises such as sta-
tionary noise and homoscedastic noise. The generali-
sation of the method to a wider range of noise will be
explored in future work.

The online learning framework is depicted in Fig. 3.
The objective of the proposed framework is to update
localmodel parameters θ̂ s(k)of theNFmodel under the
heteroscedastic noise at sampling index k. To correctly
estimate the local model parameters, the effect of the
noise is compensated by utilising the noise covariance
provided by a noise model. The idea of embedding a
noise model to compensate for its effect is inspired by
the auxiliary model theory [53] without requiring a pri-
ori information (e.g., distribution and variances) of the
noise. The noise model θ̂n(k) is identified online based
onnoisymeasurements,where the characteristics of the
noise are usually unknown and time-varying. To accu-
rately compensate for the noise, the local model param-
eters of theNFmodel θ̂ s(k) and the noisemodel param-
eters θ̂n(k) are updated simultaneously online using the
proposed RGLS algorithm. Consequently, the updated
NF model can describe the real system behaviour by
removing the noise from measurements.

3.1 Offline NF model training

Noise-free training data is used for the offline model
training, so the noise model is deactivated. The vectors
ȳ(k), ūi (k), ỹ(k) and ũi (k), i = 1, . . . , p, are chosen
via trial-and-error and fixed in online learning. A set of
training data is collected to learn the behaviour of the
dynamic system (1). Based on Sects. 2.2 and 2.3, the
offline NF model training is summarised in Algorithm
1.

Algorithm 1 Offline NF model training
1: Collect the training data and form Y (k),Ui (k), i =

1, . . . , p, k = 1, . . . , M , using (2) and (3).
2: Construct regressors ϕ(k) and ϕ̃(k), k = 1, . . . , M , using (4)

and (5), respectively.
3: Generate the first neuron using (15).
4: Calculate the model output ŷ using (8).
5: Calculate the global error E =∑M

k=1(y(k) − ŷ(k))2.
6: Calculate the local error e j = ∑M

k=1 ψ j (k)(y(k) − ŷ(k))2,
where j = 1 since only one neuron exists, and ψ1(k) = 1.

7: while E > Emin or N < Nmax do
8: Bisect the worst neuron with the largest local error e j into

two neurons.
9: for i = 1 : r̃ do
10: Determine the activation function values ψ for two

new neurons using (10) and (11).
11: Calculate the local model parameters θ for two new

neurons using (15).
12: Calculate the model output ŷ using (8).
13: Calculate the global error Ei .
14: if i = 1 or Ei < Ei−1, i = 2, . . . , r̃ , then
15: Save the results.
16: else
17: Go to step 7.
18: end if
19: end for
20: N = N + 1.
21: end while

� Emin and Nmax areminimummodelling error andmaximum
number of neurons, respectively. Ei denotes the global error
of the NF model with partition on the ϕ̃i dimension.

Define the parameter vector of all local ARXmodels
as

θ s =
[
θ�
1 , θ�

2 , · · · , θ�
N

]�
. (19)

The information vector consisting of the weighted
regressor of each local model calculated using (4), (10)
and (11) is given by

ϕ j (k) = ψ j (k) ϕ(k),

ϕs(k) =
[
ϕ�
1 (k), ϕ�

2 (k), · · · , ϕ�
N (k)

]�
.

(20)

By using (19) and (20), the NF model (8) is reformu-
lated as

ŷ(k) = (ϕs(k)
)�

θ s . (21)

3.2 Online NF model learning

As discussed in Sect. 2.3, although regional estimation
enhances the NFmodel’s robustness against noise, bias
in the estimation of the model parameters is increased
if the input space partitioning is poor. When the model
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structure is well chosen in the initial training, the con-
current estimation is more accurate than the regional
estimation [35]. Therefore, the concurrent estimation
method is adopted for online model learning.

For a set of time-series experimental data, correla-
tions exist between observations. Therefore, an autore-
gressive (AR) model is chosen to identify modelling
errors and noise online. The measured system output
ynoise(k) in (16) is estimated by a NF model combined
with a noise model as follows:

ŷnoise(k) = ŷ(k) + ŵ(k) (22)

where the estimated noise is characterised by an AR
model

ŵ(k) = −
nc∑

i=1

ci ŵ(k − i) = (ϕn(k)
)�

θn (23)

with nc being the order of the model. The AR model
is chosen due to its simplicity and low computational
requirement, compared to the moving average model
or autoregressive moving average model [5].

Define the noise model parameter vector as

θn = [c1, c2, · · · , cnc
]� (24)

and the information vector as

ϕn(k) = [−w(k − 1), −w(k − 2), · · · , −w(k − nc)]
� .

(25)

Finally, the system (22) can be rewritten as

ŷnoise(k) =
N∑

j=1

ŷ j (k) + ŵ(k)

= (ϕs(k)
)�

θ s + (ϕn(k)
)�

θn

= ϕ�(k)θ

(26)

where

θ =
[

θ s

θn

]
, ϕ(k) =

[
ϕs(k)
ϕn(k)

]
. (27)

To estimate the unknown parameter θ , consider a
quadratic cost function

J (θ) =
k∑

i=1

[
ynoise(i) − ϕ�(i)θ

]2
. (28)

The cost function can be minimised by satisfying
∂ J (θ)

∂θ
= 0, which gives the LS estimate of the opti-

mal θ as

θ̂ (k) =
[

k∑

i=1

ϕ(i)ϕ�(i)

]−1 [ k∑

i=1

ϕ(i)ynoise(i)

]

. (29)

The optimal estimate θ̂ (k) can be computed recur-
sively as

θ̂ (k) = P(k)ξ(k) (30)

where the covariance matrix P(k) and the vector ξ(k)
are given by

P−1(k) =
k∑

i=1

ϕ(i)ϕ�(i)

= P−1(k − 1) + ϕ(k)ϕ�(k) (31)

ξ(k) =
k∑

i=1

ϕ(i)ynoise(i)

= ξ(k − 1) + ϕ(k)ynoise(k). (32)

By applying the matrix inverse lemma [17]: (A +
BC)−1 = A−1− A−1B(I +CA−1B)−1CA−1 to (31),
with A = P−1(k−1), B = ϕ(k) andC = ϕ�(k), then
it yields

P(k) = P(k − 1) − P(k − 1)ϕ(k)ϕ�(k)P(k − 1)

1 + ϕ�(k)P(k − 1)ϕ(k)
.

(33)

However, the recursive algorithm in (30)–(33) can-
not be implemented because w(k − i), i = 1, . . . , nc,
inϕ(k) are unknown. To address this, the noisemodel is
identified by comparing the measured output ynoise(k)
with the NF model output ŷ(k). Replacing w(k − i) in
(25) with ŵ(k − i) gives

ŵ(k − i) = ynoise(k − i) − ŷ(k − i). (34)

Thereafter ϕ̂(k) can be constructed. By replacing ϕ(k)
in (32)–(33) with its estimate ϕ̂(k), the proposed
RGLS-based algorithm for identifying θ̂ (k) is sum-
marised in Algorithm 2. The order of the noisemodel is
determined before launching the online learning algo-
rithm. It is observed that a higher-order ARmodel gen-
erates a non-positive definite covariance matrix, which
is more likely to cause unstable prediction. Therefore,
a low-order AR model is used in this work.

4 Convergence of the proposed algorithm

This section analyses convergence of the RGLS-based
learning algorithm, i.e., the use of (30)–(33) to estimate
the parameter θ̂ (k).
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To facilitate the analysis, (30) is reformulated as

θ̂ (k) = P(k)ξ(k)

= θ̂ (k − 1) + L(k)[ynoise(k) − ϕ̂�(k)θ̂(k − 1)]
(35)

where

L(k) = P(k)ϕ̂(k) = P(k − 1)ϕ̂(k)

1 + ϕ̂�(k)P(k − 1)ϕ̂(k)
. (36)

Before proceeding to the convergence analysis, we
provide some useful concepts as below:

(i) Let {ν(k),Fk} be a martingale difference sequence
defined in a probability space {Ω,F , P}, whereFk

denotes the algebra sequence generated by the noise
signal {ν(k)}. The noise sequence {ν(k)} satisfies

E[ν(k)|Ft−1] = 0 (37)

E[ν(k)2|Ft−1] = σ 2(k) ≤ σ 2 < ∞ (38)

where E[·] is the expectation and σ denotes the
noise variance with the upper boundary σ .

(ii) For g(k) ≥ 0, we write f (k) = O(g(k)), if there
exists finite positive constants δ and k0 such that
| f (k)| ≤ δg(k) for k ≥ k0.

The convergence property of the proposed RGLS
learning algorithm is stated in Theorem 1.

Theorem 1 For the system (22), assume that (37) and
(38) hold. Then for any c > 1, the parameter estimation
error of the RGLS algorithm in (30)–(33) satisfies

‖θ̂ (k) − θ‖2 = O

( [ln |P−1(k)|]c
λmin[P−1(k)]

)
. (39)

Proof See Appendix A. 
�
Theorem 1 shows that for the noise sequence {ν(k)}

with a bounded variance, the convergence rate of the
RGLS algorithm is proportional to the ratio between
the logarithm of the maximum eigenvalue and the min-
imum eigenvalue of the covariance matrix P−1(k).

5 Numerical examples

Two numerical examples are used to evaluate effec-
tiveness of the proposed online learning algorithm. The
modelling results are comparedwith those of the offline
trained model. Since numerical examples are used, the

Algorithm 2 RGLS-based NF model learning
1: Initialise: Calculate ξ(0) and P(0) using (31) and (32)

respectively with the noise-free training data.
2: Assign modelling error in the training phase to ϕ̂n(0) using

(34).
3: for k = 1, 2, · · · , M do
4: Collect measurements u(k) and ynoise(k), and construct

ϕ(k) and ϕ̃(k) using (2) - (5) accordingly.
5: Construct ϕs(k) and ϕ̂n(k) using (10), (11), (20) and (25).
6: Form ϕ̂(k) using (27).
7: Calculate ξ(k) using (32) and P(k) using (33).
8: Update θ̂ (k) using (30).
9: Estimate ŵ(k − i), i = 1, . . . , nc, using (21) and (34).
10: end for

� M denotes the number of online measurements.

model output is compared with the true system output.
Themodel performance is quantified by the normalised
root mean square error (NRMSE) defined as

NRMSE =
k∑

i=1

√
y(i) − ŷ(i)

y(i) − E[y] . (40)

Noise-free data is used for offline model training.
During the training process, the model expands to fit
the training data. However, the increased model com-
plexity will deteriorate the prediction accuracy due to
over-fitting. In order to find a suitable offline model,
the training data is divided into two parts: the first 65%
is for training and the last 35% is for validation. The
modelwith the lowestNRMSE in fitting validation data
is chosen as the offline model.

Case 1 Model learning encountering new operational
conditions with measurement noise

This case demonstrates the capability of the proposed
algorithm in capturing new operational conditions of
the dynamic system under noise. The online measure-
ments in some operational conditions are not covered
by the training data. The following nonlinear dynamic
system is tested [15]:

ynoise(k + 1) = 0.72y(k) + 0.025y(k − 1)u(k − 1)

+ 0.01u2(k − 2) + 0.2u(k − 1)

+ w(k) (41)

with the noise

w(k) = 1

1 + 0.11z−1 ν(k) (42)
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Fig. 4 Comparison of model prediction for offline training, offline validation and online testing: Case 1

where ν(k) is a randomnoise signalwith zeromean and
σ 2 = 0.001. In total of 1000 training data is generated
by a sinusoidal signal u(k) = 1.05 sin(k/45) with the
initial outputs y(i) = 0, i = 1, . . . , 4. When generat-
ing the training data, the noise termw(k) is deactivated.
There are 1000 online noisy measurements produced
using the input signal

u(k)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.05 sin(πk/30) , 1<k<250

1.0, 250≤k<400

− 1.0, 400≤k<550

0.3 sin(πk/25) + 0.1 sin(πk/32)

+ 0.6 sin(πk/10) 550≤k≤1000.

An offline model with 9 neurons is built using the
training data. The model fits the training data and the
validation data accurately with NRMSE = 0.001483
and NRMSE = 0.0013, respectively. The modelling
results of the offline model and online RGLS-based
NF model are illustrated in Fig. 4. The offline model
performs poorly when it is implemented online under
noise, even though it has a low NRMSE during train-
ing. As shown by the zoomed in plot, the offline NF
model cannot deal with the noisy signal. Overshoots
and biases are observed in the model output. The pro-
posed online learning model estimates the noise signal
online with a second-order AR model. The online NF
model reduces spikes in the prediction. Meanwhile, the
prediction is closer to the actual dynamic response of
the system.

The performance of the offline and online RGLS-
based NF models is compared in Fig. 5. It is seen
that the online RGLS-based NFmodel overwhelms the
offline trained model under noise. The overall predic-
tion error of the offlineNFmodel isNRMSE = 0.4685,
while the prediction error of the online RGLS-based

Fig. 5 Comparison of online modelling performance: Case 1

NF model is NRMSE = 0.05295. For the online noisy
measurements including new operational conditions
(550 ≤ k ≤ 1000), the offline model is less capable in
predicting the dynamic system response since it does
not fully cover the system behaviour. Therefore, the
model has poor accuracy and does not converge. How-
ever, the proposed algorithm can reflect the real system
response accurately. Moreover, the proposed algorithm
converges quickly within 100 samples.

Case 2 Model learning of a time-varying system with
measurement noise

In this case, the proposed algorithm is used to identify
a time-varying dynamic system. The example system
is modified from (41) by only replacing one constant
parameter with a time varying parameter as follows:

ynoise(k + 1) =0.72y(k) + β(k)y(k − 1)u(k − 1)

+ 0.01u2(k − 2)

+ 0.2u(k − 1) + w(k) (43)
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Fig. 6 Comparison of online model prediction: Case 2

with a time-varying parameter

β(k) =
{
0.025, 1 ≤ k ≤ 1000

0.025 + 0.00001k, 1000 < k ≤ 1500
.

(44)

The noise term w(k) is the same as (42) in Case 1.
For the offline training data generated during 1 ≤ k ≤
1000, the input patterns in Case 1 are utilised. There-
fore, the offline NF model in Case 2 is identical to the
offline NF model in Case 1. To generate online noisy
measurements, the noise term w(k) is activated. A set
of 500 online noisy measurements is generated using
the input signal u(k) = 1.05 sin(πk/30), 1001 ≤ k ≤
1500.

The online predictions of the offline NF model and
the proposed RGLS-based NF model are compared in
Fig. 6. The offline NF model fits the training data accu-
rately by using 9 neurons, with NRMSE = 0.001483
for the training data and NRMSE = 0.0013 for the
validation data. However, the online performance of
the offline trained NF model is poor with an over-
all NRMSE = 0.1111, as shown in Fig. 7. Contrarily,
the RGLS-based NF model estimates the noise accu-
rately with a second-order AR model and removes the
noise from the measured system output. The NF is
then updated using the data describing the actual sys-
tem behaviour. Moreover, when the system behaviour
changes online, the accuracy of the RGLS-based NF
model is improved continuously using the incoming
measurements with the overall NRMSE = 0.01432.

6 Experimental study

The performance of the proposed online model learn-
ing method is further evaluated on an electrified tur-
bocharged diesel engine shown in Fig. 8. The engine is

Fig. 7 Comparison of online modelling performance: Case 2

Fig. 8 Electrified turbocharged diesel engine, where EGR
means high-pressure exhaust gas recirculation, VGTmeans vari-
able geometry turbocharger, and EM means electrical motor

a Cat C7.1 ACERT heavy-duty engine equipped with a
high-pressure exhaust gas recirculation (EGR) and an
electrical turbocharger assist (ETA). The engine pro-
duces peak power 205 kW at 2200 r/min and peak
torque 1257 Nm at 1400 r/min.

The ETA is developed to overcome the transient lim-
itation of a downsized engine. The ETA consists of a
variable geometry turbocharger (VGT) and an electri-
cal motor (EM). The engine exhausts gas before the
EGR valve passes through the VGT. The expansion of
the exhaust gas producesmechanical power through the
VGT turbine. The power is then used to drive the com-
pressor via the turbine shaft. Thereafter, more fresh air
is pumped into the intake manifold which increases the
intake air pressure Pin. The ratio of modes converting
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Fig. 9 Testing platform of the electrified turbocharged diesel engine, where EGR means high-pressure exhaust gas recirculation, VGT
means variable geometry turbocharger, EM means electrical motor, and ETA means electrical turbocharger assist

mechanical power into kinetic energy of intake air is
determined by theVGT actuator positionXvgt. The EM
can work in either motoring or generating. In motor-
ing, the EM extracts power from the battery to provide
more air into the engine. In generating, the EMconverts
mechanical power into electrical power and stores the
electricity in the battery. Consequently, Pin is reduced.
The electric power extracting/storing from/in the bat-
tery is denoted as ETA power Pem. The EGR deliv-
ers part of the exhaust gas into the intake manifold to
dilute the oxygen for NOx reduction. The amount of
recirculated exhaust gas can be changed by tuning the
EGR actuator Xegr. Since both the VGT and EGR are
mounted on the exhaust manifold, they are strongly
coupled and highly nonlinear in Pin. This motivates
the use of NF model to represent the dynamics of the
system.

The model of electrified turbocharged diesel engine
intake air path is identified as the following structure:

Pin(k + 1) = f
(
Xvgt(k),Xvgt(k − 1),Xvgt(k − 2),

Xegr(k),Xegr(k − 1),Xegr(k − 2),

Pem(k), Pem(k − 1), Pem(k − 2),

Pin(k), Pin(k − 1)
)
.

A set of experimental data is generated and filtered
offline formodel training andvalidation. The amplitude
modulated pseudo random binary signal (AMPRBS) is
applied for the input signal excitation at the operat-
ing condition (1800 r/min, 260 Nm). The experimen-
tal data continues for 100s at 10 Hz sampling rate.
The ranges of Xvgt, Pem and Xegr are limited to [0.1,
0.95], [−1.5 kW, 1.5 kW] and [0.05, 0.6], respectively.
The modelling accuracy for training and validation is
NRMSE = 0.0228 and NRMSE = 0.0375, respec-
tively. The model is implemented online with the pro-
posed learning algorithm.
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Fig. 10 Modelling performance test at (1800 r/min, 120 Nm) at steady state: a Xvgt action, b Pem action, c Xegr action and d Model
prediction results

6.1 Experiments setup

The test platform is illustrated in Fig. 9. The test engine
is connected to a dynamometer. The engine torque and
speed are controlled by the AVL Bobcat system. The
fuel injection system is controlled by the engine control
module (ECM). The EGR input command is delivered
to the actuator via ECM, whereas the rest of the input
signals are sent via xPC. The xPC is connected to the
host PCwith an Ethernet cable, enabling real time com-
munication between MATLAB and CANape. The data
exchange between the control room and the engine cell
is via the CAN bus. The test data is acquired by the
Vector CANape and visualised in Labview.

6.2 Experimental results

6.2.1 Modelling performance at steady state

The testing results at (1800 r/min, 260 N·m) are illus-
trated in Fig. 10. From 0s to 80s, the input variables
Xvgt, Pem and Xegr change periodically and are then

maintained until the system is stabilised. The offline
model cannot capture the system behaviour, although it
does fit the training data well with NRMSE = 0.0228.
During the test, the offline model introduces steady
state error andhas spikeswhen the input signals change.
The proposed online RGLS-based NFmodel tracks the
system response accurately in steady state and reduces
spikes in the prediction during transients.

6.2.2 Robustness against fast transient

Themodelling performance when input signals change
rapidly during transients are illustrated in Fig. 11. The
input variables Xvgt and Xegr are set to maintain the
engine at a steady condition. Pem is designed to change
rapidly tomaintain the exhaust pressure. The offlineNF
model completely fails to provide predictions, as shown
in Fig. 11d. The fluctuation of the offline model predic-
tion is aggressive. After 60 s, the prediction becomes
unstable and goes to a very large value. The online
NF model extracts the actual system output from the
noisy measurements and updates the model parameters
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Fig. 11 Modelling performance test at (1800 r/min, 120 Nm) under fast transient: a Xvgt action, b Pem action, c Xegr action, and d
Model prediction results (After 60 s, the offline NF model prediction goes to 1015, hence it is not depicted here)

accordingly. This enables the online model to capture
the system behaviour accurately.

7 Conclusion

This paper presents an online learning algorithm for
improving the NF model performance in noisy envi-
ronment. An NF model with ARX plus Gaussian func-
tion is introduced for identifying dynamic systems. An
enhanced RGLS-based local learning algorithm is pro-
posed for online implementations when measurement
noise is present, which updates the NF model to cap-
ture the actual dynamic system behaviours. The pro-
posed learning algorithm is proved to have a conver-
gence guarantee. The results of two numerical exam-
ples show that theRGLS-basedNFmodel obtains accu-
rate fitting, robustness against noise and fast conver-
gence speed. Efficacy of the proposed algorithm is fur-
ther confirmed by applying it to modelling the com-
plex nonlinear dynamics of a commercial heavy-duty
diesel engine. Future workwill consider integrating the
online learningmodelwith adaptive control to establish

a model-learning-based control strategy for complex
nonlinear systems.
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A Proof of Theorem 1

The following notations are defined for further deduc-
tion. For a square matrix X, the symbol λmin[X] rep-
resents its minimum eigenvalues and |X| = det[X]
denotes its matrix determinant.

Define the parameter estimation error as

θ̃ (k) = θ̂ (k) − θ. (45)

Note that P(k) is a symmetric positive definite
matrix. Using (35) and (45) gives

θ̃ (k)

= θ̃ (k − 1) + P(k)ϕ̂(k)
[
ϕ�(k)θ + ν(k) − ϕ̂�(k)θ̂(k − 1)

]

= θ̃ (k − 1) + P(k)ϕ̂(k)

[
− ϕ̂�(k)θ̃(k − 1)+

(ϕ(k) − ϕ̂(k))�θ + ν(k)

]

= θ̃ (k − 1) + P(k)ϕ̂(k)
[−ỹ(k) + Δ(k) + ν(k)

]

(46)

where ỹ(k) = ϕ̂�(k)θ̃(k − 1), Δ(k) =[
ϕ(k) − ϕ̂(k)

]�
θ.

Consider the Lyapunov function

V (k) = θ̃�(k)P−1(k)θ̃(k). (47)

Substituting (32) and (46) into (47) gives

V (k) =
{
θ̃ (k − 1) + P(k)ϕ̂(k)

[−ỹ(k) + Δ(k) + ν(k)
]}�

P−1(k)
{
θ̃ (k − 1) + P(k)ϕ̂(k)

[−ỹ(k) + Δ(k) + ν(k)
]}

= V (k − 1) − ỹ2(k) + 2 ỹ(k) [Δ(k) + ν(k)]

+ϕ̂�(k)P(k)ϕ̂(k){ỹ2(k) + ν2(k) + Δ2(k)

−2 ỹ(k) − 2 ỹ(k)[Δ(k) + ν(k)] + 2Δ(k)ν(k)}
= V (k − 1) −

[
1 − ϕ̂�(k)P(k)ϕ̂(k)

]
ỹ2(k)

+2
[
1 − ϕ̂�(k)P(k)ϕ̂(k)

]
ỹ(k)[Δ(k) + ν(k)]

+ϕ̂�(k)P(k)ϕ̂(k)[ν2(k) + Δ2(k) + 2Δ(k)ν(k)].
In view of the relation

1 − ϕ̂�(k)P(k)ϕ̂(k) = 1 − ϕ̂�(k)P(k − 1)ϕ̂(k)

1 + ϕ̂�(k)P(k − 1)ϕ̂(k)

=
[
1 + ϕ̂�(k)P(k − 1)ϕ̂(k)

]−1

> 0,

we have the following inequality

V (k)≤ V (k − 1)

+ 2
[
1 − ϕ̂�(k)P(k)ϕ̂(k)

]
ỹ(k)[Δ(k) + ν(k)]

+ ϕ̂�(k)P(k)ϕ̂(k)
[
ν2(k) + Δ2(k) + 2Δ(k)ν(k)

]
.

(48)

Assume that Δ(k) is bounded as Δ2(k) ≤ ε, where
ε is the upper boundary. Since ν(k) is a white noise
sequence with zero mean and variance σ 2, the terms
ỹ(k), ϕ̂�(k)P(k)ϕ̂(k) andΔ(k) are uncorrelated to the
noise signal. Under the assumptions (37) and (38), tak-
ing the conditional expectation of (48) with respect to
Ft−1 gives

E[V (k)|Ft−1] ≤ V (k − 1)

+ϕ̂�(k)P(k)ϕ̂(k)[σ 2 + ε]. (49)

It follows from (47) that

‖θ̃ (k)‖2 ≤ θ̃�(k)P−1(k)θ̃(k)

λmin[P−1(k)] = V (k)

λmin[P−1(k)] .
(50)

Define the variable Z(k) as

Z(k) = V (k)

[ln |P−1(k)|]c . (51)

According to (31), P−1(k) = P−1(k−1)+ϕ(k)ϕ�(k).
Since both the covariance matrix P−1(k − 1) and the
matrix ϕ(k)ϕ�(k) are positive semidefinite, it holds
that |P−1(k)| ≥ |P−1(k − 1)| and thus ln |P−1(k)| is
non-decreasing. Substituting (51) into (49) and taking
the conditional expectation of both sides leads to

E[Z(k)|Ft−1]

≤ V (k − 1)

[ln |P−1(k)|]c + ϕ̂�(k)P(k)ϕ̂(k)

[ln |P−1(k)|]c [σ 2 + ε]

≤ Z(k − 1) + ϕ̂�(k)P(k)ϕ̂(k)

[ln |P−1(k)|]c [σ 2 + ε]. (52)

By using (31), P−1(k − 1) can be obtained as

P−1(k − 1) = P−1(k) − ϕ̂(k)ϕ̂�(k).

Taking the determinant of both sides and using |I +
AB| = |I + BA| gives
|P−1(k − 1)| = |P−1(k)||I − P(k)ϕ̂(k)ϕ̂�(k)|

= |P−1(k)|[1 − ϕ̂�(k)P(k)ϕ̂(k)].
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Hence, we have that

ϕ̂�(k)P(k)ϕ̂(k) = |P−1(k)| − |P−1(k − 1)|
|P−1(k)| .

As |P−1(k)| is a non-decreasing function of k, sum-
ming the second term on the right hand side of (52)
from k = 1 to ∞ yields

∞∑

k=1

ϕ̂�(k)P(k)ϕ̂(k)

[ln |P−1(k)|]c

=
∞∑

k=1

|P−1(k)| − |P−1(k − 1)|
|P−1(k)|[ln |P−1(k)|]c

=
∞∑

k=1

∫ |P−1(k)|

|P−1(k−1)|
dx

|P−1(k)|[ln |P−1(k)|]c

≤
∫ |P−1(∞)|

|P−1(0)|
dx

|P−1(k)|[ln |P−1(k)|]c

≤
∫ ln |P−1(∞)|

ln |P−1(0)|
1

[ln |P−1(k)|]c d[ln |P−1(k)|]

≤ [ln |P−1(∞)|]1−c − [ln |P−1(0)|]1−c

1 − c
+ ρ I

< ∞ (53)

where ρ is a positive constant.
By using the martingale convergence theorem, we

have

lim
k→∞ Z(k) = lim

k→∞
V (k)

[ln |P−1(k)|]c + ρ I < ∞.

This indicates that

V (k) = O([ln |P−1(k)|]c). (54)

From (50), (52) and (54), ‖θ̃ (k)‖2 can be derived as
‖θ̃ (k)‖2 = O

( [ln |P−1(k)|]c
λmin[P−1(k)]

)
.

This proves that the parameter estimation error will
converge to a small neighbourhood of the origin when
k goes to infinity. This completes the proof.
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