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A Comparison of Forward and Inverse Simulation Methods for Fault
Detection on a Rover

Stuart R.K. Shilliday1, Euan W. McGookin2, and Douglas G. Thomson3

Abstract— Fault tolerant design is hugely important for
autonomous mobile robots such as planetary exploration rovers
(PERs), as they are required to be both robust and reliable
in extremely harsh environments. One of the main principles
of fault tolerance is the detection and diagnosis of any faults
afflicting the system. A model-based fault detection procedure is
presented using forward and inverse simulation methods. The
results of each method are compared for faults in different
system locations to display the differences and advantages
of both methods. It is shown by this comparison that the
methods complement each other and can be used concurrently
to diagnose output and input faults.

I. INTRODUCTION

Planetary Exploration Rovers (PERs) have become excep-
tionally useful and effective tools utilised by scientists to
explore the surfaces of terrestrial bodies in the Solar System
(e.g. moons, planets) [1]. Due to the hostile environments
that these rovers operate in, their onboard systems must
function autonomously and be highly reliable. To achieve
these levels of reliability and autonomy, the rover systems
need to be fault tolerant. One method of ensuring this is to
design a subsystem that detects whenever a fault occurs at
any point within the system, diagnose said fault, and then
instruct the rover to take appropriate action to mitigate any
adverse effects.

Common methods for detecting and isolating faults are
based on mathematical models of the system that are used
to predict its dynamic output response. This response is com-
pared to the actual measured output response of the physical
system. The quantified difference is called the residual [2]
and in general large residual values indicate that a fault
has occurred. However, for faults in the input actuators, the
system dynamics can hide or alter their effect, which makes
determining the exact origin of the faults difficult. In such
cases an inverse simulation based approach could be used
to estimate the input command applied to the actuators and
then calculate an input residual for actuator fault detection
and isolation (FDI) [3].

This paper compares the use of forward and inverse
simulations for FDI relating to actuator and sensor faults.
The application considered in this study is a wheeled rover
so that parallels can be drawn with PERs and the benefits of
such an FDI architecture demonstrated.
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The structure of this paper is as follows. Section II gives
an overview of the rover used in this investigation and
briefly describes the various components of the mathematical
model of this rover. Section III describes the nature of faults,
where and how they have been implemented, and provides
the results of the faults applied to various locations within
the system. Section IV explains the residual calculation and
inverse simulation processes, and displays the output and
input residuals induced by the two faults. Section V provides
a summary of the comparison between the two residual
generation methods and Section VI states the conclusions.

II. ROVER MODELLING, CONTROL, AND GUIDANCE

To study the usefulness of residuals for FDI systems
onboard a rover, a representative mathematical model must
first be established. In this particular case, the rover being
modelled is a simple four-wheel drive rover with a fixed
chassis and no suspension, that uses electric motors to drive
the wheels and turns using a method called slip-steering (also
known as skid or differential steering) [4]. This has been
selected as it possesses a number of characteristics consistent
with commonly used technologies on PERs [5].

To induce this rover to perform manoeuvres and provide
a baseline against which the effects of the faults can be
measured, a controller system is required. Closed-loop con-
trollers [6] have been used to produce the desired response
from the rover and a Line-of-Sight (LOS) guidance system
[7] has been implemented to translate a set of waypoints
into controller commands. Figure 1 shows a block diagram
representing the guidance system, the controllers and the
rover model. In this diagram, v represents the resultant
velocity of the rover, ψ is the yaw (or heading) angle, V
represents the voltages applied to the motors, τ represents the
torques produced by the motors, x is the rover’s state vector,
and y is the vector of outputs measured by the sensors.

The rigid-body dynamics and kinematics of the rover are
described by the Newton-Euler equations derived by Fossen
[8] and McGookin [9].

ẋ =

[
ν̇
η̇

]
=

[
−M−1 [(C+D)ν + g(η)− τ ]

J(η)ν

]
= F (x,u)

(1)

In this equation, ν is the vector of the accelerations relative
to the body fixed axis of the rover; M, C, and D, are the
mass/inertia, Coriolis, and damping matrices respectively; g
is the gravitation matrix; and τ is the input force/torque
matrix. η is the inertially fixed position/orientation vector
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Fig. 1: Rover System Block Diagram

of the rover and J is the transformation matrix that relates
η̇ to ν.

In this representation, the dynamics and kinematics of the
rover are shown as a continuous-time state-space model,
which means it can be simplified down to a non-linear
function F (x,u). This equation is expanded further in [8]
and [9], and is applied to the case of a rover in [3], which
also provides the representative model for the motors.

For the nominal case, the sensors are assumed to be ideal,
where the state measurements, y, made by the sensors are
identical to the state values, x. For the faulty sensor case, y
is x plus the additive fault magnitude.

The waypoints selected to test the rover’s performance are
in a serpentine pattern, shown in Figure 2(a). The guidance
system of the rover provides the two controllers with desired
velocity and heading values. This pattern of waypoints is
good for investigating the dynamics of the system because
it ensures that both the velocity and the heading are almost
constantly varying as the rover changes direction, accelerates
towards each waypoint, and decelerates on approach.

The control voltages corresponding to this response are in-
cluded in Figure 2(b). This graph shows the implementation
of the slip-steering technique; different voltages are applied
to the left- and right-hand motors of the rover, causing
it to turn. The peaks and troughs where the voltages are
in anti-phase are the instances where the rover is turning,
and they converge together as the rover converges on the
desired heading. The positive offset comes from the velocity
controller constantly driving the rover forward and this gives
the continuous trajectory response seen in Figure 2(a). These
graphs provide a baseline for comparison between the fault-
free and faulty rover scenarios.

III. FAULTS

Experimental and real-world experience has shown that
faults are highly likely in mobile robots, particularly “field
robots” [10]. In order to monitor for these faults and detect
their presence, their nature and behaviour must be sufficiently
understood, and to test the FDI procedures they must be
modelled to a reasonable degree of accuracy.

(a) Serpentine Trajectory

(b) Control Voltages

Fig. 2: Rover Serpentine Trajectory and
Corresponding Control Voltages

Faults are, by definition, unintended digressions from the
expected behaviour of a component or system [11], and as
such they almost invariably result in adverse effects on the
overall performance of the system.

Faults can occur at multiple points in the system. In the
course of this study, two locations have been investigated;
one at the voltage input to the motors, and one at the output
of one of the sensors. These fault locations are shown in
Figure 3 where the input fault is fu, and the output fault is
fy. These faults are simply added to their respective signals,
and are hence called additive faults, but only one fault is



implemented at a time for this investigation.
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Fig. 3: Fault Location Block Diagram

For the purposes of this study, two mathematical models
are used. One of these, designated “the model”, describes
the ideal, fault-free behaviour of the rover, F̂(x̂,u), and is
representative of a mathematical model that would be used
in parallel with a real-life rover. The other model used in
this study is called “the system” and is representative of the
rover itself, F(x,uA). F and F̂ are assumed to be identical,
other than the inclusion of any faults.

u is the ideal control voltage input to the motors and uA
is the actual voltage applied to the motors, including any
input faults being implemented. x. , x, and y are the system
state derivative, state, and output vectors respectively and x̂

.
,

x̂, and ŷ are the same vectors as generated by the model.
The two faults tested in this study are both abrupt, per-

sistent faults occurring 30 seconds into the simulation of
the aforementioned serpentine trajectory. They each have a
magnitude of -1 and the respective units are Volts for the
input fault and metres for the sensor fault.

Despite the similarities in the characteristics of the two
faults modelled, it will be seen that the different locations
dramatically alter how they affect the rover’s performance.

A. Input Fault

The first fault is applied to the voltage signal input to the
rover’s left-hand motors. The resultant trajectory of the rover
and the applied voltages are shown in Figure 4.

In this figure it can be seen that, even in the presence of the
fault, the system closely follows the desired trajectory. This
is due to the effect of the closed loop controller compensating
for the voltage drop. However, since the model does not have
that same fault, the correction made by the controller forces
the left-hand voltages consistently higher than required, and
the model veers to the right. This overcorrection can be seen
by the difference between the model and system left-hand
voltages after 30s in Figure 4(b).

It can be noted from the data that the right-hand voltages
are consistently identical to each other, and so have been
omitted from Figure 4(b) for clarity. Also, it has been noted
that, excepting an initial adjustment period of a couple of
seconds after the appearance of the fault, the right-hand
control voltages match those shown in Figure 2(b).

B. Output Fault

The second fault is again assumed to be a negative offset
but is applied to the X-position sensor of the rover. The
resulting trajectory and voltage values are shown in Figure
5. In this instance, the controller forces the sensed position

(a) Rover Serpentine Trajectory with a Left-Hand Voltage Drop at
30s

(b) Voltage Values showing a Left-Hand Voltage Drop at 30s

Fig. 4: Rover Serpentine Trajectory and Corresponding
Motor Voltages with a Left-Hand Voltage Drop at 30s

to match the desired trajectory, whereas in reality the rover
is consistently displaced 1m in the X-direction.

The negative ramifications of this are obvious. If the rover
travels along what it assumes to be a safe trajectory, unaware
of the discrepancy between its sensed and actual positions
then it runs the risk of encountering obstacles that would
have otherwise been avoided.

The effect of the controller relying on a faulty sensor
to provide the feedback signal is also seen in Figure 5(b).
Starting at 30s and ending approximately 45s after the start
of the simulation there is a difference between the control
voltage values in this instance and those shown in Figure
2(b). The controller deviates from its periodic behaviour to
correct for the jump in the sensed position, and then returns
to operate as though the fault is not there. This highlights the
need for an FDI system to determine the presence, nature,
and location of such a fault and allow the rover to compensate
for it.

IV. FAULT DETECTION USING OUTPUT AND INPUT
RESIDUALS

Residuals give a comparison between the expected be-
haviour of the system and the observed behaviour [2].
Therefore, if a fault occurs, any deviation from the desired
performance of the system can be detected, and a diagnosis
procedure implemented. The two types of residual used in



(a) Rover Serpentine Trajectory with a Sensor Fault at 30s

(b) Voltage Values with a Sensor Fault at 30s

Fig. 5: Rover Serpentine Trajectory and Corresponding
Motor Voltages with a Sensor Fault at 30s

the course of this study are shown in the state-space model
diagrams in Figure 6.

In this figure, û is the input signal as estimated by F̂-1(y),
the inverted mathematical model, and ry and ru are the output
and input residuals respectively.

It can be seen that, using the calculations represented
by Figures 6(a) and 6(b), ry=y−ŷ=fy and ru=û−u=fu
[12] meaning that the input and output residuals contain
information about any faults occurring at their respective
locations in the system.
A. Output Residuals

As has been previously stated, output residuals are defined
as the difference between the output behaviour of the faulty
system and a mathematical model of the fault-free scenario.
Since multiple sensors would be implemented to measure the
behaviour of the rover, there would be multiple residuals to
choose from. It will be shown that monitoring each of these
residuals would be useful for detecting and diagnosing faults
in each of the sensors.

Figure 7(a) shows the X and Y co-ordinate residuals for
the input voltage fault. Both plots show that the residuals are
excited immediately after the injection of the fault, however
they do not give much information about what kind of fault
has occurred. The time-dependent behaviour, magnitude, and
location of the fault cannot be determined from these graphs.
It is clear that further analysis would be required to isolate
faults at the input to the system.
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(a) Output Residual Generation
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(b) Input Residual Generation

Fig. 6: System and Model Comparison to Generate Output
and Input Residuals [12]

(a) Output Residuals for a 1V Drop in Input Voltage to the
Left-Hand Motors at 30s

(b) Output Residuals for a -1m Additive Fault in the X Co-ordinate
Sensor at 30s

Fig. 7: Output Residuals for Input and Output Faults

For the sensor fault the X co-ordinate residual shown in
Figure 7(b) mimics the fault exactly, both in magnitude and
time-dependent behaviour. It is also worth noting that the
only output residual excited by the fault in the X position



sensor is the X position residual. This is in contrast to the
voltage fault, which propagates through the system, affects
multiple states, and excites multiple residuals.

The imitation of the fault and uniqueness of excitation
make sensor faults relatively simple, not only to detect, but
also to diagnose; if only one output residual is excited, it
can be assumed that the fault is in the sensor relating to that
residual. For the input fault, the detection and diagnosis of
the fault is less trivial, requiring further analysis.

B. Inverse Simulation

As shown in Figure 6(b), the calculation of input residuals
requires the inversion of the mathematical model. There are
multiple methods of achieving this [13][14][15], however the
method used in this study is a numerical integration-based
Inverse Simulation (InvSim) algorithm, known as the Generic
Inverse Simulation Algorithm (GENISA) [16][17]. The basic
procedure for this algorithm is shown in Figure 8.

Define initial
conditions and

desired trajectory

• Calculate current state
derivatives using estimated
inputs

• Calculate state values and
outputs at next timestep

• Calculate difference between
estimated and desired outputs
at next timestep

Is the difference less
than the desired

tolerance?

Is this the last timestep?

End

• Save input
estimate

• Increment
timestep

Update input
estimate
using a

Jacobian

Yes

Yes

No

No

Fig. 8: GENISA Flow Diagram

After defining the initial conditions and the trajectory that
the algorithm is aiming for, estimates for the input values are
made and applied to the state-space equations of the system.
This allows the state derivatives to be calculated, which can
then be integrated numerically to provide the state values, a
subset of which are chosen to be used as outputs from the
system. These outputs are compared to the desired values
determined by the predefined trajectory, and if the difference
is greater than desired, the input estimates are corrected using
a Jacobian matrix.

Once the input has been updated, the main steps are
repeated until the calculated behaviour of the rover model is

suitably accurate. When an accurate estimate of the required
inputs has been made at the initial timestep, the algorithm
saves the estimate and increments to the next timestep. This
procedure is then repeated until the entire timeline of the
trajectory has been covered.

C. Input Residuals

Using the GENISA, the rover model was inverted, to allow
the input residuals to be calculated, and the faults described
in Section III were applied to the simulated system. The input
residuals for both fault scenarios are shown in Figure 9.

(a) Voltage Residual for a 1V Drop in Input Voltage to the
Left-Hand Motors at 30s

(b) Voltage Residual for a -1m Additive Fault in the X Co-ordinate
Sensor at 30s

Fig. 9: Voltage Residuals for Input and Output Faults

There are only two input residuals as there are only two
control inputs for the rover modelled here: the left and right-
hand motor voltages. In Figure 9(a), it can be seen that it is
primarily the left-hand motor input residual that is affected
by the presence of the voltage drop. Both residuals display
small, oscillatory spikes which align with the moments where
the rover begins to turn left or right and they both give
a transient response at the instant of the fault occurrence.
These artefacts are caused by the InvSim process failing to
model rapid changes in the voltage instantaneously and their
magnitude is related to both the simulation stepsize and the
GENISA error threshold.

If these irregularities are ignored, the steady state values
of the residuals can be used to evaluate the effect of the
fault. As predicted, the left voltage residual matches the fault;
it is persistent, abrupt, and stepwise, occurring at 30s and
with a magnitude of -1V. The right voltage residual however



remains at 0V. Once again, the uniqueness of the excited
residual provides a means of isolating the fault to the input
of the left-hand motors.

The X position sensor fault provides a different set of
residual behaviours, shown in Figure 9(b). The small spikes
corresponding to the rover’s turning manoeuvres are once
again evident and an even smaller disturbance is noted at
30s, the moment of fault injection. However, aside from this,
there is no noticeable effect of the sensor fault on the input
residuals. This is because the GENISA is driven by the mea-
sured accelerations of the rover, not the positions; a design
choice made as it prevents instability in the algorithm [17].
Therefore these residuals are unsuitable for the detection of
this sensor fault.

The presence of the oscillations does highlight the need
for a detection threshold to prevent the FDI software from
flagging a fault that was in fact simply noise from the
InvSim procedure. This would also filter out any sensor noise
introduced.

V. COMPARISON

The two types of residual tested in this work have proven
to have different responses to faults at various locations
in the system. For a fault affecting the input signal, it
was shown that multiple output residuals were significantly
excited, potentially allowing for the detection of the fault.
However, since the relationship between the input voltages
and the output residuals is not a simple one, and the dynamics
of the system conceal the nature of the fault by dispersing
the effect among multiple residuals, the determination of the
type and location of the fault is not trivial. The input residuals
give a much clearer picture. The time at which the input fault
occurred, the nature of said fault, and the location can all be
derived by noting that the input residual makes an abrupt
jump to -1V at 30 seconds.

For a sensor fault, it was the output residuals that showed
the clearer picture, with the residual corresponding to the
faulty sensor replicating the behaviour of the fault exactly,
while the other output residuals and the input residuals were
left unaffected.

This matches the theory shown in Section IV, and shows
that the behaviour of any faults and of the residuals calcu-
lated at the same location are equal. Hence, these residuals
could be used to detect and characterise the faults as they
occur.

VI. CONCLUSIONS

It is difficult to overstate the importance of rover reliability
to PER missions and it is clear that intelligently designed
health management systems could be an invaluable way
of increasing this reliability. Using the principles of fault
detection and isolation, it has been shown that residual
generation has significant potential to be used as a basis upon
which such a health management system could be built.

Using a mathematical model inversion technique, it has
been shown that residuals can be generated to provide infor-
mation about different locations within the system. Using
a traditional model, output residuals were generated, and
InvSim allowed for the calculation of input residuals.

Upon the application of faults at the input and output of the
rover, and the examination of the residuals for each case, it
was found that the output residuals mimic any corresponding
sensor faults and input residuals do the same for any additive
faults in the input channels. By comparing the two residual
generation techniques, it has been shown that they could be
used in parallel to detect singular, additive faults in both the
voltage inputs and the sensor outputs of the system.

Future work will be focused on how robust and sensitive
the residual calculation method is when noise and distur-
bances are introduced into the system at various locations.
More in-depth investigation will also be performed into the
diagnosis and fault recovery procedures enabled by this
methodology.
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