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The non-hyperelliptic connected components of the strata of translation surfaces are conjectured to
be orbifold classifying spaces for some groups commensurable to some mapping class groups. The
topological monodromy map of the non-hyperelliptic components projects naturally to the mapping
class group of the underlying punctured surface and is an obvious candidate to test commensurability.
In the present article, we prove that for the components H(3, 1) and Hnh(4) in genus 3 the monodromy
map fails to demonstrate the conjectured commensurability. In particular, building on the work of
Wajnryb, we prove that the kernels of the monodromy maps for H(3, 1) and Hnh(4) are large, as they
contain a non-abelian free group of rank 2.

1 Introduction
Translation surfaces and their moduli spaces naturally arise in the interplay of topology, algebraic
geometry, dynamics, and number theory as shown through the work of Veech [39], Masur [28], Thurston
[38], and many subsequent authors. The topology of the moduli spaces of Riemann surfaces is
somewhat understood; see, for example, the work of Harer–Zagier [18] and Maclachlan [27]. Much less
is known about the topology of the moduli space of translation surfaces.

In this article, we analyze the topological monodromy map of the connected components Hnh(4) and
H(3, 1) of the moduli space of translation surfaces in genus 3. We show that the topological monodromy
maps from the orbifold fundamental groups onto the images in the respective mapping class groups
are far from being isomorphisms. In particular, we prove that the kernels contain a non-abelian free
group of rank 2 by relating the topological monodromy maps to some geometric homomorphisms of
Artin groups.

Translation surfaces. Let �g denote a closed oriented surface of genus g and let Z ⊂ �g be a finite set of
points. A translation structure on �g is an atlas of charts with values in C where the transition maps of �g\
Z are translation, points in Z are cone type singularities, and the holonomy π1(�g \Z) → SO(2) is trivial.
In particular, the complex structure on �g\Z can be extended to �g by Riemann’s removable singularity
theorem and the metric around each point p ∈ Z can be given by cyclically gluing half-planes around p.

A translation structure on �g can also be given by pairs of the form (X, ω), where X is genus g Riemann
surface and ω is a non-zero holomorphic one form on X. The finite set Z is identified with Z(ω) = {p ∈ X |
ωp ≡ 0}. Since the holonomy around every cone singularity is trivial, the number kp of half-planes glued

around each point p ∈ Z is even. The multiplicity of ω at the respective vanishing point is exactly kp

2 +1.
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2 | R. Giannini

Strata of translation surfaces. The moduli space of genus g translation surfaces is the set of all
translation structures (X, ω) of �g up to isomorphisms. The whole moduli space can be stratified in
orbifolds H(k1, . . . , kn) characterized by the combinatorial data given by the orders of ω at its zeros.

Even though the topology of the strata of translation surfaces is poorly understood, our knowledge
has improved in the past years. Costantini–Möller–Zoachhuber gave a recursive computable formula
for the Euler characteristic of the moduli space of translation surfaces [13]. Further, Zykoski has
constructed a finite simplicial complex with the same homotopy type of the strata H(k1, . . . , kn),
motivated by Harer’s construction of a simplicial complex those quotient by the mapping class group
is homotopic equivalent to the moduli space of Riemann surfaces [42].

Kontsevich–Zorich showed that each stratum has at most 3 connected components and in every
genus some components are hyperelliptic [23]. Namely, hyperelliptic components consist of translation
surfaces (X, ω) where X is a hyperelliptic Riemann surface and ι∗(X, ω) = (X, −ω) where ι is the
hyperelliptic involution of X. These connected components are orbifold classifying spaces for finite
extensions of braid groups; see [26, Section 1.4] for a proof. Kontsevich–Zorich also conjectured that
the other non-hyperelliptic components have orbifold fundamental groups commensurable with some
mapping class group [22]; this conjecture is still open.

Our focus is to shed some light on the Kontsevich–Zorich conjecture for some non-hyperelliptic
components in small complexity, by showing that the topological monodromy maps of some exceptional
connected components in the mapping class group are far from being injective.

Monodromy maps. Let �g,n be a closed surface with n marked points. The mapping class group Modg,n

is the group of all orientation preserving self-diffeomorphism of �g,n that leave the set of marked points
invariant, up to isotopies relative to the set of marked points. If C is a connected component of a
stratum H(k1, . . . , kn), then any (orbifold) homotopy class of loops based at (X, ω) gives rise to some
self-diffeomorphism of X that preserves the zeros of ω. These data are recorded by the (punctured)
topological monodromy map:

ρC : πorb
1 (C) → Modg,n .

Calderon studied these homomorphisms and described the connected components of the strata of
marked translation surfaces for genus g ≥ 5, which cover the strata of translation surfaces [8]. Then,
Calderon–Salter’s work resulted in a complete description of the images of the monodromy maps
associated with all non-hyperelliptic connected components of the strata H(k1, . . . , kn) in genus g ≥ 5. In
other words, the orbifold fundamental groups of all non-hyperelliptic connected components in genus
g ≥ 5 are projected onto subgroups of the mapping class group called framed mapping class groups [9].

The kernel of the punctured monodromy. If C is hyperelliptic, then Im ρC is isomorphic to the
symmetric mapping class group SModg,n, and ker ρC is finite [8, Section 2.1]. In view of Kontsevich–Zorich
conjecture, it is natural to ask whether or not the topological monodromy is the right homomorphism
to look at in order to prove the conjecture. For this reason, we are interested in estimating the size of
the kernels of the monodromies ρC for non-hyperelliptic connected components. The first main result
of this paper is that in some cases the kernel is large.

Theorem A. Let ρHnh(4) : πorb
1 (Hnh(4)) → Mod3,1 and ρH(3,1) : πorb

1 (H(3, 1)) → Mod3,2 be the
topological monodromy maps of the non-hyperelliptic connected components of H(4) and of
H(3, 1), respectively. The kernels of both the monodromies contain a non-abelian free group of
rank 2.

The orbifold fundamental groups involved in the statement of Theorem A are closely related to
Artin groups. Looijenga–Mondello showed that the groups πorb

1 (Hnh(4)) and πorb
1 (H(3, 1)) are infinite-

cyclic central extensions of the inner automorphism groups of some Artin groups [26]. It turns out that
Theorem A is an example of a more general phenomenon related to geometric homomorphisms from Artin
groups to mapping class groups.
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Fig. 1. The map sending every standard generator ai to the Dehn twist Tγi determines a geometric homomorphism
of A(E6) to Mod3.

Geometric homomorphisms. If � is a finite, connected, and undirected simple graph with V(�) as its
set of vertices, an Artin group is a group that admits a presentation of the following form:

A(�) :=
〈
a1, . . . , an ∈ V(�)

∣∣∣∣aiajai = ajaiaj if ai and aj are adjacent
aiaj = ajai otherwise

〉
. (1)

Roughly speaking, a geometric homomorphism A(�) → Modg,n arises as the correspondence between
the vertices of the defining graph � and a family of simple closed curves on the surface �g,n. The
standard Artin generators in the presentation (1) map to Dehn twists about curves that respect the
intersection pattern given by the defining graph; see Figure 1.

Possibly, there might exist relations between Dehn twists that do not hold for standard generators of
Artin groups. However, there is no known algorithm that can solve the word problem for a generic Artin
group (for further details, see, e.g., [29, Conjecture 5.2]), and this is the main obstruction to characterize
kernels of geometric homomorphisms.

Wajnryb proved that if the graph � contains E6 as a subgraph, any geometric homomorphism cannot
be an injection [40]. In particular, Wajnryb found an element w given explicitly in terms of the standard
generators in the presentation (1) and adopted the following strategy: as every inclusion of graphs
induces a monomorphism of the respective Artin groups [24], it is enough to find a non-trivial element w
in A(E6), which can be written in Mod3,1 as a braid relator of Dehn twists. The group A(E6) is a spherical-
type Artin group, a class of groups for which the word problem has been solved by means of their Garside
structure. Our next result builds on Wajnryb’s work and Theorem A can be thought of as a corollary of
the following theorem.

Theorem B. Let � be any finite and undirect simple graph with E6 as a subgraph. Any geometric
homomorphism of A(�) in Modg,b has a large kernel that contains a non-abelian free group F2

of rank 2. In particular, there is some g ∈ A(�) such that F2 is generated by the Wajnryb element
w and its conjugate g−1wg.

Theorem B follows from the acylindrical hyperbolicity of spherical-type Artin groups modulo their
center. Here, the Ping-Pong strategy can be adopted to detect non-abelian free groups.

Acylindrical hyperbolicity. Let A(�)	 denote the spherical-type Artin group A(�) quotient by its center.
Calvez–Wiest proved that the group A(�)	 acts acylindrically on a δ-hyperbolic graph, which is known in
the literature as the additional length graph CAL(�) [10, Theorem 1.3].

Calvez–Wiest found a group element κ ∈ A(�) representing a loxodromic isometry of CAL(�) that acts
weakly properly discontinuously. By Osin’s criterion [34, Theorem 1.2], the existence of the Calvez–Wiest
element κ is enough to conclude the acylindrical hyperbolicity of A(�)	.

We prove that the infinite order Wajnryb element acts elliptically on CAL(�) and a classical result
shows that w ∈ A(�)	 cannot fix κ ∈ A(�)	 in the Gromov boundary of the additional length graph
[2, Lemma 25]. The following is due to Abbott–Dahmani and is the key ingredient we need to prove
Theorem B.

Proposition ([1, Proposition 2.1]). Let G be a group acting acylindrically hyperbolic on a geodesic
δ-hyperbolic space X. Suppose σ ∈ G is elliptic and γ ∈ G is loxodromic. If
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4 | R. Giannini

Fig. 2. The spherical Artin groups. In particular, the E6-type and E7-type groups that describe the orbifold
fundamental group of the projective components PH(3, 1) and PHnh(4) are spherical.

1) the set A10δ(γ ) = {x ∈ X | d(x, γ x) ≤ infy∈X d(y, γ y) + 10δ} is not preserved by any non-trivial power
of σ and

2) the diameter of Fix50δ(σ ) = {x ∈ X | d(x, σ nx) ≤ 50δ for alln ∈ Z} is finite,

then there is some n ∈ Z such that the group generated by σ and γ n is a non-abelian free group of
rank 2.

We conclude that there exists a positive integer n such that the group generated by κ−nwκn and w is
a non-abelian free group of rank 2.

Projective strata. We now explain how Artin groups arise in the context of the non-hyperelliptic
components of the strata mentioned in Theorem A.

The multiplicative group C∗ acts on the cotangent bundle of each Riemann surface X by multiplica-
tion. The action preserves the multiplicity at the cone points of each holomorphic 1-form and is well-
defined of each connected component C of a stratum H(k1, . . . , kn). The resulting quotient is denoted by
PC and is known as a projective stratum of translation surfaces.

Looijenga–Mondello proved that the orbifold fundamental groups of PHnh(4) and PH(3, 1) are the
inner automorphism groups of the E6-type and E7-type spherical Artin groups, respectively [26]. A result
of Pinkham implies that the monodromy map of PHnh(4) is geometric [36], meaning that standard Artin
generators representing classes of elements in Inn(A(E6)) are mapped to some Dehn twists. We prove
that the same holds for the monodromy of PH(3, 1).

Theorem C. The topological monodromy ρPH(3,1) : πorb
1 (PH(3, 1)) → Mod3,2 maps the classes of

the standard generators to Dehn twists.

Theorem C and Pinkham’s result are then enough to conclude that the kernels of the monodromies
associated with the strata Hnh(4) and H(3, 1) both contain a copy of a non-abelian free group F2 of rank 2.

Structure of the paper The paper is organized into five sections. In Section 1, we describe the additional
length graph associated with the Garside structure of a spherical-type Artin group A(�), which serves
as δ-hyperbolic metric space for the acylindrical action of A(�). In Section 2, we define geometric
homomorphisms and describe the Wajnryb element, while in Section 3 we prove Theorem B. In Sections
4 and 5, we draw the consequences that the existence of a non-abelian free group of rank 2 implies
for the topological monodromy of strata of abelian differentials. In particular, in Section 5, we prove
Theorems A and C.

2 Spherical-Type Artin Groups
Artin groups are finitely presented groups where the generators and the relations are given by a finite
graph, as in (1). For example, a braid group Bn is an Artin group with defining graph An−1, as in Figure 2.

The quotient of a braid group Bn by the subgroup normally generated by the squares of the standard
generators is the symmetric group of size n [16, Section 9.3]. Similarly, any Artin group A(�) comes with
a Coxeter group W(�) given by the additional relations a2

i = 1 for every standard generator ai. An Artin
group A(�) is of spherical-type if W(�) is finite.
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Monodromy Kernels for Strata of Translation Surfaces | 5

Spherical-type Artin groups are well understood and, for example, admit a solution to the word
problem. The algorithm is given by the Garside structure; see [7] for more details.

2.1 Garside groups
Let G be a finitely generated group and G+ the submonoid generated by the same finite generating set
of G. Furthermore, suppose that G+ trivially intersects (G+)−1. The prefix order on G is the partial order
(G, 	) where a 	 b if and only if a−1b ∈ G+.

If A is the set of elements in G+ that cannot be written as a product of other non-trivial elements of
G+, the monoid G+ is Noetherian if for every x ∈ G+ we have that sup{n ∈ N | x = a1 . . . an, ai ∈ A} is finite.
Then, the group G is Garside if its monoid G+ is Noetherian, the prefix order admits greater common
divisors and lower common multiples and there exists an element 	 ∈ G+ such that:

• the conjugation action by 	 fixes the monoid G+;
• the set {s ∈ G | 1 	 s 	 	} of simple elements is finite and generates G.

All the above assumptions guarantee that every x ∈ G in a Garside group can be uniquely written in
its (left) normal form as x = 	ks1 . . . sn, where each si is a simple element that is not 	, and for every pair
{si, si+1} of adjacent simple elements the greater common divisor between sisi+1 and 	 is exactly si. The
integer k is denoted by inf(x), while n is denoted by sup(x).

Similarly, the suffix order on a Garside group G provides the group with right normal forms, where
elements in G can be uniquely written in the form t1 . . . tn	

k with ti simple elements different from 	;
see [2, Section 2] for more details. In what follows, we will only adopt the prefix order.

We say that x ∈ G absorbs y ∈ G if either sup(y) = 0 or inf(y) = 0 and both the equalities sup(xy) =
sup(x) and inf(xy) = inf(x) hold. In this case, y is absorbed by x and we say that the group element x is
absorbable.

Spherical-type Artin groups admit a Garside structure through the submonoid A(�)+ generated by
the same standard generators of A(�). Simple elements of A(�)+ are words with free-square subwords.
Absorbable elements are not classified but, for example, if A(�) is the Braid group B4, any n-th powers
of a generator absorb the n-th power of a non-adjacent generator. More precisely, we can write

σ n
1 σ n

3 = (σ1σ3)
n,

and observe that σ n
1 absorb σ n

3 .
The Garside element 	 is the least common multiple of all the standard generators and any spherical

type Artin group has an infinite cyclic center generated by a power of 	 [7, Théorème 7.1]. In what
follows, we denote by A(�)	 the �-type spherical Artin group modulo its center.

2.2 Acylindrical hyperbolicity
Let S be the set of simple and absorbable elements of a spherical-type Artin group A(�). The vertices
of the additional length graph CAL(�) are the left cosets of the subgroup 〈	〉 in A(�). Two cosets g1〈	〉 and
g2〈	〉 are adjacent if they differ by the left multiplication of some element in S \{	}. As usual, the graph
comes equipped with the metric where each edge has length one.

Calvez–Wiest proved that CAL(�) is a δ-hyperbolic geodesic metric space [11, Theorem 1] and A(�)	

is an acylindrically hyperbolic group for its action on CAL(�) [10, Theorem 1.3]. More precisely, they proved
the following theorem.

Theorem 2.1. If A(�) is a spherical-type Artin group, then the action of A(�)	 on CAL(�) is
cobounded and non-elementary. Moreover, for every ε > 0, there is a positive real numbers
R(ε) such that for each x, y ∈ CAL(�) with d(x, y) > R(ε), the set

�ε(x, y) = {g ∈ A(�)	 | d(x, gx) < ε, d(y, gy) < ε}
is finite.

It follows from a more general theorem [34, Theorem 1.1] that every g ∈ A(�)	 is either a loxodromic
or an elliptic isometry of CAL(�). In other words, either
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6 | R. Giannini

• the map n �→ gn · x is a quasi-isometry between Z and the orbit of some (equivalently any) point
x ∈ CAL(�), and then g is loxodromic, or

• the action by g has bounded orbits, and g is then elliptic.

Any loxodromic element g ∈ A(�)	 is always weakly properly discontinuous: for every ε > 0 and x ∈
CAL(�) there exists some n ∈ Z such that the set

{g ∈ G | d(x, gx) < ε, d(κnx, gκnx) < ε}
is finite. It turns out that the existence of a loxodromic and weakly properly discontinuous group
element is also a sufficient property to show that a non virtually-cyclic group is acylindrically hyperbolic
[34, Theorem 1.2]. Calvez–Wiest proved Theorem 2.1 by showing that

κ = a4a1a3a2a4a5a4a1a3a2a6a5a5a6a2a3a1a4a5a4a2a3a1a4 (2)

projects to a loxodromic and weakly properly discontinuous isometry in A(E6)	.
However, there is no known sufficient and necessary criterion to determine if a given isometry of

an acylindrically hyperbolic group is loxodromic or elliptic. Nevertheless, Antolin–Cumplido gave a
sufficient condition for an isometry of the additional length graph to have bounded orbits [2, Theorem 2].
We will describe this criterion below.

A parabolic subgroup P of an Artin group A(�) is the conjugate of a subgroup generated by some strict
subset of the standard generators. If P is not a direct product of non-trivial parabolic subgroups, we say
that it is irreducible. The complex of irreducible parabolic subgroups P(�) is defined to have irreducible
parabolic subgroups as vertices. A set of vertices {P1, . . . , Pn} is an n-simplex if one of the following
properties is satisfied for all i 
= j:

• Pi ⊂ Pj or Pj ⊂ Pi;
• Pi ∩ Pj = {1} and [Pi, Pj] = 1.

The complex P(�) can detect elliptic isometries of CAL(�).

Theorem 2.2. Suppose A(�) is an irreducible spherical-type Artin group with more than two
standard generators. The elements preserving some simplex of P(�) act elliptically on CAL(�).
In particular, the normalizers of parabolic subgroups act elliptically on CAL(A).

In Section 4, we are also going to use a technical lemma borrowed from Antolin–Cumplido paper
[2, Lemma 25]. This lemma gives the following estimate for g ∈ A(E6) infinite order element in the
normalizer of a proper standard parabolic subgroup and x ∈ CAL(E6):

d(gκnx, κnx) ≥ d(x, κnx) + K, (3)

for some constant K > 0 and |n| big enough.

3 Geometric Homomorphisms and the Wajnryb Element
Let �b

g be a closed and oriented genus g surface with b boundary components. The mapping class group

Modb
g is the group of isotopy classes of orientation-preserving diffeomorphism of �b

g that pointwise fix
the boundary and where the isotopies are required to fix the components of ∂�b

g pointwise.
A Dehn twist is a diffeomorphism of �b

g supported on the tubular neighborhood of some simple closed
curve, as in Figure 3. Two Dehn twists Tγ1 and Tγ2 commute if and only if γ1 and γ2 are disjoint, and satisfy
the braid relation Tγ1 Tγ2 Tγ1 = Tγ2 Tγ1 Tγ2 if and only if the geometric intersection number of γ1 and γ2 is
exactly 1.

Suppose that � is a finite family of isotopy classes of non-essential simple closed curves on �b
g .

Moreover, suppose that the geometric intersection number of each pair of curves in � is at most 1.
The intersection graph �� of � is the graph with set of vertices � and edges for any pair of intersecting
curves. Then, any pair of Dehn twists about curves in � either commute or satisfy the Braid relation.
The group

Modb
g(�) = 〈Tγ | γ ∈ �〉
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Monodromy Kernels for Strata of Translation Surfaces | 7

Fig. 3. The picture on the left represents the action of a Dehn twist about the curve α on the arc β supported on an
annulus. On the bottom right-hand side, the family of red simple closed curves represents the Humphries
generating set for Mod4 consisting of Dehn twists about the 9 curves shown. The top right-hand side of the
picture shows the action of the Dehn twists about the red curve α on the blue curve β that intersects α once.

Fig. 4. Braid representation of b.

is then the quotient of the Artin group A(��) by some normal subgroup. We will call the quotient map

ϕ� : A(��) � Modb
g(�)

a geometric homomorphism.
It is known that the An and Dn type Artin groups can be embedded into the mapping class group of

some surfaces via a geometric homomorphism [35, Théorème 1]. However, Wajnryb proved that for the
E6-type Artin group this is never the case [40, Theorem 3].

Theorem 3.1. Any geometric homomorphism of an Artin group A(�) is not injective as long as �

contains E6 as a subgraph.

Wajnryb found a non-trivial element w ∈ A(E6) that maps trivially in Mod1
3 via a geometric

homomorphism ϕ�, where the set of curves � has intersection graph E6. However, the result can be
extended to Artin group with defining graph � containing E6, as the embedding of E6 in � induces an
inclusion of A(E6) in A(�) and therefore an inclusion of mapping class groups (see [24] and [16, Theorem
3.18]).

With respect to Figure 1, the Wajnryb element w can be written as a word in the alphabet {a1, b} ⊂ A(E6),
where

b = a4a5a3a4a2a6a5a3a4

is contained in a parabolic subgroup isomorphic to B6. The element b has the following braid represen-
tation.

The image of b via the geometric homomorphism ϕ� is represented by a diffeomorphism that maps
the simple closed curve γ1 to a simple closed curve β that intersects γ1 once. Hence, the Dehn twists Tγ1

and Tβ satisfy the braid relation and the Wajnryb element

w = a1ab
1a1 · (a−1

1 )ba−1
1 (a−1

1 )b,
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8 | R. Giannini

Fig. 5. The curves β and γ1 in blue and red, respectively.

Fig. 6.. Braid representation of the conjugacy action of b on 〈a2, a5〉.

acts trivially on �3,1 as a mapping class. Indeed, its image via ϕ� is precisely Tγ1 TβTγ1 · T−1
β T−1

γ1
T−1

β = 1.
Wajnryb proved that the group element w is non-trivial applying the Garside algorithm. However, it is
not obvious why w should geometrically describe a non-trivial group element in A(E6).

4 Kernels of Geometric Homomorphisms
In this section, we construct a non-abelian free subgroup of rank 2 in the kernel of any geometric
homomorphism of Artin group with defining graph containing E6.

Recall that κ ∈ A(�)	 is the loxodromic isometry of CAL(E6) in (2). In view of the Abbott–Dahmani
result [1, Proposition 2.1], we show that the Wajnryb element w is an elliptic isometry of C(E6), that
none of its powers preserve the quasi-axis A10δ(κ) and that Fix50δ(w) is a bounded set. It will follow that
there is a power n ∈ Z such that the subgroup 〈w, κn〉 is a non-abelian free group of rank 2.

Proof of Theorem B. Let � be a collection of isotopy classes of non-essential simple closed curves
on �b

g that pairwise intersect at most once, and suppose that its intersection graph �� contains E6.
The hypotheses of the Abbott–Dahmani result [1, Proposition 2.1] are satisfied for w and κ by Lemma
4.1, Lemma 4.2, and Lemma 4.3 below. However, the loxodromic isometry κ is not in the kernel of ϕ�.
Nevertheless, if we denote by wκn

the conjugate κ−nwκn, the group 〈w, wκn 〉 is contained in ker ϕ� and it
is also isomorphic to F2, as any combination of letters in {w, wκn } that represents a trivial word is also a
combination of letters in {w, κn}. �

Lemma 4.1. The projection of w in A(E6)	 is an elliptic isometry of the additional length graph
CAL(E6).

Proof. We would like to apply the Antolin–Cumplido criterion from Theorem 2.2. It is enough to show
that the subgroup 〈a1, b〉 normalizes the parabolic subgroup 〈a2, a5〉. The action of b by conjugation on
A(E6) permutes a2 and a5 (see Figure 6). Since a1 is in the centralizer of both a2 and a5, we can conclude
that the group generated by a1 and b preserves the 2-simplex {〈a2〉 〈a5〉} of the complex P(E6). �

Lemma 4.2. No non-trivial power of the Wajnryb element w ∈ A(E6) preserves the 10δ-quasi fixed
axis A10δ(κ) of κ.
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Monodromy Kernels for Strata of Translation Surfaces | 9

Proof. Let x ∈ A10δ(κ) be a vertex of CAL(E6). If we suppose that w, or any of its non trivial power, preserves
A10δ(κ) we would have that

d(wκnx, κnx) ≤ d(wκnx, κnwx) + d(κnwx, κnwx) (triangular inequality)

= d(wκn
x, wx) + d(wx, x) (κ is an isometry)

≤ d(wκn
x, x) + 2d(wx, x) (triangular inequality)

≤ inf
y∈CAL(E6)

d(y, κy) + 10δ + 2d(wx, x), (definition ofA10δ(κ))

for any n ∈ Z, where the last inequality follows from the fact that also κ preserves A10δ(κ). However, the
inequality (3) implies that it cannot happen, as κ is loxodromic. �

Every spherical-type Artin group has a finite K(π , 1) space given by the complement of a hyperplane
arrangement associated with the respective Coxeter group (see, e.g., [15]). In particular, the Artin group
A(E6) is torsion-free [20, Proposition 2.45]. However, the quotient A(E6)	 has torsion elements but the
Wajnryb element w is not a periodic isometry of CAL(E6).

In order to prove the following lemma, we recall that standard generators {a1, . . . , an} of an Artin
group A(�) are related by length-preserving relations and the map

deg : A(�) → Z

an1
i1

. . . ank
ik

�→
k∑

j=1

nk

is a homomorphism. More precisely, the commutator subgroup of A(�) is exactly the kernel of the length
homomorphism deg : A(�) → Z [32, Proposition 3.1].

Lemma 4.3. The Wajnryb element w is not torsion in A(E6)	.

Proof. Suppose there is some m ∈ Z such that wm is central in A(E6) and can be written as 	k for some
integer k. The degree deg(w) is zero and therefore we can write w as a commutator. However, the Garside
element of A(E6) is 	 = (a1a3a5a2a4a6)

6 and has positive length. Hence, we have that

0 = deg(wm) = deg(	k) = k · deg(	)

and k is then forced to be equal to zero. Since A(E6) is torsion-free, the only possibility for the mth-power
of w to be trivial is that m = 0. �

The set Fix50δ(w) is then necessarily bounded.

Lemma 4.4. Let G be a group acting acylindrically on a δ-hyperbolic space X. If FixK(g) is
unbounded, then g has finite order.

Proof. Let x, y ∈ FixK(g) be two points of X such that d(x, y) is greater than the constant R(K) from the
definition of acylindrical hyperbolicity of a group (see Theorem 2.1). Then, the set �K(x, y) is finite and
contains any power of g. �

5 The Topological Monodromy for Strata of Translation Surfaces
In this section, we define the topological monodromy ρC : πorb

1 (C) → Modg,n of the connected
components C of strata of translation surfaces. The relation between the connected components Hnh(4)

and H(3, 1) and the Artin groups of type E6 and E7 is stated at the end of this section.

5.1 Translation surfaces as polygons
As mentioned in the introduction, a translation surface on �g is defined by a genus g Riemann surface
X and a holomorphic non-zero global section ω of the cotangent bundle of X, called abelian differential.
Each ω has 2g − 2 zeros on X counted with multiplicity [41, Theorem 1.2].
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10 | R. Giannini

Fig. 7. A scissor move for a translation surface of genus 2. Sides with the same label are identified by a translation.

By means of a developing map, an isomorphic class of translation structure on �g is equivalently
an equivalence class of polygons on the complex plane. The sides of the polygon are identified in pairs
via translations, such that the quotient space is �g. Two such polygons define isomorphic translation
structures if one can be obtained from the other by a scissor move, as shown in Figure (7). This operation
is performed by cutting one of the two polygons along a straight segment joining two vertices and gluing
back the two cut pieces along identified sides via a translation.

In Section 6, we are going to use this alternative definition of translation surface to describe a
generating set for the orbifold fundamental group πorb

1 (PHnh(4)).

5.2 The strata of marked abelian differentials
Let P be a finite set of points on �g. If (X, ω) is a genus g translation surface with Z(ω) as set of zeros for
ω, a marking f : (�g, P) → (X,Z(ω)) is the isotopy class rel P of a diffeomorphisms. The marked stratum
T H(k) is the set of triples (X, f , ω) where (X, ω) ∈ H(k) and f is a marking of (X, ω).

The topology of each stratum H(k) is inherited by its cover T H(k). Indeed, every marked stratum T H(k)

is equipped with an atlas of charts in C2g+n−1. Let τ be a triangulation of �g where the vertices are points
in P. The set Uτ of triples (X, f , ω) ∈ T H(k) such that f (τ ) is a triangulation of (X, ω) via saddle connections,
namely geodesic arcs intersecting the zeros of ω only at the endpoints. If {γ1, . . . , γ2g+n−1} is a fixed basis
for the relative homology group H1(�g, P,Z), the charts are given by the maps

Uτ → H1(�g, P,C)

(X, f , ω) �→ (γi �→
∫

f∗γi

ω)
2g−n+1
i=1

[5, Proposition 2.1].
The mapping class group Modg acts on the marked strata by precomposition on the markings and

the resulting quotient space gives the quotient topology to the stratum H(k). However, the action of the
mapping class group Modg is not free on the marked strata, but the point-stabilizers are finite groups
[16, Section 12.1]. In particular, the strata of translation surfaces are orbifolds.

In general, each H(k) is not connected and its number of connected components is at most 3 [23,
Theorem 1]. The strata H(2g − 2) and H(g − 1, g − 1) both have a hyperelliptic connected component,
which is isomorphic to quotients of configuration spaces of points on the Riemann sphere by the action
of the group of some roots of unity [8, Theorem 2.3]. On the other hand, studying the topology of the
non-hyperelliptic components proves to be more intricate.

5.3 The topological monodromy map
If M is a connected manifold and G acts smoothly and properly discontinuously on M, the quotient space
M/G is a (good) orbifold. The orbifold fundamental group πorb

1 (M/G, p) based at p ∈ M is the group of pairs
(η, g), where g ∈ G and η is a homotopy class of arcs with endpoints p and g · p. The group operation on
πorb

1 (M/G, p) is given by the composition law (η1, g1)(η1, g1) = (η1 ∗ (g1 · η2), g1g2).
Let (X, ω) be a translation surface in some connected components C of a stratum H(k) and let us

fix a marked translation surface (X, f , ω) ∈ T H(k). If Mg,n is the moduli space of genus g Riemann
surfaces with n marked points, the forgetful map C → Mg,n induces a homomorphism between orbifold
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Monodromy Kernels for Strata of Translation Surfaces | 11

fundamental groups

ρC : πorb
1 (C, (X, f , ω)) → πorb

1 (Mg,n, X),

where πorb
1 (Mg, X) is just Modg,n [16, Section 12.5.3]. Geometrically, the homomorphism ρC keeps track of

the change of marking performed along a loop (η, g). The translation structure carried along η coincides
at the endpoints of the path in T H(k) but the marking might change. Indeed, every path η in T H(k)

with endpoints (X, f , ω) and (X, f ′, ω) is mapped to the mapping class f−1f ′ by ρC.
Calderon–Salter proved that in genus g ≥ 5 and for every non-hyperelliptic component C, the image

of ρC in Modg,n is a framed mapping class group [9, Theorem A]. The framed mapping class groups are
stabilizers of winding number functions defined on the marked translation surface (X, f , ω) that serves
as a base point for the monodromy ρC . Calderon–Salter result does not cover the case of the strata
Hnh(4) and H(3, 1). However, in this article, the focus is on the kernels of the monodromy maps and not
on the images.

5.4 Projective strata of abelian differentials
Any non-zero complex number is a composition of a rotation and a homothety that acts on the strata
of translation surfaces by rotating and dilating the defining polygons. The C∗-action on the strata
H(k) is continuous and preserves Z(ω) pointwise for every (X, ω) ∈ H(k). A projective stratum PH(k) is
the quotient of H(k) by the action of C∗. Equivalently, every projective stratum PH(k) parameterizes
pairs (X, D) where X is a smooth projective curve and D is a canonical positive divisor with prescribed
multiplicities given by representative abelian differentials [26].

In particular, for any connected component C of the stratum H(k), the quotient map q : C → PC
induces a homomorphism between orbifold fundamental groups q∗ : πorb

1 (C) → πorb
1 (PC). The topological

monodromy map ρPC : πorb
1 (PC) → Modn

g can then be also defined for PC as for C. The monodromies ρC

and ρPC fit inside the commutative diagram below

For the stratum components in question, Looijenga–Mondello proved the following [26].

Theorem 5.1. The orbifold fundamental groups of the projective connected components PHnh(4)

and PH(3, 1) are isomorphic to A(E6)	 and A(E7)	, respectively.

6 The Geometric Monodromy Maps of PHnh(4) and PH(3, 1)

In this section, we consider the topological monodromy homomorphisms of the projective strata
PHnh(4) and PH(3, 1). In Theorem 6.1, we recall the definition of some standard generators of
πorb

1 (PHnh(4)) that map via the homomorphisms

ρPHnh(4) : πorb
1 (PHnh(4)) → Mod3,1

to Dehn twists. Discussions related to Theorem 6.1 are subject of an ongoing work by Calderon–
Cuadrado–Salter; for instance, see [14]. The main ideas that underline Theorem 6.1 come from the
theory of versal deformation spaces for plane curve singularities [3]. For the sake of completeness, we
are going to include a similar description of ρPH(3,1) closely following the work of Calderon–Cuadrado–
Salter. In particular, we prove that the monodromy

ρPH(3,1) : πorb
1 (PH(3, 1)) → Mod3,2

is geometric. However, the result of Calderon–Cuadrado–Salter gives explicit generators for πorb
1 (PHnh(4)).

This finite set of generators arises from the algebro-geometric theory of versal deformation spaces and
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12 | R. Giannini

Fig. 8. A full cylinder shear action on an L-shaped translation surface of genus 2, where opposite sides of the
polygon are identified via a translation.

Fig. 9. An S-shaped translation surface in Hnh(4). The red and blue segments represent the core curves of vertical
and horizontal cylinders ξi, respectively. Their intersection graph is E6.

can be described as a finite set of cylinder shears; see Figures 8 and 9. On the other hand, Theorem C
is enough to prove the existence of a non-abelian free group of rank 2 in the kernel of ρPH(3,1).

Proof of Theorem A. The copy of the non-abelian free group of rank 2 we constructed in Theorem B is
in the kernel of any geometric homomorphism A(E6) → Mod3,1, but it is also a non-abelian free group in
the kernel of the geometric map A(E6)	 → Mod3,1, which is the same as ρPHnh(4). Similarly, the same copy
of the non-abelian free group of rank 2 can be defined in the kernel of the geometric homomorphism
A(E7)	 → Mod3,2, which is the same as ρPH(3,1). �

6.1 The monodromy of the stratum PHnh(4)

A cylinder ξ on a translation surface is an isometric embedding of an Euclidean cylinder whose boundary
is a union of saddle connections. In particular, the interior of ξ does not contain any singular point.

If the embedded cylinder ξ is isometric to (R/aZ) × [0, b] for some a, b ∈ R+, the core curve of ξ on
the translation surface (X, ω) is the isotopic class of the simple closed curve, which is the image of
(R/aZ) × {t} in (X, ω) for some t ∈ (0, b).

Suppose ξ is a horizontal cylinder on a translation surface (X, ω). In particular, the cylinder ξ can be
represented as a rectangle [0, b] × [0, a] embedded in a defining polygon of (X, ω) with a pair of sides
identified. Suppose that the ratio between its height a and its weight b is R. If t ∈ [0, R], a cylinder shear
along ξ is the result of the action by the matrix

St =
[

1 t
0 1

]

on the embedded parallelogram of the polygon representative. Analogously, by taking a suitable
conjugate of St one can define a cylinder shear along non-horizontal cylinders.

Let now f : �g → X be a marking of (X, ω). The full shear SR acts on (X, f , ω) preserving the translation
structure of X, as the resulting polygon differs from the initial one by a scissor move, as in Figure (8).
However, the matrix SR changes the marking f by a Dehn twist along the core curve of the cylinder ξ .
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Monodromy Kernels for Strata of Translation Surfaces | 13

Hence, a cylinder shear is an orbifold loop, and it is mapped via the topological monodromy map of the
connected component containing (X, ω) to a Dehn twist.

The following result is known by experts. It appears as a consequence of Henry Pinkham’s thesis [36]
and can also be found in [17, Proposition 6.2].

Theorem 6.1. Let {ξ1, . . . , ξ6} be a collection of embedded cylinders of a translation surface (X, ω) ∈
Hnh(4) such that the family of the associated core curves have an E6-type intersection graph.
Then, there exists a map � : A(E6) → πorb

1 (PHhn(4)) that associates each standard generator of
A(E6) to a full cylinder shear and can be extended to a well-defined surjective homomorphism
with kernel the center of A(E6).

The homomorphism � is well-defined. Every pair of adjacent standard generators in A(E6) is mapped
to cylinder shears along embedded cylinders with core curves intersecting once; every pair of standard
generators that commute is mapped to cylinder shears along disjoint flat cylinders.

Theorem 6.1 shows that πorb
1 (PHnh(4)) is generated by a finite family of cylinder shears. However,

the group πorb
1 (Hnh(4)) contains orbifold loops that cannot be generated by cylinder shears only. These

are loops that cyclically permute the prongs around the singularity. Calderon–Salter [9, Corollary 7.6]
showed that there exists an epimorphism πorb

1 (Hnh(4)) � Z2 with kernel containing those orbifold
loops that do not permute the prongs at the singularity. In particular, cylinder shears cannot cyclically
permute any prong configuration.

6.2 The monodromy of the stratum PH(3, 1)

Every genus 3 non-hyperelliptic Riemann surface X can be embedded in CP2 as the vanishing locus
of a smooth plane quartic [31, Chapter VII, Proposition 2.5]. Such embedding is defined as the unique
projective embedding of X in CP2 corresponding to the linear system of positive canonical divisors on
X, up to linear change of coordinates. By abuse of notations, we identify every genus 3 non-hyperelliptic
Riemann surface X with its image in CP2.

A f lex of a smooth quartic X is a point p ∈ X where the intersection multiplicity of X with its tangent
space is exactly 3. A plane quartic X with a flex point p can always be reparametrized in such a way
that p is the point at infinity [0 : 0 : 1] and its vanishing polynomial is of the form

Qs = x3z + y3x + s1xyz2 + s2xz3 + s3y4 + s4y3z + s5y2z2 + s6yz3 + s7z4 ∈ C[x, y, z],

for some s = (s1, . . . , s7) ∈ C7 [37, Proposition 1].
However, there are some strata H(k1, . . . , kn) where all the underlying Riemann surfaces are non-

hyperelliptic. This is the case if all the odd numbers in the partition (k1, . . . , kn) appear an odd number
of times, since every positive canonical divisor on a hyperelliptic Riemann surface is the pullback of a
divisor on the Riemann sphere CP1 [19, Chapter IV, Proposition 5.3]. In particular, the Riemann surfaces
in the stratum H(3, 1) are all non-hyperelliptic.

Proposition 6.2. Let (X, ω) be a translation surface in H(3, 1). Then X has a flex. In particular, the
Riemann surfaces at each point in H(3, 1) are vanishing loci V(Qs) of quartics of the form Qs,
up to isomorphism.

Proof. Since X is a genus 3 projective smooth curve, the positive canonical divisors associated with an
abelian differential (X, ω) ∈ H(3, 1) coincide with divisors coming from lines Lω in CP2 that intersects X
in two points. One of these points, say p, has multiplicity 3; then Lω is necessarily the tangent line to X
in p. In particular, X has a flex at p and is isomorphic to the vanishing locus of a quartic Qs. �

On the other hand, every smooth vanishing locus V(Qs) comes with an abelian differential in H(3, 1)

as follows.
The vanishing loci V(Qs) are compact Riemann surfaces and the points at infinity can be removed to

get a surface diffeomorphic to �3,2. Equivalently, we can evaluate the homogeneous polynomial Qs at
z = 1 to get a polynomial qs ∈ C[x, y] and the respective affine vanishing locus V(qs) in C2.

Since every V(qs) is the zero level set of a holomorphic function, the two complex derivatives ∂xqs and
∂yqs satisfy ∂xqsdx + ∂yqsdy = 0. Moreover, the derivatives ∂xqs and ∂yqs cannot simultaneously vanish
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14 | R. Giannini

Fig. 10. A quartic X with a flex in p.

since V(qs) is smooth. Hence, the abelian differential

ωs(x0, y0) =
⎧⎨
⎩

dx
∂yqs(x0,y0)

if ∂yqs(x0, y0) 
= 0

− dy
∂xqs(x0,y0)

if ∂xqs(x0, y0) 
= 0

is well-defined and non-vanishing at every point (x0, y0) ∈ V(qs). In particular, the volume form ωs can
be holomorphically extended to be zero on the two points at infinity [1 : 0 : 0] and [0 : 1 : 0], where ωs

vanishes with multiplicity 3 and 1, respectively.
Looijenga observed that a line intersecting V(Qs) with multiplicity 3 is determined solely by the

parameter s [25, Introduction]. In particular, up to a rescaling factor, the abelian differential ωs is the
unique holomorphic 1-form on V(Qs) such that the pair (V(Qs), ωs) is a translation surface in H(3, 1).

In what follows, we are going to denote by Mflex
3 the moduli space of non-hyperelliptic genus 3

Riemann surfaces with 2 marked points given by a flex p ∈ X and the unique point of intersection
between TpX and X with multiplicity 1 (Figure 10).

Proposition 6.3. The forgetful map

PH(3, 1) → Mflex
3

(X, [ω]) �→ X

is an isomorphism on orbifolds. In particular, it induces an isomorphism

θ1 : πorb
1 (PH(3, 1)) → πorb

1 (Mflex
3 )

that commutes with the monodromies ρflex : πorb
1 (Mflex

3 ) → Mod3,2 and ρPH(3,1) :
πorb

1 (PH(3, 1)) → Mod3,2 of the respective moduli spaces.

Proof. Let PHTeich(3, 1) be the Teichmüller cover of the projective stratum PH(3, 1). If T flex
3 is the

Teichmüller cover of Mflex
3 , then the forgetful map

PHTeich(3, 1) → T flex
3

(X, f , [ω]) �→ (X, f )

is a bijective quotient map and therefore a homeomorphism. Moreover, the monodromies ρflex and
ρPH(3,1) share the same image in Mod3,2 as every marking of a Riemann surface in PH(3, 1) appears as a
marking of a Riemann surface in Mflex

3 , and viceversa. Therefore, the forgetful map PHTeich(3, 1) → T flex
3

induces an orbifold isomorphism and in particular an isomorphism between the respective orbifold
fundamental groups. �

The collection of parameters s ∈ C7 representing smooth quartics Qs is an Eilenberg–Maclane
space for the spherical-type Artin group A(E7). In particular, the space {s ∈ C7 | V(Qs) is smooth} has
fundamental group isomorphic to A(E7) and can be homeomorphically realized as the complement
of the complexified hyperplane arrangement ∪i∈IHi of the root system E7 modulo its reflection group
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Monodromy Kernels for Strata of Translation Surfaces | 15

W(E7) [3, Proposition 9.3]. We will briefly describe the homeomorphism between the space {s ∈ C7 |
V(Qs) is smooth} and the quotient of C7 \ ∪i∈IHi by the group W(E7), as the construction is going to be
used in Lemma 6.4.

The C-algebra of W(E7)-invariant polynomials in C[x1, . . . , x7] is generated by some homogeneous
polynomials q1, . . . , q7 with degrees di = deg(qi) uniquely determined by the finite group W(E7). The
basis {q1, . . . , q7} maps (in a neighborhood of zero) the quotient space C7/W(E7) to C7 by an isomorphism
τ : C7/W(E7) → C7 of complex manifolds. In particular, the image of the hyperplane arrangement ∪i∈IHi

modulo W(E7) is the hypersurface � = {s ∈ C7 | V(Qs) is singular} defined as the vanishing locus of a
weighted homogeneous polynomial with weights given by the degrees (d1, . . . , d7) of the homogeneous
polynomials {q1, . . . , q7}; see, for example, [33, Introduction] or [4, Chapter 3].

The complement C7 \ � comes with a surface bundle with fibers diffeomorphic to �2
3 , as follows; for

more details, see [14, Section 2]. The intersection of the space {(p, s) ∈ C2 × (C7 \ �) | p ∈ V(qs)} with a
sufficiently small closed polydisk D2 ×D7 in C2 ×C7 is the total space of a fiber bundle with base space
C7 \ � and fibers diffeomorphic to �2

3 . It turns out that the monodromy

ρ : π1(C
7 \ �) → Mod2

3

is a geometric homomorphism.
If we glue a pair of open punctured disks to the boundary components of �2

3 we obtain a punctured
surface diffeomorphic to �3,2. This procedure defines the capping homomorphism Cap : Mod2

3 → Mod3,2

by extending the mapping classes in Mod2
3 to the be identity on the glued punctured disks. The proof of

Theorem C relies on the existence of a surjective homomorphism

θ : π1(C
7 \ �) → πorb

1 (PH(3, 1))

such that the two monodromies ρ : π1(C
7 \ �) → Mod2

3 and ρPH(3,1) : πorb
1 (PH(3, 1)) → Mod3,2 fit inside

the following commutative diagram:

(4)

Let us define θ : π1(C
7 \ �) → πorb

1 (PH(3, 1)). We do so by composing two homomorphisms, where
one of them has already been given in Proposition 6.3. In what follows, we construct a surjective
homomorphism θ2 : π1(C

7 \�) → πorb
1 (Mflex

3 ). Then, the composition θ−1
1 ◦ θ2 will be the homomorphism

θ we need in order to prove Theorem C.
A pair of smooth quartics Qs and Qt might define the same isomorphism class of a Riemann surface.

This is the case if and only if the parameters s and t are related by a weighted projective relation [37,
Proposition 1]. In particular, the vanishing loci V(Qs) and V(Qt) are isomorphic if and only if there exists
λ ∈ C∗ such that

(s1, s2, s3, s4, s5, s6, s7) = (λt1, λ3t2, λ4t3, λ5t4, λ6t5, λ7t6, λ9t7). (5)

The above relation is well-defined on �. Indeed, the defining weighted polynomial of � has weights
compatible with the weights of the relation in (5); we can see it by noticing that the weights given in (5)
coincide with half the degrees (d1, . . . , d7) of the homogeneous polynomials q1, . . . , q7 [21, Section 3.7].
In particular, the above relation is also well defined on C7 \ �.

Topologically, the weighted projective space obtained from the quotient of C7 \ � by the relation in
(5) can be realized as a moduli space. In particular, it can be seen as the moduli space Mflex

3,∂ of genus
3 Riemann surfaces with 2 boundary components and isomorphism classes given by the fibers of the
surface bundle associated with C7 \ �.

Lemma 6.4. The quotient map l : C7 \ � → Mflex
3,∂ induces a surjective homomorphism l∗ : π1(C

7 \
�) → π1(Mflex

3,∂ ) on the respective fundamental groups.

Proof. The weighted projective relation defined in (5) on C7 pulls back to a projective relation on the
quotient C7/W(E7) via the isomorphism τ : C7/W(E7) → C7. In other words, the isomorphism τ induces
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16 | R. Giannini

a homeomorphism between the weighted projective space defined by (5) and CP6 modulo the induced
linear action of W(E7).

Then, the quotient map l can also be seen as the map

l : C
7 \ ∪i∈IHi�W(E7)

−→ P(C7 \ ∪i∈IHi)�W(E7),

where P(C7 \ ∪i∈IHi) is the projectivization of the space C7 \ ∪i∈IHi.
The map l descends from the fiber bundle C7 \ ∪i∈IHi → P(C7 \ ∪i∈IHi) via the free action of the finite

group W(E7) and has connected fibers. In particular, the map l is a fiber bundle with connected fibers
and the induced homomorphism on the fundamental groups is surjective by applying the long exact
sequence associated with l. �

The Teichmüller cover of Mflex
3,∂ will be denoted by T flex

3,∂ in the following proof.

Proposition 6.5. Let ρflex : πorb
1 (Mflex

3 ) → Mod3,2 be the monodromy of Mflex
3 and let ρ : π1(C

7 \
�) → Mod2

3 denote the monodromy of C7 \ �. There exists a surjective homomorphism θ2 :
π1(C

7 \ �) → πorb
1 (Mflex

3 ) that commutes with the respective monodromies. In particular, the
following diagram commutes:

Proof. The surjective homomorphism l∗ : π1(C
7 \ �) → π1(Mflex

3,∂ ) is induced by the quotient map, and
in particular it is induced by a bundle map between surface bundles with isomorphic fibers. Therefore,
the monodromies of C7 \ � and Mflex

3,∂ must commute through l∗.
The group Mod2

3 is torsion-free and therefore the orbifold structure of Mflex
3,∂ is not singular. In

particular, the orbifold fundamental group of Mflex
3,∂ can be identified with its fundamental group

π1(Mflex
3,∂ ). In other words, if ρflex

∂ is the monodromy of the moduli space Mflex
3,∂ , the diagram

must commutes.
Suppose now T flex

3,∂ and T flex
3 are the Teichmüller covers ofMflex

3,∂ andMflex
3 , respectively. There exists a

map T flex
3,∂ → T flex

3 given by collapsing the lengths of the boundary components to zero. In particular, this
map is the restriction of the classic projection given on the respective global Teichmüller spaces where
the preimage of T flex

3 is exactly T flex
3,∂ . Hence, the induced map π1(T flex

3,∂ ) → π1(T flex
3 ) on the fundamental

groups is surjective.
Consider the images of ρflex

∂ in Mod2
3 and of ρflex in Mod3,2. Every marking of a Riemann surface

in Mflex
3 appears as the image of a marking associated with a Riemann surface in Mflex

3,∂ . Then, the
restriction of the homomorphism Cap : Mod2

3 → Mod3,2 on im ρflex
∂ is surjective onto im ρflex and the

homomorphism πorb
1 (Mflex

3,∂ ) → πorb
1 (Mflex

3 ) must be surjective too. �

Our final goal is to prove Theorem C. In particular, we will show that the monodromy ρPH(3,1) is
geometric. We are going to prove Theorem C using the following lemma.

Lemma 6.6. Every surjective endomorphism of A(E7)	 is an isomorphism.

Proof. Both A(E7) and the automorphism group Aut(A(E7)) are residually finite [6, Theorem 1] because
A(E7) is linear [12]. Hence, the inner subgroup A(E7)	 of Aut(A(E7)) is both finitely generated and
residually finite. In particular, we can conclude that every surjective endomorphism of A(E7)	 is an
isomorphism [30, Chapter III, Proposition 7.5]. �
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Proof of Theorem C. Since C7 \ � is an Eilenberg–Maclane space for the Artin group A(E7), the
fundamental group π1(C

7 \ �) is isomorphic to A(E7). Moreover, from Theorem 5.1, we know that
πorb

1 (PH(3, 1)) is isomorphic to A(E7)	.
Let us consider the surjective homomorphism θ : π1(C

7 \ �) → πorb
1 (PH(3, 1)) as the composition

π1(C
7 \ �)

θ2−→ πorb(Mflex
3 )

θ−1
1−−→ πorb

1 (PH(3, 1)).

The group A(E7)	 is centerless. Therefore, the kernel of the homomorphism θ : A(E7) → A(E7)	

contains the subgroup 〈	〉. This implies that the induced map

θ : A(E7)	 → A(E7)	

is a well-defined surjective endomorphism of A(E7)	 and therefore an isomorphism by Lemma 6.6.
Since θ commutes with the monodromies ρ : π1(C

7 \�) → Mod2
3 and ρPH(3,1) : πorb

1 (PH(3, 1)) → Mod3,2

through the capping homomorphism Cap : Mod2
3 → Mod3,2, we can conclude that ρPH(3,1) is geometric

since ρ is. �
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