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Trading strategies are an interesting topic of financial research. Moving Average Convergence Divergence
(MACD) indicator is susceptible to performing worse than expected in unstable financial markets. This paper
first presents a data-driven Interpretable Fuzzy Deep Neural Network (IFDNN) that provides insight into neural
network inferences using fuzzy logic. Fuzzy rules are induced from the inference process of Neural Networks.
Next, a learning and processing framework is proposed using IFDNN to detect trend reversals by forecasting
look-ahead prices. IFDNN not only learns the drifts and shifts in market patterns, but also provides traders an
option to dive into the reasoning behind why Neural Networks predict certain values. Genetic Algorithms are
used to optimise trading parameters of the proposed framework. The proposed framework can perform portfolio
rebalancing. The effectiveness of the framework is evaluated on three financial market indexes. The whipsaw
effects cause frequent entrances and exits from the market. In this paper, a custom percentage oscillator is
implemented to avoid this issue. The performances of the proposed framework using f-MACD are compared
with those of the vanilla MACD. Two types of Reinforcement Learning models, Advantage Actor Critic and
Deep Deterministic Policy Gradient are incorporated into the proposed framework with results compared.

1. Introduction

Financial stock prices are crucial indicators relevant to the health of
the economy. To be able to understand the risks or trends in the market,
analytical methods are required to provide not only accurate predic-
tions, but also robust strategies with good performance in different
market conditions. Conventionally, financial market price predictions
are performed by statistical forecasting methods, such as time series
analysis [1], autoregressive models [2] and machine learning meth-
ods [3,4]. Such models produce results based on mathematical and
computational theory, which is not easily understood by investors.
Furthermore, in the case of neural networks, although the accuracy
advancements of deep neural network and training models are obtained
significantly, the complexity of deep architecture keeps increasing by
stacking more layers [5]. Challenges that are caused by the black box
nature of deep structures surface out on the human interpretability for
the insights how deep neural networks are connected to derive the re-
sults [6-9]. The reasoning and decision-making process of the networks
are not straightforwardly interpretable by human users [10,11]. On the
other hand, fuzzy systems are able to provide semantic meanings by
having fuzzy sets and corresponding linguistic labels, but they lack the
learning ability that neural networks have.

* Corresponding author.

Fuzzy neural networks have been applied in many applications [12-
15], which aim to address the challenges of black box to understand the
inner workings of a deep neural network. By integrating fuzzy systems,
the inputs and outputs act as antecedents and consequents, with fuzzy
rules endowing the reasoning performed by the deep structure. Fuzzy
rules aim to provide insights to deep learning in semantic forms that
are human interpretable.

In this paper, we first present the proposed Interpretable Fuzzy Deep
Neural Network (IFDNN) adopts the data-driven approach to discover
patterns automatically, exploiting the advantage of superior learning
abilities in neural networks. It does not require prior assumptions
regarding input data and does not require domain expertise for defining
the fuzzy partition space. This motivates the idea of an IFDNN, which
alleviates the aforementioned issues. By including an intelligent system
such as fuzzy logic [16], it expands the capability of a vanilla neural
network by including reasoning. Thus, fuzzy neural networks combine
the interpretability of a fuzzy inference system with the high accuracy
performance of a neural network [17-19]. The IFDNN is integrated
with a fuzzy system, namely the Pseudo Outer-Product Based Fuzzy
Neural Network (POPFNN) [20] with a deep Long Short-Term Memory
(LSTM) [21] neural network to predict financial market index prices.
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The proposed IFDNN model is a five-layer hybrid fuzzy neural network
that forecasts closing prices using the deep structure and extracts mean-
ingful information from the input data and output predictions using
fuzzy rules. Furthermore, to quantify the relative importance of fuzzy
rules, Hebbian Learning is employed to obtain the pseudo-weights,
allowing the rules to be ranked with respect to one another.

Algorithmic finance research combines computer science and fi-
nance, where decisions can be made dynamically based on certain
market conditions. Algorithmic trading or automated trading is de-
signed to follow certain guidelines and decide when to perform a trade,
at which trading price and quantity [22]. This can be done at accuracies
and speeds that human traders cannot achieve [23,24]. There have
been many works focused on using a variety of indicators to better
tune trading strategies for obtaining better results [25-27]. Machine
learning and neural networks are able to handle concept drift in time
series data [28,29], including financial market data [30,31].

Algorithmic trading needs to fine tune parameters to improve trad-
ing performance. The process of finding the best combination of pa-
rameters for different algorithms is usually time-consuming and com-
putationally intensive. This is because the model would need to be
trained repeatedly on each permutation of parameters. This process
could be done manually or automatically. However, the manual method
is tedious and impractical when there are too many combinations
of parameters to test. On the other hand, automated hyperparameter
tuning is where ideal parameters are found using an algorithm that
automates and optimises the process.

There have been many reported methods for automated hyper-
parameter tuning, including Grid Search, Random Search [32],
Bayesian [33], Gradient-based [34], Genetic Algorithms (GA) [35—
38], and other Evolutionary Algorithms (EA) [39]. EA is able to
handle large search spaces and provide good results for reasonable
computational time, which is advantageous over exhaustive or manual
search techniques [40]. As a subset of EA, GA is often employed
to optimise hyperparameters of machine learning models [9,35]. GA
is reported to perform well for parameters optimisation in time se-
ries algorithms [36]. GA is utilised for hyperparameters tuning of
Support Vector Regression for predicting the prices of five market
indexes [35]. GA is employed to search optimal or sub-optimal trad-
ing rules to derive decisions in a stock trading system [41]. Two
technical analysis indicators are optimised by GA in the rule-based
trading algorithms for financial portfolio rebalancing [37]. GA acts
as the optimiser on the feature selections for a machine learning
method, Extreme gradient boosting consisting of three-stage feature
engineering process, to predict the stock price trend [9]. GA is applied
to help obtain the optimal portfolio for a multi-period mean-VaR
model [38].

A portfolio is a collection of financial investments including stocks,
bonds, commodities, cash and exchange traded funds (ETFs). As an
important concept in portfolio management, diversification helps with
reducing risks by allocating investments among a variety of financial
categories. The aim is to maximise returns by investing in different
areas that react differently towards the same event. Dynamic port-
folio rebalancing is the process of changing the weights of a port-
folio of assets over a time span. It involves periodically buying or
selling assets in a portfolio, according to changes of dynamic mar-
ket conditions. If a certain market is performing better than others,
the investor would increase his portfolio weights in that asset while
reducing the others. Many machine learning methods have been de-
ployed for optimal portfolio allocation, including evolutionary compu-
tation [42], GA [43], K-Means [44], Markov-Driven strategies [45], and
Reinforcement Learning (RL) [4,46].

In the portfolio rebalancing, the buy and sell decisions will be
derived according to the price trend reversals. As such, the detection
accuracy of trend reversals is very important. Technical analysis using
indicators plays an important role in stock price predictions. Time series
analysis is a main method for forecasting future share prices that deals
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with a series of price data gathered during certain time frames [47].
Future price behaviours can be extracted according to the previously
observed patterns. Artificial neural networks (ANN) including Recur-
rent Neural Networks (RNN) are one of the most popular approaches for
the predictions [47,48]. Time series stock price data is inherently noisy
which may affect the performances of RNN. Features extraction steps
using Ensemble Empirical Mode Decomposition are added as a prepro-
cessor to decompose the raw data first, before feeding into RNN [48].
A hybrid ANN is introduced with GA utilised for feature selection of
input variables for stock price predictions that performs better than
another time series model, autoregressive integrated moving average
(ARIMA) [47]. LSTM as one of the RNN models is the most preferred
implementation for the predictions of financial stock prices, where
many prior works are reported in literature [49-51]. According to the
survey, LSTM is the most dominant architecture in time-series financial
price forecasting [49,51]. But overfitting is a potential issue for LSTM
caused by the increment of the number of variables [49,52]. The dimen-
sion reduction is one of the solutions to address overfitting. However,
the dimension reduction may cause information loss and reduce the
accuracy or interpretability [49]. A prior work is reported to combine
LSTM and random forest, as random forest is robust to utilise many
variables without overfitting [49]. AdaBoost-LSTM ensemble model is
introduced to reduce overfitting for cryptocurrency trading [52]. Two
neural networks are combined with a Gated Recurrent Unit (GRU) at
the first layer and a LSTM at the second layer to increase the prediction
performance for future price predictions of foreign currencies [53].
While ANN, LSTM, or deep networks approaches achieve good accura-
cies for time series price forecasting, they still encounter the challenges
on the interpretability of black box deep structure.

GA is reported to optimise technical analysis indicators in stock
trading strategies. Trading strategy of foreign currencies using a di-
rectional changes (DC) indicator for trend reverses optimised by GA
is introduced [54]. Typically, traders use different technical indicators
to determine the strength or weakness of stock prices to predict future
price movements [37,55,56]. Several popular trading technical indica-
tors are employed for financial markets forecasting, including simple
moving average (SMA), Moving Average Convergence and Divergence
(MACD), Relative Strength Index (RSI), Price Percentage Oscillator
(PPO) and Bollinger Bands [49,57]. Among these technical indicators,
MACD is one of the most popular and widely used indicators by many
investors and traders worldwide [50,57-59]. MACD is an indicator that
can derive the information on both trend and momentum of stock
prices [60]. MACD can be used to determine the short-term trend
reversal of the market [61]. The MACD indicator is employed to predict
the trend of 30 stock prices in DOW index [51]. Buy and sell signals
are generated using the MACD indicator in experiments with three
major indexes: Ibex35, DAX and Dow Jones Industrial [62]. Traditional
MACD model parameters may not be optimal. Parameters of MACD
can be selected by GA or other methods [59], where trading strategies
based on improved MACD are reported for Japanese Nikkei 225 Futures
Market. It is shown that the selections of MACD parameters are relevant
to the validity and sensitivity of MACD impacting to the investment
returns, where higher returns are derived from the GA optimised MACD
indicator [57,58]. A combination of two technical indicators: MACD
histogram (MACDH) and RSI whose parameters are optimised by GA is
reported for portfolio rebalancing [37]. It shows the good potential of
the combination of GA optimisation with multiple technical indicators
for trend reversal forecasting in financial markets.

This paper will be using the MACD indicator, which is designed to
reveal changes in the strength, momentum and direction of a trend in
price. The MACD indicator has been shown to be effective in identifying
shifts in trend reversals [63-65]. The downside of the MACD indicator
is that it is a lagging indicator derived from historical price data. The
lagging MACD indicator could be enhanced if we use future predicted
prices to replace a part of the historical price data in the computations.
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A problem would occur in algorithmic trading if there are overly
frequent entrances and exits within the market caused by whipsaw
effects [66]. This would not be optimal if the net profits do not exceed
commission costs. A learning and processing framework is proposed in
this paper, which implements a custom percentage oscillator to set a
threshold before a buy or sell action can occur. In order to decide and
optimise the different window sizes for MACD and thresholds for the
custom percentage oscillator, an evolutionary optimisation technique,
GA, is utilised in the proposed framework.

There are many ways to diversify a portfolio. The proposed learning
and processing framework handles portfolio rebalancing and focuses on
managing financial assets consisting of indexes from different interna-
tional markets. Thus, market trends would depend on the economy of
different countries.

RL is able to solve dynamic optimisation problems, such as port-
folio allocation, in a model-free way, alleviating the assumptions often
required for other approaches [67]. For example, requiring the assump-
tion that the asset returns are normally distributed or that the utility
function is quadratic. This will not usually be the case in a realistic
financial market. RL will be used for the portfolio rebalancing in the
proposed framework.

In the proposed learning and processing framework, the IFDNN
architecture is employed to detect trends reversals by predicting look-
ahead prices. The IFDNN is able to provide interpretability over black-
box machine learning algorithms, such as vanilla deep neural networks.
The interpretability is important for fields like financial trading, as
traders and investors need to know why the deep neural network
arrives at a prediction, which can be endowed by the fuzzy logic
integrated within IFDNN. This paper will use 15 forecasted look-ahead
values derived from the IFDNN to detect trend reversals in closing
price. It will be integrated into the traditional MACD indicator, to
develop an enhanced MACD indicator named forecasted MACD (f-
MACD) indicator. The f-MACD indicator aims to reduce the time lag
and push it closer to hindsight MACD for a more accurate strategy.

The main contributions of this paper are as follows:

1. An interpretable deep structure, IFDNN is created, using fuzzy
logic for concept generation and Hebbian Learning to tag quan-
tifiable pseudo-weights to rule nodes, in parallel with a deep
neural network. IFDNN is robust in learning data drifts and
shifts.

2. A learning and processing framework is proposed. It uses the
IFDNN to predict the look-ahead prices up to 15 days, which
is utilised by the forecasted MACD indicator to improve the
performance.

3. In the proposed learning and processing framework, the im-
proved trading strategy using f-MACD is presented with param-
eters being optimised by the GA and custom price percentage
oscillator.

4. Two types of RL models in the proposed framework are em-
ployed to conduct the portfolio rebalancing for financial in-
dex assets, with the results of the f-MACD and Vanilla MACD
compared and analysed.

The remaining parts of the paper are organised as follows: Section 2
introduces the background of relevant theoretical concepts. Section 3
describes the proposed IFDNN architecture, followed by the proposed
learning and processing framework using the IFDNN for predictions.
Experiments and results analysis are discussed in Section 4, where
Section 4.2 presents the comparison results of three types of MACD
indicators. Section 4.3 depicts experimental results of the proposed
framework in trading of individual finance index assets. Section 4.4
presents experimental results of the proposed framework in portfolio
rebalancing of three finance index assets, using two types of RL models.
Section 5 concludes the paper and discusses the directions on our future
works.
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2. Background

This section provides an overview of concepts relevant to the pro-
posed learning and processing framework, including MACD, GA and
RL.

2.1. Moving average convergence divergence

MACD is calculated from moving averages of historical closing
prices. It is the difference between the fast exponential moving average
(EMA) and the slow EMA, which creates a first-order momentum
oscillator. EMA can be computed using Eq. (1):

_ 2
T N+1 '6))
EMA(t) = price(t) x k + EMA( — 1) x (1 — k)

where k is the weight; 7 is the current time; and N is the number of
days.

An MACD histogram helps account for the rate of change of the
MACD. It is calculated by subtracting the EMA of MACD (signal line),
from the MACD. There is now a second-ordered oscillator that measures
the rate of change of momentum. Whenever there is a crossover,
meaning a change from positive to negative values in the histogram
or vice versa, it indicates a trend reversal. This can be used to create a
buy or sell signal.

For example, if the MACD is higher than the signal line, then
the histogram has a positive value, indicating a bullish buy signal.
Conversely, when the MACD is below the signal line, it is a bearish
sell signal as the histogram has negative values. It signifies that the
momentum of the price action has reached a turning point, and thus a
start of trend reversal. The typical values used for the EMA windows
are 12, 26 and 9 for the fast, slow and signal respectively.

The proposed learning and processing framework uses IFDNN to
firstly predict look-ahead closing prices for multiple timesteps. Sub-
sequently, f-MACD is created, incorporating the forecasted prices to
reduce the time lag present in the original MACD. This forecasted
MACD will be used in trading to test its effectiveness.

2.2. Genetic algorithm

GA is an evolutionary algorithm that can be used for general op-
timisation [68]. It uses a global optimisation method to vary the
different combination of hyperparameters in the neural network. It
applies the principles of evolution found in natural selection to the
problem of finding optimal solutions. GA is commonly used to generate
high-quality solutions to both optimisation and search problems by
using biologically inspired concepts, such as mutation, crossover and
selection [69].

The proposed learning and processing framework will be employing
GA for searching and determining optimised parameters for trading
experiments. The population would consist of models with different
combinations of parameters, the chromosome would be the list of
selected values for each parameter. The fitness function would be
the evaluation metrics for the model. The optimal parameters can be
determined from the chromosomes of the individual with the best
fitness.

2.3. Reinforcement learning

RL is an area of machine learning focusing on how intelligent agents
take actions in an environment to maximise the cumulative rewards.
RL tasks are defined by three main components: states, actions and
rewards. States represent the environment of the task. Actions represent
the allowed steps that the RL agent can take at every state, which affects
the next state the RL agent would end up in. Rewards are incentives
that the agent receives for performing good actions. Following this, a
policy is a strategy that the RL agent uses in pursuit of its goals.
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Fig. 1. Actor-Critic Network.

RL agents make decisions based on Q-values, calculated using
Eq. (2):

Q,(s,a) = E[R{+yRy+yR3+ -+ |Sy =5,Ag = a, 7] 2)

where y € [0, 1] is the discount factor between 0 and 1; r is the policy;
and aq is the value of action taken for state s.

Maximising the Q-value, Q, (s, a), will provide the optimal policy .
RL algorithms fall into 3 main categories: value-based, policy-based and
actor-critic-based [70].

* Value-based Algorithms. They approximate the state action func-
tion that aims to lead the policy. It iteratively updates Q values
by updating at every step. It works for discrete state and action
environments.

Policy-based Algorithms. They update the parameters of the policy
instead of approximating the function. It uses a policy gradient for
each update step, utilising a neural network to model the policy
directly.

Actor-critic Algorithms. They are a mix of the value and policy-
based algorithms by updating two neural networks. One network
is the actor network, updating the probabilities from the policy.
The other is the critic network, approximating the state-action
function.

RL models chosen in the proposed learning and processing frame-
work will be from the actor-critic-based algorithm as it combines the
benefits from value and policy based algorithms. In particular, the
proposed framework will use Advantage Actor Critic (A2C) [71] and
Deep Deterministic Policy Gradient (DDPG) [72] models. Their general
network architecture can be found in Fig. 1:

2.3.1. Advantage actor critic (A2C) model

The actor network chooses an action at each timestep; and the critic
network evaluates the Q-value of the input state. The actor network
outputs a probability distribution corresponding to each action. The
agent samples actions from this probability distribution according to
each action’s probability. The critic network learns which states are
better than others. The actor uses this knowledge to teach the agent
which good states to enter and which bad states to avoid. It outputs a
single value denoting the target state.

The A2C model maintains a policy, z(g,|s,; 8), and an estimate of the
value function, V (s;; 6,). These values are updated every t¢,,,, action or
if there is a terminal state. The update step uses \/ylogz(a,|s,; 0")A(s,,

a,;0,0,), where A(s;,a,;0,0,) is the estimated value of the advantage
k-1

function of Z Y + 7"V (5,443 0,) — V(s 0,). This function computes

i=0
the agent’s prediction error.

Applied Soft Computing 152 (2024) 111233

2.3.2. Deep deterministic policy gradient (DDPG) model

The network of the DDPG model is similar to the A2C RL model.
But in DDPG RL model, the actor directly maps states to actions
instead of outputting probability distributions across discrete action
spaces. It also uses two additional target networks, Q' and 4/, to add
stability to training, as the target networks are tracking the predicted
networks. It uses a replay buffer, R, to learn by sampling from all
accumulated experiences, each sample being (s;, a;,;,5;,;). For better
explorations by the actor network, noisy sampled from a correlated
normal distribution is added.

These two types of RL models will be used for dynamic portfolio
rebalancing in the proposed framework, with the environment being
different market conditions, and actions being buy, sell or hold. It aims
to maximise cumulative returns.

3. Proposed learning and processing framework

This section first presents the architecture of the proposed IFDNN.
It then elaborates on the proposed learning and processing frame-
work, including the preprocessing steps taken, as well as the cre-
ation of enhanced indicators to be used during trading and portfolio
rebalancing.

3.1. Interpretable Fuzzy deep neural network

IFDNN is data-driven interpretable deep neural network, where it
can learn drifts and shifts by exploiting the advantage of superior
learning abilities in neural networks. Since it is data-driven, it does not
require prior assumptions of any statistical distributions and does not
require domain expertise for defining the fuzzy partition space. It is an
integration of a POPFNN [73] with a deep LSTM [74] neural network
to predict financial market index prices.

The proposed IFDNN is a five-layer hybrid fuzzy neural network:
Layer 1 - Input Layer, Layer 2 - Fuzzification Layer, Layer 3 - Rule
Base/ Inference Layer, Layer 4 - Consequent Layer and Layer 5 - Output
Layer. The architecture of the data-driven IFDNN is visualised in Fig. 2.
It is similar to the architecture of the POPFNN [73], where they both
have five layers, each with identical semantic meanings. However, the
difference in the proposed IFDNN is the presence of a deep neural
network parallel to the rule base layer. The neural network acts as the
supervised learning algorithm to model the input data, while the fuzzy
system tags the rules that are inferred from the neural network.

3.1.1. Five layers of IFDNN

The input data will be denoted as X = [x,, x,, ..., x,,] and the outputs
asY = [y, ¥, ..., ¥y, Wwhere x; and y, are vectors. For this research, the
type of neural networks are predominantly LSTMs, explicitly, NN, =
LSTM, NN, = LSTM, N N; = LSTM, NN, = MLP. MLP is a Multi-Layer
Perceptron, the simplest from of artificial neural networks. The capital
letters I, C, R, N, Y, and O in the structure denote different types of
nodes.

Layer 1: Input Layer. Each node I; indicates the corresponding non-
fuzzy input feature from the dataset. The input and outputs of each
node of Layer 1 are shown in Eq. (3) respectively.

f,'l = xi
of = f]
where x; is a vector of data points from feature I;; and f; is the input
data at node I,.

Layer 2: Fuzzification Layer. The nodes in this layer, C; ;, constitute
the antecedents of the fuzzy rules, R,. To obtain the nodes, each input

feature, I, is localised clustered using Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [75], resulting in a different

3
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Fig. 2. IFDNN Architecture.

number of clusters for every feature. Eq. (4) will be used to generate
the Gaussian memberships for each cluster during fuzzification.

11 _ I
Jij =0
(fr{jl 7”1’./" ? (4)
11 _ 252

ij
Oi,j e

where i is the ith input feature; j is the jth cluster; ;41{ /I is the sample
mean from data in C; ;; and o, ; is the sample standard deviation from
data in C; ;.

The membership values across all features are concatenated to-
gether to form a single array for each data sample. This gives the overall
output of Layer 2, which is o!/ = ["{,11’0{,2’ ""Oi,ll_n]’ where o’{ﬁ_n is
the last membership value obtained from the last cluster C, ; , of the
nth input feature. The same logic in Eq. (4) can also be used to fuzzify
the outputs, that will act as the target output features for the neural
network to predict on. The output of Layer 2 will be the input to both
aspects of Layer 3, the Fuzzy Rule Base and the Neural Network.

Layer 3: Rule Base/ Inference Layer. There are 2 parallel paths in this
layer, the Fuzzy Rule Base and the Neural Network.

We will first discuss the Fuzzy Rule Base path. It uses a set of IF-
THEN Mamdani fuzzy rules induced from the antecedent (Layer 2) and
consequent (Layer 4) layers, given in Eq. (5).

IFx, is C{) AND x, is C{) AND ... AND x, is C{¥)
THENy, is Yl(;) AND ... AND y,, is Y¥) ®
where:

k is the kth fuzzy rule;

a, b, z are the winning clusters for input features 1, 2 and n
respectively;

p and ¢ are the winning clusters for output features 1 and m
respectively;

CI.(";) is the antecedent, C; ;, connected to Rule Ry;

Y,(f> is the consequent, Y, ;, connected to Rule R,.

Individual rules generated by the data are combined to create the
fuzzy rule base of IFDNN. The input of Layer 3 is shown in Eq. (6).

111 1 I1 11
S =100 5000, ,] (6)

where J_n is the number of fuzzy clusters from I,,.

There is no output produced from the Fuzzy path of Layer 3, as
the inference is done by the Neural Network path. However, there
is Hebbian weight computation involved in the Fuzzy Rule Base af-
ter the consequents have been obtained, which will be elaborated in
Section 3.1.3. The fuzzified clusters are used as inputs to the Neural
Network path in IFDNN, where the predictions are mainly conducted
by the Neural Network path. In general, the fuzzy rules are mainly to
help explain and interpret how the weights are derived. The rules do
not limit the workings of the Neural Network path, where the Neural
Network performs normally with the inputs derived from the cluster
membership functions, instead of absolute values of the delta changes.

Next, we will discuss the Neural Network path. f/!! is passed into
the first layer of the deep neural network, which in this case is an
LSTM. This is followed by more LSTM layers and finally an MLP layer.
The number of neurons in the input LSTM layer is the number of input
fuzzy clusters, Z_1 = J_1+ J_2 + --- + J_n. The number of neurons in
the output MLP layer is the number of output fuzzy clusters, Z_s =
L1+ L2+ -+ L_n. This is because the neural network aims to act
as the implication for the fuzzy membership values of the consequents,
thus they share the same input and output vocabulary. The net input
and outputs for the Neural Network path are given by Eq. (7).

PN I = (ol ol ol ”

N ~
-~-,y54’zis]

N ~ ~
oY= [yx,pys,z»---

where Z s =L 1+ L2+--+L_m; and j; is the predicted membership
values from the neural network at N, ;. o¥Ns makes up the member-
ships of consequents that the fuzzy rules are created from. This connects
the Fuzzy Rule Base and the implications performed by the data-driven

deep neural network.
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To be able to perform tagging later, we will be using the activation
values from each N N; along with Hebbian Learning applied to the
fuzzy rules (elaborated in Section 3.1.2).

Layer 4: Consequent Layer. It retrieves the inferred consequents from
Layer 3 Neural Network path. The nodes Y; ; constitute the consequents
of the fuzzy rules, R,. The inputs and outputs of nodes in Layer 4 are
in Eq. (8).

v _ NN
f ij =%k (8)
olV = flv

ij ij
where oi\’st is the output value of the kth node from N N,. The overall

output of Layer 4 is o'V = [o{‘l’,of‘;, vonolV 1, where oY, is the
s . m,L_m m,L_m
last membership value obtained from the last cluster, Y, ; ,,, from the
mth output feature.
Layer 5: Output Layer. This layer performs defuzzification on the
aggregated areas formed from Layer 4 to get a crisp output. It is

computed using centre-of-area defuzzification, following Eq. (9).

m

v
z 0ij * Hij *0ij
j=1

0j=—p—— 9

m
v
INARTY
j=

where O; is the final crisp value at the ith output feature; oi’,j‘.’ is the
membership value at Y;;; y,; is the centroid at Y;;; and o;; is the
standard deviation at Y; ;. The inputs and outputs of nodes in Layer
5 are in Eq. (10).

' 10)

3.1.2. Tagging mechanism

We can now tag the corresponding nodes between the Fuzzy Rule
Base and the Neural Network. The purpose is to understand the signifi-
cance of the structure and how different inputs and outputs contribute
to the inference process.

From the Fuzzy aspect, to determine which antecedent nodes to tag,
the winning clusters from the input features can be determined from
getting the clusters, C;;, with maximum membership. On the other
hand, for the consequents nodes, the winning output clusters, Y; ;, can
be determined from the outputs of the neural network.

From the Neural Network aspect, to determine which neuron to
tag in the deep structure, we will be looking at the activation values,
represented by Eq. (11).
2JNND 2JNND

(NN _ ,(NN)
a _[ai,l i iz ] an

where NN, is the ith layer in the Neural Network; and a,(.j;lN’) is the

activation value from Layer N N; at Node N, ;. A neuron, N, ;, will be
considered “activated” following Eq. (12):

D (NN))
a
1, if (Zd=+) > threshold

activated = j 12)

0, otherwise

where threshold is the specified activation threshold; D is the number
of data samples that correspond to selected Rule R;; and aiINN") is the
vector of activation values at Layer N N; for the dth data sample.

If D < 3, then the top 3 neurons with highest activation values
are activated. This tagging process is repeated for each layer of the
neural network. Altogether, we now have the activated neurons from
the neural network and the rules from the fuzzy rule base, allowing us
to create mappings from input to outputs for both paths.
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3.1.3. Pseudo-weights of Fuzzy rules

This subsection explains how the pseudo-weight computation of
rules is derived using Hebbian Learning. This is necessary because
although we have the antecedent, consequents and fuzzy rules, we do
not know their strengths.

The algorithm is adapted from POPFNN [20]. Firstly, for each data
sample, the winning cluster for both input and output is determined.
The winning cluster is simply the cluster that has the highest value
of membership for each feature. The winning clusters for an input
sample data are denoted as C = {C,,,C,,...,C, .}, where C, ; is the
winning cluster j for input feature i. The winning cluster for the output
is denoted by D, since we only have 1 output feature for this project.

Each rule is denoted by {C — D}, where set C is the antecedent for
the rule; and D is the consequent. The firing strength of the rule, f,,..
or pseudo-weight, can be calculated using Eq. (13).

f_fw = mi”i(HC, (X,‘)),
Sow = 1p), 13)
frule = ffw * fbw

where e, (x;) is the membership values in set C, for a particular
data sample x;; f,, is the forward rule firing strength, which is the
minimum of all membership values in set C; and f,,, is the backward
rule firing strength, which is the membership value of the target data.
After each rule has been processed, it is added to the knowledge
base. If there is a rule that is already in the knowledge base, i.e., has the
same antecedent and consequent as {C — D}, then the rule’s pseudo-
weight is increased according to Hebbian Learning. Conversely, if there
is no existing rule {C — D}, the rule is created with its corresponding
weight, which is its firing strength, f,,,.. This can be illustrated in
Eq. (14).
matching rule found : w(c_,py = Wcopy + frue

14

NO matching rule : createRule({C — D}) = wic_py = frue

where w,c_ p, is the original pseudo-weight of the rule {C — D}; C is
the set of winning clusters of the antecedent; D is the winning cluster
for the consequent; and f,,, is the firing strength of the data sample.

For the other rules that are not fired in the current iteration,
their pseudo-weights are decreased by multiplying the weight with the
dynamic forgetting factor, A. This incorporates the memory decay to
account for any cases of indefinitely increasing weights. The forgetting
factor can be calculated using Eq. (15).

155 11

P - (15)

where p is the index of the current iteration; / is the index of the last
iteration that the matching rule was fired; n; is the number of times that
the rule was fired; and n, is the total number of rules in the rule-base
as of the current iteration.

The forgetting factor ranges between 0.9 to 0.99, ensuring that
the weights are not reduced by too much after many iterations, using
Eq. (16).

0.9, for A<09
A=44, for 0.9 < 1< 0.99 (16)
0.99, for 4>0.99

The significance of this architecture is that the Fuzzy Rule Base of
IFDNN endows the reasoning performed by inference from the data-
driven deep neural network. Additionally, Hebbian Learning is applied

to quantify the pseudo-weights such that the rules can be ranked
relative to one another.

3.2. Data-driven concept generation of IFDNN

This sub-section describes the steps the data goes through before
being passed into IFDNN.
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3.2.1. Generation of delta changes as inputs

The purpose of this step is to account for the data drift and shift
across different time periods. Since each market index has a different
range of absolute values for closing prices, it would not be appropriate
to use these values directly. This is because the weights of the model
would only be tuned to those specific range of values, when it should
be more flexible towards the changes in prices instead. Thus, we will
conduct feature engineering, by calculating the delta price changes as
the inputs. Similarly, the output that we aim to predict is the delta
change for closing price.

After calculating the delta price changes, these values will be locally
normalised within a sliding window. This is preferable compared to
global normalisation as localised captures changes with respect to
recent day prices instead of across multiple years, which is less relevant.

We have empirically assigned the size of the sliding window size to
20, with a stride of 1. To construct the input vector, the difference in
price between consecutive days can be calculated using Eq. (17).

Syt = y(1) -yt — 1) a7

where y(¢) is the closing price at time 7. These values are then nor-
malised, so that the neural network can learn the changes in trends
regardless of the actual values of price.

3.2.2. Monte Carlo evaluative selection (MCES)

MCES is a feature selection method [76]. It is data-driven and in-
stance based, independent on application domain, removing irrelevant
and correlated features. It uses Monte Carlo, which are simulation
based methods that learn from data without requiring complete knowl-
edge of the environment, based on randomly generated simulations. It
uses a weighting method to rank the features according to the mask
of selected features applied. Thus, it is suitable for our data-driven
approach in modelling.

Although having 20 initial features as input does not seem like a lot,
in the subsequent steps when performing fuzzification, the total number
of feature inputs would be equivalent to the sum of clusters from all
20 features, which could easily exceed 100, if each feature forms at
least 5 clusters. It would be beneficial to use MCES to prune out the
less meaningful features first. The non-positively weighted features are
removed, as they represent features that are irrelevant. The rest of the
features are ranked in decreasing order of relative importance.

3.2.3. Cluster memberships

We will be using clustering for concept generation of the fuzzy
sets. DBSCAN Clustering [75] is most suitable for our problem. This
is because we do not know the initial number of clusters to specify
for clustering, since we are letting the data decide how the resulting
fuzzy sets are formed. Furthermore, we aim to handle concept drift,
thus we cannot assume that the data follows any distribution. Lastly,
we want to be able to identify anomalies in price changes and have
as few arbitrary parameters as possible to obtain a robust clustering
result. This makes DBSCAN desirable as it requires minimal domain
knowledge to determine the input parameters. DBSCAN is able to
discover clusters with arbitrary shape, identify outliers or anomalies
with good performance efficiency.

Localised clustering is performed, meaning that each of the features
will independently put through DBSCAN, where each feature forms
different number of clusters and distribution of memberships. This was
chosen in preference to globalised clustering. In globalised clustering,
all features are be clustered together in a n-dimensional space, provid-
ing the same number of clusters for all features. If the memberships
of one feature have excessive overlaps, the fuzzy rules may become
obscure or poorly defined [77]. Thus, a repair has to be done along that
feature axis. Due to such scenarios, it would be better off to perform
local clustering instead, clustering along each axis independently such
that every feature can have a different number of clusters depending
on their distributions.

Applied Soft Computing 152 (2024) 111233

Cluster Projection

1.0 —— Cluster #0
— Cluster #1
— Cluster #2
— Cluster #3
— Cluster #4
Cluster #5
‘ Cluster #6
—— Cluster #7
Cluster #8
—— Cluster #9
—— Cluster #10
—— Cluster #11
J —— Cluster #12
—— Cluster #13
—— Cluster #14
—— Cluster #15

° ° °
» o ©

Membership Value

o
[N}
N

0.0 S— }\

—0.06 —0.04 -0.02 0.00 0.02 0.04 0.06
Delta Change

Fig. 3. Membership Projections on One Feature.

Projection of Initial Cluster Memberships. Fig. 3 shows the generated
membership functions from one feature.

There are way too many clusters formed. In fact, the only distinctive
Gaussian curve that can be seen is the middle one, while the rest are
too narrow to be visualised. This will be resolved using a custom merge
and repair function.

Merging and Repair of Cluster Memberships. This aims to reduce the
number of clusters formed from DBSCAN by merging the membership
functions with low variance that are relatively close to each other. This
can be done by calculating the distance between the centres between
every pair of memberships. Firstly, the distance between the first and
last membership is calculated. Then we iterate through every neigh-
bouring pair of membership functions to check if they are sufficiently
close enough to merge, using the condition in Eq. (18).

Tright = Tlef Ziast _ Ffirst
right eft 2 2
< 18
(= 7=7) < (=) as)

where m is the total number of membership functions belonging to the
feature; 7,5, is the centroid of the membership function on the right;
7,5, is the centroid of the membership function on the left; 7, is the
centroid of the last membership function; and 7., is the centroid of
the first membership function.

Fig. 4 illustrates the result from the merging and repair process.
The clusters are reduced to a more concise number for fuzzy sets. Fur-
thermore, it retains the minimal overlapping property, which generates
better separation of membership degrees between clusters. The thresh-
old value for maximum clusters is set to below 12 for the experiments,
which means that each feature will not have more than 12 clusters. The
rationale to set this maximum value is the empirical domain knowledge
dependent, to find a suitable number of clusters to balance the trade-off
between complexity and variability. Excessive number of membership
clusters may result in complex rules that are not ideal for creating fuzzy
sets. The maximum value chosen can ensure enough variability for data
values to not all be centred within too few clusters.

3.2.4. Rule tagging and interpretability

Currently there is no consensus on the definition of interpretabil-
ity due to the black box challenges for machine learning and deep
network structures [78]. In some works, the ability to comprehend
and explain how a decision-making process is conducted is defined
as interpretability [79]. Other works introduce the interpretability as
describing a qualitative relationship between input features and output
features [78,80]. The tagged network of IFDNN consists of nodes from
the input to output layers. To facilitate easier understanding of the
process, an example of a network graph is created for the S&P500
index dataset in Fig. 5, that shows Rule 1 from S&P500 index. It is
the rule with the highest pseudo-weight, and that majority of data
points align with. The visualisation corresponds to the proposed IFDNN
architecture, that shows the connections of nodes from input to output
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layers, where we can use fuzzy rules to explain how the connections
come about.

There are three hidden layers of the Neural Network path, where
three columns of nodes in the bottom half are visualised. The first
hidden layer has 128 hidden units, and the next two layers have 64
hidden units each. These respective values may differ between each
model and datasets used. It illustrates why the dynamic visualisation
is required to take in a different number of input, output and hidden
nodes for every model. Shown in Fig. 5, the grey lines represent
the connections to respective nodes among the layers. The red lines
represent the antecedent and consequent of the rules, connected to their
rule nodes. The nodes in the middle section are split into two halves.
The top half is the fuzzy rule nodes, ordered in sequence of decreasing
importance. The first rule node is the most important and commonly
used rule, and the last rule node is the least important one, with lowest
pseudo-weight. The bottom half nodes are the hidden nodes from the
Neural Network path of IFDNN.

To understand the network graph, all the antecedents and conse-
quent (red lines) are tagged to the first rule node. We can also easily
determine which winning clusters the rules originated from. In this
case, the winning clusters are from clusters C6, C6, C4, C6, C6, C4 from
the six input features, respectively. A further step to understanding the
data can be conducted by checking the distribution and membership
values of each cluster accordingly. On the Neural Network path, four
nodes from the first hidden layer are activated, followed by three acti-
vated nodes in the second and third hidden layers each. The winning
output feature is the cluster C6, as shown in Fig. 5.

The same logic and analysis are applicable to the other rules, where
we can see the dynamic changes in connections for every rule and
node. As such, it provides good interpretability of the IFDNN network
to users.

3.3. High-level pipeline of the framework

The IFDNN forecasts closing prices using the deep structure and
extracts meaningful information from the input data and output pre-
dictions using fuzzy rules. Furthermore, it quantifies the relative im-
portance of fuzzy rules by using pseudo-weights, allowing the rules to
be ranked with respect to one another.

IFDNN is chosen as the learning model because of its performance
as well as ability to provide an option to interpret the inference of the
neural network using fuzzy rules. The IFDNN is robust in learning data
drifts and shifts. The IFDNN is able to forecast closing share prices up
to 15 days ahead of time, with accurate results. This could be helpful
to traders or investors that need to understand the data before allowing
the algorithm to make a trade. The effectiveness of the IFDNN can
benefit the price forecast and portfolio rebalancing.

The time series data analysis by IFDNN is to forecast the prices.
We utilise MACD as a trading indicator in our framework, as MACD
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helps position the time points that will be best for trading. We use
the forecasted time series as the additional layer to provide more
information that helps reduce the lag of MACD.

The overall proposed learning and processing framework involves
data preprocessing, which includes feature engineering of delta changes
of closing price, feature selection of relevant timesteps and clustering
for fuzzification. Subsequently, the processed data into the IFDNN
for inference, to predict look-ahead price trends which is employed
to improve the performance of the traditional MACD. The improved
forecasted-MACD will be used for two sets of experiments, trading of
individual assets and portfolio rebalancing of a set of financial assets.
GA is used to tune and optimise the trading parameters. RL is used
during dynamic portfolio rebalancing. The high-level pipeline of the
proposed learning and processing framework can be visualised in Fig. 6.

The delta changes of inputs are generated for the IFDNN during
feature engineering, that is the second module in the proposed learning
and processing framework shown in Fig. 6. As discussed in Sub- Sec-
tion 3.2.1, after calculating the delta price changes, these values will
be locally normalised within a sliding window. When the normalised
values are passed into the IFDNN, the neural network can learn the
changes in trends regardless of the actual values of price.

After the IFDNN model training and inference, a crisp value is
obtained. However, this crisp value corresponds to the predicted delta
changes in closing price, and not the actual absolute value of price
itself. In order to obtain the predicted absolute closing price, de-
normalisation is performed. It is the reversal of calculations from the
normalisation step, using the baseline price from the start of the sliding
window and predicted delta price.

3.4. Calculation of MACDs

Since MACD is based on moving averages, it is naturally a lagging
indicator. Thus, having the predicted prices at look-ahead of time
aims to reduce the lag to get more accurate trend reversal detections.
We will be comparing three types of MACD: the forecasted-MACD (f-
MACD), vanilla-MACD (v-MACD) and perfect-MACD (p-MACD), whose
differences are described as follows.

» Generated by the proposed learning and processing framework,
the f-MACD incorporates the predicted look-ahead values derived
from the IFDNN into the MACD.

» The v-MACD is the traditional MACD formula without incorpo-
rating IFDNN to predict the look-ahead or hindsight values.

+ The p-MACD assumes that hindsight values are available. It would
be the most accurate version of MACD possible under ideal cases,
i.e., the “ground-truth” reference, assuming that all other model
parameters are kept constant.

For the f-MACD, we will be using the Simple Moving Average (SMA)
instead of the usual EMA. This is because the IFDNN is capable of
predicting for up to 15 timestep values of the look-ahead prices. The
SMA would have better results than EMA. f-MACD uses a modified
version of SMA which is the forecasted-SMA shown in Eq. (19). It
measures the simple moving average of historical prices in conjunction
with forecasted prices.

SMAd_hismrical (y) + SMAd_farecaxtS (j})
2

fSM A(window) =

window
d_forecasts = max(——, 15) 19

fMACD(fast,slow) = fSMA(fast)— fSMA(slow)
fMACDH = fMACD(fast,slow)— EMA(fMACD)

where y is the actual historical price at timestep #; § is the fore-
casted price at a specific look-ahead timestep; fMACD is the forecasted-
MACD value, calculated with the fast and slow window sizes using
fSMA; d forecasts is the number of forecasted daily closing prices;
d_historical is the number of historical daily closing prices; fMACDH is
the forecasted-MACD histogram at timestep ¢.
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Fig. 5. Interpretability of Rule 1 of S&P500 dataset.

3.5. Accounting for whipsaw effects

The MACD strategy indicates buy and sell signals whenever there
is a crossover. However, this makes it susceptible to generating very
frequent signals when the MACD histogram values fluctuate frequently
at 0, causing each buy and sell to be close together and gaining only
marginal returns. This would not be desirable in practice because it has
to take into account commission costs, which may exceed returns with
too many entrances and exits in the trade.

To resolve this, a price percentage oscillator is introduced, repre-
senting the relationship of the price movement relative to the closing
price, calculated using Eq. (20).

MACDH/ (fast, slow, signal)
%( fast.SMA + slow_SMA)

MACDH(fast,slow, signal) =

1, if MACDH,, > « and MACDH > 0 (20)
P(1) =10, if MACDH,, >  and MACDH <0
P(t—1), otherwise

where P(t) is the position held at time #; P(r) = 1 indicates a buy
position; and P(t) = 0 indicates a sell position. Now, the strategy is

modified such that the trade signal only occurs whenever MACDHy,
exceeds the oscillation threshold value a.

4. Experiments and results analysis

Experiments are conducted to evaluate the look-ahead prediction
performance of the proposed IFDNN in Sub-Section 4.1. Next, a series of
experiments are performed to evaluate and compare the performance in
various configurations of the proposed learning and processing frame-
work using the IFDNN. The result comparisons among three MACD
indicators: f-MACD, v-MACD and p-MACD for each individual financial
index will be presented in Sub-Section 4.2. Utilising GA for parameters
tuning and optimisation, the trading performance for individual finan-
cial indexes will be introduced in Sub-Section 4.3. The experiments
for portfolio rebalancing by a deep reinforcement learning framework,
FinRL [81], are described in Sub-Section 4.4.

The correlations of the financial assets are relevant to the portfolio
diversification and risk levels [82,83]. According to the guidelines
in [83-86], the magnitudes of correlation coefficients within 0.7 to 1.0
are considered as strong correlation; within 0.5 to 0.7 considered as
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moderate correlation, etc. We chose the portfolio index assets covering
different major markets with moderate correlations whose correlation
magnitudes are commonly seen, as it is not easy to find zero correlation
or exact antiphase indexes.

The Standard and Poor’s (S&P500) index is a market capitalisation
weighted index of 500 publicly leading trading companies in the U.S.
It is regarded as one of the best gauges of American equities and stock
market performance due to its wide diversity. The Financial Times
Stock Exchange (FTSE100) index is a share index of the 100 blue
chip companies listed on the London Stock Exchange with the highest
market capitalisation. It is the most widely used UK stock market
indicator. Cotation Assistée en Continu (CAC40) is the French stock
market index that tracks the 40 largest French stocks based on the
Euronext Paris market capitalisation, trading activity, and liquidity, etc.
It is the benchmark equity index for funds investing in the French stock
market.

These three indexes are chosen for experiments and evaluations
with the aim of keeping in mind an international diversified portfolio,
with moderate correlation coefficients shown in Table 1. This gives
investors opportunities to be exposed to emerging and developed mar-
kets, thus providing diversification. For these three market indexes, the
training period consist of data from 1998 to 2015, and the testing data
from 2015 to 2021. An overview of the testing data is shown in Fig. 7.

4.1. Look-ahead results of IFIDNN

The prediction performance of the proposed IFDNN is benchmarked
against a vanilla LSTM neural network using room mean squared error

10

Table 1
Correlation between the three indexes in the portfolio.
S&P500 FTSE100 CAC40
S&P500 1 0.684 0.554
FTSE100 1 0.700
CAC40 1

(RMSE) and R?. The equations of RMSE and R? are given in Egs. (21)
and (22) respectively.

n
1 o
= Z v =9
nia

where y; is the actual value from the dataset; y; is the predicted value
from the model; and » is the total number of data instances.

RMSE = 21

RE=1-— Z?:l(y,'—fi) (22)
Z:l:] (y, - )_/)2
where j = o

In this wo"rk, GA is utilised for model hyperparameters tuning for
both IFDNN and vanilla LSTM in the search space shown in Table 2. The
preliminary study on the hyperparameters selections is measured under
three particular scenarios, for multiple days look-ahead forecasting
with 7+5, t+10, r+15. The candidate number of hidden layers range
between 2 to 4; number of nodes between 32 to 256; the activation
function among ReLu, Tanh, and Sigmoid; the optimiser between Adam
and RMSprop; the batch size between 64 to 256. The fitness functions
are the R? and RMSE evaluated on the moving average window for the
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Fig. 7. Data for three financial indexes.

three experimenting market indexes: S&P500, FTSE100, and CAC40.
There are 10 generations configured for the GA algorithms. It takes a
significant amount of time for the GA algorithms to perform computa-
tions on the searching. Each model takes around 8 h for computing a
full 10 generations. Through the evaluations and comparisons aiming
to achieving the most balanced results for three scenarios and three
market indexes, the hyperparameters are selected as follows: 4 hidden
layers neural network, 128 nodes, the activation function as ReLU, the
optimiser as Adam, and the batch size as 256. In the experiments, the
epochs are set as 200. The same sets of chosen hyperparameters for
both IFDNN and vanilla LSTM are shown in Table 2.

The difference between the IFDNN and vanilla LSTM is that the
vanilla LSTM only contains the deep neural networks without including
any components of fuzzy logic and fuzzy inference. It means the black
box nature of deep architecture is applicable to the vanilla LSTM with
less interpretability compared to IFDNN. The vanilla LSTM takes in
all original features, without going through MCES feature selection or
fuzzification through clustering. The purpose of the experiments for 15-
day look-ahead forecasting and comparisons between the IFDNN and
vanilla LSTM is to explore the performance differences of the networks
with and without fuzzy logic inference.

The vanilla LSTM has all 20 input feature timesteps, which pro-
vides more historical timestep information. The IFDNN only contains a
maximum of 6 of these timestep features, in order to limit the amount
of fuzzy clusters formed subsequently. Secondly, the vanilla LSTM has
data that does not go through clustering. As such, the input to the
LSTM model is the direct delta changes for the timesteps, not subjected
to variability of clusters and parameters of DBSCAN. Lastly, the target
output is directly the delta changes instead of the membership values,
implying it does not require defuzzification. Thus, the combination
of these elements would cause the vanilla LSTM to outperform the
IFDNN in terms of R?> and RMSE. Nevertheless, we are trying to ensure
that IFDNN does not lose too much on capabilities of price changes
tracking for 15-day look-ahead forecasting, in the aim to achieving
better interpretability brought in by the human understandable rules
and connections than that of vanilla LSTM.

The experimental results for predicting 15 look-ahead values are
shown in Table 3. It is observed that the vanilla LSTM obtains better
results in terms of the R?> and RMSE. It generates moving averages
that are closer to hindsight values. Despite good performance achieved
by the vanilla LSTM, it still encounters the challenges of the black-
box nature. We do not easily understand what each timestep feature

11
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Table 2
Neural network hyperparameters.
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Hyperparameters Candidate values for GA search Selected hyperparameters
Number of hidden layers 2,3, 4 4
Number of nodes 16, 32, 64, 128, 256 128
Activation function ReLu, Tanh, Sigmoid ReLu
Optimiser Adam, RMSprop Adam
Batch size 64, 128, 256, 512 256
Table 3
Look-ahead results.
Model S&P500 FTSE100 CAC40
R? RMSE R? RMSE R? RMSE
IFDNN Vanilla IFDNN Vanilla IFDNN Vanilla IFDNN Vanilla IFDNN Vanilla IFDNN Vanilla
t+1 0.9909 0.9988 68.33 23.86 0.9202 0.9908 159.64 53.99 0.9511 0.9944 149.69 50.67
t+2 0.9895 0.9981 73.28 30.97 0.9147 0.9818 165.14 76.14 0.9365 0.9894 170.70 69.50
t+3 0.9897 0.9970 72.43 38.73 0.9058 0.9749 173.54 89.59 0.9407 0.9908 165.00 82.73
t+4 0.9896 0.9966 73.08 41.75 0.8960 0.9700 182.40 97.88 0.9474 0.9807 155.41 94.06
t+5 0.9876 0.9959 79.64 45.85 0.9016 0.9647 177.50 106.19 0.9374 0.9765 169.54 103.67
t+6 0.9870 0.9948 81.49 51.43 0.8880 0.9573 189.38 116.86 0.9409 0.9744 164.65 108.24
t+7 0.9867 0.9945 82.35 53.07 0.8902 0.9549 187.59 120.22 0.9307 0.9704 178.34 116.52
t+8 0.9854 0.9938 86.48 56.21 0.8658 0.9490 207.42 127.78 0.9301 0.9667 179.16 123.53
9 0.9858 0.9932 85.17 58.93 0.8768 0.9445 198.80 133.43 0.9287 0.9624 180.82 131.368
t+10 0.9845 0.9925 89.16 61.95 0.8674 0.9373 206.31 141.82 0.9230 0.9590 188.01 137.12
t+11 0.9832 0.9914 92.81 66.08 0.8546 0.9295 216.11 150.40 0.9175 0.9552 194.63 143.32
t+12 0.9834 0.9907 92.14 68.95 0.8535 0.9236 216.97 156.59 0.9233 0.9519 187.57 148.49
t+13 0.9837 0.9894 91.30 73.38 0.8415 0.9174 225.68 162.96 0.9122 0.9505 200.70 150.67
t+14 0.9826 0.9889 94.30 75.16 0.8407 0.9132 226.33 167.08 0.9149 0.9432 197.58 161.36
t+15 0.9832 0.9891 92.76 74.50 0.8369 0.9099 229.03 170.17 0.9027 0.9434 211.36 161.19
represents, which is more significant, and what the model does with Table 4
it once the data enters the neural network. While IFDNN has a better Performance comparisons of v-MACD and £MACD for individual index.
balance of interpretability and accuracy due to the integration of the RMSE R
fuzzy logic and neural networks. v-MACD f-MACD Improvement v-MACD fMACD Improvement
Observed from the IFDNN results, the R? values range from 0.98 to S&P500 29.446  18.23  38.09% 0.5564  0.6510 17.00%
0.99 for S&P500 (~0.01), 0.83 to 0.92 for FTSE100 (~0.09); and 0.9 FTSE100 67.38 43.98 34.73% 0.5286  0.6501  22.99%
to 0.95 (~0.05) for CAC40. For the vanilla LSTM results, the R? values CAC40 61.94 39.07 36.92% 0.5337  0.6608  23.81%
range from 0.98 to 0.99 for S&P500 (~0.01), 0.90 to 0.99 for FTSE100
(~0.09), and 0.94 to 0.99 (~0.05) for CAC40. Both the networks have Table 5
the same range of values for R?. For IFDNN, despite having less features GA forecasted-MACD search space.
initially and feature engineered fuzzified inputs and outputs, the results Parameter Values
are not degrading at an increasing rate. In fact, they stay consistent with P 3 —fast <30
the vanilla network, just that it is less accurate by 4%-7%. slow 10 <slow <50
signal 2 <signal <30
4.2. Experiment results comparing with three MACD indicators « « <0.05
The purpose of these comparisons is to investigate whether the f-
MACD, which utilises predictions from IFDNN in the proposed learning Table 6 . L
. . s Parameters optimised by GA for the f-MACD indicator.
and processing framework, is closer to predicting a perfect look-ahead -
MACD compared to the v-MACD. Thus, both the f-MACD and v-MACD fast slow signal ’
are plotted against the p-MACD. The fast, slow and signal window size S&PS500 18 24 7 0.0024
are kept to the default values of 12, 26 and 9. FISEL00 24 41 5 0.0035
CAC40 25 33 13 0.0050

Observed in Fig. 8 for trading the S&P500 index, the f-MACD
does perform better than the v-MACD when benchmarking with the
p-MACD. This is because it is found to have a higher R? and lower
RMSE values. The plots and result comparisons for the FTSE100 and
CAC40 indexes can be found in Figs. 9 and 10. The observations and
findings are consistent with that of the S&P500 index, that the f-MACD
outperforms v-MACD for three indexes.

To summarise the values of R> and RMSE, the experiment results
for all three datasets benchmarking f-MACD and v-MACD are shown in
Table 4. The forecasted look-ahead results from IFDNN resulted in sig-
nificant improvements reflected in the f-MACD indicator. It is observed
from Table 4 that the R? values derived by the f-MACD indicator are
improved by 17.00% to 23.81%; while the RMSE values derived by the
f-MACD indicator are reduced by 34.73% to 38.09%. This is attributed
to the predictions from IFDNN in the proposed learning and processing
framework. Its accuracy and ranges of predicted look-aheads allow
trend reversal detection to be identified more accurately. It enables us
to use the f-MACD for trading.
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4.3. GA for trading parameters and results optimisation

The value of the oscillator threshold, a, cannot be determined
empirically as it is data dependent. Thus, we will be using GA to decide
its value. This can be coupled with other tunable parameters such
as fast, slow and signal window sizes. The maximum number of stall
generations used will be 10. GA will stop running when there is no
further improvement to the results in the best performing population.
500 data points from the data will be used to train the GA and the
rest for testing. The parameters for the trading GA search space are
described in Table 5.

The results derived from GA optimisation are in Table 6. The GA
generated parameters will be utilised for the experiments to trade three
individual indexes. The commission fees per transaction will be 1.25%.
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Fig. 9. Results Comparisons of 3 MACD Indicators for the FTSE100 Index.

This will be integrated within the f-MACD strategy in the proposed
learning and processing framework. Fig. 11 shows the trading for the
S&P500 index using the IFDNN based f-MACD with the respective GA
optimised parameters.

The green upward arrows denote buy signals and the red downward
arrows denote sell signals. The gain or loss is denoted at the bottom of
the graph above the x-axis, where a green bar means that the trade is
profitable, and the red bar means a loss trade. The intensity value of
the bar is linear to the amount of profit/loss from the trade.

From Fig. 11, the buy/sell signals are not occurring too frequently,
attributed to the price percentage oscillator. Other than that, most of
the potential buy signals in the bullish periods have been captured. For
example, at the first two buy and sell signals, they are both bullish
trends and the proposed learning and processing framework manages
to enter the market when the prices are still low, and exits while the
price is relatively high. It is also observed in Fig. 11 that the losses seem
to occur when the buy and sell signals are close to each other.
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There is a steep drop in closing prices in early 2020, due to COVID-
19. The proposed learning and processing framework does not manage
to exit the market early enough. The selling price is lower than it could
have been if it exits earlier. However, there is still a profit gained
because the sell signal happens as soon as possible after detecting a
steep drop in prices. Furthermore, a buy signal appears shortly after
the trend starts to become bullish again.

Fig. 12 shows the trading patterns for the FTSE100 index using
f-MACD with the respective GA optimised parameters. The proposed
learning and processing framework manages to capture some larger
swings in price changes. However, there are much fewer trade signals
in this scenario. This could be attributed to the fact that the slow SMA
has a large window size (see Table 6). Thus, some of the buy signals
are not captured. Regardless, it still manages to make more profits than
losses by capturing a few strong swings.

Fig. 13 shows the trading patterns for the CAC40 index using
forecasted-MACD with the respective GA optimised parameters. The
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Fig. 11. Tuned Trading Results of the S&P500 Index by the Proposed Framework.

proposed learning and processing framework here performs similarly
to that of FTSE100. It manages to capture even larger swings present,
thus being able to generate higher profits. At the COVID-19 period,
with a large drop in price, it does not capture the highest point of
closing price to sell. This is because the drop is very steep and sudden,
such that forecasting look-aheads would not be able to predict it
due to requiring other external event-driven information. However, a
profit is still gained for that period as the sell signal happens almost
immediately after the detection of the drop in price. Furthermore, the
next buy signal happens shortly after the prices start to climb back up.

Table 7 displays the experiment results of investment returns and
maximum drawdowns of the three approaches: f-MACD, v-MACD and
Raw for these three individual index assets. The f-MACD and v-MACD
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approaches are compared between the parameters optimised by GA and
the standard MACD parameters (i.e., 26, 12, 9) shown in the same table.

The results in “Raw” denotes the trading strategy with v-MACD
using the GA optimised parameters, but without incorporating the price
percentage oscillator. It makes huge losses and has high maximum
drawdowns for all datasets, compared to other benchmark configura-
tions in the same table. It represents the maximum observed loss from
a peak to a trough, before a new peak is attained. Maximum drawdown
is an indicator of downside risk over a specified time period.

Thus, f-MACD and v-MACD include the price percentage oscillator,
resulting in better trading performance. This also ensures us to make
fair comparisons between f-MACD and v-MACD under two configu-
rations: one with parameters optimised by GA, and the other with
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Fig. 13. Tuned Trading Results of the CAC40 Index by the Proposed Framework.

standard parameters. It is observed that the higher returns are achieved
by f-MACD with the GA optimised parameters for all three indexes.
The returns derived from f-MACD with the GA optimised parameters
are higher than those of v-MACD with the GA optimised parameters by
1.10% to 26.90%. The f-MACD with the GA optimised parameters also
outperforms the f-MACD and v-MACD with the standard parameters.
The maximum drawdowns derived from v-MACD with GA optimised
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parameters are lower than those of f-MACD with GA optimised param-
eters. This could be because the v-MACD is more defencive and gets
out of position more quickly when there is a price decrease.

It can also be seen in Table 7 for the effectivness of the GA optimised
parameters over the standard parameters. The returns derived from
f-MACD with the GA optimised parameters are higher than those of
f-MACD with the standard parameters by 22.17% to 111.30% for all
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Table 7
Trading results comparison.
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Returns

Max Drawdown

GA optimised parameters

Standard parameters

GA optimised parameters Standard parameters

fMACD  v-MACD  Raw f-MACD v-MACD fMACD  v-MACD  Raw f.MACD  v-MACD
S&P500  50.2% 23.3% ~86.8% -0.33% -31.70% 0.195 0.151 0.873 0.399 0.441
FTSE100 21.6% 20.5% —90.1% —-0.57% —-30.90% 0.154 0.140 0.902 0.617 0.408
CAC40 67.3% 52.1% -88.2% —44.00% -11.20% 0.225 0.121 0.888 0.504 0.336
three indexes. The returns derived from v-MACD with the GA optimised Table 8
. - RL attributes.
parameters are higher than those of v-MACD with the standard param- attributes
. . Components Attributes
eters by 51.40% to 63.30%. The maximum drawdowns derived from
. - Open, High, Low, Close, Volume
f-MACD with the GA optimised parameters also are lower than those State P &
MACD Indicator
of f-MACD with the standard parameters by —0.204 to —0.463. The Sell, Hold, Buy
maximum drawdowns derived from v-MACD with the GA optimised pa- Action Portfolio Weights
rameters are lower than those of v-MACD with the standard parameters R q Portfolio Returns
ewards .
by —0.215 to —0.268. Sharpe Ratio
With the GA optimised parameters, for the trading of the S&P500 Environment S&P500, FTSEL00, CAC40

index, the returns are more than double when using f-MACD of the
proposed framework compared to v-MACD. This could be because the
market was mostly bullish for majority of the time, thus the proposed
learning and processing framework takes advantage of all the price
increases with the forecasted values. On the other hand, v-MACD does
not have the forecasting capability. Therefore, it would not have been
able to fully benefit from the market as f-MACD of the proposed
framework does. For the trading of the FTSE100 index, the trends are
mostly fluctuating and f-MACD does not create that many buy and sell
signals, thus it performs only slightly better than v-MACD because not
every fluctuation is entered for trade. Furthermore, it is limited by the
price percentage oscillator to not create too many signals for every
single trend reversal detected. Lastly, the trading of the CAC40 index
has more of an increasing trend, resulting in more profits from the
large swings periods captured across the years. Having the forecasting
capabilities also helps to better position buy and sell signals because a
more accurate detection of trend reversal is being made.

To summarise, these results demonstrate the effectiveness of the f-
MACD in the proposed learning and processing framework with the
GA optimised parameters and the price percentage oscillator . The
algorithm positions buy and sell signals such that the profits exceed
the losses, without being too frequent such that a loss is made from
commissions. It also holds up well during market crashes when prices
plunge, and tries to sell the index as soon as a drop is detected, resulting
in a net profit for those periods. f-MACD with the GA optimised
parameters outperforms v-MACD in returns, verifying the effectiveness
of the proposed learning and processing framework by generating much
larger profits in certain cases. This varies according to market trends,
but in general, f-MACD from the proposed learning and processing
framework is robust, attributed to the accurate forecasting from IFDNN.

4.4. Portfolio rebalancing results

Portfolio rebalancing and managements are different from trading
of individual index assets, as it re-balances the weights from each fi-
nancial asset at every time step. This would be useful in the case where
investors would like to invest multiple diversified assets concurrently
for long periods of holding.
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Foreign currency and exchange rate

We will be using a deep reinforcement learning framework,
FinRL [81], to conduct the portfolio rebalancing in the proposed learn-
ing and processing framework. The three MACD indicators, f-MACD,
v-MACD and p-MACD will be compared in the portfolio rebalancing
tasks.

The state space for the RL agent would include financial market
data, along with MACD values. The action space would be {-1,0,1}
to denote sell, hold and buy actions respectively. The reward function
would be from the standpoint of portfolio returns and Sharpe ratios. A
summary of the components for the RL attributes is shown in Table 8.

Creating the environment is crucial for the RL agent to learn well.
This is because it takes in different market information provided and
transfers those parameters to a Markov Decision Process problem.
During the training phase, the RL agent observes the changes in price,
takes an action and obtains a reward. It updates iteratively for each
trading day, and the outcome would be a strategy that maximises the
expected returns. The pseudocode of the DRL adapted from [81] is in
Fig. 14.

The buy and hold trading strategy is chosen to act as the benchmark
which is the baseline to compare with the RL strategy in the proposed
learning and processing framework. This means investors only buy the
index asset at the start, and sell it at the end of the trading period.
This would only incur twice the commission fees. The 1/N portfolio
strategy (i.e., equally weighted portfolio strategy) is another popu-
lar and effective strategy to rebalance total portfolio capital equally
at each rebalancing date [87-89]. The 1/N portfolio strategies with
both monthly equally rebalancing every 22 trading days and quarterly
equally rebalancing every 66 trading days as the benchmarks, with the
same rate of commission fees applicable in the experiments.

The metrics to evaluate trading performance include cumulative
returns and Sharpe ratio. Cumulative returns are the difference between
the initial value and final value, normalised by the initial value. The
Sharpe ratio is the average return earned in excess of the risk-free rate
per unit of volatility.

After training the RL models incorporating f-MACD data in the pro-
posed framework, the portfolio results for the A2C RL model and DDPG
RL model are shown in Fig. 15, together with other benchmarking
strategies. The returns and max drawdown for all these strategies are
shown in Table 9. The differences in percentage for the A2C RL strategy
in our proposed framework compared over other benchmarking strate-
gies are shown in the column of “A2C RL over other strategies”. While
the differences in percentage for the DDPG RL strategy in our proposed
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Protocol 1 Portfolio allocation using deep reinforcement learning (DRL)

1: Input: s, state space includes covariance matrix for stocks and technical indicators

: Output: Final portfolio value
- Initialize Py = $1,000,000, wq = (£

2
3 o
m

%). Py is the initial portfolio value, wy is the initial

portfolio weights, m is the number of stocks in the portfolio;

4: fort =1,....,ndo
5.

6: Normalize the weights w; to sum to 1;

Portfolio manager DRL observes a state s and outputs a portfolio weights vector wy;

7:
8:
9:
10:

Calculate stock returns vector ry =

Portfolio incurs period return wy r;

Update portfolio value P,
end

(1'1‘r*l'1.y 1
U1,t-1

Um,t—Um,t—1 )

- , v is the closing price;
Um. t—1 b

Py x (11 wlre):

Fig. 14. Pseudocode for Reallocation.
Source: Adapted from [81].
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Fig. 15. Returns of benchmarking strategies with A2C RL and DDPG RL strategies of the proposed framework.

framework compared over other benchmarking strategies are shown in
the column of “DDPG RL over other strategies” in the same table.

It is seen in Fig. 15 that the DDPG RL strategy in our proposed
framework outperforms all other strategies, except for the strong bullish
S&P500 index in the experiment time frame. This could be due to the
strong bullish trend from the S&P500 index. However, because the
FTSE100 and CAC40 indexes are more volatile, the RL strategy in the
proposed framework manages to take advantage of their fluctuations
to optimally allocate assets based on trend reversals detected from
the forecasted-MACD. The plots of the A2C RL model with f-MACD
indicator show lower performance than those of the S&P500 index,
DDPG RL model, and 1/N strategy with monthly rebalancing.

It is also observed in Table 9 that the returns of the created portfolio
managed by the A2C RL model with f-MACD indicator of the proposed
framework outperforms those of both the 1/N strategy with quarterly
rebalancing and the buy & hold strategies by 8.0% in returns. However,
the 1/N strategy with monthly rebalancing outperforms the A2C RL
model by 4.0% in returns. It probably because that the 1/N strategy
takes rides on the strong bullish trend of the S&P500 index with the
monthly rebalancing.

As seen in Table 9, the returns of the portfolio managed by the
DDPG RL model with f-MACD indicator are higher than all other
strategies except for the strong bullish S&P500 index. The similar trend
on the lower max drawdown for the DDPG RL model comparing to
other strategies can be observed, except for the S&P500 index. The
DDPG RL model outperforms the buy and hold strategy by 24.0%
in returns, outperforms the 1/N strategy with quarterly rebalancing
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by 24.0% in returns, and outperforms the 1/N strategy with monthly
rebalancing by 12.0% in returns.

Furthermore, the DDPG RL model has higher cumulative returns of
16.0% than those of the A2C RL model. This could be due to the nature
of the DDPG algorithm, where it is off-policy and the objective function
does not directly depend on a policy’s probability distribution. Instead,
it only requires a single timestep for every update of states, actions and
rewards. This differs from the A2C RL model, which has to be trained
based on policies. After an update, trajectories generated from older
policies would not be applicable. Thus, the DDPG RL model is able
to learn better without relying on conditional probability distributions
induced by the policy.

Fig. 16 displays the portfolio weights generated by the DDPG RL
model. These changes in the weight allocation are caused by the
fluctuations in closing price and trend reversals in each index, with
the RL rebalancing strategy allocating changes in weights depending on
the action that gives maximal returns. It is prominent that the weights
for the FTSE100 index are generally lower, and the CAC40 index is
generally higher. The S&P500 index has stayed mostly consistent, but
when it does fluctuate, it would have an increased weight. This could
be partly attributed to the MACD values, determining the position in
time where the buy and sell signals are created. However, it is also
attributed to the RL algorithm for optimisation based on changing states
and actions. From a pure observatory point of view, it seems that the
FTSE100 index has fewer high return opportunities compared to CAC40
and S&P500 indexes, which causes its weight to be lower, indicating
that it is being sold while other indexes are being bought instead.
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Table 9

Comparisons of returns and max drawdown of various portfolio strategies.
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Portfolio strategy Results A2C RL over other strategies DDPG RL over other strategies
Returns Max Drawdown Returns Max Drawdown Returns Max Drawdown
S&P500 alone 234.0% 0.339 —66.0% 3.1% —50.0% 2.7%
FTSE100 alone 99.1% 0.473 68.9% 10.3% 84.9% -10.7%
CAC40 alone 148.0% 0.403 20.0% -3.3% 36.0% -3.7%
Buy and Hold Strategy 160.0% 0.369 8.0% 0.1% 24.0% —-0.3%
1/N Strategy (22 days) 172.0% 0.376 —4.0% —0.6% 12.0% -1.0%
1/N Strategy (66 days) 160.0% 0.376 8.0% —0.6% 24.0% -1.0%
A2C RL Model (ours) 168.0% 0.370 - - 16.0% —0.4%
DDPG RL Model (ours) 184.0% 0.366 -16.0% 0.4% - -
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Fig. 16. Changes in portfolio weights generated by the DDPG RL model.

Table 10

Comparisons of returns and Sharpe ratio of three MACD using A2C and DDPG RL models.

Returns

Sharpe ratio

A2C RL model DDPG RL model A2C RL model DDPG RL model
vanilla-MACD 70.0% 63.3% 0.642 0.612
forecasted-MACD 68.5% 84.5% 0.634 0.745
perfect-MACD 65.4% 70.1% 0.611 0.655

In the next experiment, the f-MACD indicator which is utilised by
the A2C and DDPG RL models in the proposed framework is replaced by
the v-MACD and p-MACD. The purpose of the experiment is to compare
the effectiveness and impact of the three types of the MACD indicators
in the framework for the tasks of portfolio rebalancing. The returns and
Sharpe rations of the portfolio rebalancing by the three types of MACD,
i.e., ff-MACD, v-MACD, and p-MACD employed in the A2C and DDPG
RL models are shown in Table 10. It is observed in the A2C RL model
that the returns of f-MACD are higher by 3.1% than those of p-MACD,
but lower by 1.5% than those of v-MACD. Similarly, the Sharpe Ratio of
f-MACD is higher by 3.6% than that of p-MACD and lower by 1.3% than
that of v-MACD. In the DDPG RL model, {-MACD outperforms v-MACD
and p-MACD on both the returns and Sharpe Ratio by 12.1% to 21.2%.

We would have expected the returns from perfect-MACD to perform
the best compared to those of the f-MACD and v-MACD. However, it is
observed in Table 10 that the f-MACD and v-MACD outperform the p-
MACD instead. Similar trends are observed on the results of the Sharpe
ratios. v-MACD performs the best when it is incorporated into the A2C
RL model in terms of returns and Sharpe ratios. While f-MACD performs
the best in the case of DDPG RL model for portfolio rebalancing on both
returns and Sharpe ratios. This makes the comparisons between MACDs
inconclusive. .

We can explain these results by aligning the MACD values to actual
peaks and troughs of closing price, to see if it is exact in determining
buy and sell signals. Figs. 11-13 could be used to exemplify this point.
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The buy and sell signals produced do not perfectly lie on the most
optimal points of buy and sell actions, as it is a lagging indicator. For
example, the sell signal would have been more optimal if it is at the
highest point before the sharp drop in end 2019. However, this will
never be possible because hindsight values are simply not available.

This implies that for the case of portfolio rebalancing, having a
single technical indicator, MACD, is not sufficient as a standalone
feature to train the RL model and learn the optimal actions to take. The
input data should include other technical indicators to better capture
market information without relying too heavily on a single one. For
example, the RSI and PPO indicators could have been additions on top
of MACD. This is crucial because we would need more features to help
take into account the changes in all markets concurrently.

Regardless, the f-MACDs with predictions by the IFDNN in the
proposed learning and processing framework have proven to produce
high returns in a portfolio rebalancing environment, despite the RL
model only having the MACD indicator. It manages to outperform the
benchmark MACD values for the DDPG RL model, by more than 10%
in returns.

5. Conclusion
In this paper, the IFDNN architecture is developed with the capa-

bility of multiple days look-ahead forecasting. The f-MACD indicator is
introduced to detect trend reversals of stock prices. IFDNN is compared
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with the performance metrics of RMSE and R? to the vanilla LSTM that
is with less interpretability, when they are employed to conduct 15-day
look-ahead forecasting values. A learning and processing framework
incorporates the IFDNN as an inferencing module to enhance the detec-
tions by the f-MACD indicator, where GA is employed for parameters
optimisation to determine the best combination of parameters among
multiple variables. In the experiments of trading of individual financial
index assets, the f-MACD indicator achieves positive returns for all
datasets, outperforming the v-MACD by 34.7%-38.1% improvement on
the RMSE results and 17.0%-23.8% improvement on the R? results. The
f-MACD indicator with IFDNN also obtains better investment returns by
1.1%-27.0% than those of v-MACD.

The improved f-MACD indicator by IFDNN and GA is incorporated
into A2C and DDPG RL models for the portfolio re-balancing tasks. The
portfolio consists of three indexes representing different major interna-
tional markets with moderate correlations. The f-MACD based DDPG
RL model achieves notably better results of investment returns and
Sharpe ratio, compared to all other benchmarking portfolio strategies,
including buy and hold, 1/N strategy with monthly rebalancing and
1/N strategy with quarterly rebalancing strategy.

Lastly, the f-MACD indicator is replaced by the v-MACD and p-
MACD indicators in the A2C and DDPG RL models in the proposed
framework, to compare the effectiveness and impact of the three types
of the MACD indicators in the portfolio rebalancing tasks. The f-MACD
based DDPG RL model performs better than those of v-MACD and
perfect-MACD. But the f-MACD based A2C RL mode loses out to v-
MACD based model marginally by —1.5% on investment returns and
—1.2% on Sharpe ratio. As such, the results are less conclusive in
determining the effectiveness of the proposed f-MACD in the proposed
learning and processing framework. This is attributed to the lack of
sufficient factors, as MACD might not be the sole best indicator for
reallocation using RL. Thus, the RL agent may not have the most
holistic representation of state action pairs for optimisation, leading
to inconclusive results..

As one limitation of this research, currently only the MACD tech-
nical indicator is utilised for detecting the trend reversal of the stock
prices. Besides MACD, there are various indicators for technical analysis
on financial stock trading that are also reported to be effective in
literature, such as RSI, MACDH, or Bollinger Bands, etc. Some prior
works are also introduced to combine two or more technical indicators
in such tasks. Our research will be further conducted to explore other
types of technical indicators and include additional customised tech-
nical indicators. They will be employed for portfolio rebalancing that
incorporates the forecasted predictions from the IFDNN in the proposed
learning and processing framework.

For another limitation of this research, the maximum value for
the number of membership clusters to derive fuzzy rules is chosen
according to the empirical domain knowledge. However, in some of the
time series applications, there may be highly dynamic scenarios where
the empirically chosen maximum value becomes unfit. It will need a
more automated method to look for the suitable maximum value. This
will be one of our future works.

Other future works could include further exploring and improving
the performance of the proposed learning and processing framework.
Other than that, GA itself also has parameters that require tuning,
including the number of generations, types of crossovers and mutation
rates.
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