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Abstract

1. Patterns in phenotypic and genotypic diversity within many species are becoming

increasingly apparent, although there remain many species for which such

patterns have yet to be described adequately.

2. Fishes from recently glaciated ecosystems are likely to be particularly rich in

intraspecific diversity, yet current conservation management strategies are, in

many parts of the world, particularly in Europe, conventionally and

overwhelmingly focused on species, regardless of competing species concepts,

and appropriate policies for managing diversity at a sub-specific level still have to

be developed.

3. Occasional attempts to protect certain vulnerable ecotypes and proposed

alternative units of conservation (e.g. ‘Pragmatic Species’ or ‘Evolutionarily
Significant Units’) reinforce the conventional primacy of contemporary expressed

patterns of variation.

4. Intraspecific phenotypic and genotypic patterns are ultimately the result of

complex processes of divergence; conservation approaches that focus on the

products of evolution largely ignore the processes that generate and maintain

those patterns. Policies that acknowledge the continuation of evolution, the

derivation of novel diversity over often very short time spans and the role of

environment in initiating and perpetuating these processes are poorly integrated

into management strategy.

5. To address possible deficits, where intraspecific diversity is not addressed in

management practice, we believe it to be important first to characterize hidden

genetic and phenotypic diversity, which may intimate eco-evolutionary processes,

initially among species of high conservation status. A second step should be to

use an approach to intraspecific diversity that illuminates the ultimate processes

and mechanisms that bring about that diversity, which also concedes the central

role of the environment and affords adequate protection to the ecosystems that
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drive these processes, such as the United Nations Convention on Biological

Diversity (CBD) Ecosystems approach.
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conservation units, cryptic diversity, intraspecific structuring, phenotypic plasticity,

polymorphism, postglacial ecosystems, rapid divergence, species concepts

1 | INTRODUCTION

The concept that the diversity of the natural world can reasonably be

sub-divided into units named ‘species’ is one that has persisted despite

multiple challenges (De Queiroz, 2007; Linnæus, 1758). Two of these

challenges (see below) are important in the context of describing and

understanding the evolution and the origin and maintenance of

biodiversity. They may, in addition, have implications for conservation

management, which holds species to be the typical biological unit upon

which, in many parts of the world, policy and practice are founded,

such as the International Union for Conservation of Nature (IUCN) Red

List. However, while the IUCN Red Listing process does permit entries

at the sub-specific level, these are few when compared with the

number of species listed. This is despite the stated position of the

United Nations Convention on Biological Diversity (CBD) that cites the

clear need to protect both ‘within’ and ‘between’ species diversity, as
well as the ecosystems of which they are part. Regardless of this

mandate, it is clear that the need to assess and protect within-species

diversity has been significantly undervalued by policy makers

worldwide (Hoban et al., 2021).

The first challenge is whether the species, as a level of

organization, has a biological relevance for the natural world outside

its utility as a method for categorizing organisms for the convenience

of study and so on. This is important, as for any species-based

conservation policy or action, a clear understanding is needed of the

beneficiaries of that action. In most concepts of what constitutes a

species, it is either explicit, or there is an implicit assumption, that a

species is a biological unit of organization that has, at least, a highly

restricted exchange of genes with other such units. A consequence of

this is that any accumulated adaptation in a species is retained within

the unit. Without such structure, any fitness-enhancing acquired trait

risks being lost through outbreeding (Mayr, 1949; Mayr, 1996). Thus,

by focusing on the species level, there is a reasonable expectation

that the subject of management is an evolutionarily functional unit,

with acquired adaptations that influence its fitness for the

environment(s) in which it is found (Ryder, 1986).

The second challenge to the species concept is how a species

might be defined. Science has collectively struggled with this question

since the modern Latinate binomial was clearly articulated by Linnæus

(1758). Camp & Gillis (1943) recognized 12 different species

definitions; Coyne & Orr (2004) found at least 25 in use. Despite

more than two and a half centuries of wrestling with the issue, there

remains no single definition that is universally accepted and appears

to work in all circumstances. As a result, there are exemplars to which

the application of any single strict definition fails (Coyne & Orr, 2004;

Hey, 2001). Competing concepts of what constitutes a species are

generally described in the literature as the ‘species problem’
(De Queiroz, 2005; Hey, 2001; Mayr, 1996). The single conceptual

definition that has been most widely adopted is the Biological Species

Concept, which implies complete (Dobzhansky, 1937), or almost

complete (Coyne & Orr, 2004; Mayr, 1942), reproductive isolation

between putative species. In reality, however, most species are

identified not by reproductive isolation from other species but, rather,

operationally by different phenotypic characteristics, from which a

lack of gene flow is inferred (Mayr, 1949), despite the potential to

miss cryptic genetic variation (Paaby & Rockman, 2014) or to mis-

attribute phenotypic variations arising through plasticity without great

distinction in genotype (Pfennig et al., 2010; Schneider &

Meyer, 2017; Thibert-Plante & Hendry, 2011; West-Eberhard, 2005).

The ‘species’ is the biological unit upon which conservation

policy and practice is focused. This applies both within the domestic

legislation of many countries and international initiatives, directives

and conventions (Tucker, 2023). Of the 1171 current taxon

designations in the eight most important lists that provide a

conservation framework for flora and fauna in the United Kingdom

(the Global Red List, UK Biodiversity Action Plan list, Habitats and

Species Directive, Bern Convention, Wildlife and Countryside Act

1981, Bonn Convention, EC CITES & Birds Directive), 99.2% are

designations for species (Joint Nature Conservation Committee

(JNCC), 2023). The few remaining are at intra-species level, with most

of these representing ill-defined or inconsistently defined sub-species

(although a few hybrid plants have been designated).

One example that illustrates the link between species and

conservation management is a major taxonomic review of the

freshwater fishes of Europe undertaken by Kottelat & Freyhof (2007).

This work approximately doubled the number of native fish species in

Europe at that time (up to 546 from around 270). The expansion

occurred through the re-evaluation of the species status of a wide

range of previously described accounts of new species (usually with

very limited range) mostly from Victorian naturalists (Adams &

Maitland, 2007). But it also included descriptions of 47 species new

to science. Two conservation-relevant consequences happened in the

immediate aftermath of the publication of this work. First,

the reported diversity of the freshwater fishes in Europe effectively

doubled. Second, a large proportion (38%) of the listed species were

evaluated as being ‘Threatened’, mostly as a result of a very restricted

distribution. This taxonomic revision has had far-reaching effects on

conservation for this group of taxa.
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Although largely absent in Europe, some countries, notably in

North America, have developed frameworks through which protection

at a level below species may be offered. In the United States, ‘Distinct

Population Segments’ of vertebrate species that are ‘substantially
reproductively isolated’ and represent ‘important component[s] in the

evolutionary legacy of the species’ may be recognized as deserving of

conservation under the Endangered Species Act (Rogers &

Foster, 1996). Similarly, in Canada, guidelines for the recognition of

sub-specific ‘Designatable Units’ require that designated populations

be both ‘discrete’ (i.e. reproductively isolated) and ‘evolutionarily
significant’, as evidenced by genetic markers, heritable traits and so

on (COSEWIC, 2020).

Although the species is currently, and is likely to remain, at least

in Europe, the focus of conservation actions directed towards

organismal groups, there is a developing understanding that, for many

groups, the species as a unit does not capture the full diversity of the

natural world. In an age of 'omics, the development of now very

sophisticated techniques to characterize the genome and phenotypes

of groups of organisms, in conjunction with some very subtle

analytical tools to model these data (Adams & Otárola-Castillo, 2013;

Best et al., 2018; Crotti et al., 2020; Elmer, 2016; Jacobs &

Elmer, 2021; Klingenberg, 2011; Schield et al., 2016; Strickland

et al., 2023), is starting to provide insights into how phenotypes and

the molecular mechanisms that beget them are structured in the

natural world, to an extent previously not possible. As these

techniques become increasingly affordable and accessible, they can

be standardized across systems and geographical areas and make

practical the monitoring of intraspecific diversity.

2 | DIVERSITY IN GENOTYPES AND
PHENOTYPES

Within species, phenotypic and genotypic variation is generally

thought of as continuous, most commonly (but not always) comprising

a unimodal Gaussian frequency distribution across the species, which

represents the breadth of diversity important for conservation

consideration. However, measurable discontinuities, that is

multimodal frequency peaks across a species, are becoming

increasingly evident in many instances, which result in more or less

clearly defined intraspecific groupings (Skúlason & Smith, 1995).

Collectively, these within-species patterns of genotype and

phenotype may be termed ‘intraspecific structuring’.
Genetic structuring may either be adaptive, and thus influence

fitness and result in the application of differential selection pressures

(Hendry & Stearns, 2004); or neutral, the product (for example) of

genetic drift or population bottlenecks (Frazer & Rusello, 2013). The

patterns in such structuring provide insight into the connectivity, gene

flow and rates of dispersal between populations within a species, as

well as hint at historical colonization or events that have affected the

genetic structuring (Holderegger et al., 2006).

Similarly, structuring of phenotype may reflect evolutionary

responses to different local environments (Bolnick et al., 2011; Koene

et al., 2020; Recknagel et al., 2017), especially when structuring

establishes between discrete habitats, both in allopatry and sympatry.

The fragmented nature of freshwater systems is especially likely to

promote allopatric structuring between catchments within obligate

freshwater species with limited powers of dispersal, such as many

freshwater fishes (Adams et al., 2016; Bush & Adams, 2007).

However, within such allopatric systems, otherwise disparate

populations may often converge upon similar phenotypes or groups of

phenotypes; local selection pressures cut alternative paths to parallel

phenotypic outcomes (Elmer & Meyer, 2011). Various underlying and

interactive mechanisms may differ across populations (Gordeeva

et al., 2015; Jacobs et al., 2020; Lundsgaard-Hansen et al., 2013) and

thereby reveal intrinsic structuring across a species' range.

When such structuring manifests in sympatry, structuring most

frequently takes the form of alternative phenotypes that are related to

behavioural, morphological, physiological and/or life-history differences

based upon differential niche use (well described in a range of species:

Endler, 1980; Skúlason et al., 1999; Maan et al., 2008; Martínez

et al., 2016; Hooker et al., 2017). Where such structuring is discrete,

clearly expressed and related to resource use or diet, it has been

termed resource or trophic polymorphism, whether in sympatry or

allopatry, and the discrete groupings variously described as ‘morphs’,
‘ecotypes’ or ‘ecomorphs’ (Skúlason et al., 2019; Skúlason &

Smith, 1995). Polymorphic species are relatively common among the

major vertebrate groups and appear to be prominent among fishes

found in recently glaciated lakes (Bernatchez & Wilson, 1998; Doenz

et al., 2019; Skúlason & Smith, 1995).

3 | STRUCTURING PATTERNS
PREDOMINATE IN POSTGLACIAL FISHES

Knowledge of the arrangements of phenotypic and genetic

structuring have only begun to emerge over the last two decades, and

there is much more to be understood before a full pattern might be

clearly discerned. It has been known for some time that such

arrangements appear in many animal species across many habitat

types (Smith & Skúlason, 1996). However, it is becoming apparent

that this kind of within-species structuring is more widespread in

aquatic systems than terrestrial, and especially in recently glaciated

lakes more than in other ecosystem types, notwithstanding important

exceptions such as the African Great Lakes (Skúlason et al., 2019).

Structuring among populations of many fish species from northern

freshwater systems is particularly well documented; many species

now have extensive genomic resources and the ecological tractability

that follows from systems with well-understood geological and

hydrological histories with known anthropological impacts (Skúlason

et al., 2019). That postglacial fishes typically play key ecological roles,

and are often of great economic and cultural importance, make them

excellent models for studies of divergence and conservation.

The predominance of structuring in recently glaciated ecosystems

over other habitat types has a good theoretical basis: Dieckmann &

Doebeli (1999) showed, using statistical models, that the emanation and
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perpetuation of structuring depends largely upon the existence of

alternative ecological opportunities. As a result of the emergence from

the Pleistocene glaciation, recently glaciated freshwater systems are

relatively species-poor, supporting only those species that invaded in the

last 12,000–15,000 years (Pabijan et al., 2015). Highly variable, streams

may provide diverse selection pressures on fish phenotypes via discrete

and contrasting habitat types (Jackson et al., 2001). Morphological

analyses across 38 sites in Québec, Canada showed that polymorphisms

were widespread among many species (Senay et al., 2014). Recently

glaciated lakes, in particular, provide ecological contrast by offering

alternative foraging resources that are distinct in size, in the habitats

where they are located and in the behavioural skills and feeding

apparatus that fish need to access these resources effectively. For

example, alternative foraging specialisms exhibited in sympatry in several

lacustrine fish species are commonly reported—populations diverge into

specialist zooplankton feeders in the limnetic zone and macro-

zoobenthos feeders in the littoral, each specialist sub-population with its

own adaptations suited to its foraging mode (Fraser et al., 2008;

Garduño-Paz & Adams, 2010; Hendry et al., 2009; Præbel et al., 2013).

The extent to which polymorphic populations in recently glaciated areas

exploit alternative resources follows a latitudinal or geographical

gradient, with the most recently and fully glaciated northern latitudes

showing the most prolific intraspecific diversity (Bernatchez &

Wilson, 1998). For example, large radiations with up to seven sympatric

ecomorphs of Salvelinus spp. have been described in the Kronotskoe

basin, Russia (Markevich et al., 2018); Tasersuaq, Greenland (Doenz

et al., 2019); and Þingvallavatn, Iceland (Jonsson et al., 1988).

4 | PROCESSES AND MECHANISMS
THROUGH WHICH INTRASPECIFIC
STRUCTURING ARISES

The phenotypic and genotypic patterns in formerly glaciated regions

are often the result of complex processes of divergence. One

possibility is that populations that had become fragmented in glacial

refugia during the Quaternary climate oscillations, and diverged in

allopatry thereafter, established secondary contact following

invasions of new habitats emerging from the ice (van Riemsdijk

et al., 2017). In such cases, ecological opportunity may maintain or

accentuate divergence that began in allopatry (Garduño-Paz

et al., 2012), but such structuring can also be the consequence of

divergence in sympatry (Dieckmann & Doebeli, 1999; Garduño-Paz

et al., 2012). Many populations of fishes, for example, are subjected

variously to allopatric neutral divergence (through drift, founder

effects, etc.) and natural selection imposed by local environments,

resulting from habitat fragmentation, and often complicated by

sympatric processes such as secondary contact, hybridization and

introgression (Aurelle et al., 2002; Jacobs et al., 2020; Osinov

et al., 2022). They are known to exhibit a high degree of genetic

structuring that is the result of evolutionary and ecological processes

(Adams et al., 2008; Ferguson & Taggart, 1991; Præbel et al., 2013;

Verspoor & Cole, 1989; Wood et al., 2014).

Such structuring is often accompanied by large phenotypic

differences correlated with trophic morphology or life history, such as

two sympatric forms of walleye, Sander vitreus, in several lakes in the

Canadian Shield of northern Québec, which are genetically distinct at

population level: a rare ‘blue’ form with longer head and slower

growth and a more common ‘yellow’ form (Paradis & Magnan, 2005).

However, there are also cryptic examples, presumably in the very

earliest stages of divergence, where there is genetic distinction

without clear phenotypic differences (McCairns & Bernatchez, 2008;

Paaby & Rockman, 2014). For example, populations of yellow perch,

Perca flavescens, in the Lake Michigan basin show significant genetic

differentiation, despite sharing drowned river mouth habitats for

much of the year (Chorak et al., 2019; Shoen et al., 2016), although

some morphological and resource-use differences have been noted

(Parker et al., 2009). Brown trout, Salmo trutta, in two tiny, connected

lakes in central Sweden show even clearer cryptic genetic structuring.

After almost two decades of collecting ca. 4000 samples, clear genetic

differences (FST ≥ 0.10) were noted (Palmé et al., 2013), despite a lack

of both obvious gene-flow barriers and the phenotypic hallmarks of

trophic polymorphism (Andersson et al., 2017).

Phenotypic plasticity—the ability of a given genotype to express

alternative phenotypes (West-Eberhard, 1989)—may allow discrete,

specialized ecomorphs to develop quickly as a collection of functional

traits induced by ecology (Bryce et al., 2016). Skúlason et al. (1999)

propose a model that includes concepts of phenotypic plasticity as a

force accelerating the divergence process; in the earliest stages,

resource specialization may result in morphological differences

generated solely through plasticity. Variation in DNA methylation

may, for example, generate phenotypic divergence even in the

absence of significant genetic variation (Angers et al., 2020; Crotti

et al., 2021). If this then gives rise to assortative mating and selection

against migrants and against hybridization (Garduño-Paz et al., 2020;

Thibert-Plante & Hendry, 2011), genetic assimilation of traits and

canalization may follow and contribute even further to divergence

(Ehrenreich & Pfennig, 2016; Levis & Pfennig, 2019; Pigliucci

et al., 2006). The process may even, though not necessarily, proceed

to complete reproductive isolation (Parsons et al., 2011; Pfennig

et al., 2010), as exemplified by the sympatric divergence of confirmed

reproductively isolated Arctic charr, Salvelinus alpinus, morphs in

Galtab�ol lake, Iceland (Brachmann et al., 2021; Gíslason et al., 1999).

Arctic charr shows a great capacity for phenotypic plasticity

(Klemetsen, 2013), and laboratory experiments have demonstrated

that plasticity in functional foraging traits can lead to divergence

(Adams & Huntingford, 2004). Phenotypic plasticity is hypothesized

to have been the mechanism by which the earliest stages of sympatric

divergence of Arctic charr occurred in several recently glaciated lakes,

where there is evidence of divergence in situ (Garduño-Paz &

Adams, 2010; Hooker et al., 2016). The fixation of traits that emerged

plastically within a population can be surprisingly quick. For example,

in response to a new environment, European whitefish, Coregonus

lavaretus, from a translocated refuge population in Scotland have,

within fewer than 10 generations, developed heritable morphological

characteristics distinct from the threatened ancestral population,
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reflected in the epigenome as differentially methylated loci, despite

little genomic differentiation (Crotti et al., 2021; Koene et al., 2019).

Rapidity of plasticity-first divergence (sensu Levis & Pfennig, 2016)

may be accelerated by growing reproductive isolation of divergent

ecotypes. Although threespine sticklebacks, Gasterosteus aculeatus,

have long been known to exhibit polymorphisms derived from

adaptive behavioural and morphological plasticity (Day et al., 1994;

Day & McPhail, 1996), a recent study on these fish demonstrated

that, in a diet-induced polymorphic captive population, expression of

plastic morphology resulting from foraging specialization can also play

a role in mate choice (Garduño-Paz et al., 2020).

Although initial divergence via phenotypic plasticity may result

quickly in response to new niche exploitation, complete reproductive

isolation does not necessarily follow; further divergence due to

disruptive selection may be prevented by continued gene flow

between the emerging groups resulting from only partial reproductive

isolation (Hendry et al., 2009). European whitefish in various basins of

Loch Lomond, Scotland, display, for example, different foraging

ecologies (Etheridge et al., 2010) and small, but significant, genetic

differences (Adams et al., 2016; Crotti et al., 2021). Disruptive

selection pressure towards trophic polymorphism is balanced against

the homogenizing effects of gene flow caused by regular straying

between spawning sites (Adams et al., 2016).

During their freshwater period, the European eel, Anguilla anguilla,

develops in two discrete ecotypes: narrow-head and broad-head morphs

feed on soft invertebrates and hard-shelled molluscs and fish,

respectively (Proman & Reynolds, 2002). The absence of intermediate

forms suggests that strong disruptive selection plays a role in the

observed pattern of variation (Cucherousset et al., 2011). However,

random mating and larval dispersal ensure no apparent genetic

structuring or reproductive isolation between these forms (Als

et al., 2011; Pujolar et al., 2014). In this species (and probably many

others), phenotypic structuring may be purely plastic through the

mechanism of differential gene expression (De Meyer et al., 2016).

However, the differentially expressed genes that result in discrete head

shapes appear to be associated with genes linked to somatic growth rate

and chemotaxis at an earlier, pre-feeding, developmental stage, which

may influence habitat choice. This suggests that a combination of

genetic differences and environmentally mediated plasticity is involved

in ecotype delimitation (De Meyer et al., 2017). Regardless, instead of

maintaining the polymorphism with balancing evolutionary processes in

a steady state, every generation sees its collapse and re-establishment.

More generally across fish taxa, it has recently become clear that similar

phenotypes with the same trophic adaptations may result from different

processes, both neutral and non-neutral genetic pathways; these

pathways may even vary within a species (Elmer & Meyer, 2011).

5 | NEW APPROACHES TO INTRASPECIFIC
STRUCTURING

The underlying processes and mechanisms that facilitate sympatric

intra-specific structuring are not fully understood at present.

Disruptive selection leading to differential fixation of alleles

associated with particular phenotypic traits may be well documented

(Schluter, 2009), as are transgenerational parental effects, such as

gamete provisioning (Räsänen & Kruuk, 2007). Egg size, for example,

has been shown to contribute significantly to diversification (Beck

et al., 2022; Leblanc et al., 2023), while contrasting omega-3 fatty acid

compositions in walleye ova have been linked to adult phenotypic

characteristics in three populations in Canadian lakes (Wiegand

et al., 2007). However, a number of promising areas of molecular

research have only recently opened up with new approaches and

techniques associated with genomics, transcriptomics and epigenetics.

Beyond descriptive genetics, investigation of adaptative potential

through genome-wide intraspecific variation has become more

practical and, when approached in conjunction with ecological factors

and fossil evidence, has the potential to yield insights into the genesis

and extent of structuring (Mable, 2019). For example, divergent

regions of the Arctic charr genome linked to specific phenotypic

characteristics have been seen in ecomorph pairs that have diverged

in parallel in a number of lakes (Elmer, 2016; Jacobs et al., 2020).

The field of epigenetics has similarly enjoyed a recent impetus with

next-generation-sequencing techniques that can efficiently elucidate

patterns of DNA methylation that directly regulate gene expression

(Cerruti et al., 2019; Schield et al., 2016). Techniques developed for

other organisms are now being applied increasingly to teleost fish and

include post-transcriptional mechanisms (Best et al., 2018). Alternative

splicing, in which the inclusion or exclusion of particular exons in the

processing of mRNA during gene expression, presents opportunities

for differential protein synthesis and may result in alternative

phenotypes (Singh & Ahi, 2022; Verta & Jacobs, 2022; Wright

et al., 2022). In a recent application to postglacial fish, a role has been

suggested for alternative splicing in the divergent muscle development

and functioning between Arctic charr morphs (Jacobs & Elmer, 2021).

Although it has not yet been specifically tested, it is reasonable to

hypothesize that this may be adaptive as differences in white muscle

tissue are likely to result in swim-performance differences between

morphs, each in correspondence with respective foraging behaviour.

The extent to which epigenetics are important mechanisms

underlying phenotypic plasticity within a single individual lifespan, or

may constitute transgenerational non-genetic inheritance, has

recently become a topic of interest in evolutionary biology (Best

et al., 2018; Burggren, 2014; Burggren & Crews, 2014; Heard &

Martienssen, 2014). How this relates to intraspecific structuring in

postglacial fishes is not at all clear, however. Indeed, even the

quantification of the relative contributions of genetics and plasticity

to ultimate sympatric salmonid ecomorphological phenotypes remains

largely unexplored.

In summary, intraspecific structuring is the manifestation of the

processes through which biodiversity emerges. Its importance rests

with the insights it can provide into fundamental mechanisms of

diversity genesis and with the fact that these mechanisms remain

poorly understood. Despite this, it is clear that the environment to

which diverging and recently diverged intraspecific groups are

exposed is key to the very earliest stages of the emergence of novel
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diversity and its subsequent maintenance (Skúlason et al., 1999.

Integral to the biodiversity of the natural world (Bolnick et al., 2011),

intraspecific structuring constitutes a significant component of the

world's natural heritage, and the documentation and understanding of

the mechanisms behind it are crucial for efficient policy and

management of ecosystems and species (Des Roches et al., 2018; Des

Roches et al., 2021).

6 | IMPLICATIONS FOR CONSERVATION
POLICY AND MANAGEMENT

Although species remain the dominant conservation units within

legislation and policies relating to biodiversity and wildlife

management in most jurisdictions globally, the CBD, from which these

tools to protect biodiversity are largely derived, states a clear need to

protect within and between species diversity, as well as the

ecosystems of which they are part. Moreover, the CBD promotes

application of the ecosystems approach, in which the organism–

environment relationships are considered in a dynamic and, to a

considerable extent, process-based way, which can be tailored to

incorporate intraspecific diversity and developmental (e.g. phenotypic

plasticity) and evolutionary processes of diversification (CBD, 2010).

Indeed, Principle 9 of the ecosystems approach holds that managers

must recognize that change is inherent and inevitable ‘and should be

cautious in making any decision that may foreclose options, but, at

the same time, consider mitigating actions to cope with long-term

changes such as climate change’ (CBD, 2007). Importantly, it

recognizes that humans are integral constituents of many ecosystems

and are the drivers of much change. Thus, the ecosystems approach

can accommodate process-based concepts of biological diversity,

especially through regular standardized monitoring and baseline

ecological or evolutionary research and data based on adaptive

management, with principles and strategies written into legislation

and governmental rules, and with consideration of the local contexts

of the respective ecosystems (Skúlason et al., 2023).

In recent years, attempts have been made to look beyond the

conventional species-level approach. Identification of within-species

diversity that is worthy of protection has, until now, primarily focused

on identification of contemporary expressed patterns of intraspecific

variation, rather than the processes and mechanisms that have

resulted in these patterns. This has resulted in specific protection for

some vulnerable ecotypes. Uniquely within Europe, statutory

conservation agencies within Great Britain have developed guidelines

for the identification of designated conservation sites that particularly

recognize intra-species diversity within freshwater fishes and formally

acknowledge the need to protect and maintain the habitats which

support it (Bean et al., 2018). These new guidelines replace the

previous guidelines for identifying important conservation sites that,

although recognizing intra-specific diversity in the form of ‘local
races’, failed fully to safeguard this diversity; nor did the guidelines

adequately recognize the link between the natural environment, intra-

specific diversity and the evolutionary processes that create and

maintain it (Nature Conservancy Council, 1989). This approach has

resulted in Great Britain recognizing a need for protection of

anadromous forms of brown trout (sea trout), the large piscivorous

ferox brown trout lineage and the genetically distinct, spring migrant

component of Atlantic salmon, Salmo salar, as well as species that

exhibit unusually high degrees of phenotypic and genetic diversity.

An important element of conservation policy is to acknowledge,

describe and subsequently protect, the diversity that exists within all

species. It is also important to recognize that for species that manifest

significant within-species phenotypic variation, even when that

variation may be discontinuous at a local level, it may not be

appropriate to apply a simple trait-based or Pragmatic Species

Concept (Seifert, 2014). This is likely to result in a species splitting that

does not adequately reflect the evolutionary processes that result in

species cohesion and retention of acquired adaptive traits. This is

particularly true of fishes occupying recently glaciated lakes but is

likely to be equally true of other taxa in other habitat types where the

expression of high levels of variation is supported by the environment

and where phenotypic plasticity forms a major component of the

mechanisms resulting in the expression of such variation.

The concept of ‘evolutionary significant units’ (ESUs) is an attempt

to recognize biological units in nature that, although they may not

constitute formal species, still capture some of the important

components of a species, especially accumulated adaptations accruing

from evolutionary processes in a group of organisms (Ryder, 1986).

However, precisely defining an ESU is, in practice, fraught with many

of the same difficulties as defining a species, with at least

10 definitions of the term (Casacci et al., 2014). In the United States,

ESUs are recognized under the Endangered Species Act (Fox, 1991),

and the criteria for designation as Distinct Population Segments are

based upon the ESU concept (Waples, 2006). Despite definition,

taxonomic and legal challenges, Distinct Population Segment

designations have been used as key tools in management below the

species level (Haig et al., 2006; Johnson, 2018; Rosen, 2007). For

anadromous Oncorhynchus spp. salmonids in the Pacific Northwest,

ESUs and Distinct Population Segments have been a basis of

conservation efforts since 1991, which include freshwater habitat

restoration (Barnas et al., 2015; Fox, 1991). Fraser & Bernatchez (2001)

preface their discussion of historical attempts to define the ESU

concept with Mayr's (1960) apposite warning: ‘The exact definition of

an ‘evolutionary novelty’ faces the same insuperable difficulty as the

definition of the species’. Any conservation approach that focuses on

ESUs, like any focused on species, primarily emphasizes the products of

processes that result in divergence. Although protecting what currently

exists is undoubtably important, such product-focused strategies fail to

provide the direct protection of emergent and future diversity.

Pattern-centred conservation approaches largely ignore the

processes that lead to diversity. In contrast, process-oriented

approaches that concentrate on adaptive potential and its drivers, the

evo-devo concept of ‘evolvability’ (Hendrikse et al., 2007;

Pigliucci, 2008) and the eco-evo-devo concept of developmental

dynamism responding to environmental and genetic impetus (Campbell

et al., 2017; Skúlason et al., 2019) directly address evolutionary

potential and the fluidity of diversity. A requirement of this approach is

the recognition that it is the environment that promotes the
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evolutionary processes that precipitate the emergence of new diversity

and the maintenance of diversity once it does emerge. This role of the

wider environment is poorly represented both conceptually, and

practically, in current conservation management planning, despite

several calls for the incorporation of conceptual frameworks within

conservation policy that include both genetic mechanisms that

delineate phenotypes and how the environment contributes to

phenotypic variation (Campbell et al., 2017).

Beyond delineation and organization of genetic and phenotypic

variation, it is the evolutionary theatre in which diversity proliferates

and, specifically, the habitats that influence underlying evolutionary

processes, which should ultimately determine how such diversity is

managed in the future (Mable, 2019). Within this broader approach,

there must be an acceptance that pressures—often anthropogenic—

on key habitats may well result in changes in ecosystem functioning

that can cause the extirpation of populations or the emergence of

environmental conditions that can result in evolutionary changes (see

Raffard et al., 2019; Skúlason et al., 2019; Vonlanthen et al., 2012).

We argue that, while trying to minimize human pressures, there is an

imperative to consider such changes in conservation policy;

conservation effort should not be directed towards the restoration of

nature at the point a pattern was described.

In summary, appropriate methods that enable conservation

bodies adequately to describe both biodiversity and the continuing

evolutionary processes that underpin divergence have not been

integrated into conservation policy. Current policy emphasizes the

conservation of contemporary patterns of diversity, but even this is

not executed particularly well in practice, with the protected patterns

overwhelmingly focused upon species. This disregards many of the

patterns of diversity that are found below the species level, manifest

as the intraspecific genetic and phenotypic structuring now well

described in some freshwater taxa. Although many concepts of ESUs

have been proposed as an alternative to the species approach, one

major conceptual difficulty that may be impeding consideration of

sub-specific structuring is that of defining the units themselves.

Regardless, focus on contemporary diversity patterns as the products

of evolution largely ignores the processes that generate and

continually change these patterns. Conceptually poorly incorporated

into much conservation management are policies that acknowledge

the continuation of evolutionary processes, incessantly deriving new

diversity over very short time spans (evidenced by the emergence of

novel diversifications in freshwater fishes since the latest glaciation)

and that it is the ecosystem that drives and perpetuates these

processes. There is an urgency for the conservation of freshwater

fishes, especially those in Arctic and sub-Arctic areas disposed to

rapid changes, to add to conservation policy a consideration of the

environment precipitating the processes that result in new diversity.

We advocate an approach that explicitly moves away from

consideration of species, or any other pattern of contemporary

diversity, towards conservation that prioritizes protection of those

ecosystems, such as recently glaciated lakes, that facilitate the

dynamic processes of evolution and allows operation of

the mechanisms that lead to greater diversity. The ecosystems

approach of the CBD can fulfil these criteria without recourse to

identifying species at risk. Although contemporary patterns may assist

in identifying such ecosystems, we recommend protection of the

environment, not to preserve past or current patterns of biodiversity

but rather to secure the processes that generate biodiversity.
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