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Abstract: We prove that the class of crossed product C*-algebras associated with the
action of the multiplicative group of a number field on its ring of finite adeles is rigid in
the following explicit sense: Given any *-isomorphism between two such C*-algebras,
we construct an isomorphism between the underlying number fields. As an application,
we prove an analogue of the Neukirch–Uchida theorem using topological full groups,
which gives a new class of discrete groups associated with number fields whose abstract
isomorphism class completely characterises the number field.

1. Introduction

1.1. Context. The study of C*-algebras of number-theoretic origin was initiated by
Bost and Connes three decades ago [4]. The Bost–Connes C*-algebra for Q carries
a canonical time evolution, and it was shown in [4] that the associated C*-dynamical
system exhibits several remarkable properties related to the explicit class field theory of
Q. With Hilbert’s 12th problem in mind, the initial objective was to find an appropriate
notion of Bost–Connes C*-algebra for a general number field. Such a C*-algebra should
carry a canonical time evolution, and the associated C*-dynamical system should reflect
the class field theory of the number field (see [13, Problem 1.1] for the precise formulation
of this problem). Several C*-algebras were proposed early on [1,11,28,43]. However,
the C*-dynamical systems from these constructions did not exhibit the desired phase-
transition phenomena in general. A construction was given by Connes, Marcolli, and
Ramachandran [13] for imaginary quadratic fields that did satisfy all the desired criteria,
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and then a construction of a Bost–Connes type C*-algebra associated with a general
number field was given by Ha and Paugam [27] (in greater generality) and by Laca,
Larsen, and Neshveyev [40]. The C*-algebras defined in [40] are now considered the
standard Bost–Connes C*-algebras. The KMS-structure was computed in [40], but the
existence of an arithmetic subalgebra—the remaining property from [13, Problem 1.1]—
was only proven later by Yalkinoglu [82] (since the construction in [82] relies on results
from class field theory, it did not shed light on Hilbert’s 12th problem). The study
of Bost–Connes C*-algebras has led to several recent purely number-theoretic results
[14,15,76].

Another avenue for constructing C*-algebras from number fields is via ring C*-
algebras. They were first defined by Cuntz for the ring Z [17] and then for general rings
of integers in number fields by Cuntz and Li [21] (see also [46]). Inspired by [17], Laca
and Raeburn considered a semigroup C*-algebra over Z [45], and a modification of
this construction was introduced shortly after for general rings of integers by Cuntz,
Deninger, and Laca [18]: Given a ring of integers in a number field, one considers
the semigroup C*-algebra of the ax + b-semigroup over the ring, which is a natural
extension of the ring C*-algebra. Such semigroup C*-algebras have received a great deal
of attention over the last decade: They provided a fundamental example class for the
development of Li’s theory of semigroup C*-algebras [47,48]; the problem of computing
their K-theory was a driver for general results on K-theory by Cuntz, Echterhoff, and
Li [19,20] and Li [52]; and the study of their KMS-structure led to general results by
Neshveyev on KMS states [63].

Initially, the focus in each of these avenues of investigation was on internal structure
and KMS states of the C*-algebra in question for a fixed number field. The problem of
rigidity—that is, of comparing the C*-algebraic data arising from two different number
fields—was first considered by Cornelissen and Marcolli who considered the Bost–
Connes C*-dynamical systems [16]. Not long after, it was proven by Li and Lück [53]—
building on earlier work by Cuntz and Li [22]—that the ring C*-algebras associated with
rings of integers have no rigidity in the sense that the ring C*-algebra of a ring of integers
does not depend, up to isomorphism, on the ring of integers. Li then established, under
some technical assumptions, that the C*-algebra of an ax + b-semigroup over a ring of
integers remembers the Dedekind zeta function of the number field [49]; Li also showed
that if one keeps track of the canonical Cartan subalgebra, then the ideal class group of
the number field can be recovered [50]. The technical assumption in [49] was removed
later in work by the first-named author and Li [7]. As a consequence of these results,
one obtains a rigidity theorem for number fields that are Galois over Q: If the semigroup
C*-algebras of the ax +b-semigroups from two rings of integers are isomorphic, and one
of the number fields is Galois, then the fields must be isomorphic. However, it is not clear
how such an isomorphism of fields is related to the initial *-isomorphism of C*-algebras.
Inspired by Li’s rigidity results for ax+b-semigroup C*-algebras, the problem of rigidity
phenomena for the Bost–Connes C*-algebras—without any additional data such as time
evolutions—was considered by the second-named author [78,79], where it was proven
that the Bost–Connes C*-algebra remembers both the Dedekind zeta function and the
narrow class number of the underlying number field; as in the case of semigroup C*-
algebras, this implies rigidity if one of the number fields is Galois. A complete solution
to the rigidity problem was later obtained by the second-named author and Kubota [38]:
Any *-isomorphism between the Bost–Connes C*-algebras associated with two number
fields gives rise to a conjugacy between the Bost–Connes semigroup dynamical systems.
Moreover, this conjugacy is constructed from K-theoretic invariants of the C*-algebras.
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The Bost–Connes semigroup dynamical system from [40] is constructed from a number
field using the action of the ideal semigroup on the balanced product of the integral adeles
and the Galois group of the maximal abelian extension of the field, and combining the
aforementioned reconstruction theorem with the dynamical characterisation of number
fields obtained by combining [14, Theorem 3.1] and [15, Theorem 3.1], one obtains
a complete solution to the rigidity problem for Bost–Connes C*-algebras. However,
this is an abstract rigidity result in the sense that a *-isomorphism of Bost–Connes C*-
algebras implies the underlying number fields are isomorphic, but it is not clear how this
isomorphism of fields is related to the initial *-isomorphism.

The construction of Bost–Connes C*-algebras in [40] is ad hoc: It is designed in
such a way that the associated C*-dynamical system has the desired KMS-structure and
symmetry group. The Hecke C*-algebras constructed from totally positive ax+b-groups
in [42] are less ad hoc. These are full corners in the Bost–Connes C*-algebra by [41],
so the results of the second-named author and Kubota in [38] yield a rigidity theorem
for such Hecke C*-algebras. However, from the perspective of rigidity for C*-algebras
constructed from number fields, there are other C*-algebras that are more natural from
a number-theoretic or dynamical view point.

1.2. Main result. Let K be a number field with ring of integers OK . We consider the
crossed product C*-algebra AK := C0(AK , f ) � K ∗, where the multiplicative group
K ∗ of K acts on the ring of finite adeles AK , f through the embedding K ⊆ AK , f .
The canonical unital full corner 1OK

AK 1OK
, where OK is the compact ring of integral

adeles, is isomorphic to the semigroup crossed product C∗(K/OK ) � O×
K from [1],

where O×
K := OK \ {0}. This construction of C*-algebras from number fields is one of

the easiest and most natural. Our main result says that the rigidity phenomenon from
[38, Corollary 1.2] holds even in this setting:

Theorem 1.1. Let K and L be number fields. Then, the following are equivalent:

(i) The fields K and L are isomorphic.
(ii) There exist full projections p ∈ M(AK ) and q ∈ M(AL) such that pAK p and qALq

are *-isomorphic.

In particular, K ∼= L if and only if AK ∼= AL .

Theorem 1.1 will be derived from Theorem 5.5, which is a slightly stronger, but more
technical result. Given any *-isomorphism pAK p ∼= qALq as in (ii), our proof explicitly
constructs a field isomorphism K ∼= L from the *-isomorphism pAK p ∼= qALq. Such
an explicit rigidity result is a new phenomenon in the setting of C*-algebras from number
theory; the main theorem of [38] reconstructs the Bost–Connes semigroup dynamical
system, but does not provide an explicit isomorphism between number fields. Condition
(ii) is a priori stronger than having a Morita equivalence between AK and AL . We leave
it as an open problem to determine if a Morita equivalence (or more generally an ordered
KK-equivalence over the power set of primes) implies that K and L are isomorphic.

We now explain an application of our rigidity theorem to topological full groups of
certain groupoids. Topological full groups were introduced by Giordano, Putnam, and
Skau for Cantor minimal systems [26] and then for étale groupoids over a Cantor set
by Matui [55]: To each such groupoid G, one associates a discrete group [[G]] of certain
homeomorphisms of the unit space G(0) of G. Such full groups often exhibit surprising
rigidity phenomena in that the abstract isomorphism class of the group characterises
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the groupoid up to isomorphism, see [56] and [72]. Recently, several of these rigidity
results were extended by Nyland and Ortega [64] to the case of certain non-minimal
étale groupoids whose unit space is a locally compact Cantor space, which is pertinent
to our work.

The C*-algebra AK has a canonical groupoid model: AK ∼= C∗
r (GK ), where GK :=

K ∗ � AK , f is the transformation groupoid associated with the action K ∗ � AK , f .
Theorem 1.1 implies that the topological full group of the stabilisation ofGK is a complete
invariant of K :

Corollary 1.2. Let K and L be number fields, and let R denote the full equivalence
relation over a countably infinite set. Then, the following are equivalent:

(i) The fields K and L are isomorphic.
(ii) The topological full groups [[GK × R]] and [[GL × R]] are isomorphic as discrete

groups.

We view Corollary 1.2 as an analogue of the Neukirch–Uchida theorem [61,80] which
says that the absolute Galois group of a number field characterises the number field: If
K and L are number fields with absolute Galois groups GK and GL , respectively, then
K ∼= L if and only if GK ∼= GL . We point out that [[GK × R]] is a countable discrete
group, whereas the absolute Galois group GK is a profinite group.

There are other classes of topological full groups that are complete invariants of num-
ber fields. Indeed, following our approach in Sect. 7 we can show that the topological full
group of the stabilised Bost–Connes groupoid is a complete invariant of the underlying
number field (Remark 7.3). In addition, in work of the first named-author and Li [8], it
is proven that the topological full group of the groupoid underlying the ring C*-algebra
of a ring of integers is a complete invariant of the associated number field. The proof of
this result is groupoid-theoretic, and thus quite different from the results in this paper.

The investigation of topological full groups has led to the resolution of several open
problems in group theory, see [34,35,60], so it is a natural problem to study group-
theoretic properties of [[GK × R]]. This problem is left for future work and is not con-
sidered in this article.

Our results have several other interesting consequences, which are presented in
Sects. 8 and 9. For instance, given a number field K , the splitting numbers of ratio-
nal primes, the ideal class group of K , and the automorphism group Aut(K ) are each
given explicit C*-algebraic descriptions.

In number theory, it is more natural to consider the full adele ring AK rather than
the finite adele ring AK , f . The crossed product C*-algebra associated with the action
K ∗ � AK is precisely Connes’ noncommutative adele class space from [12]. In [9], we
give a systematic study of such C*-algebras and use Theorem 1.1 to deduce a rigidity
result in that setting also. Here, we only point out that because AK has a large connected
component, the techniques of the present paper do not apply directly when the full adele
ring is considered.

1.3. Outline of the proof. Our proof of Theorem 1.1 comprises two parts, the first
C*-algebraic and second number-theoretic. Let us first explain the strategy of the C*-
algebraic part and compare it to the proof of the second-named author and Kubota in [38].
Note that in [38], the number-theoretic results needed were established separately in [14]
and [15], whereas our paper includes both the C*-algebraic and the number-theoretic
arguments.
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We first study the primitive ideal space ofAK , and prove thatAK is a C*-algebra over
the power set of nonzero prime ideals of OK . This requires a computation of the quasi-
orbit space for K ∗ � AK , f , which extends the work [44] of Laca and Raeburn from the
case of the rational numbers to general number fields. Using general observations from
[38] on C*-algebras over power sets, we then obtain subquotients of AK—which are
called composition factors—parametrised by the finite subsets of primes. We describe
these subquotients explicitly as crossed product C*-algebras for certain semi-local dy-
namical systems—that is, systems from the action of K ∗ on finite products of local
fields. The composition factor at the zeroth level is the group C*-algebra C∗(K ∗). We
follow the approach in [38] to analyse composition factors, using a valuation C*-algebra
which plays a role similar to that in [38] (Definition 4.9).

The first technical problem in our situation is the presence of torsion in K ∗: Abstractly,
we have K ∗ ∼= μK ×�K , where μK = tors(K ∗) is the finite cyclic group of roots of unity
in K , and �K = K ∗/μK . Essentially, for all levels except the zeroth, K-theory forgets
all information about torsion in the sense that the composition factor is Morita equivalent
to the crossed product for the underlying semi-local dynamical system modulo roots of
unity. Therefore, we can at best only recover the underlying dynamical system modulo
roots of unity. The number-theoretic part of our proof is mostly devoted to overcoming
this apparent loss of information.

We introduce the auxiliary C*-algebra BK := C0(AK , f /μK ) � �K built from the
dynamical system �K � AK , f /μK , see Definition 4.9. We show that BK is also a
C*-algebra over the power set of primes, and we then prove a reduction result from AK
to BK (Proposition 5.4). This brings us closer to a situation where we can apply the
general reconstruction result [38, Corollary 3.18]. However, we encounter two technical
problems at this step. The first is caused by the unit group O∗

K of the ring of integers: We
cannot recover�K from the primitive ideal space ofBK . In [38], the isomorphism of ideal
semigroups that induces the conjugacy of Bost–Connes semigroup dynamical systems
is obtained from the homeomorphism of primitive ideal spaces. However, we cannot
adopt that strategy here, since our group �K is not directly related to the primitive ideal
space. Instead, we obtain the isomorphism γ : �K → �L from the unitary groups of the
zeroth level composition factors (Lemma 5.7). This strategy requires an extra argument
to show that γ is valuation-preserving (Proposition 5.11). This technology is one of the
biggest difference between our strategy and [38]. In addition, it is the reason why the
condition (2) of Theorem 1.1 is difficult to weaken to Morita equivalence. The second
problem is caused by the ideal class group ClK of K : We cannot find a canonical basis for
�K , so we cannot use basis-fixed arguments from [38] in their original form. Hence, we
establish basis-free versions of these arguments (Lemma 4.23 and Lemma 5.10). These
technical results allow us to replace other basis-fixed arguments by arguments using
only “partial bases” of �K , that are taken depending on the situation (Lemma 5.12).
Consequently, we have succeeded to make all necessary arguments basis-free. We point
out that it is common to encounter difficulties caused by μK , O∗

K , and ClK when we
construct C*-algebras from number fields using any method. The Bost–Connes case
is exceptional—such difficulties disappear since the action of the ideal semigroup is
considered. For the C*-algebras considered in this paper, we completely solve these
technical difficulties.

With a bit more technical work, we can apply [38, Corollary 3.18] to (the unital
part of) our composition factors to reconstruct a family of conjugacies between the
semi-local dynamical systems modulo roots of unity (Proposition 5.14). We then move
to the number-theoretic part or our proof: We construct an isomorphism of number
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fields from the semi-local data (Sect. 6). The role of this part is similar to the work of
Cornelissen, de Smit, Li, Marcolli, and Smit [14] in the Bost–Connes case; however the
semi-local number-theoretic data arising from our C*-algebra is completely different
from the number-theoretic data arising from the Bost–Connes C*-algebras, so we have
to establish some novel lifting technologies in order to be in a situation where ideas
from [14] can be utilised. It is interesting that the part of the strategy from [14] that is
useful for us is closer to the function field case in [14], rather than the number field case.
We rely on a reformulation of Hoshi’s theorem from [32] (Proposition 6.3), which is
essentially due to [14]. In our situation, the key technical difficulty is caused by μK as
mentioned before: We have an isomorphism only of the multiplicative groups modulo
roots of unity. We lift the isomorphism of the semi-local data modulo roots of unity at the
first level (Proposition 6.4). Interestingly, the second and third levels are also involved.

1.4. Structure of the paper. Section 2 contains background on KK-theory and number
theory, and the definition of AK . Section 3 contains general results on crossed product
C*-algebras for actions of certain abelian groups. In Sect. 4, we first study the structure of
general C*-algebras over a power set. Then, we introduce the auxiliary C*-algebras BK
andBval, and apply the general results toAK and these C*-algebras, giving a description
of their composition factors. Our main results are contained in Sect. 5: We state the
technical version of our main theorem, and prove it except for the number-theoretic
step. The number-theoretic part of our proof is contained in Sect. 6. Our application
to topological full groups is contained in Sect. 7. In Sect. 8, we prove that several
classical number-theoretic invariants can be given explicitly in terms of C*-algebraic
data (Sect. 8). Finally, in Sect. 9, we make several remarks and discuss other applications.

2. Preliminaries

2.1. Notation and terminology. We let K denote the C*-algebra of compact operators on
a separable infinite dimensional Hilbert space. Given a C*-algebra A, we let M(A)denote
the multiplier algebra of A. For C*-algebras A and B, a *-homomorphism α : A → B
is said to be non-degenerate if (the closure of) the subspace α(A)B is equal to B. A non-
degenerate *-homomorphism α : A → B lifts to a *-homomorphism M(A) → M(B),
which is still denoted by α. We let Prim(A) denote the primitive ideal space of A. For
background on multiplier algebras and primitive ideal spaces, see [68].

For an abelian group G, its dual group is denoted by ̂G. If an abelian group G acts
on a locally compact Hausdorff space X by homeomorphisms, then we let C0(X) � G
denote the associated crossed product C*-algebra. In addition, for g ∈ G, let ug ∈
M(C0(X) � G) denote the unitary corresponding to g. We refer the reader to [81] for
background on crossed products. Since G is amenable, there is no distinction between
the full and reduced crossed product here.

Given a subset Y of a topological space X , we let Y and Int(Y ) denote the closure
and interior of Y , respectively.

Let Z̃ := Z ∪ {∞} and Ñ := N ∪ {∞}, both equipped with their usual topologies.

2.2. Ext-groups and KK-theory. We collect some basic results on Ext-groups and KK-
theory for C*-algebras; most of this material originated in [37]. We refer the reader
also to [2] and [23] for background. Let A be a separable nuclear C*-algebra, and let
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B be a σ -unital stable C*-algebra. Let Ext(A, B) be the semigroup of (strong) unitary
equivalence classes of extensions of A by B, that is, exact sequences of the form

E : 0 → B → E → A → 0.

For an extension E , its unitary equivalence class is also denoted by E . We always consider
extensions up to unitary equivalence. Let Ext(A, B) be the quotient of Ext(A, B) by
subsemigroup of trivial extensions. Then, Ext(A, B) is a group. For E ∈ Ext(A, B), its
class in Ext(A, B) is denoted by [E]Ext. For an extension E ∈ Ext(A, B), the Busby
invariant of E is the *-homomorphism

τE : A ∼= E/B → M(B)/B =: Q(B).

As usual, we define K∗(A) = K0(A)⊕ K1(A) and consider it as a Z/2Z-graded abelian
group. There is a canonical homomorphism

Ext(A, B) → Hom(K∗(A), K∗+1(B)), [E]Ext 
→ ∂E := ∂0 ⊕ ∂1,

where ∂0 : K0(A) → K1(B) and ∂1 : K1(A) → K0(B) are the boundary maps associated
with E . In addition, there is a natural isomorphism Ext(A, B) → KK(A, Q(B)) defined
by sending [E]Ext to [τE ]KK. Let [E]KK ∈ KK1(A, B) denote the element corresponding
to [τE ]KK under the identification KK1(A, B) ∼= KK(A, Q(B)). For E ∈ Ext(A, B),
i = 0, 1, and x ∈ Ki (A), we have ∂i (x) = x ⊗̂A[E] ∈ Ki+1(B), where the symbol ⊗̂
denotes the Kasparov product. See [23, Sect. 4] and [2] for details.

Let A, A′, A′′ be separable nuclear C*-algebras, and let B, B ′, B ′′ be σ -unital stable
C*-algebras. Let E ∈ Ext(A, B), E ′ ∈ Ext(A′, B ′), E ′′ ∈ Ext(A′′, B ′′) be extensions. A
homomorphism ϕ : E → E ′ is a triplet ϕ = (α, η, β), where α : A → A′, β : B → B ′,
and η : E → E ′ are *-homomorphisms such that the following diagram commutes (see
[69, Sect. 1], for instance):

E : 0 B E A 0

E ′ : 0 B ′ E ′ A′ 0 .

β η α

Let KK denote the Kasparov category: The objects of KK are the separable C*-algebras,
and the set of morphisms between two such C*-algebras A and B is the KK-group
KK(A, B). For the background on KK, see [2, Sect. 22.1], [57], and the references
therein. We regard KK1(A, B) as a set of morphisms of KK via the natural isomorphism
KK1(A, B) ∼= KK(A, B ⊗C0(R)). Let Arr(KK) denote the arrow category of KK: The
objects of Arr(KK) are the morphisms of the Kasparov category, that is, elements of
KK(A, B), where A and B are separable C*-algebras, and a morphism in Arr(KK) from
[E]KK to [E ′]KK is a pair ϕ = (x, y), where x ∈ KK(A, A′) and y ∈ KK(B, B ′) are such
that x ⊗̂A′ [E ′]KK = [E]KK ⊗̂B y. General morphisms in Arr(KK) are defined similarly,
but we shall only consider morphisms between KK-classes of extensions in this article
(see [54, Chapter II, Sect. 4] for background on arrow categories). The category Arr(KK)

provides convenient notation for several of our proofs. It has implicitly appeared in the
classification of extensions, see, for instance, [69, Theorem 3.2] and [25, Theorem 2.3].

If ϕ = (α, η, β) : E → E ′ is a homomorphism, then the pair ([α]KK, [β]KK) is a
morphism in Arr(KK), which is denoted by [ϕ]KK. In particular, for the identity ho-
momorphism idE := (id, id, id) : E → E , we let id[E]KK = [idE ]KK. When ϕ =
(x, y) : [E]KK → [E ′]KK and ϕ′ = (x′, y′) : [E ′]KK → [E ′′]KK are morphisms in
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Arr(KK), the composition ϕ′ ◦ ϕ is defined to be the pair (x ⊗̂A′x′, y ⊗̂B′ y′). A mor-
phism ϕ = (x, y) : [E]KK → [E ′]KK is said to be an isomorphism in Arr(KK) if both
x and y are KK-equivalences. In this case, we denote the morphism (x−1, y−1) in
Arr(KK) by ϕ−1. Note that if ϕ : [E]KK → [E ′]KK is an isomorphism in Arr(KK), then
ϕ−1 ◦ϕ = id[E]KK and ϕ ◦ϕ−1 = id[E ′]KK. In addition, if ϕ = (x, y) : [E]KK → [E ′]KK
is a morphism in Arr(KK), then the diagram

K∗(A) K∗+1(B)

K∗(A′) K∗+1(B
′)

−⊗̂Ax

∂E

−⊗̂B y
∂E ′

commutes.
For a separable nuclear C*-algebra D belonging to the bootstrap class from [2,

Definition 22.3.4], and for an extension

E : 0 → B → E → A → 0,

let D ⊗ E ∈ Ext(D ⊗ A, D ⊗ B) denote the extension

D ⊗ E : 0 → D ⊗ B → D ⊗ E → D ⊗ A → 0.

Then, we have [D ⊗ E]KK = 1D ⊗̂[E]KK in KK1(D ⊗ A, D ⊗ B). In particular, we
have

∂D⊗E (x ⊗ y) = x ⊗ ∂E (y) ∈ K∗(D ⊗ B) (1)

for x ∈ K∗(D) and y ∈ K∗(A) by associativity of the Kasparov product. Note that
K∗(D) ⊗ K∗(A) and K∗(D) ⊗ K∗(B) are identified with subgroups of K∗(D ⊗ A) and
K∗(D⊗ B), respectively, by Künneth theorem for tensor products [2, Definition 23.1.3].
When we apply Eq. (1) in this article, K∗(D) is always torsion-free, so that we always
have K∗(D) ⊗ K∗(A) ∼= K∗(D ⊗ A) and K∗(D) ⊗ K∗(B) ∼= K∗(D ⊗ B).

A variant of the Toeplitz extension plays a crucial role in this article.

Definition 2.1. The dilated Toeplitz extension T ∈ Ext(C∗(Z), K) is the extension

0 → C0(Z) � Z → C0(Z̃) � Z → C∗(Z) → 0,

where Z acts on Z̃ = Z ∪ {∞} by translation, and C0(Z̃) � Z → C∗(Z) is the *-
homomorphism induced by evaluation at ∞.

Note that C0(Z) � Z is *-isomorphic to K, and the unitary equivalence class T does
not depend on the choice of the *-isomorphism, since any *-automorphism of K is inner.

Lemma 2.2. We have ∂T ([1C∗(Z)]0) = 0 and ∂T ([u]1) = −1, where u ∈ C∗(Z) is the
generating unitary corresponding to 1 ∈ Z.

Proof. Let T0 ∈ Ext(C∗(Z), K) be the (usual) Toeplitz extension

0 → p(C0(Z) � Z)p → p(C0(Z̃) � Z)p → C∗(Z) → 0,

where p is the characteristic function of Ñ = N ∪ {∞} ⊆ Z̃. We identify C0(Z) � Z

with K(�2(Z)). Then, the decomposition �2(Z) ∼= p�2(Z) ⊕ (1 − p)�2(Z) induces a
*-isomorphismC0(Z)�Z ∼= M2(p(C0(Z)�Z)p). Under this identification, we can see
that τT is equal to τT0 ⊕ 0, which implies that [T ]Ext = [T0]Ext. Now the claim follows
by the fact ∂T0([u]1) = −1 ∈ K0(C), since u ∈ C∗(Z) lifts to a generating isometry of
the Toeplitz algebra p(C0(Z̃) � Z)p (see [71, p.168]). ��
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Next, we fix terminology related to positive cones of K0-groups. Recall that for
every C*-algebra A, the pair (K0(A), K0(A)+) is a preordered abelian group, where
K0(A)+ := {[p]0 : p is a projection in A ⊗ K}. For C*-algebras A and B, we say that
a group isomorphism ϕ : K0(A) → K0(B) is an order isomorphism if ϕ(K0(A)+) =
K(B)+. We shall say that a homomorphism of Z/2Z-graded abelian groups ϕ : K∗(A) →
K∗(B) is an order isomorphism if ϕ : K0(A) → K0(B) is an order isomorphism. A KK-
equivalence x ∈ KK(A, A′) is said to be an ordered KK-equivalence if the isomorphism
−⊗̂Ax : K∗(A) → K∗(A′) carries K0(A)+ onto K0(A′)+. Similarly, an isomorphism
ϕ = (x, y) : [E]KK → [E ′]KK in Arr(KK) is said to be an order isomorphism in Arr(KK)
if both x and y are ordered KK-equivalences.

The next proposition is well-known, but we include the proof for the reader’s conve-
nience. We frequently use it without reference in this article.

Proposition 2.3. Let A and B be separable C*-algebras, and suppose X is an A–B-
imprimitivity bimodule. Let x ∈ KK(A, B) be the element corresponding to X . Then,
the isomorphism

−⊗̂Ax : K∗(A) → K∗(B)

carries K0(A)+ onto K0(B)+. In particular, if p ∈ M(A) is a full projection, then the
inclusion map pAp → A induces an ordered KK-equivalence.

Proof. Let p ∈ A ⊗ K be a projection. It suffices to show that [p]0 ⊗̂Ax ∈ K0(B)+.
Under the standard isomorphism K0(A) ∼= KK(C, A), [p]0 corresponds to the Kasparov
bimodule [A ⊗ H,�p, 0] ∈ KK(C, A), where H is the infinite dimensional separable
Hilbert space and �p : C → K(A⊗H) ∼= A⊗ K sends 1 ∈ C to p. On the other hand,
we have x = [X , ϕ, 0], where ϕ : A → K(X ) is the canonical isomorphism. Then, the
Kasparov product [p]0 ⊗̂Ax is given by

[p]0 ⊗̂Ax = [(A ⊗ H) ⊗A X ,�p ⊗A 1, 0].
Since X is a full right Hilbert B-module, Kasparov’s stabilisation theorem [59, Theorem
1.9] gives

(A ⊗ H) ⊗A X ∼= X ⊗ H ∼= B ⊗ H

as right Hilbert B-modules. Hence, with q = (�p ⊗A 1)(p) ∈ B ⊗ K, we have
[p]0 ⊗̂Ax = [q]0 ∈ K0(B)+. ��

2.3. Number-theoretic background. Let K be a number field with ring of integers OK ,
and denote by μK the (finite, cyclic) group of roots of unity in K . Let PK be the set of
nonzero prime ideals of OK , and for a nonzero ideal I � OK , let N (I ) := [OK : I ] be
the norm of I . For p ∈ PK , we let vp denote the corresponding valuation, where our
normalizing conventions follow [62, p.67]. The absolute value associated with p ∈ PK
will be denoted by | · |p, and we shall use Kp to denote the locally compact completion
of K with respect to | · |p and let OK ,p ⊆ Kp be the associated discrete valuation ring.
Let AK , f := ∏′

p∈PK
(Kp,OK ,p) be the ring of finite adeles over K . We let A∗

K , f :=
∏′

p∈PK
(K ∗

p,O∗
K ,p) be the group of finite ideles equipped with the restricted product

topology, and let OK := ∏

p∈PK
OK ,p be the compact subring of integral adeles. The

multiplicative group K ∗ := K \ {0} embeds diagonally into A∗
K , f .
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We refer the reader to [62] and [29] for background on number theory. We shall make
frequent use of the following approximation result, which is a consequence of Strong
Approximation, as stated in, for instance, [29, Chapter 20].

Lemma 2.4. Given n1, . . . , nk ∈ Z and p1, . . . , pk ∈ PK , there exists x ∈ K ∗ such
that vpi (x) = ni for all 1 ≤ i ≤ k and vp(x) ≥ 0 for all p ∈ PK \ {p1, . . . , pk}. In
particular, the image of K ∗ in AK , f is dense.

For p ∈ PK , let O(1)
K ,p := 1 + pOK ,p. We will need the following result on the

multiplicative group of Kp.

Lemma 2.5. ( [62, Proposition II.5.3] and [29, p.224]) For p ∈ PK , choose πp ∈
K ∗ with vp(πp) = 1, and let p be the rational prime lying under p. Then, there are
isomorphisms of topological groups

(i) K ∗
p

∼= πZ
p × O∗

K ,p;

(ii) O∗
K ,p

∼= (Z/(N (p) − 1)Z) × O(1)
K ,p;

(iii) O(1)
K ,p

∼= (Z/paZ) × Z
[Kp:Qp]
p , where a ≥ 0 with a = 0 if p is odd and unramified in

K .

Note that the element πp in Lemma 2.5 exists by Lemma 2.4.
We let �K := K ∗/μK , and for each finite subset F ⊆ PK , let �F

K := {a ∈ �K :
vp(a) = 0 for all p ∈ F}.
Lemma 2.6. Let F = {p1, . . . , pl} be a finite set of primes. Let {πp j }lj=1 ⊆ K ∗ be a
family satisfying vp j (πpk ) = δ j,k for all j, k = 1, . . . , l. Then, we have

�K = (
∏l

j=1π
Z
p j

) × �F
K .

In particular, �F
K is a summand of �K .

Proof. Note that such a family {πp j }lj=1 exists by Lemma 2.4. We have a surjective

homomorphism �K → ∏l
j=1 Z = ZF , x 
→ (vp j (x))

l
j=1, with kernel �F

K . Since

vp j (πpk ) = δ j,k for all j, k = 1, . . . , l, the elements e j := (vp j (πpk ))
l
j=1 (1 ≤ j ≤ l)

are precisely the standard Z-basis for ZF . Hence, the map ZF → �K determined by
e j 
→ πp j is a section for �K → ZF , which gives a splitting for the short exact sequence

0 → �F
K → �K → ZF → 0.

Thus, �K = (
∏l

j=1 πZ
p j

) × �F
K . ��

2.4. The C*-algebra associated with the action on the ring of finite adeles. The group
K ∗ acts on AK , f by homeomorphisms through the diagonal embedding K ∗ → AK , f .

Definition 2.7. For a number field K , we let

AK := C0(AK , f ) � K ∗.
Similarly to [38], we will decompose AK into extensions of composition factors.

Their unital parts are the following crossed product C*-algebras arising from semi-local
number-theoretic data modulo roots of unity.
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Definition 2.8. For a number field K and a finite subset F ⊆ PK , we let

BF
K := C

(

(∏

p∈FO∗
K ,p

)

/μK

)

� �F
K ,

where �F
K acts on (

∏

FO∗
K ,p)/μK through the canonical embedding �F

K → (
∏

FO∗
K ,p)

/μK .
By definition, B∅

K = C∗(�K ). If F is nonempty, then �K ⊆ (
∏

p∈FO∗
K ,p)/μK is a

dense subgroup, so that BF
K is simple and has a unique tracial state. The K-groups of

the C*-algebras BF
K and the boundary maps between them will be the main tools of our

analysis. Note that the C*-algebra BF
K is classifiable, see Sect. 9.6.

The original Bost–Connes C*-algebra from [4] is a full corner in the crossed product
C0(AQ, f )�Q∗

+, andAQ is the crossed product ofC0(AQ, f )�Q∗
+ by {±1}. In general, the

full corner 1OK
AK 1OK

of AK is, by [39, Proposition 2.6], isomorphic to the semigroup

crossed product C∗(K/OK )�δ O×
K , where the action δ of multiplicative monoid O×

K =
OK \ {0} on the group C*-algebra C∗(K/OK ) is given on the generating unitaries by

δa(uy) = 1

N (aOK )

∑

x∈K/OK ,
ax=y

ux for a ∈ O×
K and y ∈ K/OK ,

cf. [1, Proposition 1.2]. The C*-algebra C∗(K/OK ) �δ O×
K has the advantage that it is

defined without reference to local fields or adele rings. Moreover, by [1, Proposition 2.1],
C∗(K/OK ) �δ O×

K has a natural presentation that generalises that of the original Bost–
Connes C*-algebra in [4, Proposition 18]. There is also a model of C∗(K/OK ) �δ O×
as a Hecke C*-algebra, see [1, Corollary 2.5].

All C*-algebras in this article can be easily checked to be separable and nuclear
(except for multiplier algebras). Those properties are tacitly used when we apply KK-
theory.

3. Crossed Products Modulo a Finite Group

3.1. General observations. Let X be a locally compact second-countable Hausdorff
space, and let G be a countable abelian group such that μ := tors(G) is finite and G/μ

is free abelian. Let α : G � X be an action, and let π : X → X/μ be the quotient map.
Let α : G/μ � X/μ be the action induced from α. In this setting, we make several
observations on the relation between C0(X/μ) �α (G/μ) and C0(X) �α G.

At first, we fix notation that will be used throughout this section. For g ∈ G, let g
denote the image of g inG/μ. For a character χ ∈ μ̂, let pχ ∈ C∗(μ) ⊆ M(C0(X)�αG)

be the projection corresponding to χ . Namely, pχ = 1
|μ|

∑

g∈μ χ(g)ug . For χ ∈ ̂G, the
projection corresponding to the restriction of χ to μ is also denoted by pχ .

Proposition 3.1. Let χ ∈ ̂G. Then, there exists a *-homomorphism

�χ : C0(X/μ) �α (G/μ) → C0(X) �α G

such that �χ( f ug) = pχ ( f ◦ π)χ(g)ug for f ∈ C0(X/μ) and g ∈ G.



   20 Page 12 of 45 C. Bruce, T. Takeishi

Proof. First, the projection pχ commutes with ug for any g ∈ G sinceG is commutative.
In addition, pχ commutes with f ◦π for any f ∈ C0(X/μ) since f ◦π is a μ-invariant
function. For g ∈ G, let Ug := pχχ(g)ug . Then, U is a unitary representation of G in
M(pχ (C0(X) �α G)pχ ). For g ∈ μ, we have

pχug = 1

|μ|
∑

h∈μ

χ(h)ugh = 1

|μ|
∑

h∈μ

χ(g−1h)uh = χ(g−1)pχ ,

so that pχχ(g)ug = pχ . Thus, KerU contains μ, so thatU factors throughG/μ. Hence,

U : G/μ → M(pχ (C0(X) �α G)pχ ), g 
→ Ug

is a well-defined unitary representation of G/μ. Let ρ : C0(X/μ) → pχ (C0(X) �α

G)pχ be the *-homomorphism defined by ρ( f ) = pχ ( f ◦ π) for f ∈ C0(X/μ). We
can see Ugρ( f )U

∗
g = ρ(αg( f )), which completes the proof by the universality of

crossed products. ��
Proposition 3.2. The map

̂G → KK(C0(X/μ) �α (G/μ), C0(X) �α G), χ 
→ [�χ ]KK

factors through ̂G → μ̂.

Proof. Let χ, χ ′ ∈ ̂G and suppose that χ |μ = χ ′|μ. Since ̂G is isomorphic to μ̂ × TN ,
where N = rank G/μ (possibly infinite), χ and χ ′ live in the same path-connected
component of ̂G. Hence, �χ and �χ ′ are homotopic, which implies that [�χ ]KK =
[�χ ′ ]KK. ��

Let τ : ̂G � C0(X)�α G be the dual action. By definition, we have for every χ ∈ ̂G

τχ ( f ug) = χ(g) f ug for all f ∈ C0(X) and g ∈ G.

We extend the dual action to τ : ̂G � M(C0(X) �α G). For χ, χ ′ ∈ ̂G, we have
τχ ′(pχ ) = pχ ′χ . The proof of the next proposition is exactly the same as that of Propo-
sition 3.2.

Proposition 3.3. The homomorphism

̂G
τ−→ Aut(C0(X) �α G) → Aut(C0(X) �α G)/ ∼

factors through ̂G → μ̂, where ∼ denotes the homotopy equivalence relation.

Lemma 3.4. Let Eμ : C0(X) → C0(X/μ) be the canonical faithful conditional expec-
tation. Then, we have pχ f pχ = Eμ( f )pχ = pχ Eμ( f ) for every f ∈ C0(X) and
χ ∈ ̂G.

Proof. The conditional expectation Eμ is given by

Eμ( f ) = 1

|μ|
∑

g∈μ

αg( f ).
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The following calculation completes the proof:

pχ f pχ = 1

|μ|2
∑

g,h∈μ

(χ(g)ug) f (χ(h)uh) = 1

|μ|2
∑

g,h∈μ

αg( f )χ(gh)ugh

= 1

|μ|2
∑

g,h∈μ

αg( f )χ(h)uh =
(

1

|μ|
∑

g∈μ

αg( f )

)

⎛

⎝

1

|μ|
∑

h∈μ

χ(h)uh

⎞

⎠ = Eμ( f )pχ .

��
Lemma 3.5. Let χ ∈ ̂G, and let �χ be the *-homomorphism from Proposition 3.1.
Then, �χ is injective and Im �χ = pχ (C0(X) �α G)pχ .

Proof. First, we determine the image of �χ . Let (U , ρ) be the covariant representation
of (G/μ,C0(X/μ), α) in M(C0(X)�αG) from the proof of Proposition 3.1 that defines
�χ . The image of �χ is clearly contained in the corner by pχ . Since pχ commutes with
every element in C∗(G), in order to show that Im �χ contains the corner by pχ , it
suffices to prove that Im ρ = pχC0(X)pχ and that ImU generates pχC∗(G). Lemma
3.4 implies that pχC0(X)pχ = ρ(C0(X/μ)). For each g ∈ G, let Ug = pχχ(g)ug .
Then, each Ug is a unitary of pχC∗(G), and the C*-algebra pχC∗(G) is generated by
{Ug : g ∈ G}. By definition, we have Ug = Ug , so ImU generates pχC∗(G).

We show injectivity of �χ . Let E : C0(X) �α G → C0(X) and E : C0(X/μ) �α

(G/μ) → C0(X/μ) be the canonical faithful conditional expectations. Let

� = |μ|pχ E
μ ◦ E : C0(X) �α G → pχC0(X/μ).

Then, � is a continuous linear map. We can see that the diagram

C0(X/μ) �α (G/μ) C0(X) �α G

C0(X/μ) pχC0(X/μ)

E

�χ

�
�χ |C0(X/μ)

commutes, since for any g ∈ G/μ and f ∈ C0(X/μ)

E ◦ �χ( f ug) =
{

1
|μ| ( f ◦ π) if g = 1,

0 if g �= 1.

We claim that �χ is injective on C0(X/μ). If �χ( f ) = pχ ( f ◦ π) = 0 for some
f ∈ C0(X/μ), then for all χ ′ ∈ μ̂, we have

0 = τχ ′χ−1(pχ ( f ◦ π)) = pχ ′( f ◦ π).

Thus, f ◦ π = (
∑

χ ′ pχ ′)( f ◦ π) = 0, so f ◦ π = 0. Because π is surjective, if follows
that f = 0.

Suppose �χ(a) = 0 for some a ∈ C0(X/μ) �α (G/μ). Then �χ(a∗a) = 0, so
commutativity of the above diagram gives us 0 = � ◦ �χ(a∗a) = �χ ◦ E(a∗a). Since
�χ is injective on C0(X/μ), this implies E(a∗a) = 0, so that faithfulness of E gives
a = 0. ��
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3.2. Translation actions. In this subsection, in addition to the assumptions in Sect. 3.1,
we assume that X is a locally compact abelian group and that G is a dense subgroup of
X . Furthermore, we assume that α : G � X is the translation action. Let � = �1 be the
map from Proposition 3.1 associated with the trivial character 1 of G, and let p = p1.

Lemma 3.6. The corner p(C0(X) �α G)p is full in C0(X) �α G.

Proof. Let χ ∈ ̂X and g ∈ μ. Let vχ ∈ Cb(X) be the unitary corresponding to χ . First,
we observe thatugvχu∗

g = χ(g)−1vχ for every g ∈ G. Then, we havevχugv∗
χ = χ(g)ug

for every χ ∈ ̂X and g ∈ μ, because

vχugvχ−1 = vχ((χ−1)(g)−1vχ−1)ug = χ(g)ug.

Let χ ∈ μ̂ be a character and extend χ to a character on X . Then,

vχ pv
∗
χ = 1

|μ|
∑

g∈μ

vχugv
∗
χ = 1

|μ|
∑

g∈μ

χ(g)ug = pχ .

Let A = C0(X) �α G. For every a ∈ A+, we have a1/2 pχa1/2 ∈ ApA. Since 1 =
∑

χ pχ , we conclude that A = ApA, which completes the proof. ��
Proposition 3.7. There exists a canonical *-homomorphism

� : C0(X/μ) �α (G/μ) → C0(X) �α G

such that �( f ug) = p( f ◦ π)ug for f ∈ C0(X/μ) and g ∈ G. Moreover, � induces
an ordered KK-equivalence.

Proof. This follows from Proposition 3.1, Lemmas 3.5, and 3.6. ��

3.3. Trivial actions. In this subsection, we consider the case X = pt. Then, C0(X) �α

G = C∗(G).

Proposition 3.8. For eachχ ∈ μ̂, choose an extensionχ ∈ ̂G, and let�χ : C∗(G/μ) →
C∗(G) be the *-homomorphism from Proposition 3.1. Then,

� :=
∑

χ∈μ̂

�χ : C∗(G/μ)⊕|μ| → C∗(G)

is a *-isomorphism. Moreover, [�]KK does not depend on which extensions we choose.

Proof. Since {pχ : χ ∈ μ̂} is a family of orthogonal projections with
∑

χ pχ = 1, we
have

C∗(G) =
⊕

χ∈μ̂

pχC
∗(G).

By Lemma 3.5, each �χ induces a *-isomorphism C∗(G/μ) → pχC∗(G). Hence, �

is a *-isomorphism. The latter claim follows from Proposition 3.2. ��
Lemma 3.9. For each χ ∈ μ̂, the projection pχ is a minimal projection in C∗(G). In
addition, if p is a minimal projection in C∗(G), then p = pχ for some χ ∈ μ̂.

Proof. Since G/μ is free abelian, C∗(G/μ) does not contain nontrivial projections.
Hence the claim follows from Proposition 3.8. ��
We can also obtain Lemma 3.9 directly by using the isomorphismC∗(G) ∼= C(μ̂×TN ),
where N = rank G/μ.
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3.4. Tensor product decompositions. In this section, we work on a slightly different
setting than in the previous subsections.

Proposition 3.10. Let X be a locally compact second-countable (Hausdorff) abelian
group, let � be a countable free abelian group, and let λ : � → X be a homomorphism.
Let �0 ⊆ � be a summand. Suppose that X0 = λ(�0) is a compact open subgroup, and
the induced homomorphism �/�0 → X/X0 is an isomorphism. Then, the inclusion
map C(X0) �λ �0 ⊆ C0(X) �λ � induces an ordered KK-equivalence.

Proof. First, since X0 is compact open in X , we can identify C(X0) �λ �0 with a
C*-subalgebra of C0(X) �λ �.

Since �/�0 is free abelian, we can choose a section s : �/�0 → � of the quotient
map. Let �1 = s(�/�0) and X1 = λ(�1). We have the following commutative diagram

�1 X1

�/�0 X/X0 ,

s−1

λ|�1

quot

λ

where λ is the isomorphism induced by � → X/X0, and the right vertical arrow is the
restriction of the quotient map X → X/X0 to X1. Since s−1 and λ are isomorphisms,
the restriction of λ to �1 is an isomorphism onto X1, and the quotient map X →
X/X0 restricts to an isomorphism from X1 onto X/X0. The inverse of the isomorphism
X1 ∼= X/X0 gives a decomposition X = X1 × X0 compatible with the decomposition
� = �1 ×�0, so the action � � X is the product of the actions �1 � X1 and �0 � X0.
We have

C0(X) � � ∼= (C0(X1) � �1) ⊗ (C(X0) � �0) ∼= K ⊗ (C(X0) � �0).

Let e ∈ C0(X1) be the characteristic function of {1} ⊆ X1. Then, under the above
decomposition, the inclusion map C(X0) � �0 → C0(X) � � is equal to x 
→ e ⊗ x .
Hence, it induces an ordered KK-equivalence. ��

Contrary to arguments in [38], we cannot start from a basis of �. One of the main
tasks in this article is to replace arguments of [38] with basis-free arguments. In the proof
of Proposition 3.10, we have obtained the tensor product decomposition C0(X) � � ∼=
K ⊗ (C(X0) � �0), which is similar to the decomposition used in [38]. However, this
decomposition depends on the choice of section s. The point is that the isomorphism in
K-theory from Proposition 3.10 does not depend on the choice of section s : �/�0 → �.

4. Subquotients, Primitive Ideals, and Auxiliary C*-Algebras

4.1. C*-algebras over topological spaces. We recall some basics on C*-algebras over
topological spaces from [58] and [36]. Let X be any topological space. We let O(X)

denote the lattice of open subsets of X , ordered by inclusion. If A is a C*-algebra, then
we let I(A) be the lattice of (closed, two-sided) ideals of A, also ordered by inclusion.
It is well-known that there is a lattice isomorphism

O(Prim(A)) ∼= I(A), U 
→ ⋂

P∈Uc P.

A C*-algebra over X is a C*-algebra A together with a continuous map ψ : Prim(A) →
X . Let (A, ψ) be a C*-algebra over X . Then, we get a map O(X) → O(Prim(A))
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given by U 
→ ψ−1(U ). We let A(U ) denote the corresponding ideal of A under
O(Prim(A)) ∼= I(A). If A and B are C*-algebras over X , then we say that a *-
homomorphism ϕ : A → B is X -equivariant if ϕ(A(U )) ⊆ B(U ) for every open set
U ⊆ X .

A subset Z ⊆ X is locally closed if there exists U, V ∈ O(X) with V ⊆ U such
that Z = U\V . Given a locally closed set Z = U \ V , one obtains a subquotient
A(Z) := A(U )/A(V ); by [58, Lemma 2.15], A(Z) does not depend on the choice of
open sets U and V . If Z ⊆ X is locally closed, and W ⊆ X is open, then we get an
extension

E Z
W (A) : 0 → A(Z ∩ W ) → A(Z) → A(Z \ W ) → 0.

If ϕ : A → B is an X -equivariant *-homomorphism, then for every locally closed
subset Z ⊆ X , there exists a *-homomorphism ϕZ : A(Z) → B(Z) induced from ϕ.
If additionally W ⊆ X is an open subset, then we get a homomorphism of extensions
E Z
W (A) → E Z

W (B).

4.2. C*-algebras over a power set. The C*-algebra AK and the auxiliary C*-algebras
which will be introduced later are C*-algebras over the power set of the set of primes,
equipped with the power cofinite topology. We begin with some generalities.

Let P be a nonempty set (later, P will be the set of nonzero prime ideals in a ring
of integers). Denote by 2P = {0, 1}P the power set of P . The power-cofinite topology
on 2P is the product topology on {0, 1}P with respect to the topology on {0, 1} given
by O({0, 1}) = {∅, {0}, {0, 1}}; the basic open sets for the power-cofinite topology are
given by

UF := 2P\F = {T ⊆ P : T ∩ F = ∅},

where F ranges over the finite subsets of P . Note that every UF is compact, but need
not be closed. For any S ⊆ P , we have {S} = {T ⊆ P : S ⊆ T }. Thus, for any two
subsets S, T ⊆ P , we have S ⊆ T if and only if {S} ⊇ {T }. Note that P is the unique
closed point of 2P .

For a finite subset F ⊆ P and p ∈ P\F , we let Fp := F ∪ {p}. Then {Fc} and
{Fc, Fc

p} are locally closed subsets of 2P (see [38, Sect. 2]). Composition factors and
associated extensions from finite sets of primes were introduced in [38, Sect. 2]:

Definition 4.1. Suppose A is a C*-algebra over 2P and F ⊆ P is a finite subset. We let
AF := A({Fc}) be the subquotient of A corresponding to {Fc}. For p ∈ Fc, let E F,p

A
denote the extension

E F,p
A : 0 → A({Fc

p}) → A({Fc, Fc
p}) → A({Fc}) → 0 (2)

from Sect. 4.1.
Note that the extension E F,p

A is obtained by taking Z = {Fc, Fc
p} and W = {Fc}c with

the notation from Sect. 4.1. The extension E F,p
K is determined from the structure of C*-

algebras over 2P . Hence, a 2P -equivariant *-homomorphism induces homomorphisms
between extensions.
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Definition 4.2. Suppose A and B are C*-algebras over 2P and α : A → B is a 2P -
equivariant *-homomorphism. For every F ⊆ PK , let αF : AF → BF denote the *-
homomorphism induced by α. In addition, for every finite subset F ⊆ P and p ∈ P\F ,
let

αF,p := (αF , ∗, αFp) : E F,p
A → E F,p

B

denote the homomorphism of extensions induced by α, where ∗ denotes the *
-homomorphism A({Fc}, {Fc

p}) → B({Fc}, {Fc
p}).

We do not label the middle *-homomorphism of αF,p. Strictly speaking, the definition of
αF,p does not fit to the definition in Sect. 2.2, since composition factors AF may not be
stable. However, in our concrete situation, all of the composition factors AF are indeed
stable (A∅ is exceptional, but it only appears in the last term of exact sequences).

For two sets P and Q and a bijection � : P → Q, let �̃ : 2P → 2Q denote the
homeomorphism defined by �̃(S) = �(S) for subsets S ∈ 2P . The topology of 2P is
closely related to its order structure:

Lemma 4.3. Let P andQ be nonempty sets, and let ϕ : 2P → 2Q be a bijection. Then,
the following are equivalent:

(1) There exists a bijection � : P → Q such that ϕ = �̃.
(2) The bijection ϕ is a homeomorphism with respect to the power-cofinite topologies.
(3) The bijection ϕ is order-preserving.

Proof. The claim that (1) implies (2) is clear. We show (2) implies (3). Suppose ϕ is a
homeomorphism. Let S, T ⊆ P be such that S ⊆ T . Then, we have

{ϕ(S)} = ϕ({S}) ⊇ ϕ({T }) = {ϕ(T )}
by assumption, which implies that ϕ(S) ⊆ ϕ(T ). Hence, ϕ is order-preserving.

We show that (3) implies (1). Suppose that ϕ is order-preserving. First, observe that
we have ϕ(S ∩ T ) = ϕ(S) ∩ ϕ(T ) for any S, T ⊆ P , since S ∩ T is the largest subset
of P contained in both S and T . Next, the sets {p}c for p ∈ P are precisely the second-
maximal subsets of P in the sense that they are the maximal elements of 2P\{P}. Since
ϕ is order-preserving, ϕ induces a bijection from the family of second-maximal subsets
of P onto the family of second-maximal subsets of Q. Let � : P → Q be the bijection
characterised by ϕ({p}c) = {�(p)}c for all p ∈ P . Then, for any p ∈ P , we have
ϕ({p}c) = �({p}c) (the right-hand side denotes the image of a subset by a map, whereas
the left-hand side denotes the image of a point by a map). For S ⊆ P , we have

�̃(S) = �

⎛

⎝

⋂

p∈P\S
{p}c

⎞

⎠ =
⋂

p∈P\S
�

({p}c) =
⋂

p∈P\S
ϕ

({p}c) = ϕ

⎛

⎝

⋂

p∈P\S
{p}c

⎞

⎠ = ϕ(S),

which implies that ϕ = �̃. ��

4.3. A theorem of Williams. Let G be a countable abelian group acting on a locally
compact second-countable Hausdorff space X by homeomorphism. The quasi-orbit of
a point x ∈ X is the orbit closure [x] := Gx . The quasi-orbit space Q(X/G) is the
quotient of X by the equivalence relation

x ∼ y if Gx = Gy.



   20 Page 18 of 45 C. Bruce, T. Takeishi

For x ∈ X , let Gx := {g ∈ X : gx = x} be the isotropy group of x . Because G is
abelian, isotropy groups are constant on quasi-orbits, that is, ifGx = Gy, thenGx = Gy .
For each x ∈ X , let evx be the character (that is, nonzero one-dimensional representation)
of C0(X) given by evx ( f ) = f (x). Then, for every χ ∈ ̂Gx , the pair (evx , χ) is a
covariant representation of (C0(X),Gx ). Let evx �χ denote the corresponding character
of C0(X) � Gx . By [81, Proposition 8.27], the induced representation Ind G

Gx
(evx �χ)

of C0(X) � G is irreducible. We need a slight reformulation of a theorem of Williams
from [81, Theorem 8.39], as given in [44, Theorem 1.1]. Define an equivalence relation
on Q(X/G) × ̂G by

([x], γ ) ∼ ([y], χ) if [x] = [y] and γ |Gx = χ |Gx .

Theorem 4.4 ([81, Theorem 8.39]). The map q : ([x], γ ) 
→ Ker Ind G
Gx

(evx �γ ) is an

open surjection that descends to ahomeomorphism (Q(X/G)×̂G)/ ∼ �−→ Prim(C0(X)�

G).

Proof. For openness of q, see [81, Remark 8.40]. The rest is [44, Theorem 1.1]. ��
We now make several observations in the setting of Theorem 4.4.

Remark 4.5. [cf. [79, Remark 3.5]] Let x ∈ X and χ ∈ ̂Gx . The primitive ideal
Ker Ind G

Gx
evx �χ can be described concretely as follows: Extend χ to a character of

G, and define a representation

πx,χ : C0(X) � G → B(�2(G/Gx )), πx,χ ( f ug)δh = f (ghx)χ(g)δgh,

where {δh : h ∈ G/Gx } is the standard orthonormal basis for �2(G/Gx ). Up to unitary
equivalence, πx,χ does not depend on the choice of extension, and Ker Ind G

Gx
(evx �χ) =

Ker πx,χ .

Next, we observe that C0(X) � G has a canonical structure as a C*-algebra over
Q(X/G).

Lemma 4.6. There is a continuous, open surjective map ψ : Prim(C0(X) � G) →
Q(X/G) such that the following diagram commutes:

Q(X/G) × ̂G Q(X/G)

Prim(C0(X) � G) .

q

([x],χ) 
→[x]
ψ

Proof. Existence of such a continuous, surjective map ψ follows from Theorem 4.4.
The map q is open by Theorem 4.4, so ψ is open. ��

We generalise [79, Lemma 3.6] and [78, Proposition 3.8]. For [x] = Gx ∈ Q(X/G),
let

P[x] :=
⋂

χ∈̂Gx

Ker πx,χ (3)

be the intersection over the inverse image of [x] under ψ : Prim(C0(X) � G) →
Q(X/G). The proof of [79, Lemma 3.6] can be adapted to our general situation giving
the following result. The details of the proof are left to the reader.
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Proposition 4.7. For [x] ∈ Q(X/G), we have P[x] = C0(X \ [x]) � G.

We regard A = C0(X) � G as a C*-algebra over Q(X/G) via ψ . Let ξ : X →
Q(X/G) be the quotient map.

Proposition 4.8. Let Z ⊆ Q(X/G) be a locally closed set. Then, we have

A(Z) = C0(ξ
−1(Z)) � G.

Proof. First, we consider the case that Z is an open set. Then, we have

A(Z) =
⋂

P∈ψ−1(Zc)

P =
⋂

[x]∈Zc

⋂

ψ(P)=[x]
P =

⋂

[x]∈Zc

P[x] = C0

⎛

⎝Int

(

⋂

[x]∈Zc

(X \ [x])
)

⎞

⎠ � G,

uses Proposition 4.7 and [74, Proposition 1.7]. In addition, we have,
⋂

[x]∈Zc

(X \ [x]) = X \
⋃

[x]∈Zc

[x] = X \ ξ−1(Zc) = ξ−1(Z).

Since ξ−1(Z) is open, the claim holds in this case. For a general locally closed set Z ,
let U, V ⊆ Q(X/G) be open sets with V ⊆ U and Z = U\V . Then,

A(Z) = A(U )/A(V ) = C0(ξ
−1(U ) \ ξ−1(V )) � G = C0(ξ

−1(Z)) � G.

��
Note that ξ−1(Z) in Proposition 4.8 is always locally compact and Hausdorff.

4.4. Auxiliary C*-algebras and primitive ideals. There is a canonical action �K =
K ∗/μK � AK , f /μK , where we identify μK with a subgroup of AK , f via the diagonal
embedding. Similarly, we have a canonical action �K � AK , f /O

∗
K . The following

C*-algebras play an important role in this article.

Definition 4.9. We let

BK := C0(AK , f /μK ) � �K

be the C*-algebra modulo roots of unity, and we let

Bval := C0(AK , f /O
∗
K ) � �K

be the valuation C*-algebra.

We now describe the quasi-orbit spaces for the actions K ∗ � AK , f ,�K � AK , f /μK ,
and �K � AK , f /O

∗
K . When it is necessary to make a distinction, given a ∈ AK , f , we

shall let ȧ and a denote the images of a in AK , f /μK and AK , f /O
∗
K , respectively. For

a = (ap)p ∈ AK , f , let Z(a) := {p ∈ PK : ap = 0}. Note that Z(a) only depends on
the O∗

K -orbit of a, so it makes sense to define Z(a) := Z(a) and Z(ȧ) := Z(a). Part
(i) from the following result is known for the case K = Q, see [44, Lemma 3.2].

Lemma 4.10. Let a = (ap)p ∈ AK , f . Then,

(i) K ∗a = {b ∈ AK , f : Z(a) ⊆ Z(b)};
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(ii) �K ȧ = {ḃ ∈ AK , f /μK : Z(a) ⊆ Z(b)};
(iii) �K a = {b ∈ AK , f /O

∗
K : Z(a) ⊆ Z(b)}.

Proof. In all cases, the inclusion “⊆” is easy to see. We now prove that “⊇” holds in
statement (i). Let b ∈ AK , f be such that bp = 0 if ap = 0, and let U be an open set
containing b; we may assume U is of the form U = ∏

p∈PK
Up, where Up ⊆ Kp is

open and Up = OK ,p for all but finitely many p. Then,

F = {p ∈ PK : ap �∈ OK ,p} ∪ {p ∈ PK \ Z(a) : Up �= OK ,p} ⊆ PK \ Z(a)

is finite, and we let S = PK \ Z(a). By Lemma 2.4, K ∗ is dense in
∏′

p∈S(Kp,OK ,p),

so we can take k ∈ K ∗ ∩ ∏

F a−1
p Up × ∏

S\F OK ,p. Then, we have k ∈ a−1
p Up for

all p ∈ S. For p ∈ Z(a), we have kap = 0 = ap = bp ∈ Up for all k ∈ K ∗. Thus,
kap ∈ Up for all p ∈ Z(a), so that we have ka ∈ U .

Since the quotient maps AK , f → AK , f /μK and AK , f → AK , f /O
∗
K are open and

the actions of μK and O∗
K commute with the action of K ∗, the argument above implies

that “⊇” holds in statements (ii) and (iii) also. ��
The description of the quasi-orbit spaces is now obtained in a similar fashion to [44,

Proposition 2.4], which combined with Lemma 4.6 gives the following.

Proposition 4.11. The map AK , f → 2PK given by a 
→ Z(a) descends to give homeo-

morphisms from each ofQ(AK , f /K ∗),Q((AK , f /μK )/�K ), andQ((AK , f /O
∗
K )/�K )

onto 2PK . Therefore, each of AK , BK , and Bval is a C*-algebra over 2PK .

Let ψK be the composition Prim(AK ) → Q(AK , f /K ∗) � 2PK , where the first map
is from Lemma 4.6 and the second is from Proposition 4.11. For a locally closed set
Z ⊆ 2PK , the C*-algebra AK (Z) is a crossed product, and its diagonal is the space of
adeles whose zero sets are elements of Z by Proposition 4.8. Similar results also hold
for BK and Bval.

Definition 4.12. For each subset S ⊆ PK , let PS denote the ideal of AK associated
via Eq. (3) to the quasi-orbits corresponding to S under the homeomorphisms from
Proposition 4.11.

The following result is the generalisation of [44, Proposition 2.5] to arbitrary number
fields, formulated in a slightly different manner.

Proposition 4.13. For each S ∈ 2PK , ψ−1
K (S) = {PS} if S �= PK , and ψ−1

K (PK ) is
homeomorphic to ̂K ∗. In particular, we have a set-theoretic decomposition Prim(AK ) ∼=
(

2PK \{PK }) � ̂K ∗. Moreover, a point in Prim(AK ) is closed if and only if it lies in ̂K ∗.

Proof. Let ρ : Q(AK , f /K ∗) → 2PK be the homeomorphism from Proposition 4.11.
For any x ∈ AK , f , the isotropy group of x is trivial if ρ([x]) �= PK , and is K ∗ if
ρ([x]) = PK . Hence, the first claim follows by Theorem 4.4 and the definition of PS .
We prove the second claim. It is easy to see that every point in ̂K ∗ is closed in Prim(AK ).
Conversely, let P ∈ Prim(AK ) be a closed point and suppose ψK (P) = S �= PK . Then,
we have P = PS and ψ−1

K (S) = {PS} by the first assertion. Then, {S}c = ψK ({PS}c)
is open by assumption and openness of ψK , S is a closed point in 2PK . Hence, we have
S = PK , which is a contradiction. Hence, the second claim holds. ��
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Remark 4.14. As in [44, Proposition 2.5] for the case K = Q, it is not difficult to describe
the topology on the parameter space

(

2PK \ {PK })�̂K ∗ explicitly using Proposition 4.13
and the fact that ψK is continuous and open.

We now give a generalisation of the analogue of [38, Lemma 2.10] for our situation.

Lemma 4.15. Let K and L be number fields, and suppose ϕ : Prim(AK ) → Prim(AL)

is a homeomorphism. Then, there exists a bijection θ : PK → PL such that the following
diagram commutes:

Prim(AK ) Prim(AL)

2PK 2PL ,

ψK

ϕ

ψL

θ̃

where θ̃ denotes the homeomorphism 2PK � 2PL induced by θ . In particular, any

*-isomorphism AK
∼=−→ AL is 2PK -equivariant after identifying 2PK and 2PL .

Proof. By Proposition 4.13, 2PK is the quotient space of Prim(AK ) obtained by identi-
fying all closed points. Under this identification, ψK coincides with the quotient map.
Therefore, there exists a unique homeomorphism θ̃ : 2PK → 2PL which makes the
diagram commute. Moreover, θ̃ comes from a bijection PK → PL by Lemma 4.3. ��
Definition 4.16. Let ϕK : BK → AK be the *-homomorphism from Proposition 3.1
associated with the trivial character of K ∗ (in the notation of the proposition, we take X =
AK , f ,G = K ∗, and μ = μK ). Let valK : Bval → BK be the *-homomorphism induced
from the canonical �K -equivariant inclusion C0(AK , f /O

∗
K ) → C0(AK , f /μK ).

Proposition 4.17. The *-homomorphisms ϕK : BK → AK and valK : Bval → BK are
2PK -equivariant.

Proof. By [58, Lemma 2.8], to show ϕK is 2PK -equivariant, it suffices to show ϕK

(BK (UF )) ⊆ AK (UF ) for every finite subset F ⊆ PK . Let ξ : AK , f → 2PK and
ξ̇ : AK , f /μK → 2PK be the maps defined by ξ(a) = Z(a) and ξ̇ (ȧ) = Z(a) for
a ∈ AK , f . By Proposition 4.11, ξ and ξ̇ coincide with the quotient maps AK , f →
Q(AK , f /K ∗) and AK , f /μK → Q((AK , f /μK )/�K ), respectively, under the identifi-
cations Q(AK , f /K ∗) ∼= Q((AK , f /μK )/�K ) ∼= 2PK .

Let F ⊆ PK be a finite subset. By Proposition 4.8, we haveAK (UF ) = C0(ξ
−1(UF ))�

K ∗ and BK (UF ) = C0(ξ̇
−1(UF )) � �K . If f ∈ C0(ξ̇

−1(UF )) and g ∈ �K , then
ϕK ( f ug) = p( f ◦ π)ug , where p = 1

|μ|
∑

h∈μK
uh and π : AK , f → AK , f /μK is

the quotient map. Since p( f ◦ π)ug = ( f ◦ π)pug , f ◦ π ∈ C0(ξ
−1(UF )), and

pug ∈ span{uh : h ∈ K ∗}, we see that ϕK (BK (UF )) ⊆ AK (UF ).
By Proposition 4.8, it is easy to see that valK (Bval(UF )) ⊆ BK (UF ) for every finite

subset F ⊆ PK , so, as in the first part of the proof, we see that valK is 2PK -equivariant.
��

4.5. Subquotients and extensions from finite sets of primes. As for the case of Bost–
Connes C*-algebras from [38, Sect. 2.3], we explicitly describe subquotients associated
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with finite sets of primes. For every finite subset F ⊆ PK and p ∈ PK \F , apply-
ing Proposition 4.8 to the locally closed sets {Fc} and {Fc, Fc

p} gives canonical *-
isomorphisms

AF
K

∼= C0

(

∏

q∈F K ∗
q

)

� K ∗;
BF

K
∼= C0

(

(
∏

q∈F K ∗
q)/μK

)

� �K ;
BF

val
∼= C0

(

∏

q∈FqZ
)

� �K ;
AK ({Fc, Fc

p}) ∼= C0

(

Kp × ∏

q∈F K ∗
q

)

� K ∗;
BK ({Fc, Fc

p}) ∼= C0

(

(Kp × ∏

q∈F K ∗
q)/μK

)

� �K ;
Bval({Fc, Fc

p}) ∼= C0

(

pZ̃ × ∏

q∈FqZ
)

� �K .

Here, we use the fact that the map

AK , f → ∏′
p∈PK

(pZ̃, pÑ), a 
→ (pvp(a))p

descends to a �K -equivariant homeomorphism AK , f /O
∗
K � ∏′

p∈PK
(pZ̃, pÑ), where

pZ̃ = {pn : n ∈ Z̃} � Z̃. The group �K acts on pZ̃ via the homomorphism vp and on the
restricted product diagonally.

Remark 4.18. For F = ∅, the above gives A∅
K

∼= C∗(K ∗) and B∅
K

∼= B∅
val

∼= C∗(�K ).

Let F ⊆ PK be a finite subset. Recall that the C*-algebra BF
K from Definition 2.8

is the unital part of the composition factor BF
K . Note that the notations BF

K and BF
K

are different from those in [38]. Since (
∏

p∈F O∗
p)/μK is a compact open subgroup

of (
∏

p∈F K ∗
p)/μK , we have a canonical inclusion map BF

K → BF
K . Similarly, let

BF
val := C∗(�F

K ). Then, we have a canonical inclusion map BF
val → BF

val.
Let F ⊆ PK be a nonempty finite subset. Applying Lemma 2.4, we can see that

BF
K

∼= K⊗ BF
K and BF

val
∼= K⊗ BF

val. In particular, BF
K and BF

val are stable. This is why
we call BF

K and BF
val “the unital parts”. However, we do not use these *-isomorphisms

directly, since they are not canonical. Instead, we rely on Proposition 3.10.

Definition 4.19. Let F be a finite subset of PK . Define ξ F
K ∈ KK(BF

K ,BF
K ) and

ξ F
val ∈ KK(BF

val,B
F
val) to be the elements induced from the inclusion maps BF

K → BF
K

and BF
val → BF

val, respectively. In addition, define ξ F
K : K∗(BF

K ) → K∗(BF
K ) and

ξ F
val : K∗(BF

val) → K∗(BF
val) to be the homomorphisms of K-groups induced from ξ F

K

and ξ F
val, respectively.

Lemma 4.20. For every finite subset F of PK , the elements ξ F
K and ξ F

val are ordered
KK-equivalences.

Proof. First,�F
K is a summand of�K by Lemma 2.6. Letλ : �K → X := (

∏

p∈F K ∗
p)/μK

be the canonical homomorphism. By Lemma 2.4, the image of λ is dense. Let X0 :=
(
∏

p∈F O∗
p)/μK . We have

λ(�F
K ) = X0 ∩ λ(�K ) = X0 ∩ λ(�K ) = X0,
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where the second equality uses that X0 is compact open in X , and the third equality
uses that λ(�K ) is dense in X . The claim for ξ F

K now follows from Proposition 3.10.
Similarly, the claim for ξ F

val follows from Proposition 3.10 (in this case, X0 = {1}). ��
Remark 4.21. Let F ⊆ PK be a nonempty finite subset. Applying Proposition 3.7 with
G = K ∗, X = ∏

p∈F K ∗
p, and μ = μK gives a *-homomorphism � : BF

K → AF
K .

Using the explicit description of our composition factors above, we see that this *-
homomorphism coincides with the *-homomorphism ϕF

K : BF
K → AF

K induced by ϕK .
In particular, ϕF

K induces an ordered KK-equivalence for every nonempty finite subset
F ⊆ PK . In fact, AF

K is *-isomorphic to a matrix algebra over BF
K (and is thus also

stable).

We now define three families of extensions that will play a fundamental role in our
reconstruction theorem.

Definition 4.22. For each finite subset F ⊆ PK and p ∈ PK \F , let F F,p
K := E F,p

AK
,

E F,p
K := E F,p

BK
, and E F,p

val := E F,p
Bval

, where the extensions on the right hand sides are from
(2).

We close this section with a decomposition of the extension E F
val in terms of the

dilated Toeplitz extension T from Definition 2.1. Unlike in the case of Bost–Connes
C*-algebras in [38], the decomposition is not canonical; this is a fundamental technical
difference between our work and [38].

Lemma 4.23. Let F be a finite subset ofPK , and let p ∈ PK \F. Fix πp ∈ �F
K satisfying

vp(πp) = 1. Let E ∈ Ext(BF
val, K ⊗ B

Fp
val) be the extension

E : 0 → (C0(p
Z) � πZ

p ) ⊗ C∗(�Fp
K ) → (C0(p

Z̃) � πZ

p ) ⊗ C∗(�Fp
K )

→ C∗(πZ

p ) ⊗ C∗(�Fp
K ) → 0. (4)

Then, E is canonically isomorphic to T ⊗C∗(�Fp
K ). Moreover, by identifying (C0(p

Z)�

πZ
p ) ⊗ C∗(�Fp

K ) and C∗(�Fp
K ) in KK, ξ := (

ξ F
val, ξ

Fp
val

) : [

E
]

KK → [

E F,p
val

]

KK is an
isomorphism in Arr(KK).

Proof. First, note that such πp exists by Lemma 2.4. It is clear that E is canonically

isomorphic to T ⊗ C∗(�Fp
K ). The extension E F

val is given explicitly by

EF,p
val : 0 → C0

(

pZ × ∏

Fq
Z

)

� �K → C0

(

pZ̃ × ∏

Fq
Z

)

� �K → C0

(

∏

Fq
Z

)

� �K → 0.

In particular, there is a canonical homomorphism E → E F
val consisting of inclusion maps,

which induces the morphism ξ in Arr(KK). Moreover, ξ is an isomorphism in Arr(KK)

by Lemma 4.20. ��

5. Reconstruction of the Dynamical Systems

5.1. The Rieffel correspondence. We collect basics on the Rieffel correspondence. Let
A and B be Morita equivalent C*-algebras, and let X be an A–B-imprimitivity bi-
module. Then, X induces a lattice isomorphism R : I(B) → I(A), called the Rieffel
correspondence, which restricts to a homeomorphism Prim(B) → Prim(A). If I ∈ I(B),
then R(I ) is the closed linear span of A〈xb, y〉, where x, y ∈ X and b ∈ I (see [68,
Proposition 3.24]). The next lemma easily follows from the definition of the Rieffel
correspondence.
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Lemma 5.1. Let A be a C*-algebra, and let p ∈ M(A) be a full projection. Let
R : I(A) → I(pAp) be the Rieffel correspondence for the pAp–A-imprimitivity bi-
module pA. Then, for each I ∈ I(A), we have

R(I ) = pI p = pAp ∩ I.

Now assume that A is a C*-algebra over a topological space X , and let ψ : Prim(A) →
X be the associated surjection. Let p ∈ M(A) be a full projection. We consider pAp
as a C*-algebra over X by equipping it with the surjection pAp → X which makes the
following diagram commute:

Prim(A) Prim(pAp)

X .

ψ

R

Let Z ⊆ X be a locally closed subset, and let U, V ⊆ X be open sets such that V ⊆ U
and Z = U\V . We denote by pZ ∈ M(A(Z)) the image of p under the composition
of canonical maps M(A) → M(A/A(V )) → M(A(U )/A(V )). The proof of the next
lemma is straightforward by Lemma 5.1:

Lemma 5.2. For every locally closed subset Z ⊆ X, (pAp)(Z) is canonically isomor-
phic to pZ A(Z)pZ .

5.2. Reduction fromAK toBK . Let p ∈ M(AK ) be a full projection. Fix a finite subset
F of PK and p ∈ PK \F . Since the inclusion map pAK p → AK is a 2PK -equivariant
*-homomorphism by Lemma 5.2, we have the following commutative diagram with
exact rows:

K ⊗ pF F,p
K p : 0 K ⊗ (pAK p)Fp K ⊗ (pAK p)({Fc, Fc

p}) K ⊗ (pAK p)F 0

K ⊗ F F,p
K : 0 K ⊗ A

Fp
K K ⊗ AK ({Fc, Fc

p}) K ⊗ AF
K 0 .

Here, the vertical maps are the inclusion maps tensored with idK. Let
[

I F,p
K ,p

]

KK : [

K ⊗ pF F,p
K p

]

KK → [

K ⊗ F F,p
K

]

KK → [

F F,p
K

]

KK

denote the composition of morphisms in Arr(KK), where the first morphism is in-
duced from the above diagram and the second morphism is the inverse of the mor-
phism

[

F F,p
K

]

KK → [

K ⊗ F F,p
K

]

KK in Arr(KK) induced by the canonical inclusion

F F,p
K → K ⊗F F,p

K . By Lemma 5.2, (pAK p)F is a full corner in AF
K , so that

[

I F,p
K ,p

]

KK
is an order isomorphism in Arr(KK).

Lemma 5.3. Let P = PPK , and let p ∈ M(AK ) be a full projection. Then, the inclusion
map pAK p → AK descends to a *-isomorphism pAK p/pPp → AK /P.

Proof. Since AK /P is unital, the quotient map AK → AK /P extends to a surjective *-
homomorphism π : M(AK ) → AK /P . Then, π(p) is a full projection. Since AK /P ∼=
C∗(K ∗) is an abelian C*-algebra (see Remark 4.18), the unit 1C∗(K ∗) is the unique full
projection of AK /P . Hence, π(p) = 1. ��
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Proposition 5.4. Let K and L be number fields, and let p ∈ M(AK ) and q ∈ M(AL)

be full projections. Suppose pAK p and qALq are *-isomorphic. Then, there exists a
bijection θ : PK → PL , a *-isomorphism α∅ : B∅

K → B∅
L , and a family of ordered

KK-equivalences
[

αF
]

KK ∈ KK
(

BF
K , B

θ(F)
L

)

for each nonempty finite subset F ⊆ PK
such that

αF,p :=
(

[

αF ]

KK,
[

αFp
]

KK

)

: [

E F,p
K

]

KK → [

Eθ(F),θ(p)
L

]

KK

is an order isomorphism in Arr(KK) for any (possibly empty) finite subset F ⊆ PK and
p ∈ PK \F. Moreover, we have |μK | = |μL |.
Proof. Let α̃ : pAK p → qALq be a *-isomorphism. By Lemma 5.3, we have canonical
*-isomorphisms A∅

K
∼= (pAK p)∅ and A∅

L
∼= (qALq)∅. Let δ be the composition

C∗(K ∗) ∼= A∅
K

∼= (pAK p)∅ α̃∅−→ (qALq)∅ ∼= A∅
L

∼= C∗(L∗),

where the first and last *-isomorphisms are from Remark 4.18. By Lemma 3.9, there
exists χ ∈ μ̂L such that δ(pK1 ) = pLχ , where pLχ ∈ C∗(L∗) denotes the projection
corresponding to χ , and pK1 ∈ C∗(K ∗) is the projection corresponding to the trivial
character of K ∗. Fix an extension of χ to L∗, and let τ : ̂L∗ � AL be the dual action.
Then, we have τ∅

χ (pL1 ) = pLχ , where pL1 ∈ C∗(L∗) is the projection corresponding to
the trivial character of L∗.

Consider the composition ϕ : Prim(AK ) � Prim(pAK p) � Prim(qALq) � Prim
(AL), where the first and last homeomorphisms are the Rieffel correspondences and the
middle homeomorphism is induced by α̃. By applying Lemma 4.15 to the homeomor-
phism ϕ, there is a unique bijection θ : PK → PL such that α̃ is 2PK -equivariant under
the identification 2PK and 2PL via θ .

Let F be a nonempty subset of PK and let p ∈ PK \F . Let

αF,p : = [

ϕ
θ(F),θ(p)
L

]−1
KK ◦ [

τ θ(F),θ(p)
χ

]−1
KK ◦ [

I θ(F),θ(p)
L ,q

]

KK ◦ [

α̃F,p
]

KK ◦
[

I F,p
K ,p

]−1
KK ◦ [

ϕ
F,p
K

]

KK.

By Remark 4.21,
[

ϕ
F,p
K

]

KK and
[

ϕ
θ(F),θ(p)
L

]

KK are order isomorphisms in Arr(KK).
Thus, αF,p is an order isomorphism in Arr(KK) since it is a composition of order
isomorphisms in Arr(KK). Let αF,p := (x, y). We can directly see that x does not
depend on p. Let [αF ]KK := x. Then, we can see that y = [αFp]KK by construction.
Hence, the claim holds for F �= ∅. When F = ∅, let α∅ be the composition of

B∅
K

ϕ∅
K−→ A∅

K = (pAK p)∅ α̃∅−→ (qALq)∅ = A∅
L

(τ∅
χ )−1

−−−−→ A∅
L

ϕ∅
L←− B∅

L .

Note that using the isomorphism from Proposition 3.8, this composition makes sense
since the image of the composition of the first three maps is equal to the image of ϕ∅

L .
Then, α∅ is a *-isomorphism, and for every p ∈ PK , we see that α∅,p := ([

α∅]
KK,

[

α{p}]
KK

)

is an order isomorphism in Arr(KK).

By Lemma 5.3 and Remark 4.18, (pAK p)∅ ∼= A∅
K

∼= C∗(K ∗) ∼= C(μ̂K × T∞), so
the last claim follows. ��
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For a finite subset F ⊆ PK and a prime p ∈ PK \F , let ∂
F,p
K : K∗(BF

K ) → K∗(B
Fp
K )

be the boundary map associated with the extension E F,p
K . For each finite subset F of

PK , let

αF∗ := − ⊗̂[

αF ]

KK : K∗(BF
K ) → K∗(Bθ(F)

L ).

Then, each αF∗ is an order isomorphism between K-groups. For every finite subset F of
PK and p ∈ PK \F , the following diagram commutes:

K∗(BF
K ) K∗+1(B

Fp
K )

K∗(Bθ(F)
L ) K∗+1(B

θ(Fp)

L ) .

αF∗

∂
F,p
K

α
Fp∗

∂
F,p
L

5.3. The main theorem. We can now state the detailed version of our main theorem.

Theorem 5.5. Let K and L be number fields with |μK | = |μL |, and let θ : PK → PL be
a bijection. Suppose that there exists a *-isomorphism α∅ : B∅

K → B∅
L , and a family of

isomorphisms between K-groups αF∗ : K∗(BF
K ) → K∗(Bθ(F)

L ) for each nonempty finite
subset F ⊆ PK with 1 ≤ |F | ≤ 3 such that αF∗ is an order isomorphism if |F | = 1, and
the diagram

K∗(BF
K ) K∗+1(B

Fp
K )

K∗(Bθ(F)
L ) K∗+1(B

θ(Fp)

L )

αF∗

∂
F,p
K

α
Fp∗

∂
F,p
L

(4)

commutes for every finite subset F ⊆ PK with 0 ≤ |F | ≤ 2 and p ∈ PK \F. Let
γ : �K → �L be the isomorphism characterised by the following equation in K1(B

∅
L):

α∅∗ ([ux ]1) = [uγ (x)]1 for all x ∈ �K . (5)

Then, there exists a unique field isomorphismσ : K → L such that the following diagram
commute:

K ∗ L∗

�K �L ,

σ

γ

where the vertical maps are the quotient maps.

Existence of γ is proved shortly in Lemma 5.7. Sections 5.4, 5.5, and 6 are devoted
to the proof of theorem 5.5. It will be convenient to work with slightly more general
hypotheses than those in Theorem 5.5. With this in mind, we make the following defi-
nition.

Definition 5.6. Let K and L be number fields, and let N ∈ Z with N ≥ 1. We denote
by (CN ) the condition that
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(i) We have |μK | = |μL | and a bijection θ : PK → PL .
(ii) For each nonempty finite subset F ⊆ PK with 1 ≤ |F | ≤ N , there exists an

isomorphism αF∗ : K∗(BF
K ) → K∗(Bθ(F)

L ) such that the Diagram (4) commutes for
every finite subset F ⊆ PK with 1 ≤ |F | ≤ N − 1 and p ∈ PK \F .

(iii) There exists a *-isomorphism α∅ : B∅
K → B∅

L such that the Diagram (4) commutes
for F = ∅ and every p ∈ PK .

(iv) The isomorphism αF∗ is an order isomorphism if |F | = 1.

In addition, we say that K and L satisfy condition (C∞) if condition (CN ) is satisfied
for every N .
The assumption of Theorem 5.5 is equivalent to the condition (C3). For number fields K
and L , if full corners of AK and AL are isomorphic, then the condition (C∞) is satisfied
by Proposition 5.4. Although it is enough to have the condition (C3) for the construction
of a field isomorphism between K and L , we give a direct reconstruction result of the
dynamical system �K � AK , f /μK in Sect. 5.6 from the condition (C∞). Therefore,
we work with condition (CN ) for general N .

5.4. Commutative diagrams from condition (CN ). Fix N ∈ Z with N ≥ 1. Let us
assume that K and L are number fields, and that condition (CN ) is satisfied. Throughout
this subsection, we fix the bijection θ : PK → PK and the *-isomorphism α∅ as in
Definition 5.6, and for every finite subset F of PK with 1 ≤ |F | ≤ N and p ∈ PK \ F ,
fix the order isomorphism αF∗ between K-groups as in Definition 5.6. We now prepare
for the proof of Theorem 5.5 and for the reconstruction of the dynamical system �K �

AK , f /μK .

Lemma 5.7. There exists a unique isomorphism γ : �K → �L satisfying Eq. (5).

Proof. For a unital C*-algebra A, let U(A) denote the unitary group of A, and let U0(A)

denote the connected component of U(A) containing 1A. Since �K is a free abelian
group, we have an isomorphism

γ : �K ∼= U(B∅
K )/U0(B

∅
K )

α∅−→ U(B∅
L)/U0(B

∅
L) ∼= �L

satisfying Eq. (5) by [31, Theorem 8.57(ii)]. Moreover, Eq. (5) characterises γ , since the
homomorphism U(A)/U0(A) → K1(A) is injective for any unital abelian C*-algebra
A by [71, Proposition 8.3.1]. ��
Remark 5.8. We have an alternative description of γ : �K → �L in Theorem 5.5. Let
(α∅)∗ denote the homeomorphism ̂�L → ̂�K induced by α∅. Since ̂�K is a path-
connected group, there exists a homeomorphism ̂�L → ̂�K which fixes the identity
and is homotopic to (α∅)∗. Hence, by [73, Corollary 2], (α∅)∗ is homotopic to a group
homomorphism f : ̂�L → ̂�K . Then, γ coincides with the dual ̂f : �K → �L of f .

Let � be a free abelian group. We introduce notation for elements in K∗(C∗(�)) based
on [38, Sect. 3]. For a finite rank oriented summand�of�, letβ� := [ux1]1 ⊗̂ · · · ⊗̂[uxn ]1 ∈
Kn(C∗(�)) ⊆ K∗(C∗(�)), where (x1, . . . , xn) is an oriented basis of�. Here, K∗(C∗(�))

is identified with K∗(C∗(Zx1)) ⊗̂ · · · ⊗̂K∗(C∗(Zxn)) via the Künneth formula. The el-
ement β� does not depend on the choice of an oriented basis of �, which can be verified
via the identification K∗(C∗(�)) ∼= ∧∗

� as Hopf algebras by [30, Theorem II.2.1]. If
� and �′ are the same finite rank summands equipped with opposite orientations, then
β�′ = −β�. Hence, for an unoriented finite rank summand � with rank � = n, we give
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an orientation of � by specifying a generator of
∧n

� ⊆ K∗(C∗(�)). Elements of the
form β�, where � runs through finite rank summands with a fixed orientation, generate
K∗(C∗(�)). If rank � = 1 and � is generated by x ∈ �, then either β� = [ux ]1 or
β� = −[ux ]1, depending on the orientation of �. In this case, β� is simply denoted by
βx . If rank � = 0 (that is, � is a trivial summand), then we always choose an orientation
of � by β� = [1]0.

Lemma 5.9. For every finite subset F of PK , the composition

(val
F
K )∗ := (ξ F

K )−1 ◦ (valFK )∗ ◦ ξ F
val : K∗(C∗(�F

K )) → K∗(BF
K )

coincides with the homomorphism induced from the canonical inclusion ιF : C∗(�F
K ) →

BF
K . In particular, (val

∅
K )∗ is the identity map.

Proof. We have the following commutative diagram:

BF
val BF

K

BF
val BF

K .

ιF

valFK

Here, the vertical maps denote the inclusion maps. Taking K-groups of this diagram,

we have ξ F
K ◦ ιF∗ = (valFK )∗ ◦ ξ F

val, and hence ιF∗ = (val
F
K )∗. ��

For each finite subset F ⊆ PK with |F | ≤ N − 1 and p ∈ PK \F , let ∂
F,p
K and ∂

F,p
val

denote the boundary maps associated with the extensions E F,p
K and E F,p

val , respectively,
and let

∂
F,p
val := (ξ

Fp
val )

−1 ◦ ∂
F,p
val ◦ ξ F

val : K∗(C∗(�F
K )) → K∗(C∗(�Fp

K )).

Lemma 5.10 (cf. [38, Lemma 4.1]). Let F be a finite subset of PK with |F | ≤ N − 1,
and let p ∈ PK \F. Fix πp ∈ �F

K satisfying vp(πp) = 1. Fix an orientation of πZ
p by

letting βπp = [

uπp

]

1. Let � ⊆ �
Fp
K be a finite rank summand, and fix an orientation of

�. Then,

∂
F,p
val (β�) = 0 and ∂

F,p
val (β�⊗̂βπp) = −β�. (6)

Moreover, Eq. (6), as � runs through the finite rank summands of �
Fp
K , characterises

∂
F,p
val .

Proof. Let E ∈ Ext(BF
val, K ⊗ B

Fp
val) be the extension from Lemma 4.23. Then, by

Lemma 4.23, we have ∂
F,p
val = ∂E = id ⊗ ∂T . Hence, by Lemma 2.2, we have

∂
F,p
val (β�⊗̂βπp) = β� ⊗̂∂T (βπp) = −β�.

Since β� is identified with β�⊗̂[

1C∗(πZ
p )

]

0, we have, by Lemma 2.2,

∂
F,p
val (β�) = ∂

F,p
val (β� ⊗̂[

1C∗(πZ
p )

]

0) = β� ⊗̂∂T (
[

1C∗(πZ
p )

]

0) = 0.

By the proof of Lemma 2.6, the group K∗(C∗(�F
K )) is generated by elements of the

form β� and β� ⊗̂βπp for finite rank oriented summands � ⊆ �
Fp
K . Hence, the second

claim follows. ��
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Fix a total order of PK , and equip PL with the total order induced by θ . For a finite
set F = {p1, . . . , pl} with l ≤ N and p1 < p2 < · · · < pl , let

DF
K := (ξ F

K )−1 ◦ ∂
Fl−1,p1
K ◦ · · · ◦ ∂

F1,pl−1
K ◦ ∂

∅,pl
K : K∗(C∗(�K )) → K∗+l(B

F
K ),

where F0 = ∅ and Fi = {pl−i+1, . . . , pl} for 1 ≤ i ≤ l. We define DF
val : K∗(C∗(�K )) →

K∗(C∗(�F
K )) similarly as follows:

DF
val := (ξ F

val)
−1 ◦ ∂

Fl−1,p1
val ◦ · · · ◦ ∂

F1,pl−1
val ◦ ∂

∅,pl
val = ∂

Fl−1,p1
val ◦ · · · ◦ ∂

F1,pl−1
val ◦ ∂

∅,pl
val .

Note that C∗(�K ), B∅
K , and B∅

val are all identified.
Let F be a finite subset of PK with |F | ≤ N , and let p ∈ PK . Then, the fact that

val
F ′,p
K : E F ′,p

val → E F ′,p
K is a homomorphism of extensions for every |F ′| ≤ |F | implies

that the following diagram commutes:

K∗(C∗(�K )) K∗+l(C
∗(�F

K ))

K∗+l(B
F
K ) .

DF
K

DF
val

(val
F
K )∗ (7)

Here, we used the fact that C∗(�K ) = B∅
K and (val

∅
K )∗ : K∗(C∗(�K )) → K∗(B∅

K ) is
the identity map by Lemma 5.9. Note that DF

val is surjective by Lemma 5.10. In addition,
the diagram

K∗(C∗(�K )) K∗+l(B
F
K )

K∗(C∗(�L)) K∗+l(B
θ(F)
L )

α∅∗

DF
K

αF∗
Dθ(F)
L

(8)

commutes by the commutativity of (4), where αF∗ := (ξ
θ(F)
L )−1 ◦ αF∗ ◦ ξ F

K . Since
ξ∅
K and ξ∅

L are the identity maps, α∅∗ comes from the *-isomorphism α∅. On the other
hand, αF∗ is an order isomorphism between K-groups, since it is a composition of order
isomorphisms between K-groups.

The next proposition is the key result in this section. It is the only place where 5.6 in
(CN ) is used.

Proposition 5.11. For each p ∈ PK and x ∈ �K , we have vθ(p)(γ (x)) = vp(x).

Consequently, we have γ (O×
K /μK ) = O×

L /μL and γ (�F
K ) = �

θ(F)
L for every finite

subset F ⊆ PK .

Proof. First, we show that for any p ∈ PK and x ∈ �K , we have D{p}
K ([ux ]1) =

(−vp(x))[1]0, where [1]0 ∈ K0(B
{p}
K ) is the K0-class of the unit of B{p}

K . Fix p ∈ PK and
let n = vp(x). By Lemma 2.4, we can take πp ∈ �K with vp(πp) = 1. Let βπp = [uπp]1.

Then, we have x = πn
p y for some y ∈ �

{p}
K , and hence [ux ]1 = nβπp + [uy]1. By

commutativity of Diagram (7), Lemmas 5.9, and 5.10, we have

D{p}
K ([ux ]1) = (val

{p}
K )∗ ◦ D{p}

val ([ux ]1) = (val
{p}
K )∗ ◦ D{p}

val (nβπp + [uy]1)

= (val
{p}
K )∗(−n[1]0) = −n[1]0.
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Similarly, we have D{θ(p)}
L ([uγ (x)]1) = (−vθ(p)(γ (x)))[1]0. Hence, we have

(−vθ(p)(γ (x)))[1]0 = D{θ(p)}
L ([uγ (x)]1)

= D{θ(p)}
L ◦ α∅∗([ux ]1) = α

{p}∗ ◦ D{p}
K ([ux ]1) = (−vp(x))α

{p}∗ ([1]0)

by Lemma 5.7 and commutativity of Diagram (8). In particular, vp(x) = 0 if and only if

vθ(p)(γ (x))) = 0. Since B{θ(p)}
L admits a faithful tracial state, [1]0 generates a copy of Z

in K0(B
{θ(p)}
L ). Hence, in order to show the claim, it suffices to show α

{p}∗ ([1]0) = [1]0.

Since D{p}
K ([ux ]1) = (−vp(x))[1]0 for any x ∈ �K , we have D{p}

K (�K ) = Z[1]0.
Here, �K is identified with U(C∗(�K ))/U(C∗(�K ))0 ⊆ K1(C∗(�K )). Hence, the ele-
ment [1]0 ∈ K0(B

{p}
K ) is characterised by the property that it is the unique generator of

D{p}
K (�K ) which belongs to K0(B

{p}
K )+. Since α

{p}∗ is an order isomorphism, commuta-

tivity of Diagram (8) implies α
{p}∗ ([1]0) = [1]0. ��

For each finite subset F of PK , using Proposition 5.11, we let γ F : C∗(�F
K ) →

C∗(�θ(F)
L ) be the isomorphism induced from γ . By definition, we have γ ∅ = α∅.

Lemma 5.12. For every finite subset F ⊆ PK with |F | ≤ N, the following diagram
commutes:

K∗(C∗(�K )) K∗+l(C
∗(�F

K ))

K∗(C∗(�L)) K∗+l(C
∗(�θ(F)

L )) .

γ ∅∗

DF
val

γ F∗
Dθ(F)

val

(9)

Proof. Let F = {p1, . . . , pl} with p1 < · · · < pl . Using Lemma 2.4, we fix a family
{πp j }lj=1 ⊆ �K such that vp j (πpk ) = δ j,k for every j, k = 1, . . . , l. Choose an orien-

tation of πZ
pi

and γ (πpi )
Z by βπpi

= [uπpi
]1 and βγ (πpi )

= [uγ (πpi )
]1 for i = 1, . . . , l,

respectively. For each finite rank summand � ⊆ �F
K , we fix an orientation of �, and

choose an orientation of γ (�) ⊆ �
θ(F)
L by βγ (�) = γ F∗ (β�). By Lemma 2.6, the K-

group K∗(C∗(�K )) is generated by elements of the form x = β�⊗̂βπp j1
⊗̂ · · · ⊗̂βπp jk

,

where � ⊆ �F
K is a finite rank summand, and 1 ≤ j1 < · · · < jk ≤ l is an increasing

sequence of natural numbers. Hence, it suffices to show that

γ F∗ ◦ DF
val(x) = Dθ(F)

val ◦ γ ∅∗ (x) (10)

for such x . Fix such a summand and increasing sequence. Then, Lemma 5.10 implies
that DF

val(x) = 0 unless k = l (which is equivalent to the condition that all primes in F
appear in x). We have

γ ∅∗ (x) = βγ (�) ⊗̂βγ (πp j1
) ⊗̂ · · · ⊗̂βγ (πp jk

).

By Proposition 5.11, we have vθ(p j )(γ (πpk )) = δ j,k , so that Dθ(F)
val (γ∗(x)) = 0 unless

k = l by Lemma 5.10. Hence, Eq. (10) holds when k �= l. Suppose k = l. Then,
DF

val(x) = (−1)lβ�, and Dθ(F)
val (γ ∅∗ (x)) = (−1)lβγ (�). Hence, Eq. (10) holds when

k = l. ��
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5.5. Reconstruction at semi-local levels. Based on the arguments in the last subsection,
we now give a reconstruction result for the dynamical system �K � AK , f /μK at
semi-local levels.

Lemma 5.13. Let K and L be number fields, and let N ∈ Z with N ≥ 1. Assume that
condition (CN ) is satisfied. Then, for every finite subset F ⊆ PK with |F | ≤ N, there
exists an isomorphism of compact groups

η̃F :
⎛

⎝

∏

p∈F
O∗

K ,p

⎞

⎠ /μK →
⎛

⎝

∏

q∈θ(F)

O∗
L ,q

⎞

⎠ /μL

such that the restriction of η̃F to �F
K coincides with γ F .

Proof. We use a similar diagram chase as in [38, Proof of Theorem 1.1]. By commuta-
tivity of the diagrams (7) (8) (9), the small squares on the left and right and the triangles
on the top and bottom in the following diagram commute:

K∗+l(C
∗(�F

K )) K∗+l(B
F
K )

K∗(C∗(�K ))

K∗(C∗(�L))

K∗+l(C
∗(�θ(F)

L )) K∗+l(B
θ(F)
L ) .

γ F∗

(val
F
K )∗

αF∗

DF
val DF

K

γ ∅∗

Dθ(F)
val Dθ(F)

L

(val
θ(F)

L )∗

(11)

Hence, by the surjectivity of DF
val, the large outer square in Diagram (11) commutes.

By Lemma 2.5, O∗
K ,p

∼= Z/(N (p) − 1)Z × O(1)
K ,p, and O(1)

K ,p has finite Zp-rank, where

p is the rational prime lying under p. Thus,
(

∏

F O∗
K ,p

)

/μK and
(

∏

θ(F) O∗
L ,q

)

/μL

finitely generated pro-N completions (as defined in [38, Sect. 3]) of �F
K and �

θ(F)
L ,

respectively, for an appropriate set of rational primes N . Now the result follows by [38,

Corollary 3.18], since (val
F
K )∗ and (val

θ(F)

K )∗ coincide with the maps induced by the
inclusion maps by Lemma 5.9. ��

For each finite subset F ⊆ PK , let V F : ZF → Zθ(F) be the isomorphism induced
by θ : PK → PL .

Proposition 5.14. Let K and L be number fields, and let N ∈ Z with N ≥ 1. Assume
that condition (CN ) is satisfied. Then, for every finite subset F ⊆ PK with |F | ≤ N,
there exists a unique isomorphism

ηF :
⎛

⎝

∏

p∈F
K ∗
p

⎞

⎠ /μK →
⎛

⎝

∏

q∈θ(F)

L∗
q

⎞

⎠ /μL
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which satisfies ηF |�K = γ and makes the following diagram commute:

0 (
∏

FO∗
K ,p)/μK (

∏

F K
∗
p)/μK ZF 0

0 (
∏

θ(F)O∗
L ,q)/μL (

∏

θ(F)L
∗
q)/μL Zθ(F) 0 .

η̃F

∏

F vp

ηF V F
∏

θ(F) vq

Proof. Uniqueness follows from the fact that�K is dense in (
∏

F K ∗
p)/μK by Lemma 2.4.

We now prove existence. Let F = {p1, . . . , pl}, and by Lemma 2.4, fix a family
{πp j }lj=1 ⊆ K ∗ such that vp j (πpk ) = δ j,k for all j, k = 1, . . . , l. Let � = ∏l

j=1 πZ
p j

.

Let η̃F : (
∏

F O∗
K ,p)/μK → (

∏

θ(F) O∗
L ,q)/μL be the isomorphism of compact groups

from Lemma 5.13. By Lemma 2.6, we have �K = � × �F
K . Thus, by Proposition 5.11,

we have �L = γ (�) × �
θ(F)
L . Moreover, the surjective group homomorphism

(
∏

F K
∗
p)/μK → �, (xp j )p j 
→ (π

vp j (xp j )

p j
) j

splits and has kernel (
∏

F O∗
K ,p)/μK , so that (

∏

F K ∗
p)/μK = � × (

∏

F O∗
K ,p)/μK .

Similarly, (
∏

θ(F) L
∗
p)/μL = γ (�) × (

∏

θ(F) O∗
L ,q)/μL . Since η̃F |�F

K
= γ F , the iso-

morphism ηF := γ |� × η̃F has the desired property. ��

5.6. Reconstruction of the dynamical system. Throughout this subsection, we let K and
L be number fields, and we assume that condition (C∞) is satisfied. Following the
strategy from [38, Sect. 2], we give a direct reconstruction of the dynamical system
�K � AK , f /μK . Results in this subsection are not used in the proof of Theorem 5.5.

For each nonempty finite subset F ⊆ PK , we let XF
K := (

∏

F K ∗
p)/μK , XF

K :=
(
∏

F Kp)/μK , and Y F
K := (

∏

F OK ,p)/μK . Put X∅
K = X∅

K = Y ∅
K = {0}. Then, for a

finite subset F ⊆ PK , we have XF
K = ⊔

E⊆F X E
K , under the identification

XE
K =

⎛

⎝

∏

p∈F\E
{0} ×

∏

p∈F
K ∗
p

⎞

⎠ /μK ⊆ XF
K .

For each finite set F ⊆ PK , let ηF : XF
K → X θ(F)

L be the valuation-preserving

isomorphism from Proposition 5.14. We define ηF : XF
K → X θ(F)

L by ηF := ⊔

E⊆F ηE .
For all finite subsets F, F ′ ⊆ PK with F ⊆ F ′, the diagram

XF ′
K X θ(F ′)

L

X F
K X θ(F)

L

ηF ′

ηF

(12)

commutes by definition, where the vertical maps are canonical projections, and we
have

(
∏

Fvθ(p)) ◦ ηF = ∏

Fvp. (13)
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Commutativity of Diagram (12) and Eq. (13) essentially characterise the topology of

XF
K :

Lemma 5.15. For every finite subset F ⊆ PK , the map ηF is a homeomorphism, and

the dynamical systems �K � XF
K and �L � X θ(F)

L are conjugate via (ηF , γ ).

Proof. We first show continuity of ηF by induction on |F |. The claim is obvious if

|F | = 0. Let x ∈ XF
K , and let {x (n)}∞n=1 be a sequence in XF

K converging to x . We

first suppose x ∈ XF
K . Then, x (n) eventually belongs to XF

K since XF
K is open in XF

K .

Hence, ηF (x (n)) = ηF (x (n)) converges to ηF (x) = ηF (x) by continuity of ηF . Next,
we suppose x ∈ XE

K for some E � F . Then, for p ∈ F\E , the sequence ηF (x (n))θ(p)

converges to 0 in Lθ(p) since vθ(p)(ηF (x (n))θ(p)) = vp(x
(n)
p ) → ∞ as n → ∞ by

Eq. (13). Furthermore, the induction hypothesis and commutativity of the Diagram (12)
for E and F imply that ηF (x (n))θ(p) converges to ηF (x)θ(p) = ηE (x)θ(p) in Lθ(p) for

p ∈ E . Therefore, ηF (x (n)) converges to ηF (x).
We see that the inverse of ηF is continuous by the same argument. Hence, ηF is

a homeomorphism. The second assertion follows from the fact that �K � XF
K and

�L � X θ(F)
L are conjugate via (ηF , γ ). ��

Lemma 5.16. For every finite subset F ⊆ PK , we have ηF (Y F
K ) = Y θ(F)

L . In particular,

semigroup dynamical systems O×
K /μK � Y F

K and O×
L /μL � Y θ(F)

L are conjugate via

(ηF , γ ).

Proof. By construction of ηF , the restriction of ηF to XF
K is the group isomorphism

ηF : XF
K → X θ(F)

L . In particular, ηF sends (1, . . . , 1) to (1, . . . , 1). Hence, we have

ηF (OK /μK ) = ηF (O×
K /μK (1, . . . , 1) � {0}) = O×

L /μL(1, . . . , 1) � {0} = OL/μL .

Now the assertion follows because ηF is continuous by Lemma 5.15. ��
Theorem 5.17. Let K and L be number fields, and suppose that condition (C∞) is
satisfied. Then, the dynamical systems K ∗/μK � AK , f /μK and L∗/μL � AL , f /μL
are conjugate.

Proof. By commutativity of Diagram (12) and Lemma 5.16, the diagram

Y F ′
K Y θ(F ′)

L

Y F
K Y θ(F)

L

ηF ′

ηF

commutes for all finite subsets F, F ′ ⊆ PK with F ⊆ F ′. Note that all maps in this
diagram are equivariant with respect to O×

K /μ and O×
L /μ via γ . Taking the projective

limit, we obtain an equivariant homeomorphism η : OK /μK → OL/μL .
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To see the assertion, it suffices to show that η (uniquely) extends to a homeomorphism
η′ : AK , f /μK → AL , f /μL such that

η′(ax) = γ (a)η′(x) (14)

for every a ∈ �K and x ∈ AK , f . For each z ∈ AK , f /μK , there exist a ∈ O×
K /μK and

x ∈ OK /μK such that z = a−1x by Lemma 2.4. We define η′ : AK , f /μK → AL , f /μL

by η′(z) = γ (a)−1η(x) for such z = a−1x ∈ AK , f /μK . Now it is straightforward to
see that η′ is well-defined, homeomorphic, and satisfies Eq. (14). ��

We can also reconstruct the dynamical system K ∗ � AK , f from the semi-local data,
see Remark 6.9.

6. Reconstruction of a Number Field from Semi-Local Data

6.1. Hoshi’s theorem. Given a number field K and p ∈ PK , we follow the notation in
[14], and let OK ,[p] denote the localisation of OK at p. We shall need the following
result by Hoshi.

Theorem 6.1 ( [32, Corollary 3.3]).Let K and L benumberfields, and supposeκ : K ∗ →
L∗ is a surjective group homomorphism. Then, κ is the restriction of an isomorphism of
fields K ∼= L if and only if there exists a map θ : PK → PL such that

(1) there exists p ∈ PK and n ∈ Z>0 with n · vp = vθ(p) ◦ κ;
(2) we have 1 + pOK ,[p] = κ−1(1 + θ(p)OL ,[θ(p)]) for all but finitely many p ∈ PK .

We now collect two results around Hoshi’s theorem which are essentially contained
in [14]. The following observation is used in [14] without proof.

Lemma 6.2. For all but finitely many p ∈ PK , we have 1 + pOK ,p = (O∗
K ,p)

N (p)−1.

Proof. By Lemma 2.5, O∗
K ,p = Z/(N (p) − 1)Z × O(1)

K ,p and O(1)
K ,p

∼= Z
[Kp:Qp]
p for all

but finitely many p, where p is the rational prime lying under p. Fix such a prime p, and
let f : O∗

K ,p → O∗
K ,p be the map defined by x 
→ xN (p)−1. Then, the image of f is

clearly contained in O(1)
K ,p. Since N (p) − 1 is a unit in Zp, we see that the restriction of

f defines an automorphism of O(1)
K ,p. Hence, Im f = O(1)

K ,p. ��
We state a consequence of Hoshi’s theorem that can be extracted from the proof of

[14, Theorem 7.4]:

Proposition 6.3. Let K and L be number fields. Suppose we have a bijection θ : PK →
PL , a group isomorphism κ : K ∗ → L∗, and a family of topological group isomorphisms
ϕp : K ∗

p → L∗
θ(p) for all but finitely many p ∈ PK . If vθ(p) ◦ ϕp = vp and ϕp|K ∗ = κ

for all but finitely many p, then κ is the restriction of a field isomorphism.

Proof. Let F ⊆ PK be a finite subset such that vθ(p) ◦ ϕp = vp and ϕp|K ∗ = κ for all
p ∈ PK \ F . Clearly, condition (1) from Theorem 6.1 is satisfied. Fix p ∈ PK \ F . We
see that ϕp(O∗

K ,p) = O∗
L ,θ(p). By Lemma 2.5, we have, after possibly enlarging F , that

tors(O∗
K ,p) = Z/(N (p) − 1)Z. Thus, N (p) = N (θ(p)). By Lemma 6.2, we have

κ(1 + pOK ,[p]) = κ(K ∗ ∩ (1 + pOK ,p)) = ϕp(K
∗) ∩ ϕp((O∗

K ,p)
N (p)−1)

= L∗ ∩ (O∗
L ,θ(p))

N (θ(p))−1 = 1 + θ(p)OL ,[θ(p)].
Thus, κ also satisfies condition (2) from Theorem 6.1, so κ is the restriction of a field
isomorphism K ∼= L . ��
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6.2. A semi-local characterisation of number fields. Using Hoshi’s theorem, we now
give a characterisation of number fields in terms of semi-local dynamical systems modulo
roots of unity.

Proposition 6.4. Let K and L be number fields with |μK | = |μL |. Suppose we have a
bijection θ : PK → PL , a group isomorphism γ : �K

∼=−→ �L , and a family of topological
group isomorphisms

ηF :
(

∏

p∈F K ∗
p

)

/μK
∼=−→

(

∏

p∈F L∗
θ(p)

)

/μL ,

where F ⊆ PK with 1 ≤ |F | ≤ 3, satisfying

(a) ηF |�K = γ ;

(b)
(

∏

p∈F vθ(p)

)

◦ ηF = ∏

p∈F vp.

Then, there exists a unique field isomorphism σ : K ∼=−→ L such that σ |K ∗ : K ∗ ∼=−→ L∗ is
a lift of γ .

Note that condition (b) for |F | = 2 and |F | = 3 follows from condition (a) and
condition (b) for |F | = 1.

For the remainder of this section, we use the notation and assumptions from the
statement of Proposition 6.4. We also identify μK and μL , and put μ := μK = μL . We
first prove the uniqueness claim.

Proposition 6.5. There is at most one field isomorphism σ : K ∼=−→ L such that σ |K ∗ :
K ∗ ∼=−→ L∗ is a lift of γ .

Proof. Suppose σ, τ : K → L are field isomorphisms such that σ |K ∗ and τ |K ∗ are lifts
of γ . Put ρ := σ−1 ◦ τ : K → K . Since γ is valuation-preserving by condition (b) and
all valuations vanish on μ, it follows that σ(p) = τ(p) = θ(p) for all p ∈ PK . Thus,
ρ(p) = p for all p ∈ PK . Let N be the Galois closure of K , and let ρ ∈ Gal(N/Q) be
any extension of ρ (such an extension exists by [33, Lemma, p.227]). Let p be a rational
prime which splits completely in N (such a prime exists by [62, Corollary VII.13.6]).
Let q ∈ PN be a prime above p, q1 = ρ(q), and p = q ∩ K . Since ρ(p) = p, we have
q1 ∩K = p. By [62, Proposition II.9.1], there exists δ ∈ Gal(N/K ) such that δ(q1) = q.
Let ρ1 = δ ◦ ρ. Then, we have ρ1(K ) = K , ρ1|K = ρ, and ρ1 ∈ Dq, where Dq is the
decomposition group of q. Since the inertia degree of q over p is equal to 1, Dq is the
trivial group, which implies that ρ1 = idN . Hence, ρ = idK . ��

For all but finitely many p ∈ PK , we will prove that η{p} : K ∗
p/μ → L∗

θ(p)/μ lifts
to a topological group isomorphisms ϕp : K ∗

p → L∗
θ(p) satisfying the conditions in

Proposition 6.3.

Lemma 6.6. For all F ′, F ⊆ PK with F ′ ⊆ F and 1 ≤ |F ′|, |F | ≤ 3, the diagram

(∏

F K
∗
p

)

/μ
(

∏

F L
∗
θ(p)

)

/μ

(∏

F ′K ∗
p

)

/μ
(

∏

F ′L∗
θ(p)

)

/μ

ηF

ηF ′

commutes, where the vertical maps are the canonical projections.
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Proof. This follows from condition (a) and the fact that �K is dense in
(∏

F K ∗
p

)

/μ by
Lemma 2.4. ��

Fix a prime p ∈ PK , and for each q ∈ PK with q �= p, let ϕq : K ∗
q → L∗

θ(q) be the
map characterised by

η{p,q}((1, x)μ) = (1, ϕq(x))μ ∈ (L∗
θ(p) × L∗

θ(q))/μ

for every x ∈ K ∗
q .

Lemma 6.7. For all q ∈ PK \ {p}, the map ϕq is a topological group isomorphism.

Moreover, ϕq restricts to a group isomorphism ϕq|K ∗ : K ∗ ∼=−→ L∗ that is a lift of γ .

Proof. It is straightforward to see that ϕq is a group homomorphism. To show continuity
of ϕq, it suffices to show that

ι : K ∗
q → (K ∗

p × K ∗
q)/μ, x 
→ (1, x)μ

is a homeomorphism onto its range. Continuity of ι is clear, so it suffices to show that
K ∗
q → ι(K ∗

q) is an open map. Let U be an open subset of K ∗
q . Since μ is discrete in

K ∗
p, we can take an open neighbourhood V ⊆ K ∗

p of 1 such that V ∩μ = {1}. Then, we
see that ι(U ) = ((V ×U )/μ) ∩ ι(K ∗

q). Hence, the claim holds since (V ×U )/μ is the
image of an open set by the open surjection (K ∗

p × K ∗
q) → (K ∗

p × K ∗
q)/μ.

By Lemma 6.6, the diagram

(K ∗
p × K ∗

q)/μ (L∗
θ(p) × L∗

θ(q))/μ

K ∗
q/μ L∗

θ(q)/μ

η{p,q}

η{q}

commutes. By condition (a), for every x ∈ K ∗, we have ϕq(x)μ = γ (xμ) ∈ �L , so
that ϕq(x) ∈ L∗. Hence, ϕq restricts to a group homomorphism K ∗ → L∗ that is a lift
of γ . Similarly, we have a continuous group homomorphism ψq : L∗

θ(q) → K ∗
q which

is characterised by (η{p,q})−1((1, y)μ) = (1, ψq(y))μ for y ∈ L∗
θ(q). Then, we can see

that ψq is the inverse of ϕq, and ψq|L∗ is the inverse of ϕq|K ∗ . ��
Lemma 6.8. For all q1, q2 ∈ PK \ {p}, we have ϕq1 |K ∗ = ϕq2 |K ∗ , that is, ϕq|K ∗ does
not depend on q.

Proof. Let q1, q2 ∈ PK \ {p}. We show ϕq1(x) = ϕq2(x) for x ∈ K ∗. Let F =
{p, q1, q2}, x ∈ K ∗ and let

(y, z, w)μ = ηF ((1, x, x)μ) ∈ (L∗
θ(p) × L∗

θ(q1)
× L∗

θ(q2)
)/μ.

By Lemma 6.6, the diagram

(K ∗
p × K ∗

q1
× K ∗

q2
)/μ (L∗

θ(p) × L∗
θ(q1)

× L∗
θ(q2)

)/μ

K ∗
p/μ L∗

θ(p)/μ

ηF

η{p}
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commutes, so that y ∈ μ. By replacing the representative (y, z, w) appropriately, we
may assume that y = 1. Note that z and w are then uniquely determined. By Lemma 6.6,
the diagram

(K ∗
p × K ∗

q1
× K ∗

q2
)/μ (L∗

θ(p) × L∗
θ(q1)

× L∗
θ(q2)

)/μ

(K ∗
p × K ∗

qi
)/μ (L∗

θ(p) × L∗
θ(qi )

)/μ

ηF

η{p,qi }

commutes for i = 1, 2, so that z = ϕq1(x) and w = ϕq2(x). Consequently, we have

ηF ((1, x, x)μ) = (1, ϕq1(x), ϕq2(x))μ.

Finally, by Lemma 6.6, the diagram

(K ∗
p × K ∗

q1
× K ∗

q2
)/μ (L∗

θ(p) × L∗
θ(q1)

× L∗
θ(q2)

)/μ

(K ∗
q1

× K ∗
q2

)/μ (L∗
θ(q1)

× L∗
θ(q2)

)/μ

ηF

η{q1,q2}

commutes, so that (ϕq1(x), ϕq2(x))μ ∈ �L . Thus, (ϕq1(x), ϕq2(x)) = ζ(y, y) for some
ζ ∈ μ and y ∈ L∗, so that ϕq1(x) = ϕq2(x). ��
Proof of Proposition 6.4. We have shown that for every q ∈ PK \ {p}, there is a topo-
logical group isomorphism ϕq : K ∗

q → L∗
θ(q) such that κ := ϕq|K ∗ : K ∗ → L∗ is a

group isomorphism that does not depend on q and is a lift of γ . By condition (b), we
have (vθ(p) × vθ(q)) ◦ η{p,q} = vp × vq. Thus, for x ∈ K ∗

q , we have

(vθ(p) × vθ(q))((1, ϕq(x))μ) = (vθ(p) × vθ(q)) ◦ η{p,q}((1, x)μ) = vp × vq((1, x)μ),

so that vθ(q) ◦ ϕq(x) = vq(x). The result now follows from Proposition 6.3. ��
Remark 6.9. An argument similar to Lemma 6.8 shows that ϕq does not depend on the
choice of p ∈ PK . Therefore, by considering another fixed prime, we obtain valuation-
preserving isomorphisms ϕq : K ∗

q → L∗
θ(q) for all q ∈ PK that restrict to the same group

isomorphism γ : K ∗ → L∗. Hence, by following the argument in Sect. 5.6, we obtain a
conjugacy of K ∗ � A∗

K , f and L∗ � A∗
L , f .

6.3. Proofs of the main theorems. We now conclude the proofs of our main theorems.

Proof of Theorem 5.5. Let K and L be number fields that satisfy condition (C3). Then,
the assumptions in Proposition 6.4 are satisfied by Lemma 5.7 and Proposition 5.14.
Hence, the unique field isomorphism σ : K → L that satisfies the conditions in Theorem
5.5 exists. ��
Proof of Theorem 1.1. Let K and L be number fields, and suppose that full corners of
AK andAL are isomorphic. Then, by Proposition 5.4, condition (C∞) is satisfied. Hence,
by Theorem 5.5, K and L are isomorphic. The converse is obvious. ��
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7. Application: Topological Full Groups

We next prove Corollary 1.2. Our terminology for groupoids follows [64,75], and all
étale groupoids are assumed to be locally compact and Hausdorff. An étale groupoid G
is said to be effective if Int(G′) = G(0), where G′ denotes the isotropy bundle of G, and G
is said to be non-wandering if for every nonempty clopen subset U ⊆ G(0), there exists
γ ∈ G such that s(γ ) �= r(γ ) and s(γ ), r(γ ) ∈ U (see [64, Definition 7.8]). Let R
denote the full equivalence relation on a countably infinite set. Given an étale groupoid
G whose unit space is a locally compact Cantor set, we let [[G]] denote the topological
full group of G, as defined in [64, Definition 3.2].

Lemma 7.1. If G is an effective non-wandering étale groupoid whose unit space is a
locally compact Cantor set, then the étale groupoid G × R also has these properties.

Proof. The unit space (G × R)(0) = G(0) × R(0) is a locally compact Cantor set since
R(0) is a countably infinite set. Since G is effective, we have

Int((G × R)′) = Int(G′ × R(0)) = Int(G′) × R(0) = G(0) × R(0),

so that G ×R is effective. We show that G ×R is non-wandering. Let U be a nonempty
clopen subset of G(0) × R(0). Then, there exists a nonempty clopen subset V of G(0)

and y ∈ R(0) such that V × {y} ⊆ U . Since G is non-wandering, there exists γ ∈ G
such that s(γ ) �= r(γ ) and s(γ ), r(γ ) ∈ V . Let γ̃ := (γ, y) ∈ G × R. Then, we have
s(γ̃ ) �= r(γ̃ ) and s(γ̃ ), r(γ̃ ) ∈ V × {y}. Hence, G × R is non-wandering. ��

Given a number field K , we let GK := K ∗ � AK , f be the transformation groupoid
associated with the action K ∗ � AK , f . Then, GK is étale, and there is a canonical
isomorphism AK ∼= C∗(GK ).

Lemma 7.2. For any number field K , the étale groupoid GK is effective and non-
wandering. In addition, the unit space G(0)

K is a locally compact Cantor set.

Proof. The unit space G(0)
K = AK , f is clearly a locally compact Cantor set. We see that

GK is effective, since 0 ∈ AK , f is the unique point whose isotropy group is nontrivial with
respect to the action K ∗ � AK , f . We show that GK is non-wandering. Let U ⊆ AK , f
be a nonempty compact open set and we show that there exists a K ∗-orbit which meets
U at least twice. We may assume that U is of the form

U =
∏

p∈F
(xp + pkpOK ,p) ×

∏

p�∈F
OK ,p,

where F ⊆ PK is a finite subset, kp ≥ 1, and xp ∈ Kp for p ∈ F . By Lemma 2.4, there
exists g0 ∈ OK \{0,−1} such that vp(g0) ≥ kp−vp(xp) for p ∈ F . Let g = 1+g0 ∈ OK .
Then, we have g �= 0, 1, and

gxp = xp + g0xp ∈ xp + pkpOK ,p.

Let x ∈ AK , f be the adele whose p-th coordinate is equal to xp for p ∈ F and is equal
to 1 for p �∈ F . Then, we have x, gx ∈ U and x �= gx , which complete the proof. ��
Proof of Corollary 1.2. Suppose [[GK × R]] and [[GL × R]] are isomorphic. Since all
orbits ofGK ×R andGL×R are infinite, and the other assumptions in [64, Theorem 7.10]
are satisfied by Lemmas 7.1 and 7.2, we have GK ×R ∼= GL ×R. By [10, Theorem 3.2],
GK and GL are Kakutani equivalent, so that full corners of C∗(GK ) and C∗(GL) are
isomorphic. Now the claim follows from Theorem 1.1. ��



Constructing Number Field Isomorphisms from *-Isomorphisms Page 39 of 45    20 

Remark 7.3. For a number field K , letHK denote the Bost–Connes groupoid of K . Based
on a variant of the strong approximation [6, Lemma 3.5], the same proof as Lemma 7.2
shows that HK is non-wandering. Hence, combining arguments in this section and [38,
Theorem 1.1], we conclude that the topological full group [[HK ×R]] is also a complete
invariant of the number field K .

8. Explicit C*-Algebraic Descriptions of Number-Theoretic Invariants

Throughout this section, let K denote a number field. We now show that several classical
invariants of K can be explicitly expressed in terms of C*-algebras.

8.1. The ideal class group. Proposition 5.11 provides a description of the ideal class
group of K in terms of C*-algebras. Let

D : U(B∅
K )/U0(B

∅
K ) →

(

Z[1]0

)⊕PK
, x 
→

(

D{p}
K (x)

)

p∈PK
.

Proposition 8.1. The ideal class group ClK is canonically isomorphic to Coker D.

Proof. We identify �K withU(B∅
K )/U0(B∅

K ). As shown in the proof of Proposition 5.11,

we have D{p}
K (x) = −vp(x)[1]0 for all x ∈ �K . Therefore, the image of D coincides with

P := {(vp(x))p : x ∈ K ∗}. Since we have the prime decomposition (a) = ∏

p p
vp(a)

for every a ∈ K ∗, the subgroup P is precisely the subgroup of principal (fractional)

ideals of K under the identification of
(

Z[1]0

)⊕PK
with the ideal group

⊕

p∈PK
pZ of

K . Hence, Coker D is isomorphic to ClK . ��
We point out that this is the first explicit C*-algebraic description of the ideal class

group. In [50], the ideal class group is recovered from the ax + b-semigroup C*-algebra
together with its canonical Cartan subalgebra. However, in both the semigroup C*-
algebra and Bost–Connes C*-algebra cases, there is no known explicit description of
the ideal class group in terms of the C*-algebra alone.

8.2. The automorphism group. We prove that the automorphism group Aut(K ) of K is
characterised as a quotient group of Aut(BK ). If K is Galois over Q, then Aut(K ) is
the Galois group Gal(K/Q) by definition. Based on Lemma 4.15, let

G0 = {α̃ ∈ Aut(AK ) : α̃∅ ∈ Aut(A∅
K ) is homotopic to id},

H0 = {α ∈ Aut(BK ) : α∅ ∈ Aut(B∅
K ) is homotopic to id}.

Note that all approximately inner *-automorphisms of AK and BK belong to G0 and
H0, respectively, since they induce the identity map on the commutative C*-algebras
A∅

K and B∅
K .

Proposition 8.2. The group Aut(BK )/H0 is canonically isomorphic to Aut(K ).
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Proof. We have a natural homomorphism Aut(K ) → Aut(BK )/H0, and Theorem 5.5
provides a map ψ1 : Aut(BK ) → Aut(K ). By construction and Remark 5.8, ψ1 is
a homomorphism and H0 = Ker ψ1. We can see that the composition Aut(K ) →
Aut(BK )/H0 → Aut(K ) is the identity. Hence, these maps are inverse to each other. ��
This is also the first explicit C*-algebraic description of a Galois group in the investiga-
tion of C*-algebras from number theory.

The group Aut(K )/G0 also has an interesting description in terms of number-
theoretic invariants. Let λ : Aut(K ) � μ̂K be the canonical action, that is, for every
σ ∈ Aut(K ), a ∈ μK , and χ ∈ μ̂K , we have

(λσ (χ))(a) = χ(σ−1(a)).

Proposition 8.3. The group Aut(AK )/G0 is canonically isomorphic to the semidirect
product μ̂K �λ Aut(K ).

Proof. Let p ∈ A∅
K be the projection corresponding to the trivial character of μK , and

let G be the subgroup of Aut(AK ) consisting of *-automorphisms α̃ such that α̃∅ fixes p.
Let Homeo(̂K ∗) be the group of self-homeomorphisms of ̂K ∗, let π0(̂K ∗) be the set of
connected components of ̂K ∗, and let S(π0(̂K ∗)) be the permutation group of π0(̂K ∗).
Let

ψ̃2 : Aut(AK ) → Homeo(̂K ∗) → S(π0(̂K ∗))

be the composition of the canonical homomorphisms, where the first map is obtained by
sending α̃ ∈ Aut(AK ) to the Gelfand–Naimark dual of α̃∅ ∈ Aut(A∅

K ), and the second
map is obtained by sending a homeomorphism to the induced permutation of connected
components. Since both Aut(AK ) → Homeo(̂K ∗) and Homeo(̂K ∗) → S(π0(̂K ∗)) are
continuous, ψ̃2 descends to a homomorphism

ψ2 : Aut(AK )/G0 → S(π0(̂K ∗)).

In addition, if { ft }t∈[0,1] ⊆ Homeo(̂K ∗) is a continuous path with f0 = id, then ft acts
trivially on π0(̂K ∗) for every t ∈ [0, 1]. Hence, G contains G0.

By the the argument showing Aut(K ) ∼= Aut(BK )/H0 in the proof of Proposition 8.2,
combined with Proposition 5.4, the natural homomorphism Aut(K ) → G/G0 is an
isomorphism. For σ ∈ Aut(K ), let σ̃ ∈ G denote the corresponding *-automorphism.
Then, σ̃ is characterised by the property that σ̃ ∅ ∈ Aut(C∗(K ∗)) satisfies σ̃ ∅(ua) =
uσ(a) for a ∈ K ∗.

By Lemma 4.15, if α̃1, α̃2 ∈ Aut(AK ) are homotopic, then α̃∅
1 , α̃∅

2 ∈ Aut(A∅
K )

are homotopic. Hence, we have a canonical surjective homomorphism Aut(AK )/ ∼→
Aut(AK )/G0, where ∼ denotes the homotopy equivalence relation. By Proposition 3.3,
the dual action τ̃ : ̂K ∗ → Aut(AK ) factors through τ : μ̂K → Aut(AK )/G0. The
composition ψ2 ◦ τ : μ̂K → S(π0(̂K ∗)) coincides with the action by multiplication
μ̂K � π0(̂K ∗) = μ̂K , and thus it is faithful. Hence, the homomorphism τ is injective.
We identify μ̂K with a subgroup of Aut(AK )/G0 via τ .

Since the action ψ2 ◦ τ of μ̂K is transitive, the group Aut(AK )/G0 is generated by
μ̂K and Aut(K ). In order to see the claim, it suffice to show that for every χ ∈ ̂K ∗
and σ ∈ Aut(K ), σ̃ ∅τ̃∅

χ (σ̃ ∅)−1 is homotopic to τ̃∅
χ ′ in Aut(C∗(K ∗)), where χ ′ ∈ ̂K ∗ is

an extension of λσ (χ) ∈ μ̂K . In fact, a direct computation shows σ̃ ∅τ̃∅
χ (σ̃ ∅)−1(ua) =

χ(σ−1(a))ua for every a ∈ K ∗, which completes the proof by Proposition 3.3. ��
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9. Concluding Remarks

Throughout this section, let K denote a number field.

9.1. Splitting numbers of rational primes and the Dedekind zeta function. Following the
strategy of [79], we obtain the Dedekind zeta function as an invariant of the C*-algebra
AK as follows: Let p ∈ PK . We have seen that A{p}

K is Morita equivalent to B{p}
K (see

Remark 4.21). Using this, it follows that A{p}
K has a unique (unbounded) trace Tp, up

to scaling. Then, we see that (Tp)∗(K0(A
{p}
K )) ∼= Z[1/p], where p is the rational prime

lying under p. Recall that the splitting number of a rational prime p is the number of
prime ideals in OK lying above p. Therefore, for each rational prime p, the splitting
number of p is equal to the number of first level composition factors of AK for which
the image of their K0-group under the unique map induced by the trace is isomorphic to
Z[1/p]. Now the claim follows by [77, Main Theorem].

The splitting numbers of rational primes in Sect. 9.1 and ideal class group in Sect. 8.1
are given entirely in terms of the zeroth and first levels, that is, they only require condition
(C1). On the other hand, the description of Aut(K ) in Sect. 8.2 involves the zeroth
level, but is given in terms of the whole C*-algebra AK , which requires (C3). None
of these invariants are complete invariants in general. If K is Galois over Q, then K
is characterised by its Dedekind zeta function by [66], so in this case K is (indirectly)
characterised by the information in Sect. 9.1. However, for non-Galois extensions, the
situation is much more complicated, see [65, Theorems 3] and the references therein.
By [67], the Dedekind zeta function and the ideal class group of a number field do not
determine each other.

9.2. Rigidity for groupC*-algebras. We briefly explain an interpretation of our results as
rigidity results for group C*-algebras of certain locally compact groups. Let AK , f �K ∗
be the semi-direct product with respect to the canonical action K ∗ � AK , f . Then, using

[81, Example 3.16] and a choice of self-duality AK , f ∼= ÂK , f (as in [22, Theorem 2.4],
but for the finite adele ring), one obtains a non-canonical isomorphismC∗(AK , f �K ∗) ∼=
AK . Now, Theorem 1.1 implies that the class of group C*-algebras C∗(AK , f � K ∗) is
rigid in the sense that C∗(AK , f � K ∗) ∼= C∗(AL , f � L∗) if and only if AK , f � K ∗ ∼=
AL , f � L∗.

9.3. Continuous orbit equivalence rigidity. Our results imply that the dynamical sys-
tems K ∗ � AK , f are rigid in the sense that any two such systems K ∗ � AK , f and
L∗ � AL , f are continuously orbit equivalent if and only if they are conjugate. See [51]
for background on continuous orbit equivalence.

9.4. Complete K-theoretic invariants. Similarly to the Bost–Connes C*-algebras [38,
Theorem 1.1 (6)], we can construct a complete K-theoretic invariant of number fields.
Consider the invariant consisting of K-groups K∗(BF

K ) for every F ⊆ PK with 0 ≤
|F | ≤ 3, the boundary maps ∂

F,p
K : K∗(BF

K ) → K∗(B
Fp
K ) for every F ⊆ PK with 0 ≤

|F | ≤ 2 and p ∈ PK \F , the positive cones K0(B
{p}
K )+ ⊆ K0(B

{p}
K ) for every p ∈ PK ,
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and the unitary group modulo its connected component U(B∅
K )/U0(B

∅
K ) ⊆ K1(B

∅
K ).

By the proof of Theorem 5.5, this invariant is a complete invariant of the number field
K . In [38], we need K-groups of composition factors for all finite subsets F ⊆ PK . In
our case, we only need K-groups for finite subsets F ⊆ PK with cardinality less than
4. Hence, one can say that the complexity of the invariant here is reduced. However, we
need to specify the position of the unitary group in K1(B

∅
K ).

9.5. C*-dynamical systems from totally positive elements. The arguments until Sect. 5
can be also applied to various finite index subgroups of K ∗. For example, let CK :=
C0(AK , f )�K ∗

+, where K ∗
+ is the subgroup of K ∗ consisting of totally positive elements.

If K = Q, then CQ is essentially the same as the original Bost–Connes C*-algebra for
Q—the Bost–Connes C*-algebra for Q is a full corner of CK . In addition, if K is totally
imaginary, then we have CK = AK .

Let K and L be number fields, and suppose full corners ofCK andCL are isomorphic.
By Lemma 3.9, either K and L are both totally imaginary, or both non-totally imaginary,
since the torsion group of K ∗

+ is trivial if and only if K admits a real place. If we have the
former case, then K and L are isomorphic by Theorem 1.1. If we have the latter case,
the same argument until Sect. 5 shows that the dynamical systems K ∗

+ � AK , f and
L∗

+ � AK , f are conjugate. However, it remains open whether this conjugacy implies
an isomorphism of K and L , since the arguments in Sect. 6 do not work in this case.

9.6. Classifiability of the unital part of the composition factors. Fix a nonempty finite
subset F ⊆ PK . Since BF

K is simple and has a unique tracial state, modifying the proof
of [5, Theorem 4.1], one sees that BF

K is an AH-algebra of slow dimension growth. By
[3, Theorem 2], BF

K has real rank zero. Therefore, BF
K is classified by its Elliott invariant

by [24, Theorem 9.4]. See [70, Chapter 3, Sect. 3.3] for more on the classification of
AH-algebras. We leave it as an open problem to calculate the K-groups of BF

K .
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