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A B S T R A C T

Background: Predicting response to exclusive enteral nutrition (EEN) in active Crohn’s disease (CD) could lead to therapy personalization and pre-
treatment optimization.
Objectives: This study aimed to explore the ability of pretreatment parameters to predict fecal calprotectin (FCal) levels at EEN completion in a pro-
spective study in children with CD.
Methods: In children with active CD, clinical parameters, dietary intake, cytokines, inflammation-related blood proteomics, and diet-related metabolites,
metabolomics and microbiota in feces, were measured before initiation of 8 wk of EEN. Prediction of FCal levels at EEN completion was performed
using machine learning. Data are presented with medians (IQR).
Results: Of 37 patients recruited, 15 responded (FCal < 250 μg/g) to EEN (responders) and 22 did not (nonresponders). Clinical and immunological
parameters were not associated with response to EEN. Responders had lesser (μmol/g) butyrate [responders: 13.2 (8.63–18.4) compared with non-
responders: 22.3 (12.0–32.0); P ¼ 0.03], acetate [responders: 49.9 (46.4–68.4) compared with nonresponders: 70.4 (57.0–95.5); P ¼ 0.027], phenyl-
acetate [responders: 0.175 (0.013–0.611) compared with nonresponders: 0.943 (0.438–1.35); P ¼ 0.021], and a higher microbiota richness [315
(269–347) compared with nonresponders: 243 (205–297); P ¼ 0.015] in feces than nonresponders. Responders consumed (portions/1000 kcal/d) more
confectionery products [responders: 0.55 (0.38–0.72) compared with nonresponders: 0.19 (0.01–0.38); P ¼ 0.045]. A multicomponent model using fecal
parameters, dietary data, and clinical and immunological parameters predicted response to EEN with 78% accuracy (sensitivity: 80%; specificity: 77%;
positive predictive value: 71%; negative predictive value: 85%). Higher taxon abundance from Ruminococcaceae, Lachnospiraceae, and Bacteroides and
phenylacetate, butyrate, and acetate were the most influential variables in predicting lack of response to EEN.
Conclusions: We identify microbial signals and diet-related metabolites in feces, which could comprise targets for pretreatment optimization and
personalized nutritional therapy in pediatric CD.

Keywords: exclusive enteral nutrition, Crohn’s disease, microbiome, precision therapy, metabolome, short chain fatty acids, o'link, cytokines
Abbreviations: 1H NMR, proton nuclear magnetic resonance; CD, Crohn’s disease; CRP, C-reactive protein; EEN, exclusive enteral nutrition; FCal, fecal calprotectin; FFQ, food
frequency questionnaire; IBD, inflammatory bowel disease; NPV, negative predictive validity; OTU, operational taxonomic unit; PCA, principal component analysis; PPV, positive
predictive validity; RF, random forest; ROC, receiver operating characteristic; SCFA, short-chain fatty acid; wPCDAI, weighted pediatric Crohn’s disease activity index.
* Corresponding author.
E-mail address: Konstantinos.gerasimidis@glasgow.ac.uk (K. Gerasimidis).

y BN and AB contributed equally to this work.

https://doi.org/10.1016/j.ajcnut.2023.12.027
Received 6 September 2023; Received in revised form 6 December 2023; Accepted 22 December 2023; Available online 19 February 2024
0002-9165/© 2024 The Authors. Published by Elsevier Inc. on behalf of American Society for Nutrition. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

mailto:Konstantinos.gerasimidis@glasgow.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajcnut.2023.12.027&domain=pdf
https://ajcn.nutrition.org/
https://doi.org/10.1016/j.ajcnut.2023.12.027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ajcnut.2023.12.027
https://doi.org/10.1016/j.ajcnut.2023.12.027


B. Nichols et al. The American Journal of Clinical Nutrition 119 (2024) 885–895
Introduction

Treatment with exclusive enteral nutrition (EEN) induces clinical
remission in �80% of children with active Crohn’s disease (CD), but
fewer patients show normalization of gut inflammatory biomarkers,
such as fecal calprotectin (FCal) at treatment completion [1,2]. There is
currently strong interest in stratified or personalized medicine; partic-
ularly for conditions in which response to therapies is variable, such as
EEN in CD. The evolution of machine learning and the progress of
high-throughput sequencing have begun to answer important questions
in the etiology and management of inflammatory bowel disease (IBD),
particularly through the integration of multiple parameters such as
disease phenotype, blood and immune function markers, and the in-
testinal microbiota and its metabolites [3–6]. Such technologies and
system biology may help predict therapeutic outcomes and lead to a
novel understanding of underpinning mechanisms of disease patho-
genesis. Integrating this approach into routine clinical care could ulti-
mately allow patient stratification to guide treatment decisions,
pretreatment optimization and therefore a more efficacious and
cost-effective approach to patient care.

The literature exploring predictive factors of EEN response is sparse
and mostly focused on clinical parameters such as disease phenotype
[2] and disease severity during the initial period of treatment [7].
Hence, the objective of this study was to analyze, for the first time, to
our knowledge, an extensive set of pretreatment factors as predictors of
response to EEN. We included disease phenotype and characteristics,
anthropometry, dietary intake, routine disease markers, inflammatory
cytokines, plasma inflammation-related proteomic markers and
diet-related bacterial metabolites, and the metabolome and microbiota
in feces; all before EEN initiation. Although widely applied in clinical
practice, disease activity indices, such as the weighted pediatric
Crohn’s disease activity index (wPCDAI) [8], only very broadly
correlate with histological and endoscopic activity [9,10]. We therefore
chose FCal, which is more sensitive to detecting endoscopic activity in
IBD [9,11] and thus might serve as a more appropriate biomarker for
assessing response to EEN in the absence of endoscopy and as a po-
tential “treat-to-target” biomarker.

Methods

Subjects
Children with active CD receiving EEN (Modulen IBD) for 8 wk

were recruited prospectively at the Royal Hospital for Children, Glas-
gow, between October 2014 andMay 2017. The clinical outcomes of the
entire patient cohort were published previously [1]. In the current study,
we included only participants who completed EEN and provided paired
fecal samples at treatment initiation and completion (Supplemental
Table 1 and Supplemental Figure 1). Exclusion criteria included use of
antibiotics and probiotics 1 mo prior to EEN initiation, and concomitant
use of other induction therapy during EEN. Patients who were admin-
istered antibiotics and probiotics during their course of EEN were sub-
sequently excluded too. Clinical and anthropometric parameters, dietary
intake, cytokines, inflammation-related blood proteomics, fecal
diet-related metabolites, and metabolome and microbiota parameters
were explored as predictors of response to treatment with EEN.
Disease characteristics and clinical parameters
Data on routine blood inflammatory markers [for example, C-

reactive protein (CRP), FCal, demographics, anthropometry, wPCDAI,
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Bristol stool chart score, and disease phenotype] were collected pro-
spectively [12]. FCal was measured in house at the end of the study
(Calpro). The primary outcome utilized for prediction of EEN response
was normalization of FCal concentration (250 μg/g plus 10% to ac-
count for in-house measurement assay inter- and intravariation) at EEN
completion.

Dietary intake
Prior to initiation of EEN, the intake of macronutrients, fiber, and

energy was estimated using the Scottish collaborative food frequency
questionnaire (FFQ) for children [13]. The 148 food items in the FFQ
were grouped under 16 food groups with frequency of portion con-
sumption per day. Macronutrient intake was expressed as a percentage
of total energy intake, except for fiber which was expressed as g/1000
kcal/d. Food group intake was standardized as portion/1000 kcal/d.

Plasma inflammatory cytokines and inflammation-related
proteomics

The absolute concentration of 19 cytokines and relative concen-
tration of 92 inflammation-related proteomic markers were measured in
plasma with the Meso Scale Diagnostics platform (Meso Scale Di-
agnostics) and Olink assays (Olink Proteomics), respectively.
Diet-related bacterial metabolites and fecal metabolomics
The entire bowel motion was collected fresh in an empty, dispos-

able container. Immediately following defecation an anaerobic sachet
(Anaerocult A, Merck) was placed above the recipient container to
reduce oxygen concentration and the samples were placed in a cool
bag along with icepacks. Within 4 h of defecation, samples were
transported to the laboratory, homogenized using mechanical knead-
ing with a blender and aliquots were stored for downstream analyses.
Aliquots for the measurement of short-chain fatty acids (SCFAs, sta-
bilized with NaOH 1M) and total (stabilized with zinc acetate 0.11M)
and free sulfide (stabilized with NaOH 1.25M) were stored in �20�C,
whereas aliquots intended for LC-MS, Proton nuclear magnetic
resonance (1H NMR) metabolomics and microbiota analysis were
stored in �80�C. In feces, the concentration of short (SCFA),
branched, and medium chain fatty acids was measured using gas
chromatography coupled with a flame ionization detector (GC)
(Supplemental Methods), and ammonia was measured on the day of
sample collection with an automated analyzer (HI 96715, Hanna In-
struments), and free/total sulfide in stored samples with colorimetric
assays [14]. Fecal pH and fecal water content (%) were also measured
[15]. 1H NMR metabolomics of fecal samples was performed using a
500 MHz spectrometer, using a One dimension Nuclear Overhauser
Effect Spectroscopy pulse sequence with water suppression (Supple-
mental Methods). Comparisons were carried out in annotated and
quantified metabolites [16].
Fecal microbiota
Genomic DNA was extracted from feces within 2 mo of sample

collection, as described previously and in Supplemental Methods [17].
Total bacterial load in feces was measured by qPCR (forward primer:
CGG TGA ATA CGT TCC CGG and reverse primer: TAC GGC TAC
CTT GTTACG ACT T) using Taqman chemistry [14]. The V4 region
of the 16S rRNA gene was sequenced (MiSeq) in fecal samples using 2
� 250-bp paired-end reads. The V4 region was amplified (forward
primer: GTGCCAGCMGCCGCGGTAA and reverse primer: GGAC-
TACHVGGGTWTCTAAT) using fusion Golay adapters barcoded on
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the reverse strand. Barcoded amplicons were purified using the
Zymoclean Gel DNA Recovery Kit (D4001, Zymo Research).
Bioinformatics
Operational taxonomic units (OTUs) were constructed from the raw

16S rRNA sequencing data at a similarity of 97% using the VSEARCH
pipeline (https://github.com/torognes/vsearch/wiki/VSEARCH-
pipeline) [18]. Paired reads were merged and quality filtering was
performed with a maximum expected error value of 0.5. Sequences
longer than 275 bp and shorter than 225 bp were discarded, reads were
dereplicated across all samples and singleton sequences were filtered
out. Chimeras were identified and eliminated using the VSEARCH
implementation of the UCHIME de novo algorithm after preclustering
at 98%. The UCHIME reference-based chimera detection method was
then applied using the “Gold” ChimeraSlayer database [19]. OTUs
were generated by clustering the remaining sequences at 97%. Taxo-
nomic classification to genus level was performed using the Ribosomal
Database Project Naïve Bayes Classifier algorithm in conjunction with
the SILVA (version 123) database [20,21].

In plasma proteomic and fecal metabolome analysis, data below the
limit of detection were replaced by half of the minimum detected value.
For multivariate analysis, the fecal metabolite concentrations from 1H
NMR analysis initially expressed as μg/g of wet fecal sample, were
further normalized by total sum, log-transformed, and scaled using unit
variance scaling, whereby the data are mean-centered and divided by
the standard deviation for each variable.
Statistical analysis
Statistical analyses were carried out with Excel (version 2310,

Microsoft Corporation) and R statistical software (version 4.2.3, R
Foundation) with RStudio (version 2023.03.0, Posit Software). For
nonparametric data, Mann–Whitney U tests were used for all com-
parisons between groups, and Spearman’s rank correlation test was
performed for correlations. Continuous variables were summarized
with medians and IQR, and categorical parameters were presented by
counts and frequencies.

Fecal microbial community structure was analyzed using the vegan
R package, and responders and nonresponders were compared in terms
of α diversity, using the Chao1 richness estimate and Shannon diversity
index, and β diversity, using Bray–Curtis dissimilarity, nonmetric
multidimensional scaling and β dispersion [22]. For taxon abundance
analysis, we normalized the dataset using total sum scaling normali-
zation combined with centered log-ratio transformation. We removed
low abundant features by keeping taxa that accounted for >0.01% of
all reads. All microbial diversity and taxon abundance analyses were
carried out at the OTU level.

The plasma inflammation-related proteomic profile was evaluated
using the performance of principal components analysis (PCA). Sep-
aration between groups was assessed with the use of permutation
analysis of variance (ANOVA) tests on Euclidean distance matrices.
Discriminant proteins were identified with the use of Mann–Whitney U
tests. Results of differential analysis for all datasets were corrected for
multiple testing with the Benjamini–Hochberg method. P values below
0.05 were considered statistically significant. For multivariate analysis
of the 1H NMR metabolome data, PCA and Orthogonal Projections to
Latent Structures Discriminant Analysis ordination were applied to
identify differences between groups using MetaboAnalystR. Levels of
individual metabolites were compared using Mann–Whitney tests be-
tween groups.
887
Random forest modeling
For the prediction of EEN response from the various datasets, we

generated random forest (RF) models, which use a machine learning
algorithm widely applied for classification and prediction purposes on
multiomics data [23]. RF analysis was performed using the R package,
randomForest [24], separately for microbiota, 1H NMR metabolome,
cytokines, inflammation-related proteomics, SCFA, dietary intake,
routine clinical datasets, and inflammatory biomarkers (for example,
CRP and FCal) at EEN initiation. Variable optimization was applied
using the FeatureTerminatoR R package which minimizes the number
of variables in the model without reducing model performance. For all
models, 50,000 decision trees were grown and candidate variables at
each split were set to default. To account for class imbalances, the data
were stratified by response type. The importance of each feature in the
model was assessed as mean decrease in Gini impurity index, which
shows the change in classification accuracy between a model with and
without the variable of interest, with the Gini impurity representing the
probability that a specific sample will be classified incorrectly when
labeled randomly. Model significance was determined after running a
permutation test 1000 times using the rf.significance function in the
rfUtilities R package [25]. Finally, a receiver operating characteristic
(ROC) curve was plotted, and the AUC was calculated with the R
package pROC. In multicomponent analysis, all datasets were com-
bined in a single RF model. In multicomponent analysis, missing data
were replaced by the corresponding variable medians.
Ethics
The study was approved by the West of Scotland Research Ethics

Committee (14/WS/1004) and registered at clinicaltrials.gov
(NCT02341248). All patients/carers provided informed consent. All
authors had access to the study data, and reviewed and approved the
final manuscript.

Results

Participant characteristics and clinical parameters
Of the 66 children with active CD, 54 completed EEN (Supple-

mental Figure 1). For 37 of 54 (69%) patients, FCal was measured at
both baseline and EEN completion and these children were included in
the current study. At EEN initiation, all patients had FCal levels of
>250 μg/g. Of these, 15 of 37 (41%) displayed FCal levels of�250 μg/
g after EEN and were classified as responders. The rest of the patients
with FCal levels of >250 μg/g were classified as nonresponders (n ¼
22/37, 59%). There were no differences in disease characteristics be-
tween patients included in this study and those in the complete cohort
(Supplemental Table 1). Pretreatment wPCDAI, FCal, anthropometry,
disease phenotype, use of immunosuppressants, and routine inflam-
matory biomarkers in blood were not different between the 15 re-
sponders and the 22 nonresponders (Table 1). An RF using
participants’ characteristics and clinical parameters failed to differen-
tiate between responders and nonresponders (permutation test P ¼
0.158).
Pretreatment dietary intake in responders and
nonresponders

Treatment responders reported a higher baseline intake of confec-
tionery and ice cream products compared with nonresponders [median
(IQR), responders: 0.55 portions/1000 kcal/d (Q1: 0.38, Q3: 0.72)
compared with nonresponders: 0.19 portions/1000 kcal/d (Q1: 0.01,

https://github.com/torognes/vsearch/wiki/VSEARCH-pipeline
https://github.com/torognes/vsearch/wiki/VSEARCH-pipeline
http://clinicaltrials.gov


TABLE 1
Pretreatment patient characteristics in responders and nonresponders to treatment with exclusive enteral nutrition

Variables1 Responders (N ¼ 15) Nonresponders (N ¼ 22) P value

Age (y) 12.1 (10.6, 14.8) 12.4 (10.3, 14.8) 0.99
Sex, male, n (%) 11 (73) 14 (64) 0.36
BMI z-score �0.74 (�1.73, �0.06) �0.23 (�1.19, 0.32) 0.15
Height z-score �0.43 (�0.96, 0.27) �0.06 (�0.53, 0.62) 0.31
Weight z-score �0.85 (�1.52, �0.32) �0.30 (�0.88, 0.08) 0.18
wPCDAI 27.5 (16.3, 46.3) 41.3 (27.5, 57.5) 0.15
wPCDAI classification, n (%) 0.84
Severe (wPCDAI > 57.5) 3 (20) 5 (23)
Moderate (wPCDAI > 40) 3 (20) 6 (27)
Mild (wPCDAI > 12.5) 9 (60) 10 (45)
Remission (wPCDAI � 12.5) 0 (0) 1 (5)

FCal (μg/g) (n ¼ 34) 1352 (863, 1857) 1699 (1386, 1835) 0.17
CRP (mg/L) (n ¼ 34) 5.00 (2.25, 20.5) 14.0 (3.00, 25.5) 0.49
Albumin (g/L) (n ¼ 36) 34.5 (26.8, 38.0) 32.5 (27.0, 37.0) 0.99
ESR (mm/h) (n ¼ 30) 12 (8.5, 32.5) 19 (13, 35.5) 0.49
Hemoglobin (g/L) (n ¼ 34) 126 (124, 128) 119 (111, 130) 0.39
Use of immunosuppressants, n (%) 7 (46.7) 10 (45.5) 0.94
Azathioprine, n (%) 7 (46.7) 8 (36.4)
Mercaptopurine, n (%) 0 (0) 1 (4.55)
Methotrexate, n (%) 0 (0) 1 (4.55)

Disease location, n (%) 0.33
L1 1 (7) 2 (9)
L2 2 (13) 3 (14)
L2, L4a 1 (7) 4 (18)
L2, L4a, L4b 1 (7) 1 (5)
L3 3 (20) 3 (14)
L3, L4a 0 (0) 7 (32)
L3, L4b 1 (7) 0 (0)
L3, L4a, L4b 6 (40) 2 (9)

Perianal involvement, n (%) 2 (13) 2 (9) 1.00
FCal post-EEN (μg/g) 133 (37, 244) 1047 (735, 1705) <0.001
wPCDAI post-EEN 0 (0, 7.5) 7.5 (0, 19.4) 0.07

Abbreviations: CRP, C-reactive protein; EEN, exclusive enteral nutrition; ESR, erythrocyte sedimentation rate; FCal, fecal calprotectin; L1, distal 1/3 ileal �
limited caecal disease; L2, colonic; L3, ileocolonic; L4a, upper disease proximal to Ligament of Treitz; L4b, upper disease distal to Ligament of Treitz and
proximal to distal 1/3 ileum; wPCDAI, weighted pediatric Crohn’s disease activity index.
1 Data are presented as median (IQR) or numbers. Chi-square tests were used for categorical variables, and Mann–Whitney U tests for numerical variables.
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Q3: 0.38); P ¼ 0.045] (Table 2). No other significant differences were
observed in macronutrient or food group intake between the 2 groups,
except for a marginally significant (P ¼ 0.09) higher fiber intake in
nonresponders (Table 2). An RF model, using the intakes of food
groups (portions/1000 kcal) and macronutrients (% of energy intake) as
input variables, yielded an accuracy of 67% with sensitivity of 55%,
specificity of 75%, positive predictive validity (PPV) of 60%, and
negative predictive validity (NPV) of 71%, (permutation test P ¼
0.006) to predict response (Figure 1). The foods that contributed the
most to the model were confectionery, which were higher in re-
sponders, and fruit, starch, and fiber, which were all higher in
nonresponders.
Pretreatment diet-related bacterial metabolites in
responders and nonresponders

Pretreatment concentration (μmol/g) of fecal butyrate, measured
with GC, in responders was about half that of nonresponders, when
data expressed per dry [median (IQR), responders: 64.9 (Q1: 48.0, Q3:
86) compared with nonresponders: 112 (Q1: 65.7, Q3: 162); P ¼ 0.04]
or per wet fecal matter [median (IQR), responders: 13.0 (Q1: 7.79, Q3:
16.9) compared with nonresponders: 20.6 (Q1: 7.99, Q3: 30.5); P ¼
0.06] (Supplemental Table 2). This signal was not an artifact of dif-
ferences in microbial load (P ¼ 0.12), or fecal water content between
the 2 groups, as neither fecal water content (P ¼ 0.87) nor Bristol stool
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scale (P¼ 0.83) differed between the 2 groups (Supplemental Table 2).
A similar trend (P ¼ 0.09) was observed for acetate (Supplemental
Table 2). Fiber intake, from dietary analysis, correlated positively with
acetate (dry matter: rho ¼ 0.50; P ¼ 0.017 and wet matter: rho ¼ 0.52;
P ¼ 0.013) but not with propionate or butyrate. No significant differ-
ences were observed in feces between the 2 groups in pH, ammonia,
and free or total sulfide (Supplemental Table 2). An RF using diet-
related metabolites in feces failed to predict response to EEN (per-
mutation test P ¼ 0.144).
Pretreatment fecal 1H NMR metabolome in responders
and nonresponders

Twenty-nine metabolites from 1H NMR analysis were annotated
(Supplemental Table 3). No difference in global metabolome structure
was found (permutation ANOVA P ¼ 0.737; Supplemental Figure 2),
but significant differences were discovered for individual metabolites
and, in accordance with findings observed for the same metabolites
quantified with GC (Supplemental Table 2). Thus, the pretreatment
concentration of fecal butyrate (μmol/g) was significantly lower in
responders than nonresponders [median (IQR), responders: 13.2 (Q1:
8.63, Q3: 18.4) compared with nonresponders: 22.3 (Q1: 12.0, Q3:
32.0); P ¼ 0.03], and so was the case for the concentration of acetate
[median (IQR), responders: 49.9 (Q1: 46.4, Q3: 68.4) compared with
nonresponders: 70.4 (Q1: 57.0, Q3: 95.5); P ¼ 0.027], phenylacetate



TABLE 2
Pretreatment dietary intake in responders and nonresponders to treatment with exclusive enteral nutrition

Variables1 Responders (N ¼ 11) Nonresponders (N ¼ 16) P value

Energy and nutrient intake
Energy intake (kcal) 1322 (1213, 1658) 1525 (1365, 1712) 0.42
%EAR 66.0 (50.3, 84.6) 64.7 (52.9, 81.2) 0.86
Protein (g) 49.7 (42.7, 57.7) 53.5 (44.7, 65.9) 0.61
% energy from protein 13.8 (12.6, 16.2) 13.6 (12.8, 14.7) 0.67
Fat (g) 52.4 (46.4, 63.1) 55.3 (44.1, 58.0) 0.98
% energy from fat 34.6 (32.0, 35.7) 33.3 (30.0, 35.5) 0.36
Saturated fatty acids (g) 21.5 (18.7, 27.1) 22.0 (15.4, 25.9) 0.90
% energy from saturated fatty acids 14.5 (13.2, 16.0) 13.6 (12.4, 15.1) 0.15
Carbohydrates (g) 180 (156, 222) 215 (188, 258) 0.37
% energy from carbohydrates 54 (51.7, 55.9) 55.3 (53.2, 61.0) 0.23
Sugars (g) 77.1 (58.4, 96.2) 85.9 (66.1, 107) 0.68
% energy from sugars 24.9 (20.7, 26.7) 22.0 (20.6, 26.4) 0.61
Fiber (g) 8.7 (6.94, 10.1) 10.7 (8.76, 12.4) 0.13
Fiber/1000 kcal 6.37 (5.8, 6.78) 7.03 (6.18, 7.92) 0.09
Starch (g) 96 (85.5, 114.5) 113 (97.8, 142) 0.19
% energy from starch 27.8 (26.0, 29.3) 32.4 (26.1, 36.2) 0.16

Food groups (portions per day per 1000 kcal)
Breakfast cereals 0.823 (0.683, 1.189) 1.13 (0.356, 1.775) 0.35
Bread 0.994 (0.404, 1.381) 1.073 (0.517, 1.669) 0.68
Milk 0.85 (0.537, 1.341) 1.242 (0.637, 1.56) 0.51
Yogurt, cheese, and eggs 0.458 (0.278, 0.833) 0.342 (0.201, 0.579) 0.37

Meat 1.033 (0.883, 1.352) 0.822 (0.558, 1.369) 0.25
Fish 0.138 (0.081, 0.278) 0.215 (0.112, 0.353) 0.43
Potatoes, rice, and pasta 0.807 (0.631, 1.012) 0.885 (0.752, 1.129) 0.61
Savory dishes 1.05 (0.535, 1.147) 0.738 (0.497, 1.076) 0.65
Vegetables 0.486 (0.283, 0.955) 1.052 (0.312, 1.445) 0.27
Fruit 0.425 (0.334, 0.732) 0.768 (0.557, 1.07) 0.15
Juices and drinks 3.649 (2.407, 3.942) 2.446 (1.704, 4.218) 0.65
Jam, sugar, and spreads 0.137 (0, 0.428) 0.496 (0.046, 1.287) 0.16
Crisps, nuts, and savory snacks 0.496 (0.396, 0.696) 0.447 (0.281, 0.672) 0.61
Biscuits and cakes 1.216 (0.652, 1.366) 0.497 (0.3, 1.02) 0.11
Desserts 0.027 (0, 0.201) 0.028 (0, 0.109) 0.86
Confectionery and ice cream 0.55 (0.38, 0.72) 0.19 (0.01, 0.38) 0.045

Abbreviation: EAR, estimated average requirements.
1 Data are presented as median (IQR). Mann–Whitney U tests were used for statistical analysis.
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[median (IQR), responders: 0.175 (Q1: 0.013, Q3: 0.611) compared
with nonresponders: 0.943 (Q1: 0.438, Q3: 1.35); P¼ 0.021] and 3-(3-
hydroxyphenyl)propionic acid [median (IQR), responders: 0.013 (Q1:
0.013, Q3: 0.013) compared with nonresponders: 0.061 (Q1: 0.013,
Q3: 0.308); P ¼ 0.011] (Figure 2A–D). An RF model, using the levels
of all 1H NMR metabolites as input, produced an accuracy of 74% with
sensitivity of 73%, specificity of 74%, PPV of 69% and NPV of 78%
(permutation test P ¼ 0.02) to predict response to EEN. The most
influential metabolites in this model were butyrate followed by phe-
nylacetate and acetate with concentrations much higher in non-
responders (Figure 2E, F). Acetate correlated strongly with butyrate (r
¼ 0.72; P < 0.001) and both SCFAwith 3-(3-hydroxyphenyl)propionic
acid (acetate [r¼ 0.46; P¼ 0.007]; butyrate [r¼ 0.45; P¼ 0.008]). No
correlations were observed between these 3 metabolites with phenyl-
acetate, suggesting a dependent relationship between the 3 former
metabolites, but none between them and phenylacetate.

Pretreatment inflammation-related plasma proteome and
cytokines in responders and nonresponders

The absolute concentration of 19 inflammatory cytokines measured
with the multiplex assay did not differ between responders and non-
responders (Supplemental Table 4). There was no clustering of
inflammation-related proteome structure according to the EEN response
(permutation ANOVA P ¼ 0.737) (Supplemental Figure 3) and an RF
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using those 19 inflammatory cytokines did not predict EEN (permutation
test P ¼ 0.293). From the 92 inflammation-related proteomic markers
measured with the Olink technology, the concentration of NT-3 was
lower in responders [median (IQR), responders: 0.69 (Q1: 0.69, Q3:
0.69) compared with nonresponders: 1.49 (Q1: 0.69, Q3: 1.79); P ¼
0.03], whereas the concentration of CXCL6 was higher in responders
[median (IQR), responders: 11.1 (Q1: 10.5, Q3: 11.2) compared with
nonresponders: 10.5 (Q1: 10.3, Q3: 10.9); P ¼ 0.046] (Supplemental
Table 5). However, an RF generated with the 92 proteomic markers was
not predictive of response to EEN (permutation test P ¼ 0.473).

Pretreatment fecal microbiota in responders and
nonresponders

16S sequencing yielded a mean of 49,238 reads per sample (min-
imum: 10,039; maximum: 106,518; SD: 29,300). Microbiota Chao1
richness (α diversity) was higher in responders [median (IQR), re-
sponders: 315 (Q1: 269, Q3: 347) compared with nonresponders: 243
(Q1: 205, Q3: 297); P ¼ 0.015] (Figure 3A) but community compo-
sition (β diversity) did not differ significantly between the 2 groups
(Figure 3B, C). Of the 238 OTUs, 13 OTUs were differentially
abundant between groups (Figure 3D). RF analysis produced a model
with an accuracy of 79%, sensitivity of 73%, specificity of 84%, PPVof
79%, and NPV of 80% (permutation test P ¼ 0.001) to differentiate
between responders and nonresponders (Figure 3E, F). The most
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influential OTUs, which all had a higher abundance in nonresponders
than responders, were assigned to Bacteroides, Lachnospiraceae,
Ruminococcaceae, and Anaerococcus (Figure 3E).
Multicomponent prediction of responses to EEN
Last, a multicomponent RF model was generated by including the

entire study’s clinical parameters and omics datasets in the model,
except for SCFA measured with GC to avoid replication of the same
data measured with 1H NMR. The final model yielded an accuracy of
78%, sensitivity of 80%, specificity of 77%, PPVof 71%, and NPVof
85% (permutation test P ¼ 0.001) (Figure 4).

The most influential variables in this model were OTUs from
Lachnospiraceae, Ruminococcaceae, and Bacteroides, phenylacetate,
butyrate, and acetate, all of which were higher in nonresponders.
Conversely, OTUs from Acidaminococcus and Collinsella, which were
890
higher in responders, were the most influential variables of response to
EEN. The concentration of the 3 differential metabolites (that is,
butyrate, acetate, and phenylacetate) correlated significantly with the
relative abundances of several differential OTUs from the same model
and, most importantly, retained the direction of their effect in predicting
responses to EEN (Supplemental Figure 4).

Discussion

The present study found that pretreatment dietary, microbiota and
metabolomic gut signatures can predict with high accuracy 8 of the 10
patients who will show an FCal response to EEN; thus, closing the gap
routine clinical parameters were unable to fill. Pretreatment butyrate,
acetate, and phenylacetate concentrations were at higher levels in
nonresponders; almost double those of responders. These findings are
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counterintuitive, because butyrate is associated with anti-inflammatory
pathways in intestinal mucosa [26], and the levels of several
butyrate-producing species have been consistently reported to be
reduced in CD [27]. It is unlikely the increased pretreatment levels of
fecal acetate and butyrate in nonresponders stem from diminished
absorption because of more extensive inflammation in colonocytes, as
the same strength of association was not observed across all SCFA
measured and neither FCal levels nor wPCDAI differed between the 2
study groups. Previous research found a decrease in fecal butyrate
during EEN [14,15], but it remains unclear whether this is simply an
epiphenomenon of the lack of fiber in EEN feed composition [28], or if
891
it is causally involved in its mechanisms of action [29]. In a recent
study, fecal butyrate levels associated positively with higher FCal
levels during early food reintroduction post-EEN [30] and another
research group showed that unfermented β fructans exacerbated
inflammation in certain patients with active IBD [31]. This unexpected
positive relationship between fiber intake, SCFA production, at treat-
ment initiation, and colonic inflammation at completion of EEN re-
quires further investigation.

Phenylacetate was also a strong predictor of FCal responses to EEN,
both in single and multicomponent models. Phenylacetate is a catabolic
product of phenylalanine and other aromatic compounds which is
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further metabolized by selected species including Escherichia coli. Its
exact role in CD has not been described but it might comprise a
biomarker of metabolism of certain pathobionts, such as adherent and
invasive E. coli, which have been implicated extensively in the path-
ogenesis of CD [32]. The fact that only diet-related bacterial metabo-
lites and organisms which are major fiber fermenters in the gut
differentiated between responders and nonresponders, in the current
study, further underlines the importance of dietary factors in the
management of active CD and possibly its underlying etiology.
892
Patients with higher microbiota diversity in feces benefited the most
from EEN. Reduced bacterial richness is a consistent finding in fecal
and mucosal samples of patients with CD, compared with healthy
controls [27] and has been correlated with the extent of intestinal
inflammation, assessed using FCal, in pediatric CD [33]. In contrast, no
differences in α diversity metrics were observed between patients who
had a >50% decrease in FCal levels and others who did not, in another
study [34] suggesting that specific organisms may be more important
than crude metrics of community structure. Indeed, in multicomponent
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analysis using machine learning, the influence of microbiota richness in
predicting response to EEN became less important and certain bacterial
taxa became more important predictors.

Although microbial signals identified could have prognostic value
to screen patients whose gut inflammation will improve with EEN, and
therefore personalize treatment options, their role in the primary dis-
ease pathogenesis is difficult to decipher within the current study.
Randomized controlled trials can address such mechanistic questions
where FCal responses to EEN will be measured after dietary or phar-
macological manipulation of prognostic microbial species and metab-
olites identified in the present study, prior to EEN initiation. Based on
the findings of this present study a potential intervention might be a diet
low in precursors of phenylacetate production, such as a diet low in
phenylalanine or protein. Nonetheless, common species previously
associated with the pathogenesis of CD [27], such as Akkermansia
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muciniphila, E. coli, and Veillonella, were not identified as predictors
of EEN response in this study. It is also possible that we have observed
different subsets of patients with different underlying microbial origins
of CD, despite their similar immunity and disease phenotype. One
subset of patients in which disease is driven by E. coli pathobionts
which produce phenylacetate and in which EEN works by reducing
their abundance, and another subset of patients where disease is driven
by other butyrate-producing microbes such as Ruminococcaceae, for
which EEN works by depleting fiber substrate they require for growth.

The main limitations of the current study include small sample size
meaning that for some analyses statistical power may have been low,
particularly when the original study was designed to test different
primary outcomes, plus the lack of independent replication in larger
studies. The results of these studies may also be relevant only to the
local Scottish population of children with CD, treated for 8 wk with
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Modulen IBD. Hence, replication of the current findings in a cohort of
patients of different ethnic background and with use of other EEN feeds
may be required before generalization of study findings can be made.

Using a multiomics approach, we identified pretreatment microbial
species and diet-related metabolites associated with improvement in
colonic inflammation during EEN. Should these microbial signals be
replicated in independent multicenter research, this would open op-
portunities for personalized nutritional therapy in CD. Important diet-
related metabolites identified here can be measured quickly, non-
invasively, and can be further modified with dietary, pharmacological,
or other microbiome-modifying treatments prior to an EEN course.
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