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Abstract

We consider closed subschemes in the affine grassmannian obtained by degenerating
e-fold products of flag varieties, embedded via a tuple of dominant cocharacters.
For G = GL,, and cocharacters small relative to the characteristic, we relate the
cycles of these degenerations to the representation theory of G. We then show that
these degenerations smoothly model the geometry of (the special fibre of) low weight
crystalline subspaces inside the Emerton—Gee stack classifying p-adic representations
of the Galois group of a finite extension of Q,. As an application we prove new cases
of the Breuil-Mézard conjecture in dimension two.
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1 Introduction
Overview

Let K be a finite extension of (@, with residue field k and let &; denote the Emerton—
Gee stack classifying d-dimensional p-adic representations of G k. Inside Xy there
are closed substacks X ; " classifying potentially crystalline representations of type
(u, ), for u and 7 respectively Hodge and inertial types. When u is regular (i.e.
consists of distinct integers) these closed substacks have maximal dimension and the
Breuil-Mézard conjecture [4, 5, 7] predicts the existence of top dimensional cycles
C, in the special fibre X such that

[Xy 1= mO, 1, 1), (1.1)
A

where

e A runs over irreducible Fp-representations of GL4 (k).
e m(A, u, 7) denotes the multiplicity with which A appears in an explicit F-
representation V (u, t) of GL4(k) attached to i and t.

(there is also a version of the conjecture for substacks of potentially semistable rep-
resentations; the conjecture has the same shape but with altered V (u, t)). These
identities have been verified in only a small number of cases:

(1) When K = Q), and d = 2, using the p-adic Langlands correspondence. See [14,
18, 23, 25, 27].

(2) Whend = 2 and i = (1, 0), as consequence of certain modularity lifting theo-
rems. See [10].

(3) When K is unramified over Q,,, d is arbitrary, and both p and t are generic relative
to . See [21]. Again modularity lifting technique play an important role.

In this paper we construct Breuil-Mézard identities in a fourth setting: we are interested
in the two dimensional case where 7 = 1 (i.e. we consider only crystalline rather than
potentially crystalline representations) and u is bounded so that the representation
theory of GL, (k) in the conjecture behaves as it does in characteristic zero. We do
this by constructing analogous identities involving certain degenerations of products
of flag varieties embedded in the affine grassmannian, and then relating the geometry

. .1
of these degenerations to the geometry of the X', .
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Main result

First we describe a bound on the Hodge types considered above, which is natural in
the sense that the GL, (k)-representation theory appearing in the conjecture changes
markedly once the bound is passed. Recall that a Hodge type u consists of a d-tuple
of integers

Mk = (MK,I = 2 Mk,d)

for each embedding x : K — @p. If one assumes that

D Mkt —ea <e+p—1 (1.2)

Klk=Ko

for each embedding k¢ : kK — Fp then:

e V(u, 1) is a tensor product over the embeddings k of representations of highest
weight w, and the Jordan—Holder factors of this tensor product are computed in
characteristic p just as they are in characteristic zero, by Littlewood—Richardson
coefficients.

e Each Jordan—Holder factor A of V (i, 1) can be written as V (3:, 1) for some Hodge
type x uniquely determined up to an ordering of the embeddings « .

In particular, the cycles C; appearing in (1.1) for these small w are uniquely determined

by the conjectured identity for u = *; one has [Ei}] = C,.. Thus, the following theorem
establishes new cases of the conjecture:

Theorem 1.3 Assume thatd = 2, p > 2, u is regular, and that

Z il — Mied = P

Klk=kKo

for each embedding ko : k — Fp. Then
—u.1 —n1
[X5 1= mO, u, DIX; ] (14)
A

There are some comments to make before we discuss what goes into the proof.
Firstly, the theorem has two clear limitations: the assumption that d = 2 and the fact
that the bound on u is stronger than that in (1.2) (we have no expectation whatever
that the methods in this paper apply beyond (1.2)).

As we explain in more detail below, the proof of the theorem has two key inputs.

. . .l . . S
The first involves relating the &’ Z with certain local models we define inside the
affine grassmannian. This can be done without any restriction on d but our current
argument requires the stronger bound on . The second key input is a lower bound
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on the Breuil-Mézard identities which has been established when d = 2 using global
techniques from [10] (this is also where the assumption p > 2 appears).

Finally, taking = w shows that the cycle [72] is independent of the choice of
“lift” 1 of A. We also show that each of these cycles consists of a single irreducible
component.

Method

The proof of the theorem divides into three parts:

Part 1: local models in the affine grassmannian

The starting point of the proof is the construction of certain projective schemes whose
special fibres give upper bounds on the multiplicities appearing in Theorem 1.3. To
explain their construction we fix a sufficiently large extension E of Q,, with ring of
integers O and residue field IF, and consider a mixed characteristic version of the affine
grassmannian Grp over O whose special and generic fibres are given by

Gro Qo = 1_[ Gr ®0y ok Grp QpE = 1_[ Gr®o, .« E
ko:k—F kK:K—E

Here «o and « are embeddings and Gr is the affine grassmannian over Og whose A
points, for A a p-adically complete Og-algebra, classify rank d-projective A[[u]]-
modules satisfying

—7)Al[u]l € € C (u—m) Allu]]?

for some a € Z>p and m € K a fixed choice of uniformiser. For each dominant
cocharacter A of G = GL, there is a closed immersion of the flag variety G/ P, — Gr
(P, C G being the parabolic corresponding to A). This allows us to define, for any
Hodge type i = (i), an O-flat closed subscheme M, in Grp by taking the closure
in Grp of

[1(G/Pu ®04 .« E) = [[(Gr@o, «E) = Gro @0 E
K K

The following summarises the key results we prove regarding these M,,’s

Proposition 1.5 Assume that  is regular.

(D) If u satisfies (1.2) then there exist n(A, u) € 7Z such that in the group of
> dim G/ P, -dimensional cycles

(M, ®0 F1 =) n(h, WIM; @0 F]
A

W Birkhauser
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with the sum running those irreducible GL4(k)-representations for which the
Hodge type  also satisfies (1.2).

(2) Ifd = 2 then the M3 @ F appearing in (1) are irreducible, generically reduced,
and produce pairwise distinct cycles. In particular, n(\, ) > 0 in this case.

(3) If, for every X, one has n(A, ) > m(x, u, 1) where m(, , 1) denotes the mul-
tiplicity from the Breuil-Mézard conjecture, then n(A, u) = m(A, i, 1).

The first part is proved by constructing an explicit closed locus Grg C Grp defined
in terms of a differential operator V (this is a variant of locus considered in [21]). A
direct computation shows that if we bound the height according to (1.2) then the result-
ing closed subscheme of Gr% ®T consists of irreducible components of dimension
< dim M,,. Furthermore, those components with maximal dimension are labelled by
the A’s appearing in (1). One can also show that M,, ® o IF is contained in this closed
subscheme. From these observations we are able to prove (1).

Remark 1.6 Unfortunately, this explicit moduli interpretation is only a good topologi-
cal approximation of M, ®» IF; typically the components appear with much too high
multiplicity.

Part (2) is proved by constructing an explicit resolution of X — M5 with X smooth
and which is an isomorphism on the generic fibre. Unfortunately, we do not know how
to construct such resolutions when d > 2 (or whether they are likely to exist).

For part (3) we consider the restriction of the determinant line bundle on Grp to
M. Since the generic fibre of M, is a product of flag varieties it is easy to compute
that for

H(M, ®0 E, Laet) = Q) H (1) @k « E (1.7)

where H (1) denotes the algebraic representation of G over K of highest weight 1.
We point out that this tensor product differs from the V (i, 1) appearing in the Breuil—
Meézard conjecture in that V (u, 1) is obtained as the reduction modulo p of such a
tensor product, but in which p, isreplaced by u, —pforp = (d—1,d-2,...,1,0).
Nevertheless, these multiplicities are approximately the same, in the sense that if, in
the Grothendieck group of E-representations, one has

[@ H (1 — p) ®k E} =Y mO, w [@ HGuc = p) ®k E}
K A K

then, forn > 0,

dim (@ HO(npe) @k« E) -y m(., p)dim (@ H(nko) ®k . E)
K A K

equals the value at n of a polynomial of degree < dim M,,. Since the representations
(e HO(npe) ®og .« E can be obtained by replacing Lger With E&@e't’ in (1.7), the
identity of cycles in part (1) implies that

) Birkhauser
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dim (® H (n11e) @k .« E) — > n( p)dim (® H® (n}e) ®k E)

A

is also the value of a polynomial in # of degree < dim M, at least for n >> 0. Taking
the difference shows that

> (G ) = m(h, ) dim <® H®(nk) ®K E) (1.8)

A

is polynomail in n of degree < dim M, for n >> 0. For p satisfying (1.2) the
multiplicities m (A, u) computed in characteristic zero coincide with the m(X, u, 1)
computed in characteristic p. Thus, the assumptionin (3) is thatn(x, u)—m(x, u) > 0.
Each term in (1.8) is a polynomial in n of degree dim M, and positive leading term.
Therefore we must have n(A, u) = m(;, ).

Part 2: from local models to moduli of crystalline Galois representations

The second step is to relate the M,’s to the geometry of X,;. The basic strategy is to
study the geometry of &} via a resolution

Yo > Xy

with Y, a stack whose A-points classify Breuil-Kisin modules with A-coefficients (i.e.
projective (W (k) ®z,, A)[[u]]-modules equipped with a semilinear endomorphism ¢).
A local version of this construction was first made in [19] (with X replaced by Spec
of a deformation ring) and its globalisation to stacks first appeared in [24], before
being built upon in [7].

Inour case, we take Y as the stack classifying pairs (01, o) with 9T arank d Breuil-
Kisin module and o a ¢-equivariant action of Gx on 9 @w )([.]] Ainf Satisfying a
“crystalline” condition (which means that o — 1 is sufficiently divisible). Inside Yy
there are Z,-flat closed substacks Y/ whose O-valued points correspond to Breuil-
Kisin modules associated to crystalline representations of Hodge type p whenever
O is the ring of integers in a finite extension of Q,. Then X;’l is, by definition, the
scheme theoretic image of the morphism Yg’f — Xy

To relate Yy to the affine grassmannian we use the following diagram:

Y, <7 % Gro (1.9)

Here ?d classifies Breuil-Kisin modules in Y, together with a choice of basis (to stay
in the world of finite type stacks this basis is taken modulo u” for N >> 0) and,
using this choice of basis, the morphism W takes a Breuil-Kisin module 97 to the
relative position of 21 and its image of Frobenius. The morphism I" forgets this choice
of basis. The key result we prove is then

W Birkhauser
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Proposition 1.10 (1) If pu satisfies the bound from Theorem 1.3 then the restriction
of Yd — Grp to Y“ Qo F (for Y“ the preimage of Yd in Yd)factors through
M_yop @0 F for wy € W the longest element.

(2) For such u, the morphism ?d — Grp is smooth over M, ® o F with irreducible
fibres of dimension equal the relative dimension of ?d — Y.

To prove (1) it suffices to show this factorisation for A-points for every finite F-
algebra A. For simplicity, we sketch the argument only in the case where A = FF. The
general case requires only minor technical changes. We also assume k = ), as this
greatly simplifies the notation. If e = 1 then M,, = G/ P, is just a single ﬂag variety

and the claimed factorisation comes down to showing that for any M e Yf ’1(2) and
any basis B the module 901 is generated by

u M

9(B)g

uHd

for some g € GL,(A). This follows from results in [11] where it is shown, for any lift
of MtoM € Y(]’ZL(A), with A the ring of integers in a finite extension of E, and any
basis g8 that (1 — 7 )P9N is generated by

(M — n)p7/1«1
v(B)g + Xerr
(u— n-)Pflh]

for a matrix X, divisible by a power of P ~#1F#d +1 and g€GLs(A).Herer € K
is a fixed uniformiser. This result does not directly extend to the case e > 1. However,
a variant of the method is able to show that, for each embedding ¥ : K — E, the
module 91¥ N (u — x (7v))PIN can be generated by

(u — K(T[))pfﬂk.l

©(B)gk + Xerr,«
(4 — K ()Pt

for some g, € GL4(A) and Xerr, a matrix divisible by 7 ?~H«1+#dt1 This was
done in [12] (actually they only consider the case d = 2 but it is straightforward to
extend their arguments to higher dimensions). If the X s are divisible by a high
enough power of & then it follows that

[T —kG)Pom =) (M N @ — k() Pm)

) Birkhauser
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is congruent modulo 7 to the intersection of the submodules generated by

(u — k()P Het

0(B) g«

‘ (Lt — K(ﬂ))ﬁ_llk,d

This sufficient divisibility is ensured by the bound on p from Theorem 1.3 and this con-
gruence is precisely what it means of 91 to be mapped onto an element of M —wou ®0F
by W.

For the proof of (2) we factor the morphism W as ?d — ZI — Grp where
Z4 denotes the moduli stack of Breuil-Kisin modules (without a crystalline Galois
action) and Yy —>~2d forgets the Galois action. An easy calculation shows that over
the special fibre Zg — Gre is smooth with irreducible fibres of dimension equal
the relative dimension of Y; — Y. Part (2) therefore reduces to understanding when
?d — Zi is an isomorphism. To address this we note that for any Breuil-Kisin module
M with basis B we can define a naive Galois action oypaive,g on 9 by semilinearly
extending the trivial G g-action on ¢(f). Usually opaive,s Will not be g-equivariant
or crystalline. However, we show that if oyaive,g — 1 is suitably divisible and if 90t
satisfies height conditions imposed by (1.2) (actually a very slight strengthening of
this bound is required to avoid certain “Steinberg” situations) then

p n —n
lim,— o0 " o Onaive,p © @

converges to a unique @-equivariant crystalline G g -action. It turns out that the locus of
Zl on which opaive, g — 1 is sufficiently divisible is closed, and obtained as the preimage
of a closed subscheme in Grg. Part (2) is then proved by showing that M, ® F is
contained in this closed subscheme.

Part 3: upper and lower multiplicity bounds

The final ingredient which goes into the proof of Theorem 1.3 is a lower bound on the
multiplicities appearing in the Breuil-Mézard conjecture. The is the most critical place
where we require d = 2. It is also where we use that p > 2. Under these assumptions
it is shown in [7, 8.6] (using global automorphy lifting techniques from [10]) that one
always has

(51> ) mh, 1, TG
A

This holds without any assumption on w or t. Combining [10] with the potential

diagaonalisability established in [1] one also obtains that C; = [?g'l] so long as A
is not Steinberg (for d = 2 this means A is not a twist of @), ., r Sym?~! F2). The
bounds on p ensure Steinberg A do not appear in Theorem 1.3 (except if K/Q),, is
unramified, but in this case the theorem is trivial). Therefore, for  as in Theorem 1.3,

W Birkhauser
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we have

X512 Y mGh, . DA
A

To finish the proof we have to show that the results from parts 1. and 2. can be combined
to give equality.

First we consider the identity [M, ® F] = Zx n(x, w)[Mz ®» IF] from Proposi-
tion 1.5. Applying an involution of Gr which sends a lattice onto its dual allows us
to replace u and each 7 in this identity with —wou and —woA. Thus

My @0 F1 =Y n(h, WIM_, 5 ®0 F]
A

Part (2) of Proposition 1.10 ensures 172 — Gr is smooth over the closed subschemes
appearing in this identity of cycles. This allows us to pull the identity back to Y, to
obtain

(73 "8 = 3 n oty
A

where Y2” Mg equals the preimage of M_,,,,, ® o F under this map. Part (1) of Propo-

sition 1.10 (together with a dimension comparison) implies [?ff ®Ro F] < [YZM ’ﬂag].
Using part (2) of Proposition 1.5 we are even able to deduce this is an equality when
i = A. Therefore

[P @0 Fl < Y nh. w73 ®0 F
A

Since 7d — Y4 is smooth and surjective it follows that also

) @0 Fl1 < Y n(h, wI¥3 ®0 Fl
A

Pushing this identity forward along the proper morphism ¥, — A’ gives an inequality

[Tg] <>, nQ, u)[fé]. Combining this with the lower bound we obtain n(X, 1) >
m(A, u, 1). By part (3) of Proposition 1.5 this must be an equality, which proves
Theorem 1.3. Actually, in the paper we follow the same argument, but for the final
step we prefer to work with deformation rings rather than X'». This allows us to avoid
dealing with stacks. As explained in [7, 8.3], Theorem 1.3 is implied by its analogue
in the setting of deformation rings.

) Birkhauser
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2 Notation

2.1 We fix a finite extension K of Q, with residue field k of degree f over I, and
ramification degree e. Let C denote the completed algebraic closure of K, with ring of
integers O¢, and fix a compatible system 77 '/7~ of p-th power roots of a fixed choice
of uniformiser 7 € K in O¢. Set Koo = K (r'/77). Write E(u) € W (k)[u] for the
minimal polynomial of . Thus E () is Eisenstein of degree equal to the ramification
degree e of K over Q,.

We also fix another finite extension E of Q, with ring of integers O and residue
field F. We assume that E contains a Galois closure of K. We typically use « and
ko respectively to denote embeddings K — E and k — F. For each k¢ we fix an
embedding <) : K — E with £9|x = «o.

2.2 For any Zp-algebra A we write G4 = (W (k) ®7z, A)[[u]]. This comes equipped
with the A-linear endomorphism ¢ which on W (k) acts as the lift of the p-th power
map on k and sends u — uP. We also consider

Aint,4 = limLm(W (Oc)/ p* @z, A)/u'
a i

where Ocs = lim _ Oc/pandu = [Gr, x"/?, 27", )] € W(Oc). We view
Aint. 4 as an G 4-algebra via u. Note that the lift of Frobenius on W(O») induces a
Frobenius ¢ on Ajnr, 4 which is compatible with that on & 4. The natural G g -action
on O¢ also induces a continuous (for the (u, p)-adic topology) G g -action on Ainf, 4
commuting with ¢. Write

W(C") 4 = lim Aing 4l 1/ P
a

If A is topologically of finite type (i.e. A ®z, F), is of finite type) then S4 — Ainf, 4
is faithfully flat (in particular injective) [7, 2.2.13].

We also fix a compatible system (1, €1, €, . ..) of p-th power roots of unity in O¢
which we view as an element € € O». We write u = [€] — 1 € Ajnf a-
Lemma 2.3 Let © : Ajps — Oc denote the surjection given by " p'x; > Y pixi(o)
with x; = [(xi(J))jzl] and extend this to a surjection Ajnt 0 — O ®z, Oc. Then

nAing,0 = {x € Aint,0 | O(¢" (x)) = 0 for all n > 0}

Proof By choosing a Z,-basis of O this follows immediately from the assertion that
UAint = {x € Ains | ©(¢"(x)) = 0 for all n > 0} which is [8, 5.1.3]. m]

2.4 We frequently consider modules as in 2.2 defined over O ®z, W (k) for an O-
algebra A. Using the isomorphism

O ®z, W(k) = 1_[ (3= l_[ O Qwky,co W (k)

ko:k—TF Ko

W Birkhauser
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given by a ® b — (ako(b)),, (here we write ko to its extension to an embedding
W (k) — O) we see that any such module M can be expressed as a product

M =]]M,
Ko

where M, can be identifies with the submodule of M on which the two actions of
W (k) given by (1 ® a)ym and a +— (ko(a) ® 1)m coincide. Similarly, there is an
isomorphism

E ®z, Ok — ]‘[ E = ]‘[ E ®0y « Ok (2.5)
kK:K—FE K

givenby a ® b = (k(b)a), which allows us to write an E ®z,, Og-module M as
M = ]_[ M,
K

where again M, can be identified with the submodule consisting of m € M with
(1 ®aym = (k(a) ® 1)m for all a € Og. We warn the reader that the idempotents
in (2.5) will not be contained in O ®z, Ok whenever K/Q), is ramifies and so
the product decomposition M = [], M, is not valid integrally, i.e. when M is an
0O ®z, Og-module.

2.6 Applying the previous discussion to (A ®z » W (k))[u] allows us to write

(A®z, Wk)[ul =] [ Alu]
Ko

Using this identification we define E, (u) € (A ®z, W (k))[u] for every embedding
k : K — E as the element corresponding to

(. lLu—me 1. 1) e [Alul
Ko

where 7, := k() and the u — m, appears in the « |¢-th factor in the product. Notice
that E(u) = [, E«(u) inside (A ®z, W(k))[u].

3 Cycles
3.1 For a Noetherian scheme X let Z,,(X) denote the free abelian group generated

by integral closed subschemes Z C X of dimension m. If F is a coherent sheaf on X
with support of dimension < m then we define

[F] = X:lengthoxE (Fe)lZ]l € Zy(X)
z

) Birkhauser
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for & € Z the generic point. If i : ¥ — X is a closed immersion write [Y] = [i,Oy].
Any flat morphism f : X — Y of relative dimension d produces a homomorphism
f* 1 Zn(Y) = Zyyra(X) with f*[F] = [f*F]. See [26, 02RE]. If instead f is
proper then there is a pushforward homomorphism f, : Z,(X) — Z,(Y) with
f+«[F] = [f+F]. See [26, 02R6].

Lemma 3.2 Let X be a projective scheme over k equipped with an ample line bundle
L. Suppose that Y, Y1, ..., Yy are m-dimensional closed subschemes in X and that

[Y]=) nil¥i] € Zn(X)
Then
dim HO(y, £®") — Z n; diim HO(Y;, £®™)
is, for large n, the value at n of a polynomial of degree < m.

Proof This follows from [26, OBEN] and the fact that, since £ is ample, the higher
cohomologies of £®" vanish for n >> 0 [26, 0B5U]. O

Lemma 3.3 Suppose that f : X — Y is a proper morphism between equidimensional
Sflat O-schemes which becomes an isomorphism after applying @ o E. Suppose Zx C
X, Zy C Y are O-flat top dimensional closed subschemes for which f restricts to an
isomorphism

f:ZxQ0E = Zy ®0p E

Then f«Zx @0 F] =[Zy ®0 FI.

Proof Let A,,(X) denote the quotient of Z,,(X) by rational equivalence. Since X is
O-flat there is a specialisation homomorphism

ox : An(X ®0 E) - Au(X ®o )
withox([Zx ®p E]) = [Zx ®o F] whenever Zx C X is a closed O-flat subscheme
of relative dimension m. Furthermore ox commutes with proper pushforward. All this
is explained in [9, 20.3].

If m = dim X then A,,(X) = Z,(X) by [9, 1.3.2]. Therefore, the two stated
properties of the specialisation map give

fx[Zx ®0 Fl = fiox((Zx ®o E]) = oy (f«[Zx ®0o E])
=oy([Zy Qo E]) =[Zy Q0 F]

in Zgmregor(Y ®o F). a

W Birkhauser
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4 Local models

4.1 We begin by defining an ind-scheme Gr over O whose A-points classify rank
d-projective A[u]-modules satisfying

w—m) Al c & [ —m)~ Afu)? 4.2)

for some a > 0. For each g : kK — [F, which we extend to an embedding W (k) —
O, we also define Gr,, as the ind-scheme over O whose A-points classify rank d-
projective A[u]-modules satisfying

ko(E@)? Alu)? € € c [ xo(E@) ™ Alul

for some a > 0.

Note that, for each ¥ : K — E, we can view an A-valued point of Gr ® 0, ,O
as a rank d projective A[u]-module satisfying (v — K(n))“A[u]d cé&C (u-
/c(n))’“A[u]d for some a > 0. Therefore, if k| = ko then there is a natural closed
embedding

Gr®og «O — Gry,

Remark 4.3 Recall that an A[u]-submodule as in (4.2) is A[u]-projective of rank d
if and only if (u — )" A[u]?/E€ is A-projective. In particular, this illustrates the
ind-representability of the functor; the locus of £ as in (4.2) identifies with a closed
subscheme of the usual grassmannian classifying submodules of (u —m) ™% A [u}d /(u—
) Alul?.

4.4 Write X (T) for the group of characters of GL, relative to T, the diagonal torus,
and identify X(T) = 74 as usual. We say an element © = (uy, ..., uq) € X(T)
is dominant if u; > p;41 and for any such dominant p we write £, € Grg for the
Ok -point generated by

(u—m)M

(61, e, ed)
(u — n)ﬂd

for (e, . . ., eg) the standard basis in O [1]?. There is an obvious action of G = GLy
on Gr and, since the stabiliser of £, under this action is a parabolic subgroup P, C G,
the orbit map induces a proper monomorphism

G/P, — Gr

i.e. a closed immersion. Notice that if @; > w;41 then P, is the opposite Borel of
lower triangular matrices.
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An alternative description of G/ P, — Gr can be given after interpreting A-points
of G/ P, as filtrations

. CFRI'''cFRI" cFI" ...

of type 1 on A? (which means the n-th graded piece is A-projective of rank equal to
the multiplicity of —r in w). Then on A-points the closed immersion G/ P, — Gr is
given by

Fil* — Z (u — ) Alu) Fil™*

i>pg
where we view A9 as a submodule of A[«]? in the obvious way.

Lemma 4.5 If A is a p-adically complete O-algebra then Gr identifies with the set of
rank d projective A[[u]]l-modules satisfying

(u —m)*Allull C € C (u — ) “Alful]

for some a > 0. Similarly, for each Gry,.
Proof This follows from the Beauville-Laszlo gluing lemma [3]. O

Lemma 4.6 For each kg : k — T there is an isomorphism

Gr, ®E — 1_[ (Gr®@K,KE)

K lk=Ko
with inverse given by (E,) mK|k:KO E.

Proof Let U C Ak denote the open obtained by inverting «o(E (1)) and write U, C
A}L‘ for the open obtained by inverting (u — «’ (7)) for each ' # « with «’| = k.
Then U = (| U, and if A is an E-algebra then the U, form an open cover of Al,.

Note that an A-valued point of Gr,, is the same thing as a rank d vector bundle on
Ak which is trivial over U while an A-valued point of Gr ®,. O is likewise vector
bundle trivial over (U, Us.

The map in the lemma can therefore be expressed as £ — (&) where & is the
vector bundle obtained by glueing £|y, with the trivial bundle on |, 2 Ui The
inverse of this map sends (£,) onto the vector bundle obtained by glueing the & |y, .
Concretely, this glueing corresponds to taking the intersection of each of the &,’s
which gives the lemma. O

4.7 We define one last ind-scheme Gr whose A-points now classify rank d projective
(A ®z, W(k))[u]-modules satisfying

E@)“(A®z, Wk)ul? C € C Ew) (A ®z, W(k))[u]’
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for some a > 0. From 2.4 we see that

Grp = 1_[ Gry,
Ko

Lemma 4.6 implies that the generic fibre of Gro identifies with [, (Gr ® o, « E) with
the product running over all embeddings « : K — E. Note also that the analogue
of Lemma 4.5 applies to Grp and identifies its points valued in p-adically complete
O-algebras A with rank d projective & 4-modules satisfying

Ew)“&% c&C E)™64

Definition 4.8 Let u = (i) be aHodge type, i.e. a collection of dominant u, € X(7T')
indexed by embeddings k : K — E. Then we define M, as the closure in Gry of

[1(G/Pu. ®0x .k E) = [ (Gr®0, < E) = Gro @0 E
K K

Lemma 4.9 Let 1 be a Hodge type and suppose n, > 0 so that juc q > —n, for every
K.

(1) Let A be an E-algebra. Then & € Grp(A) is contained in M, if and only if there
are filtrations Filg on A of type i, so that

(]"[ E, (u)"~) = Y. Ecw™(A®z, Whk)uIF'

K 0> e g+

(recall the elements E(u) from 2.4).
(2) Let A be a Noetherian O-algebra and suppose there are A-submodules

... CHELEM cFlL cFl ... caA?

for each « such that Filf( / Filf(+1 becomes A[%]-projective of constant rank after
inverting p. If £ € Gr(A), when viewed as an S g-module, can be expressed as

(]_[ EK(u)”K) E=| D, Ecw)tS,Fil’

> We.d+nic

then €& € M, (A) for u the type ofFil,([%]'.
(3) If A is the ring of integers in a finite extension of E then every A-valued point of
M, isasin(2).

Proof Note that multiplication by ([, Ec(u)"*) identifies M, with M, for ) =
Ui + (n,). Thus we can assume n, = 0 throughout.
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For (1) we first decompose € = [], &, € [],, Gry, according to the action of
W (k). Then Lemma 4.6 and the description of G/ P, — Grfrom4.4implies £ € M,
if and only if, for each kg,

Eo= () | D @—r@) AlulFil"

Kiclg=kg \I=Ad

for filtrations Fil?, on A9 of type (.. Since A4 > 0 we have &, C A[u]? for each Ko
and so

E=| AWl x - x Al x &,  xAul’ x ... x Alu}!
%o ——

ko-th position

Thus, to prove (1) we just need to identify the kp-th term inside this intersection with
Neey e (Ziz iy Ec@) (A @z, W) ] Fil, ) This is clear since Ej (i) corre-
spondsto(1,..., 1, (u—«(r)), 1, ..., 1) under the identification (O®ZP Wk)[u]l =

]_[K0 Alul.
For part (2) we use that A is Noetherian to ensure (A ®z, W (k))[u] — &4 is flat.
Thus ® Ay, wk)[u1S4 commutes with finite intersections and so

E=| X Ecw)*™(A®z, WE)UIFil | | ®uass, winna Sa

K i>he,d

As a consequence of (1) it follows that E[%] € M, andso £ € M,, also.

Part (3) relies on the fact that, for A as in the proposition, being A-projective
is equivalent to being p-torsion free and finitely generated. Applying (1) to £ [%]
produces filtrations on A[%]d for each k. If Filf( denotes the intersection of this
filtration with A¢ then the graded pieces are p-torsionfree. This is equivalent

to asking that each &9/ (Ziz;LKd Eij(u) " & 4 Fil ) is p-torsionfree. Therefore

&4 /N, (Zizm,d Eij(u) TS 4 Fil;i) is also p-torsionfree, and so

&= . Ejw™e,Fi’
K izﬂ)(,d

is & 4-projective and £ € Grp. Since &’ [%] = &[] the valuative criterion for

1
P
properness implies £ = £. O
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5 Cohomology

5.1 Recall G = GL,; viewed as an algebraic group over Og. Let A € X(T) be
dominant and set

... CFiI"" CFil" CFil"™' C...Cc 0% p,
equal to the universal filtration on G/ P, of type A. Then

L) = ®det(Fﬂ—” J Fil =+ 1y®n

is a G-equivariant line bundle on G/ Py and H(G/P;, L(»)®") can be viewed as an
algebraic representation of G on a flat O -module.

Lemma5.2 IfA = (A1,...,Aq) € X(T) is such that A; > Ajy1 and n > 1 then
H(na) := HY(G/ Py, LO)®") ®0, K

is the unique irreducible algebraic representation of G over K with highest weight
n.

Proof Tt follows from [15, 1.5.12] that
H(G/Py, LO®") ®0 K =TndF, (s(n))

where A, (n) is the character through which T acts on the fibre of £(A) over the class
of 1 in G/P,. Since A; > A;4+1 we have P, = B~ the opposite Borel consisting of
lower triangular matrices and the class of 1 in G/B™ is the standard filtration of type
A, 1.e. the filtration with

Fil™ /Rl ™! = Ae; @ ...... Aeg/Aei 1 @ - @ Aey

As the fibre of £()) over this standard filtration is

d
Q) det(Fil ™ / Fil i +)@nhi
i=1

we see that T acts on this fibre via the character diag(ai, ..., aq) — ]_[a:“\" . The
representation Indg, (A4 (n)) therefore has highest weight nA by [15, 11.2.2] and is
irreducible in characteristic zero by [15, I1.5.6]. O

5.3 On Gr there is an ample G-equivariant line bundle L4 Whose fibre over any
A-valued point £ € Gr(A) with & C (u — JT)_aGi for a > 0 is given by

det(£0/€) ® det(Ey/Aul?) ™!
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for any & € Gr with &, Alul? c &. Note this is G-equivariantly independent of &.
We also write Lge¢ for the G-equivariant ample line bundle constructed analogously
on Grp.

Lemma 5.4 The restriction of Lget to G/ Py, inside Gr identifies G-equivariantly with
L(A).

Proof Suppose £ € Grg corresponds to an A-valued point in the image of G/P, —
Grg.Then & = Zizxd (u — )" Alu] Fil™* for a filtration Fil*® of type A on A4 and so,
as A-modules, (u — n))‘dA[u]/E = @izkd Ad/ Fil~ . Thus,

det (u — m)™ A[u] /) = (R) det(Fil ' / Fil i+1)8(—)

i>Ag

and so the fibre of Lge; over £ equals

Qizs, det(Fil™" /Fil = D040 @ det((A[u]? /(u — m)* A[u]?))  if g =0
)iz, det(Fil™" /Fil 7+ H®0=44) @ det(((u — AWM/ Alul) " ifag <0

In either case, the second factor in these tensor products can be identified with
®i2)\d det(Fil~" / Fil~i*1)* which finishes the proof. O

Corollary 5.5 For any n > 0, there is an identification

HY(M,, ®0 E, LE) = Q)(H (nj1) @k .« E)
K

of G-representations.

Proof Let p. : M,, @ E — G/P,, ®0.« E be the k-th projection. Then the
restriction of Lger on Gro to My, @ E coincides with Q). pi(Laet ® 0y « E) Where
Lder here denotes the restriction to G/ P, of the determinant line bundle on Gr. The
Kunneth formula [26, 0BED] gives

H(M, ®0 E. LE) = Q) H)(G/ Py, LI @0y« E
K

as G-representations. Therefore, we just have to show H%(G/ Py, E?:{ ) ®o, K =

HO(nu,) as G-representations, and this follows from Lemma 5.4. O

6 Multiplicity bounds

6.1 The formal character of an algebraic representation V of G on a finite dimensional
vector space is defined as

ch(V) = Z Vie(L) € ZIX(T)]
A
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where V) is the A-weight space of V and e(A) denotes A viewed as an element of the
group ring Z[ X (T)]. This induces an isomorphism between the Grothendieck group
of such representations and Z[X (T)1¥ where W denotes the Weyl group of G [15,
11.5.7].

6.2 For . € X(T) dominant recall the G-representation H 0(x) over K from 5.1.
Weyl’s character formula gives

AL+ p)

ch(H°(W) = O

pi=(d—1,d—2,...,1,0) € X(T)

where A(X) = ZweW det(w)e(wi) [15, 11.5.10]. If we write dim : Z[X(T)] — Z
for the map ), ae(L) — Y _ a; then one also has
Aj— A +i—J

dim ch(H°(2) = dim ) = [ | T

i>j

Though here H%(1) is defined over a field of characteristic zero, all the above goes
through with H(1) replaced by the representation over a field of characteristic p of
highest weight A. What differs in characteristic p is that this highest weight represen-
tation may not be irreducible.

Lemma 6.3 Let w1, ..., e € X(T) with u; — p dominant for each i and suppose
that

ch <® HO(ui — p)) = Y mO,uwchH'M)
i=l 2€X(T)
form(\, ) € Z. Then
dim <® HO(”Mi)) - Z m(h, w)dim Ho(n(x + p)) ch (Ho(np)éb(efl))
i=1 reX(T)

is a polynomial in n of degree <y, dim G/ Py,.

Proof Using Weyl’s character formula from 6.2 and multiplying by A(p)¢ gives
[ AGui) = >, mr, AR+ 0)A(p)¢~!. Taking the image of this identity under
the endomorphism of Z[ X (T)] induced by multiplication by n on X (T') gives

[TAGR) =D mG. ) A@G A+ p)Awmp)"
i A

(because the formation of A commutes with this endomorphism). Dividing by A(p)¢
then gives

e—1
[Teh(H 0 = p)) = 3" mGu, ) eh(HO@ G + p) = p) (ch(H (o — p)))
i A
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The lemma therefore follows by considering dimensions and observing that the dif-
ference dim H°(nx) — dim H°(nx — p) is a polynomial in n of degree < dim G/ P;,
for any dominant A € X (T') (use the last equation from 6.2). O

Remark 6.4 Since K has characteristic zero each H%()) is irreducible. Moreover, every
irreducible G-representation is isomorphic to one such H(1). The observation from
6.2 that ch induces an identification between Z[ X (T")] and the Grothendieck group of
G-representations shows that the integers m (X, ) in the previous lemma are > 0 and
are uniquely determined.

Notation 6.5 Recall the fixed elements Ko : K — E lifting the ¢ from 2.1. Then, for

any tuple A = (Ay))«y:k—F Of dominant A, € X(T') write = (x,{) for the Hodge
type defined by

’X . )\'KO + 1Y lfK = %0
“T P otherwise

Proposition 6.6 Let (1 be a Hodge type with . — p dominant for every ik and suppose
that

(M, ®0 F1 =) n(h, W)[M; ®0 F]

for integers

nO 1) = [ [ mOugs (ticet=eo)

Ko
Then this inequality is an equality for each A.

Proof We apply Lemma 3.2 to the line bundle Lge. This gives that

dim HO(M . L) = Y n(, w) dim HO(M3, L3
A

is, for large n, equal the value at n of a polynomial of degree < ), dim G /P, . Since
M, is O-flat the same is true of the coherent sheaf £5. It therefore follows that the
Euler characteristic of L5 on M, equals the Euler characteristic of Loy on M, ®¢ E
(see for example [20, 5.3.28]). Since Lge; is ample we conclude that

dimp H'(M ,, £3") = dimg HO(M, ®0 E, L")

det det

for sufficiently large n. Therefore, Corollary 5.5 shows that

[Tdim(H 0 = 3 06w [T (dimH 00, + p))) dim(Hp)) ")

A=Chey) 0
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is also, for large n, equal the value at n of a polynomial of degree < ), dimG/P,, .
Set mj, = ]_[KO m(Aiys (Ui )xp=ko)- Lemma 6.3 gives that

[Tdim(H 00y = 3 ms [T (dim(HO a0y, + p))) dim(Hp))* ")

A=Gug) KO

is a polynomial of degree < >, dim G/ Py, in n. We conclude that the dimension of

> @G ) = mG ) [T (dim(H (1 + p))) dim(H(mp)) ")

3=(hg) ko

is also polynomial of degree < ) dim G/P,, inn forn >> 0. Since n(x, u) —
m(A, p) > 0,each termin the above sumis a polynomialinn of degree ) ", dim G/P,,,
with non-negative leading term. We must therefore have n(A, u) = m(A, n) for each
A. O

7 Topological descriptions
7.1 Recall that for A, A" € X(T) we write
X<
if hg +--- 4+ 21 <A, +---+ A for each i with equality when i = 1.

Proposition 7.2 Let i be a Hodge type with ., — p dominant for each k. Assume that

Z Mkl — Mk,d <e+p-—1
Klk=Ko
for each ko : k — T. Then:
(1) There are integers n(A, u) € Z such that

My ®0 F1 =) n(h, WMz ®0 F]
A

with the sum running over tuples A = (A,) with each A, € X(T) dominant and
satisfying A, < ZK‘FKO (e — P) and & defined as in Notation 6.5.

(2) If d = 2 then each M3 ®@ T appearing in this sum is irreducible, generically
reduced, and pairwise distinct.

In particular, when d = 2 part (2) implies that the n(A, ) in part (1) are > Q.

7.3 To prove the proposition we will approximate M, ®¢ F via explicit moduli
conditions. In fact we give two such moduli interpretations, based on the following
two operators:
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e For any O-algebra A set

d 1 1

We also write V for the coordinate-wise extension to & A[ﬁ
e If A is a p-adically complete O-algebra of topologically finite type then for each
o € Gk we can also define

o—1d 1 1
Vo = CAinf Al — | = Ainf,a | —
0 0 M

Note that this is well defined because o (1) and  generate the same ideal in Ajq¢
(as follows from e.g. Lemma 2.3). Again write V,, also for the coordinate-wise
extension to Ainf,A[ﬁ]d.

]d

The advantage of V is that it is easier to compute with. The advantage of V, is that it
is more directly related to Galois representations.

Lemma 7.4 There exist closed subfunctors Grg", Grg C Grp such that

(1) € € GrY(A) if and only if

EWV(E) C uE

as submodules of GA[E(IM) 14.

(2) Whenever A is a p-adically complete O-algebra of topologically finite type then
£ € GrVo (A) if and only if
Eu)Ve () Cuf s, Ainf,A

as submodules OfAinf’A[llL]d foreveryo € Gg.

Remark 7.5 Since E (1) and w*llt(u) generate the same ideal in Ajy¢ the condition defin-

ing Gr(vg‘I can also be expressed as

(@ = 1) Cup™ (WE @s, Aint.a
This description may be more familiar from the point of view of crystalline Breuil—
Kisin modules.
Proof That Gr(v9 is a closed subfunctor is clear, so we focus on Grg“. First, suppose

that A is any Noetherian O/ p”"-algebra, for some n > 1, and that £ € Grp(A). An
application of [7, B.29] shows that the condition

Eu)Vs(E) Cul ®s, Ainf.a (7.6)
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is closed in Spec A. More precisely, we specialise the general setting of [7, B.11]
to R = W(k)/p", Ct = Aps/p", and u equal to ug~' () € CT. Then, for each
m € & and each 0 € Gk, apply [7, B.29] with M = € Qg M(D_I(M)AinfyA and
x = (0 — 1)(m) € M. This implies that the condition

(0 — D)(m) € up™ ' (WE ®s, Aint.a

is closed in Spec A. Taking the intersection of the resulting ideals as m runs over all
elements of £ and considering Remark 7.5 shows (7.6) is closed in Spec A.

Since Grp is of ind-finite type over Spec O the previous paragraph shows that
for each n > 1 there exists closed ind-subschemes Grg"n C Grpo @O/ p" which
are compatible with the closed immersions Grp ®O/p" — Gro @ O/p"~!.
Since Grz)"’1 is proper over O/p (since Grp is itself ind-projective over O) it fol-
lows from [26, Tag 0899] that there exists a closed ind-subscheme Grz“ of Grp with
Gr(VD"; = Grg" ®p O/ p" for each n. This closed ind-subscheme has the desired prop-
erty because if £ € Gro(A) for A a p-adically complete O-algebra of topologically
finite type then & € Gr 7(A) if and only if £, = £ ®p O/p" € Gr L(A/p") for
alln > 1, i.e. if and only if E)Vs(&y) C u&y s, Aint,a for all n > 1. Since
A is p-adically complete and £ is & 4-projective one has £ = hm€ and so this is
equivalent to asking that E(u)V, () C u&, as required. O

Proposition 7.7 For every Hodge type 1 one has M,, C Grg‘I and M,, C Grg.

Proof Since Gr(vf) is closed it suffices to show & € M, (A) is contained in Gr%
for any E-algebra A. Lemma 4.9 allows us to write £ as an intersection of &
#t),, Y Ec(w) (A ®z, W(k)[u] Fil,* for some n > 0. It is therefore enough to
show that E(u)V (&) C u&, and this follows since

E i+n .
V(&) = Zv ( E((”))n ) (A @z, Wk)[ul Fil

and E(u) V(500" ) € w022 (A @z, W (K))[ul.

There is a slight difficulty in giving an identical argument to show M, C Grg“
because the moduli description for Gr does not apply when A is an E-algebra.
To address this we first note that the generlc fibre of M/, is reduced so to show
M, ®0FE C Gr(vg” it suffices to show this on A-points whenever A is a finite extension
of E. By the valuative criterion for properness, any such A-valued point is induced
from a point valued in the ring of integers of A. Thus we are reduced to showing
M, (A) C Gr(VD" (A) whenever A is the ring of integers in a finite extension of E.
Using part (3) of Lemma 4.9 this comes down to proving that

EW)Vs (&) Cuée @, Ainf,A
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for & = ﬁ 3 E,(u)'™"& 4 Fil7i. This would follow from the claim that

E/( i+n EK i+n
E@)Vs( E((”u))n ) € u E((”u))n Aint.0

To prove the claim first note that o (E (1)) — E(4) = o (u) —u € upLAjps. Similarly
o(E(u)) — E(u) € uptAjps. Writing

Vo (Ex)') = Vo (B () ™o (Ee(u)) + Ee () Vo (E (1))

and arguing by induction on i then gives that V, (E, (1)) € uEy (u)"_lAimc,@. Simi-
larly V, (E(u)') € uE (u)'~! Ajns. Since we can write

n Ec) ™ iny O(Ec@)™™) n
Ew) (o — 1)(w) = (0 — D(Ec)™) — W(U — D(Ew")

the claim follows. O

Remark 7.8 After possibly replacing the compatible system of primitive p-th power
roots of unity € we can choose 0 € G so that o (u)/u = [€]. Then

iN i ($)i_l i [e]' — 1 i i—1
Va(”)—u(k]—_1>—u([6]_1>—u(1+[6]+~-~+[e] )

Thus V, = uV, where V, is the g-derivation for g = [€]. Inparticular V, = u % =V
modulo [e] — 1. This illustrates the close relationship between the Grg“ and the locus
GrY,.

O

7.9 For the rest of this section we focus on Grg ® . Note that since V is W (k)-linear
we have

Gr% = l—[ Gr,Z)
Ko

where GT,YO is defined similarly. Let us write Gr = Gr,, ®[F (note this is independent

of ko) and Gr' = Gr,Y0 ®oF. The description from Lemma 4.5 shows that the group
scheme

LG* : A GLg(A[[u]])

acts on Gr. For A € X(T) dominant we set Gr), equal to the LG T-orbit of &, € Gr
(recall &, is defined in 4.4) and we set Gr<;, equal to its reduced closure. Then

Gra = | Grw
A <A
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Lemma 7.10 Suppose A € X(T) is dominant with
M—Ag<e+p-—1

Set C;. equal to the closure of Gr; N Gr' inGr. Then C,. is reduced and irreducible of
dimension

ZZmax{ki —Xj, e}

Ko i<j

Proof We begin by giving an open cover of Gr;: let/; C L*G denote the subfunctor
whose A-points consist of unipotent upper triangular matrices

1 aijj
e LTG(A)
1

where for each i > j, a;; € A[u] has degree < A; — A;. Consider the morphism
Uy — Gr, sending g — g&,. Recall that g&, — go&,., for go = g modulo u, defines
a morphism Gr, —> G / P;.. Since the parabolic P, is contained in the Borel of lower
triangular matrices B~ C G we can compose this map with G/ P,, — G /B~ .Thenthe
morphism &/ — Gr;, identities /; with the preimage under this composite of the open
U C G/B~ consisting of upper triangular unipotent matrices. In particular, 24;, — Gr;,
is an open immersion and Gr; = U, wlfy, with w running over the permutation
matrices in G (as follows by considering the open cover G/B~ = | JwU).

Since V(w) = 0 we have wif; N §v = wl N @V). Therefore the lemma

reduces to showing U N Gr' is an affine space of the claimed dimension. Observe
that g € U5, N Gr" if and only if

ue_lg_IV(g)€< )Mat(A[u])( ) (7.11)
M)Ld u_)“d

If we write g_1 = (b;j);j then, using thatb;; =1, b;; = 0forl < j,and V(a;;) =0,
we see that (7.11) is equivalent to asking that

Viaij)+ Y VDb € uh = ALu] (7.12)

j<l<i

forevery i > j.ByassumptionA; —A; —e+1 < pandso )
u)»j —XLi—e+1

V(aj;)b;j modulo
admits an antiderivative; in other words, there exists a unique X € uA[u]
of degree < A; — A; — e + 1 with

j<l<i

V(X)=— Z V(ai1)b;; modulo u*i—*i=e+]

j<l<i
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Since a;; has degree < A; — A; it follows that

X+ al.(j(.)) + u)‘.f**f*e“ai(}) 4ot uﬁi**ﬁlai(;_l) ifa;—Ai>e

dij = o ==l ,
Y X—i—ai(j(.))—i-uai(;)-l--'--i-u)‘/ Ai lal.j J ifaj—xi<e
for some al.(Jl.) € A. Note that, for i > j, the i j-th entry of gg~! = 1is
d
0= Zailblj =b;j +a;j + Z aj1byj
=0 j<l<i

This shows, by an inductive argument, that b;; is a function of aj; for I < k with
k —1 < i — j. Therefore the element X € uA[u] considered above depends on a;
with k — I < i — j. As a consequence the morphism

UNGr — [Jagmer=
ij

given by (a;;) — (a,.(ﬁ.)) has a well-defined inverse which finishes the proof. m]

Proof of Proposition First observe that under the identification Grp @ F = ]'[KO Gr
we have (MM_®(9 Flrea = [T, ﬁfz’(‘kﬂ(o - Thus (M, ®0 F)req is contained in
Uk:(kko) [ ] Gr,, where the product runs over A = (A,,) with A, < Zm:m . Since

M, C Grg and each p, — p is dominant the dimension calculations from Lemma 7.10
imply that

(MM ®0 Frea C U C)»-i-ep
A=(Ay)

where the union now runs over A = (A,) with A, +ep <
write C4¢p = H/«o CAKOJrep. Thus, one can write

i =k, M and where we

(M, ®0 Fl =Y n(h, )[Citep]
A

as cycles, for integers n(A, ) > 0. Furthermore, since §ZK|[¢:K0 we C §SZK|/¢:K0 Lo
is open it follows that Cy ., N (M, ® F) is open in (M, ® IF) for L = (1) with
Ay = ZK‘ = (M — p). Since this intersection is clearly non-empty it follows that
n(x, u) = 1 for this particular A.

This shows that

(M5 ®0 F] = [Chtep]
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can be expressed as a Zxo-linear combination of [Cy11,,]’s for A" = (Af(o) with
)L,’(O < Ay Arguing by induction we conclude that we can always write [Cyyep] =
>onvMz @0F] ford = (Afm) satisfying )Lj(o < XAy, and some ny, € Z. This proves
the first part of the proposition.

The second part follows from the first provided we can show M5 is irreducible
whenever A, 1 — Agy,d < p — 1. To establish this irreducibility we require d =
2. Choose an indexing kg1, . . ., ko, Of those k with x|z = ko so that ko1 = Kp.
Then construct a scheme X which classifies tuples (£, C --- C &) with & €

l_[K()(G/PKO,l ®OK»KO,I O) and

(]"[ Em,,(u>> & C &1 CE&

Ko

with & /&1 of rank one over (A ®z, W (k)) for each i. Then the map (&;) — &
produces a proper morphism X — Grp which on the generic fibre identifies X @ n E
with M3y ®» E. In particular, this shows that X ® o F — M5 ®o F is surjective.
On the other hand, X is a successive extension of (products of) grassmannians over
a (product of) flag varieties. Thus X is O-smooth, and so X ® F is irreducible. We
conclude the same is true of My ®o F.

Finally, note that the M5 ® o IF are pairwise distinct because if M3 @0 F = M3 Qo F

then CNKOJFEP = Cyy+ep for each «o. But this implies &, 1y € ﬁsk’mwp and so
/ Y
Mg = Aiy- By symmetry A, = A . O

8 Duality

In this section we introduce an involution of Grp which is useful when dealing with
certain normalisation issues which arise when passing between the affine grassmannian
and moduli of Breuil-Kisin modules.

8.1 If & corresponds to an A-valued point of Grp then
&* == Homag,, wul(€, (A ®z, W(K)[ul)

is again (A ®z, W (k))[u]-projective and, under the natural identification (A ®z,
W) [u]?* = (A ®z, W (k))[u]¢, we can view £* as an A-valued point of Gro.
Since £** = £ the endomorphism of Gry induced by

Er EF

is an automorphism.

Lemma 8.2 The above automorphism identifies My with M_y,; where wy € W
denotes the longest element.

In other words, —wou = (—wo ) where —wope = (—fids - - - —Hi,1) € X(T).
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Proof 1t suffices to prove this on the generic fibre. Thus, one is reduced to prove that for
any A € X(T), G/ P, C Gr is identified with G/ P_,,,, by the version of £ = £* on

Gr. But this follows easily from the fact that if £ is generated by (eq, ..., ¢4) X then £*
is generated by (eq, ..., eq)(X —1y for (X1 the conjugate transpose. In particular,
the G-orbit of any £ is mapped onto the G-orbit of £*. Since & = wo€_y, the
lemma follows. O

9 Breuil-Kisin modules

9.1 Let A be a p-adically complete O-algebra. Then a Breuil-Kisin module 9t over
A is a finite projective G 4-module equipped with an & 4-linear homomorphism

gOgﬁ:(p:f)ﬁ@(p,eA Sqp—->M

whose cokernel is killed by a power of E (1). We say 21 has height < £ if the cokernel
is killed by E (u)". We write 9% for the image of @gn and ¢ (M) for the image of the

composite 907 m—>m®l MRy, G4 — 6. Thus (IN) is an ¢ (&S 4)-submodule of
M? which generates 9 over G 4.

Definition 9.2 For any p-adically complete O-algebra A write

o Z;h (A) for the groupoid of rank d Breuil-Kisin modules over A with height < h.
Morphisms are G 4-linear isomorphisms compatible with the Frobenius.

° Z?’ (A) for the groupoid of pairs (9N, B) where M € th (A) and B =
(B1, - -, Ba) is an & 4-basis of M. Morphisms are S 4-linear isomorphisms com-
patible with the Frobenius and identifying the bases.

. . h 5=<h
With pull-backs defined by base-change these categories form fpqc stacks Z=", Z
over Spf O.

9.3 We consider the following diagram:

~

Z=h

d
% \\1: 94
;h Grp

27

where I forgets the choice of basis and, with Grp viewed as a formal scheme over
Spf O, the morphism W sends (9, B) onto £ € Grp obtained via

1 e 1 4
E =M ¢ G]
E(u) E@h ™4
(here ¢(B) is interpreted as an identification 9% = 6‘/{‘). Concretely, if C is the matrix
with entries in & 4 for which ¢(8) = BC then, since 901 is generated by ¢(8)C ™!, we
have W(ON, B) = E for £ C 6A[ﬁ]d the submodule generated by C~!.
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Writing L™ GL, for the group scheme given by A — GL;(&4) we see that I is
an L™ GLy-torsor for the action on Z glven by g - O, B) = (O, Bg). A second

action of Lt GLy4 on Z=" can be given by
g * (M, B) = (Mg, B)

where M, = MM as an & 4-module, with Frobenius given by ¢¢(8) = BgC for C the
matrix determined by ¢ () = BC. It is easy to see that this action makes W into an
L™t GL4-torsor over its image in Gro.

9.5 An alternative viewpoint on 9.3 is as follows. Let L="GL, denote the group
scheme over O given by

A {Ce GLd(GA[ﬁ] | E@)"C™', C € Mat(S,4))

Then the morphism ngh — L="GL, given by (M, B) +— C, for C defined by
(B) = BC, is an isomorphism (here we view L=h GL4 as a formal scheme over
Spf O). Under this isomorphism the action g - (9, B) corresponds to the (right) action
of Lt GL4 by ¢-conjugation: C — g~ 'Cg(g). The action g % (90, B) corresponds
to the (left) multiplication action: C + gC. Thus (9.4) identifies with the diagram

L="GL4 1
C—C~
/ \
[L="GL4 /oL GL4] [L=" GL4 /LT GL4] = Gro

Here L="GL, / »LT GL, indicates the quotient by Frobenius conjugation

The issue with the construction in 9.3 is that Z dsh = =" GLy is not of finite type
over Spf O. To address this we instead consider:

Definition 9.6 For N > 1let th N (A) denote the category of pairs (I, B) € 2§h (A)
whose morphisms are ¢- equlvarlant morphisms of G 4-modules which identify the
bases modulo " . Equivalently, 2511’1\’ is the quotient of Z dgh under the action of the
group scheme

Uy : A 1+ u Mat(Sy)

Thus Z5" = [L=" GL, /Uy] (the quotient being by Frobenius conjugation).
The following is a essentially [24, 2.1].
Proposition 9.7 Fix n > 1. Then, for N sufficiently large, (9.4) induces a diagram

Z;h ®o O/n" Gro @ O/n"
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in which Ty is a Gn-torsor for Gy the group scheme defined by A — GLg(S 4 /u')
and Wy is smooth of relative dimension dimo Gy with irreducible fibres. More pre-
cisely, the action g x (M, B) from 9.3 induces an action of Gy on th’N Qo O/n"

making Vy into a Gy-torsor over its image in Grp O /n".

We will see in the proof that N is required large enough that E(u)" divides
uP=DHN=1 S @/ (this can be made explicit using e.g. [6, 5.2.6]).

Proof The crucial observation is that if E(u)" divides u»~YVN=1in &¢ /zn then, as
stacks over Spec O/x", the identity map L=" GL; — L=" GL, induces an isomor-
phism

[th GLy /(pUN] = [Uy\L=" GLy]

(the quotient on the left being by Frobenius conjugation and that on the right being by
left multiplication). This immediately shows that the morphism W induces a morphism
Wy as claimed, and that Wy is a Gy = L™ GL,; /Uy-torsor over the closed O/m*-
subscheme [L=" GL; /LT GL4] — Grp.
Concretely, the claimed isomorphism follows from the two assertions: If C €

L="GL4(A) then

e For each gyg € Uy(A) we have galC(p(go) = gC foraunique g € Uy (A).

e For each g € Uy (A) there exists a unique gg € Uy (A) with go_ngo(go) =gC.

Note these are exactly the same assertions as (1) and (2) in [24, 2.2]. The first point is
easy because gg € Uy (A) implies

g=2g; Co(g0)C " =g (1 +u”NC1C_1) =14+uNCy+urNcyc™!

Therefore, the fact that E(x)"C~! € Mat(S4) and that E («)" divides u?" ensures
g € Un(A). For the second point notice that, if J, = (gC)p(gC)...¢"(gC) and
I, = Ce(C)...¢""1(C), then any such g satisfies

20 = Lig"(g0) I, = L, 4+ Li(¢"(g0) — DI,

for every n > 1. We claim that for any g € Uy (A) we have I, (¢"(g1) — l)Jn’1 €
u™ Mat(6&4) and that this element converges u-adically to zero as n — oo. This
ensures that 7, Jn_1 converges in Uy (A) as n — oo and that this limit is the unique
go satisfying ggngo(go) = gC. Since g; = 1 modulo uV we can write ¢" (g1) —
1 = uN+#"=DNg' Therefore the claim will follow if «”" =DV J 1 e Mat(G4)

converges u-adically to zero. Since goi(E(u)h) divides u(("’_l)N_l)/’i and
E@'o(E@)"...¢" " (Ew™"I, " € Mat(&,)

the claim follows from the observation that (p" — )N — (p — DN — DA +--- +
P H=14---+p" lis>0and — co. |
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Corollary 9.8 Z;h’N xo O/x" is a finite type O-scheme for N >> 0 and Z;h isa
p-adic formal algebraic stack (in the sense of [7, AT]) of finite type over Spf O.

Proof The first part follows since we’ve just seen that Z dSh’N x o O/n" is a torsor for
a finite type group scheme over a finite type O/n"-scheme. The second part follows
from the first and the definition of a p-adic formal algebraic stack. O

10 Crystalline Breuil-Kisin modules

10.1 If A is a p-adically complete O-algebra which is of topologically finite type
then a crystalline Breuil-Kisin module over A is a pair (9, o) with 97 a Breuil-Kisin
module over A and o a continuous g-equivariant Aj,f, 4-semilinear action of Gk on
M s, Aint,a satisfying

(0 —D(m) e MBs, 7197 (W) Ain.a,  (0oo — D(m) =0

forevery m € Mand every 0 € Gk, 000 € Gk -

Definition 10.2 Write Ydfh (A) for the groupoid consisting of rank d crystalline Breuil—
Kisin modules over A with height < A.

10.3 One can attach a Hodge type to crystalline Breuil-Kisin modules in Ydsh (A)
whenever A is O-flat. For n € Z define Fil*(9M¥) = 9M¥ N E(u)"9N and equip the
finite projective Ok ®z, A-module 9% /E (u) with the filtration whose n-th filtered
piece is the image of Fil” (9%). It is shown in [7, 4.7.2] that the graded pieces of this
filtration become (A ®z,, W(k)[%]—projective after inverting p. This allows us to say
that (9, o) has Hodge type 1 = (py) if the part of gr” DT(‘/’[%]/E(M) on which K
acts via « has E-dimension equal the multiplicity of n in 1.

Remark 10.4 In other words, 21 has Hodge type w if the part of Sﬁ‘p[%] /E(u) on
which K acts via « is a filtration of type

—Wolk = (_I’LK,dv ceey _MK,I)

in the sense of 4.4.

Theorem 10.5 If (M, o) € Ydfh (A) with A a finite flat O-algebra then
V=Moe, W(CH)"!

equipped with the G g -action induced by o is a crystalline representation of Gx on
a finite projective A-module. Furthermore, the Hodge type of (M, o) coincides with
that attached to V via the filtered module D¢rys(V)g = (V ®z, BdR)GK with n-th

filtered piece given by (V ®z,, l‘nB;—R)GK-

Proof The theorem as stated is taken from [2, 2.1.12], but the result originates from a
combination of ideas appearing in [11, 16, 22]. O
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Remark 10.6 These conventions mean that the Hodge type of the cyclotomic character
is —1.

Proposition 10.7 There exists a limit preserving p-adic algebraic formal stack ngh of
topologically finite type over O whose groupoid of A-valued points, for any p-adically
complete O-algebra topologically of finite type, is canonically equivalent to Y dsh (A).

For each Hodge type  there exists a unique O-flat closed substack Yg’; of Y dgh
with the property that the full subcategory Y d" (A) of ngh (A) consists of all crystalline
Breuil-Kisin modules with height < h and Hodge type nu whenever A is finite flat
O-algebra.

Proof The first part follows from [7, §4.5]. There, algebraic stacks CfT'b od.p over

Spec O/ are constructed [7,4.5.8] with 7° = (7, /P, .. .) and s some sufficiently
large integer. In the proof of [7, 4.5.15] it is explained how Yﬂfh xo O/n? can be
realised as a closed substack of C;t- s dht The second part is [7, 4.8.2]. m]

We conclude with a useful lemma giving a description of the points of Yg’f valued
in a finite local [F-algebra. For this we make the following construction:

Construction 10.8 Let F'/IF be a finite extension. Write R, for the framed O-
deformation ring corresponding to some p : Gx — GLy(F). In [2, 2.2.11] a
projective Rz-scheme E%h is constructed with A’-points, for A" any p-adically com-
plete O-algebra, classifying pairs (9, p) with p a framed deformation of p to A’ and
M e th (A") satisfying

Ms, W(C)a=p s W(C")a

so that ¢ (induced semilinearly from that on 90?) is the identity on p and so that the
G g -action (induced semilinearly from that on p) satisfies

(0 — D(m) e MBs, 7197 (W) Aint.a, (0o — D(m) =0

for every 0 € Gg,00 € Gg,, and m € 9. In [2, 2.2.15] it is also shown that the
morphism E%h — Spec RﬁD becomes a closed immersion after inverting p, and, if

e C [0, k] for all k, that the closed subscheme E%h [%] — Spec Rﬁm[%] contains
Spec Rg[%], where R% is the reduced O-flat quotient of Rz constructed in [17, 3.3.8].
If E%h denotes the mg_-adic completion of E%h then we see there is a morphism

“<h

<h
> —>Yd

given by (I, p) — (I, o). Notice Z’%h can equivalently be constructed as the fibre
product Ydfh X xy 4 Spf Rz where Spf R — Xk 4 is the morphism defined in [7,

3.6.3].
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Lemma 10.9 Assume that ju, C [0, h] for each « and suppose that (I, &) corre-
sponds to an A-valued point of Yg’; for A some finite local F-algebra. Then there exists
a local finite flat O-algebra A with A = A ®o F and an A-valued point (I, o) of
Y;“ with special fibre (I, 7).

Proof To begln let R5 be a framed deformation ring as in Construction 10 8 and
set [:, = Y X Xy 4 Spr Since u, C [0, k] for each ¥ we can view E as the
preimage of Y, ' under the morphism L, — Y7 =" from Construction 10.8. Notice

this is a special case of the formal scheme denoted C in the proof of [7 4.8.10]. In
loc. cit it is shown that the scheme theoretic image of the morphism Cﬁ — Spf R5

is precisely Spf Rg (as in Construction 10.8, R%‘ denotes the reduced O-flat quotient
of Ry classifying crystalline representations of Hodge type 1). Using [7, 4.5.26] we
see that Eﬁ arises as the mp_-adic completion of a projective Rz-scheme E%. This
scheme embeds as a closed subscheme in ,C%h and, since E%h[%] — Spec R5 is a

closed immersion, we have Eg [;] = Spec RY [;]
By [7, A.31] we know that Spf Rz — XK 4 is flat, and so the same is true of
E — Y I*. Since Y, " — Spf O is flat we conclude that ﬁ, is O-flat also. Therefore,

reducedness of R implies £ is reduced too.

Now apply the above construction with p = (m I W(Cb)x)‘/’:1 ®7 F’ where
[’ denotes the residue field of A. Then (9, &) form the lemma induces an A-valued
point of E%. Since Eg is reduced, O-flat, and of finite type over R’g we can apply
[2, 4.1.2] to the local ring of E% at this points to produce a finite flat O-algebra A

with A ®0 F = A and an A-valued point (9, p) of £ pulling back to our A-valued
point. Write o for the G g-action on 9 ®a, Ainf,4 Induced by p. Then (I, o) is
a crystalline Breuil-Kisin module with Hodge type © and so we obtain an A-valued
point in Y 5 (A) as desired. O

11 Naive Galois actions

In this section we consider the morphism ngh — Z fh Which forgets the Galois action.
More precisely, we consider its base-change Y, dfh X ,<h Z J — Z; Z-"N for N >> 0,
d

and show this is an isomorphism over certain closed subschemes in the special fibre
S<h,N
of Z;7".

Construction 11.1 The aim is to establish conditions which allow the following

“naive” crystalline G g -action on (N, B) € Z; ZshN (A) to be perturbed into one which
is p-equivariant. Let opaive, g denote the contlnuous Ainf, A-semilinear action of G g on
M R, Ainf,a obtained from the coordinate-wise action on Aidnf’ 4 Vvia the identifica-

tion

~ ad
me ®6A Ainf,A = Ainf’A
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induced by ¢(B). Thus, onaive, g is uniquely determined as the semilinear G g -action
fixing ¢(f).

11.2 Letusfixintegers 0 < r, < hforeach . Then we consider the closed subfunctor
Gr(vg"’r C Grg" defined by requiring that

Gl cec HE,((u)*’K(‘Siﬂ
K

Recall Grg‘I was defined in Lemma 7.4. We then choose N sufficiently large so that
Proposition 9.7 produces the morphism Wy : Z dih’N R0 F — Grp ®nF and define

SVe,r ~<h,N
Zd,IF s Z Qo F

as the preimage of GrZ"’r ®eTF under the morphism Wy. Notice we suppress the

V“ "on N from the notation. The A-points of Zy‘“r for A any finite

<hN

dependence of Z ;'

type [F-algebra are premsely those (N, B) € Zs5 (A) satisfying

(1) Forevery o € Gg
(Onaive.s — DM C M@, [0~ (W) Ainf 4.

See Remark 7.5.
(2) Foreachi =1,..., f

[[Ecw=o cm? c o
i

Proposition 11.3 Assume that
inequality strict. Then

cli=ko e < €+ p — 1 for each ko with at least one

h

Y7 x 25 Zj%r N ZV” T

is an isomorphism.

Proof By Lemma 15.1 is enough to show that this morphism induces equivalences
on groupoids of A-valued points for any local finite type F-algebra A. Equivalently,
we must show that for any (O, B) € Z ALS r(A) there exists a unique action o of
G g making (91, o) into an object of Y - Ex1stence implies essential surjectivity on
‘A-valued points and full-faithfulness follows from the uniqueness.

Write Hom(9, 9N) for the G 4-module of & 4-linear endomorphisms of 9t and
equip Hom (90, 90t) with the Frobenius ¢yom given by 4 — @ ohog~L. If we identify
Hom (9N, M) with matrices in S 4 using the basis B then ppom acts by

M Co(M)C™!
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where ¢ acts entry wise on the matrix M and C is such that ¢(8) = BC. The follow-
ing claim shows that, after extending scalars to Ajuf, 4, this operator is topologically
nilpotent on matrices with entries divisible by [7r[’]<p_1 (w).

Claim Ser H := Hom(M, M) ® [7° 19~ (w) Ajpp 5. Then H is @rom-stable and griom
is topologically nilpotent on 'H.

Proof of claim Recall that 91, C 91 is the submodule on which W (k) acts via ko and
@ on M restricts to a semilinear map M, — mkoo(p—l [%u)]. Our assumption on I

implies (]_[K| c=ko Ex @) )My, C smfo and therefore

@rom (Hom(, M),) C | [] Ecw)™ | Hom©@N, M)

K|k=kKo

Koop ™!

b
[ ]”;Zm A= [nb]P—lE(u)Ainf’z we also have

Since W

¢tiom (M) € [T TE@) | [ Ec@)™ | Moyt = w7725,
K|k=kKo

(the last equality uses that A is an F-algebra) and so, as Zlek:Ko e <e+p-—1,

it follows that H is ¢Hem-stable. Since the inequality is strict at least once we have

¢tom (Hy) C uH,. ,,—1 foratleast one kg. In particular ppon, is topologically nilpotent.

O

Koog

Set Minr = M e, Aint, 4. Note that for each 0 € Gk the endomorphism opaive, g 15
o-semilinear and so defines an element of

Hom (Ming, M ¢)

where M7 . := Minf @Ay 4,0 Ainf, 4. Any such semilinear map is determined by
where g is sent; thus we obtain an (additive) identification Hom(Mjne, M7 ) =
Hom (M, M) ®e , Ainf, 4 which identifies Hom(DMing, (7”19~ ()M ) and H. Via

this identification we view @Hom as a Frobenius on Hom (Mine, MY ;). We claim that

Plom (Onaive,p) € Hom(Mine, MY )

for all n > 0 and that this sequence converges to a o -semilinear endomorphism which
we simply write as . By construction this endomorphism is g-equivariant. To see this
claim note that by assumption opaive,s — 1° € Hom(Miys, [7°1p~! ()7 ) where
1 the o -semilinear extension of the map 8 — . Since we can write

p n
lim,,_, PHom (O'naive, ﬁ)

= Onaive,g 1 Z (‘plr-llom (Onaive,g — 17) — (Plrilgrh(anaive,ﬂ - 10))

n>1
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the claimed convergence follows from the topological nilpotence of the operator ¢om
on Hom(Min, [7°]0 " (w)9M? ) = H. This formula also shows that o (x) — x €

inf
MRs, [er]w_1 (1) Ajnf, 4 for each x € 9. Since opaive,p defines a G k-action so to

does o. Similarly, continuity of oyaive, 5 implies continuity of o.
Finally, to see uniqueness suppose that ¢’ was another such G g -action. Then for
each 0 € Gk one has

o — o' € HomMing, [7°1p ™ (M) = H
Since o — 0’ is pyom-fixed the topological nilpotence of ggom on H implies 0 — o’ =
0. O
12 Comparison with local models

Set 75 =Y ; ® F and choose N sufficiently large that Proposition 9.7 produces the
morphism Wy : 2;’1’}\' Qo F — Grpo ®oF.
Theorem 12.1 Assume that w, C [0, r,] for integers r,, < h satisfying

Zr/cfp_

Vi
Kk|k=kKo 0

+1, Vg = maXK|k:K(){vJT(7TK — )}

forall ko : k — T. Then the composite
= ~ ~ ]
YZ X <h deh’N — ZdSh’N Qo F N Grp ®oF
d

factors through M_wo w (recall this notation from Lemma 8.2)

Remark 12.2 If K is tamely ramified, i.e. if e is not divisible by p, then m, — 7,/
generates the same ideal of Og as w whenever «’ # k. Therefore v, = 0 in this case.
To see this consider the r-adic valuation of %Ko(E(bt)ﬂu:nK = HK#KCK’IFKO (e —
).

The following proposition is the key technical result which goes into the proof of
the theorem. It is a reworking of techniques originally developed in [11, 12].

Proposition 12.3 Let A be a finite flat O-algebra and suppose (N, o, B) € Yf (A).
Define

M =MM?/E(u)

Use the (S 4)-basis ¢(B) to define a section s of p(IM) — MY — M,. Then there
exists a filtration Fily on M, by A-submodules with p-torsionfree graded pieces such
that

Tk
> " Ec ()" & 4 Fil}, +2

€rT, K
n=0

= MY N E,e ()M + MY,

€rT, K
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when Fil} is viewed as a submodule of M? via s and szm = lez_ll AP LE, (uw)'ome.
Note that, by construction, the image of the section s generates 9% over G4.

Proof First we define the filtration Fil? . Recall that we equipped M := 9? / E (1) with
the filtration whose n-th piece is the image of 91¥ N E (u)"9. Then Dk := M[%] is
a filtered A ®z, K -module and can be written as [ [, Dk . with each D , a filtered
A[%]-module. The composite MY — Dx — Dy, is obtained by base-change along
the map & — A[%] given by u — 1. Therefore, its kernel is E, (u)9t?. This means

M, can be viewed as a submodule of Dk , and M,([%] = Dk . Define
Fil; = Fil"(Dg ) N My

The filtered pieces of Dk , are Q,-vector spaces so the graded pieces of Fil} are p-
torsionfree. This also shows that Fil} [%] = Fil"(Dk ) which proves Corollary 12.4
below.

Next we use:

Claim Forx € Fil}} withn < p there exists x1, ..., xp—1 € IM? such that
S@) + Ec)n?'xy + -+ Ec)?'mx,1 € MY N E(u)" M

Proof of Claim This follows from results in [1, §5]. To apply these first note that in loc.
cit. the embeddings K — E are indexed by integers | <i < fand1 < j < e so that
kij|x depends only on i. This labelling can be chosen so that « from the proposition
equals «;; for some i. In [1, 5.2.5] it is shown that for any x € @(9N) there exist
X1, ..., Xp—1 € M? so that

W —x+ EynP x4+ E\w)? 'nx,_1 € E{(w)’M’ ®¢ S[%]

where

e S is the ring defined in [1, §5.1],

o xV is defined as in [1, §5.2],

o Ei(u) =[], Ei() € 6o for Eij(u) := Ey, (u).
We apply this to x = s(x). Then the image of x in Dk , is contained in Fil"(Dg )
and so [1, 5.2.2] implies x®™ is contained in a submodule of M? g S [%] denoted
Fil»0--0} Tn[1,5.1.3]itis shown that Fil?0:--0) n9n¢ = MPNE; (u)"9N. Therefore

S@) + Ex)a? x4+ By rx,g € MY N E )" C MY N E ()" M
(the inclusion following because E (1) divides E («)). Under the identification 0¥ =
[T, 9%, the «o-th part of 9M¢ N E, (u)" M is just M, for o # «|i. Therefore, in the

above identity we can replace each E1(u) with E, (1), and the claim follows. O
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The claim shows that

m
> Ec)y" "SAFil +90,  C M? N E )" M+ MY,
n=0

=Y

for any 0 < m < r, and we want to prove the opposite inclusion for 0 < m < r, by
induction on m. When m = 0 this is clear since both sides equal 90t? (recall that the
section s was chosen so that s (M, ) generates 9% over G 4). For m > 0 note that the
image of MY N E, (u)" M in M, is contained in Fil?, while Fil}’ equals the image of
Y;,. The above inclusion therefore shows these images are equal As a consequence,
if x € M? N E,(u)™IMN then there exists x” € ¥y, so that

x —x' € E.(w)M? N (zm‘/’ N E, ()" + M
= (Ec)IM? N Ec ()" M) + ME,
=E.(u) (m?’ NE, (um—l)m> + m?rr,x

el’T'K)

The second equahty uses that ME; . C E, (u)9N?. The inductive hypothesis therefore
gives that x — x’ € E,(u)Yy—1 + Méy.. Since E,(u)Y;—1 C Y,y it follows that
x € Yy + MEy . as desired. ]

Corollary 12.4 The graded pieces of Fil} become A[%]-projective after inverting p
and Fil}[5] has type —wopte = (= = -+ = —je1).

Proof of Theorem 12.1 By Corollary 15.2 it suffices to prove the factorisation on the
level of A-valued points for A any finite local F-algebra. Let (9, @, B) be such a
point. Applying Lemma 10.9 we obtain a local finite flat O-algebra A with a map
A — Aand O, 0) € Y, I (A) lifting O, 7). Additionally, choose an & 4-basis
lifting ,3 . We will then be done if we can show that the special fibre of (I, o, B) is
mapped into M_ww by Wy. We can assume that A = A ®o F.

Applying Proposition 12.3 for each « we obtain filtrations Fil}. Define £ by

(]‘[ E, (u)rk> e= (Z Ec(u) < "Sy Fﬂ;’)
K K n=0

As in Proposition 12.3 the Fil}’s are viewed as submodules of 901% using the basis
¢(B). Corollary 12.4 together with part (2) of Lemma 4.9 (taking n,, = r,) shows that
& [%] defines an A[%] point of M_y,,, under the identification 0¥ = 6% induced by
©(B). Note, however, that it is not a priori clear £ defines an A-valued point. We will
be done if we can show this is the case, and if we can show that £ ®» F coincides
with the image of (ﬁ, o, E) under Wy . In other words, if £ defines an A-valued point
andif EQF=MRp F.
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We begin with the second assertion. Take z € (]_[K E, (u)’K) M. Then z € M N
E (u)"™*90 for each « and so Proposition 12.3 ensures the existence of m, € zm?m
such that

T
z—my € (Z Ec) "Gy Fil,’j)

n=0
We claim there then exists m € w90 such that
m =m, mod E,(u)*IM?

for each k. Since 9% is & 4-free this claim follows from Lemma 12.5 below. This is
where we use the bound on the r,.. Since

E. () oM C (Z Ec(u) "y Fﬂﬁ)

n=0

for each « (due to the filtration Fil}} being concentrated in degrees [0, r,] we have
Filg = M,) it follows that z — m € (]_[K E, (u)’K) E. Since m € 7MY the image of z
in M? @ F is contained in the image of (]_[K Ec(u)*) €. A symmetrical argument
shows also that if z € (T, E«(u)’*) & then its image in MM¥ Qo F is contained in the
image of (]_[K E. (u)’K) M.

Next we show that £ is G 4-projective. This is equivalent to 91/ (]_[K E(m)" K) E
being A-projective. From the definitions we see that 9%/ (]_[K E(m)" K)é’ is p-
torsionfree. This means that ([T, Ec(u)*) € ®o F equals its image in 0¥ ®o F.
It also means that, by [26, 00ML], A-projectivity of 9%/ ([T, Ec(u)™) € follows
from A ®p F-projectivity of MY @ F/ (]_[K E, (u)’K) € ®o F. But we saw in the
previous paragraph that (]_[K E, (u)’K) ERTF = (]_[K E. (u)’K) M o F. Since
ome/ (]_[ « Ec(u)" ”) M is A-projective the claimed & 4-projectivity of £ follows. This
establishes the two required conditions mentioned in the second paragraph, and there-
fore finishes the proof. O

Lemma 12.5 Let A be a finite flat O-algebra and suppose

p
—1_1
my = ZEK(M)p T My |
=1

are given with m,| € A. Then there exists m € w &4 with m = m, modulo E, (u)'*
for each k.

Proof Firstly, by choosing an O-basis of A we can reduce to the case A = O. Secondly,
we can fix k¥ and assume that m,» = 0 for all ¥’ # k. Using the identification
Gp = ]_[KO Ol[u]] we are left proving that if m € O[u] can be written as

P
m= Z(n — 7 )Pl my, m; €O
=1
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then there exists M € 7 O[[u]] with

e M divisible by (u — m,+)"« for every k’ # « with «’| = K|g.
e M = m modulo (u — m,)"~.

We will construct M explicitly. For «’ with |, = «|x and «” # « set

re—1
X re —1+j (u —m)"
X ! o= —l Tk K _—
K ( ) E ( ) (7T/< _ 7.[K/)n-i-rk/

= rer — 1
Using the formal identity ﬁ =200 (r:_lTi)yi withr = re and y = %

shows that
X —me)* =1modulo (u — )™

Define N € E[u] to be the polynomial of degree < r, when viewed as a polynomial
in (u — 7,), obtained by truncating m [, ., X,». Then N = m[],/, X,» modulo
(u — 7)™« and so

M:=N[]@-m)~
k' #Kk

satisfies the two bullet points above. To finish it suffices to show that N, and hence M
also, is contained in 7w O[[u]].

For this view N as a polynomial in (u — m,). By assumption the coefficient of
(u — )" in m has valuation > p —n. On the other hand, the coefficient of (1 — 77, ) in
X, has valuation > —(n + r,/)v for v := v ,. Since v > I wehave p —n > p —nv
and as such the coefficient of (u — 7,)" in m ]_[K,# X j has valuation

>p— () re+nv
k' #K

We will be done if p — (ZK,# re +n)yv > 1foralln =0,...,r — 1, 1e. if

p— (ZK’\k:KIk re —1)v > 1. This is equivalent to asking that ZK’\k:KIk rer < pT_l +1
so we are done. O

13 Lower bounds
In this section we recall from [7, 10] the lower bound on the cycles appearing in
the Breuil-Mézard conjecture attained when d = 2. We do this in the context of

cycles in deformation rings. We also give a minor improvement using the potential
diagaonalisability established in [1].
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13.1 First, recall that isomorphism classes of absolutely irreducible representations
of GL4(k) on F-vector spaces are in bijection with tuples A = (i,,) indexed by
embeddings ko : kK — I with each A, a tuple of integers satisfying

)"K(),l - )"Ko,d =p- 1

This bijection sends (X,,) onto the GL4 (k)-representation obtained by evaluating the
algebraic representation of G = GLy4

® (L()"K()) Ok, ko IF)

0]

on k-points [13]. Here L(A,,) C HO(G/P;LK, L)) ®o, k denotes the unique irre-
ducible algebraic G-submodule.

13.2 We also recall from the introduction the F-representation V (u, ) of GL4 (k)
attached to any pair (u, t) with u a Hodge type with each u, — p dominant and t an
inertial type. Taking T = 1 we obtain V (u, 1) by evaluating the algebraic representa-
tion

Q) (HG/ Pu—p Lt = p) 80, .« F)

K

(here we write k also for its composite with the surjection O — ) on k-points. Since
the exact definition of V (u, ) will not be needed for t # 1 we refer to [7, 8.2] for
the general construction.

Lemma 13.3 Suppose d = 2 and w is a Hodge type with u, C [0, r.] forr, > 0
satisfying

Z re<e+p-—1

Klk=ko

Then the multiplicity of A in V (, 1), for A an absolutely irreducible F-representation
of GLg4 (k) corresponding to (A,) under 13.1, equals the product

1_[ m()"l(()’ (,uK)K\k=K0)

K0

from Proposition 6.6.

Proof Recall from Lemma 6.3 that each m (X, (tt« )| =«,) can be interpreted as the
multiplicity of HO(AKO) in ®K|k:K0 HO([,LK — p) where H°(—) denotes the generic
fibre of HO(G /P_, L(—)). This coincides with the corresponding multiplicities on
the special fibre, i.e. the multiplicity of H%(G/ P s L)) @0y k in

09 (HO(G/PAW,J, L(e — p) ®0y k)

Klk=Ko
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The product of these multiplicities therefore equals the multiplicity of

® HO(G/P)WO, £()"K())) ®OK,K0 F

K0
inside

@ (H*(G/Pry,ys Lt = ) @0y« F)

K

The lemma will therefore follow if each H(G / PAKO , L)) ®0y k is simple, i.e.
equals L(A,,). Since d = 2 this can be seen from the explicit description given in, for
example, [15, 11.2.16]. O

Notation 13.4 If A denotes an isomorphism class of absolutely irreducible F-
representation of GL;(k) then we write A for the Hodge type obtained as in 6.5 for
(Mxo) the tuple corresponding to A in 13.1.

13.5 In the next proposition we fix a continuous homomorphism p : Gx — GL4(F)
and, as in the proof of Lemma 10.9, we write R; for the O-framed deformation ring
of p. If (u, ) is a pair consisting of a Hodge type n and an inertial type 7 then we
also write R2"" for the unique reduced O-flat quotient of Rz whose points valued in a
finite extension of E are correspond to potentially crystalline representations of type
(1, 7).

We also say that an absolutely irreducible representation F-representation A of
GL; (k) is non-Steinberg if A corresponds to a tuple (A,,) With A, 1 — A2 7= p — 1
for at least one .

Proposition 13.6 Assume p > 2, d = 2, and that ., — p is dominant for each k. Then

(1) There are cycles C5,), in Spec Ry, indexed by isomorphism classes of absolutely
irreducible F-representations A of GL4(k), such that, for any pair (i, T), one has
an inequality

[Spec R%” ®o F] > Zm()w w, T)Cs.
Py

for m(A, u, ) the multiplicity of A in V(u, ) (where V (i, t) is the GLg4(k)-
representation attached to |, T).

(2) If X is non-Steinberg then C5 ; = [Spec R%’] ®o Fl.
This is the single point where the assumption p > 2 arises.

Proof In [7, 8.6.6] it is shown that, if XZM 'T denotes the closed algebraic substack
of the Emerton—-Gee stack A, whose A-points (for A a finite flat O-algebra) corre-
spond to potentially crystalline G g -representations of type (i, ), then there are top
dimensional cycles C; C X such that

[X5 1= > m, 1. 1)Cs
s
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The cycles C, are also described explicitly in [7, 8.6.2]. In particular, if A is non-
Steinberg then C,, is the irreducible component of X, labelled by A asin [7, 5.5.11].
As explained in [7, 8.3] the above inequality implies part (1) of the proposition by
pulling back along the formally smooth morphism Spf R; @ F — X.

For part (2), we observe that the irreducibility of M5 ® o F implies, for non-Steinberg

A, irreducibility of Y2A ®o T (see the paragraph before (14.3)). By definition XZM is the
scheme theoretic image of Y2” and so the topological space of ?g’l is the image of that

of Y2X ®@ F. Therefore yg’l is irreducible and [Eg’]] = m,C, for some m, € Zs>op.
We have to show m); = 1. B
If o is a smooth point of C;, then pulling back this identity along Spf R;®oF — X'

and taking Hilbert—Samuel multiplicities gives m; = e(R%’1 ®o F) (smoothness of
C, at p implying the Hibert-Samuel multiplicity of C; at this p is 1). We therefore
have to show e(R%’1 ®o F) = 1. As explained in [7, 6.5.1], the component of X,
representing C, contains an open substack consisting of representations which are
maximally non-split of niveau 1. We can therefore assume the smooth point p chosen
above is of this form. Since A is non-Steinberg we ensure p is not of the form

1 *
® _
v <0 ché>

for v an unramified character and ycy. the mod p cyclotomic character. This means o
is cyclotomic-free in the sense of [1, 1.1.1] and so [1, 1.1.2] ensures every crystalline
lift of o with Hodge type A is potentially diagonalisable. Combined with [10, 3.5.5] this

implies e(R%’l ®o F) = wy(p) where ) (p) equals the Hilbert—Samuel multiplicity
of Cy,5. Thus e(R%’1 ®o F) = 1 as desired. O

14 Main result

We can now prove our main result.

Theorem 14.1 Assume p > 2 and d = 2. Let u be a Hodge type with each , — p
dominant and

D (et =2 =1 < p

Kl =r0)

foreach kg : k — . Then

[Spec R @0 Fl = m(x, . 1)[Spec R2' @ F]
A

for m(A, w, 1) the multiplicity of A in V (i, 1).
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Proof First, by a simple twisting argument, we can assume /i, » = 0 for each «. Since
i1 > 1 the bound ka::«o M1 < p implies that either e < p or e = p and
i1 = 1 foreach k. In the latter case u = 7 for A the trivial representation and in this
case there is nothing to prove. Thus, we can assume e¢ < p. This means K is tamely
ramified over Q, and so Remark 12.2 indicates that Theorem 12.1 applies. We can
also assume that e > 1, since if e = 1 then again u = 7 and the theorem is again
trivial. This means that ZK“:KO i1 < p+e—1foreach « and so Proposition 11.3
also applies, with r, = e 1.
Proposition 7.2 gives an identity of cycles

My ®0 F1 =) n(h, W)[M; ®0 F]
A

forintegers n(A, u) > 0 and A running over tuples (A,,,) with A,;, < ZK‘FKO (e — p).
Each such A, then satisfies A, 1 — Ag,2 < p — 1 so we can also view the sum as
running over absolutely irreducible F-representations of GLy(k) by 13.1. Applying
the automorphism from Sect. 8 gives

(M ®0 F1 =) n(h, WIM_, 5 ®0 F]
A

Proposition 7.7 allows us to view this identity of cycles as occurring within the closed
subscheme Grg"’r ReF from 11.2 for r = (r,). We want to consider its preimage
under the composite

< ~ ~ v
Y, X gz (Z)"" @0 F) = Z,"" @0 F —> Grly”" @oF (14.2)

(here the auxiliary integer N is chosen sufficiently large so that Proposition 9.7 applies).
To do this we need to show the composite is flat. As the first map is an isomorphism by
Proposition 11.3, and Gy is a smooth and irreducible group scheme, this composite is
smooth with irreducible fibres. Smooth morphisms are flat so the pull-back of cycles
is well defined and we obtain

(3 "8 = 3 n oty
A

where Y2M Mg Genotes the preimage of M_,,,, ® F. These are identities of dim Gy +
>, dim G/ P, -dimensional cycles. Theorem 12.1 shows that

vH ~<h,N w.flag
Y, Xzzgh Z5 — Y, ,
. - ~ flz .
from which we conclude that [Y ’2‘ X ,<h szh’N 1< [Y2“ 8] ag cycles. We also point out
2

that since each M3 ® o I is irreducible and generically reduced (see Proposition 7.2) the

sameis trueof M_,, > @@ F. The same is then also true of sz 3¢ Gnce (14.2) is smooth
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with irreducible fibres. In particular, this implies the inequality [75 X

~<h,N
szh Z2_ ] S

[Y2M ’ﬂag] is an equality when p = . Asa consequence

- S<h — S<h
[Yh X gz ZzMN < > n( wIY; X gz Z;M N (14.3)
A

as dimGy + ), dim G/P, -dimensional cycles inside the scheme Yth X

AN
(Z2 R0 F).
The next goal is to descend this identity to an inequality of cycles in Spec Rz @@ F.

<h
ZZ

For this we recall the projective Rz-scheme L%h introduced in Construction 10.8.
The morphism ,C%h Qo F — th Qe F is clearly formally smooth, with relative

dimension d? = 4 arising from the framing variables in R5. Pulling back the previous
inequality along

(szh R0 ]F) Xzzgh th’N — (th R0 IE‘) Xzzgh 22§h’N

(being a formally smooth morphism between Noetherian schemes, this map is flat and
so the pull-back is defined) gives an inequality

= =<h, —h S<h,
(L5 X gz Zz"N <> T nin wILy X gz Z;"N)
)
where Z% = E% ®o F for E% the preimage of Yz" in L%h (constructed just as in
the proof of Lemma 10.9). This is an identity of d*> 4+ dim Gy + >, dimG/P,, -
dimensional cycles. Since the morphism E%h X < (Z5"N @0 F) — E%h isa G-
2

torsor (in particular smooth, surjective, and of relative dimension dim Gy ) it follows
that

[£51< Y n(h, wIL]
A

asd*+ Y  dim G/ P,.-dimensional cycles inside L’%h. Recall that the projective mor-
phism ® : E;h — Spec Rz becomes a closed immersion after inverting p and this
closed immersion identifies E%[%] = Spec R%"l[%]. This was discussed in the proof
of Lemma 10.9. Since the Rg’l are O-flat, an application of Lemma 3.3 shows that

©.[L5] = [Spec RY" @0 F]

Therefore, pushing forward the previous inequality of cycles gives

[Spec RE! @0 F] < > n(x, w[Spec k' @0 F]
A
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now as d”+ > dim G/ P,-dimensional cycles inside Spec Rz ®o F. Proposition 13.6
then gives that n(x, u) > m(A, i, 1). Combining Lemma 13.3 and Proposition 6.6
shows that this must be an equality. The theorem follows. O

15 Miscellany

Let X and ) be algebraic stacks of finite type over a field k and let f : X — )V be a
morphism of stacks.

Lemma 15.1 If, for A any local finite k-algebra, the induced functor X (A) — Y (A):

(1) is fully faithful then f is a monomorphism (which by our definition implies being
representable by algebraic spaces and separated).
(2) is an equivalence then X — ) is an isomorphism.

Proof First we prove (2) under the additional assumption that f is representable by
algebraic spaces. Then, by choosing a smooth surjection U — ) with U an algebraic
space, we can assume that X’ and ) are algebraic spaces. With this reduction the
argument given in [21, 7.2.4] goes through with schemes replaced by algebraic spaces.
Indeed, by [26, OAPP] this morphism is smooth and quasi-finite, and hence étale. By
[26, 05W1] the diagonal X — X xy & is an open immersion. Since it is surjective
on finite type points it is an isomorphism and so X — ) is a monomorphism. By [26,
05W5] it is an open immersion, and so an isomorphism, again by surjectivity on finite
type points.

Now we prove (1). By [26, 04XS] the diagonal Ay : X — X xy X is repre-
sentable by algebraic spaces. Full faithfulness of f on A-valued points implies that
A is an equivalence on such points. Therefore the first paragraph implies A ¢ is an
isomorphism. From [26, 04ZZ] we obtain (1).

To finish the proof of (2) note that by (1) we have f representable by algebraic
spaces. O

Corollary 15.2 Suppose Z is a closed substack of ) and that for every morphism
Spec A — X, with A any local finite k-algebra, the composite Spec A — X — )Y
factors through Z. Then X — Y factors through Z.

Proof This follow since by Lemma 15.1 the map X — X xy Z is an isomorphism.
O
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