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Abstract
We consider closed subschemes in the affine grassmannian obtained by degenerating
e-fold products of flag varieties, embedded via a tuple of dominant cocharacters.
For G = GL2, and cocharacters small relative to the characteristic, we relate the
cycles of these degenerations to the representation theory of G. We then show that
these degenerations smoothly model the geometry of (the special fibre of) low weight
crystalline subspaces inside the Emerton–Gee stack classifying p-adic representations
of the Galois group of a finite extension ofQp. As an application we prove new cases
of the Breuil–Mézard conjecture in dimension two.
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1 Introduction

Overview

Let K be a finite extension ofQp with residue field k and let Xd denote the Emerton–
Gee stack classifying d-dimensional p-adic representations of GK . Inside Xd there
are closed substacks Xμ,τ

d classifying potentially crystalline representations of type
(μ, τ), for μ and τ respectively Hodge and inertial types. When μ is regular (i.e.
consists of distinct integers) these closed substacks have maximal dimension and the
Breuil–Mézard conjecture [4, 5, 7] predicts the existence of top dimensional cycles
Cλ in the special fibre X d such that

[Xμ,τ

d ] =
∑

λ

m(λ, μ, τ)Cλ (1.1)

where

• λ runs over irreducible Fp-representations of GLd(k).
• m(λ, μ, τ) denotes the multiplicity with which λ appears in an explicit F-
representation V (μ, τ) of GLd(k) attached to μ and τ .

(there is also a version of the conjecture for substacks of potentially semistable rep-
resentations; the conjecture has the same shape but with altered V (μ, τ)). These
identities have been verified in only a small number of cases:

(1) When K = Qp and d = 2, using the p-adic Langlands correspondence. See [14,
18, 23, 25, 27].

(2) When d = 2 and μ = (1, 0), as consequence of certain modularity lifting theo-
rems. See [10].

(3) When K is unramified overQp, d is arbitrary, and both p and τ are generic relative
to μ. See [21]. Again modularity lifting technique play an important role.

In this paperwe constructBreuil–Mézard identities in a fourth setting:we are interested
in the two dimensional case where τ = 1 (i.e. we consider only crystalline rather than
potentially crystalline representations) and μ is bounded so that the representation
theory of GL2(k) in the conjecture behaves as it does in characteristic zero. We do
this by constructing analogous identities involving certain degenerations of products
of flag varieties embedded in the affine grassmannian, and then relating the geometry

of these degenerations to the geometry of the X λ,1
d .
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Main result

First we describe a bound on the Hodge types considered above, which is natural in
the sense that the GLd(k)-representation theory appearing in the conjecture changes
markedly once the bound is passed. Recall that a Hodge type μ consists of a d-tuple
of integers

μκ = (μκ,1 ≥ · · · ≥ μκ,d)

for each embedding κ : K → Qp. If one assumes that

∑

κ|k=κ0

μκ,1 − μκ,d ≤ e + p − 1 (1.2)

for each embedding κ0 : k ↪→ Fp then:

• V (μ, 1) is a tensor product over the embeddings κ of representations of highest
weight μκ and the Jordan–Holder factors of this tensor product are computed in
characteristic p just as they are in characteristic zero, by Littlewood–Richardson
coefficients.

• Each Jordan–Holder factor λ of V (μ, 1) can be written as V (̃λ, 1) for some Hodge
type λ̃ uniquely determined up to an ordering of the embeddings κ .

In particular, the cycles Cλ appearing in (1.1) for these smallμ are uniquely determined

by the conjectured identity forμ = λ̃; one has [X λ̃

d ] = Cλ. Thus, the following theorem
establishes new cases of the conjecture:

Theorem 1.3 Assume that d = 2, p > 2, μ is regular, and that

∑

κ|k=κ0

μκ,1 − μκ,d ≤ p

for each embedding κ0 : k → Fp. Then

[Xμ,1
2 ] =

∑

λ

m(λ, μ, 1)[X λ̃,1
2 ] (1.4)

There are some comments to make before we discuss what goes into the proof.
Firstly, the theorem has two clear limitations: the assumption that d = 2 and the fact
that the bound on μ is stronger than that in (1.2) (we have no expectation whatever
that the methods in this paper apply beyond (1.2)).

As we explain in more detail below, the proof of the theorem has two key inputs.

The first involves relating the Xμ,1
d with certain local models we define inside the

affine grassmannian. This can be done without any restriction on d but our current
argument requires the stronger bound on μ. The second key input is a lower bound
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on the Breuil–Mézard identities which has been established when d = 2 using global
techniques from [10] (this is also where the assumption p > 2 appears).

Finally, taking λ̃ = μ shows that the cycle [X λ̃

2] is independent of the choice of
“lift” λ̃ of λ. We also show that each of these cycles consists of a single irreducible
component.

Method

The proof of the theorem divides into three parts:

Part 1: local models in the affine grassmannian

The starting point of the proof is the construction of certain projective schemes whose
special fibres give upper bounds on the multiplicities appearing in Theorem 1.3. To
explain their construction we fix a sufficiently large extension E of Qp, with ring of
integersO and residue field F, and consider a mixed characteristic version of the affine
grassmannian GrO over O whose special and generic fibres are given by

GrO ⊗OF ∼=
∏

κ0:k→F

Gr⊗OK ,κ0k, GrO ⊗OE ∼=
∏

κ:K→E

Gr⊗OK ,κE

Here κ0 and κ are embeddings and Gr is the affine grassmannian over OK whose A
points, for A a p-adically complete OK -algebra, classify rank d-projective A[[u]]-
modules satisfying

(u − π)a A[[u]]d ⊂ E ⊂ (u − π)−a A[[u]]d

for some a ∈ Z≥0 and π ∈ K a fixed choice of uniformiser. For each dominant
cocharacter λ ofG = GLd there is a closed immersion of the flag varietyG/Pλ → Gr
(Pλ ⊂ G being the parabolic corresponding to λ). This allows us to define, for any
Hodge type μ = (μκ), an O-flat closed subscheme Mμ in GrO by taking the closure
in GrO of

∏

κ

(G/Pμκ ⊗OK ,κ E) ↪→
∏

κ

(Gr⊗OK ,κE) = GrO ⊗OE

The following summarises the key results we prove regarding these Mμ’s

Proposition 1.5 Assume that μ is regular.

(1) If μ satisfies (1.2) then there exist n(λ, μ) ∈ Z such that in the group of∑
κ dimG/Pμκ -dimensional cycles

[Mμ ⊗O F] =
∑

λ

n(λ, μ)[Mλ̃ ⊗O F]
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with the sum running those irreducible GLd(k)-representations for which the
Hodge type λ̃ also satisfies (1.2).

(2) If d = 2 then the Mλ̃ ⊗O F appearing in (1) are irreducible, generically reduced,
and produce pairwise distinct cycles. In particular, n(λ, μ) ≥ 0 in this case.

(3) If, for every λ, one has n(λ, μ) ≥ m(λ, μ, 1) where m(λ, μ, 1) denotes the mul-
tiplicity from the Breuil–Mézard conjecture, then n(λ, μ) = m(λ, μ, 1).

The first part is proved by constructing an explicit closed locus Gr∇O ⊂ GrO defined
in terms of a differential operator ∇ (this is a variant of locus considered in [21]). A
direct computation shows that if we bound the height according to (1.2) then the result-
ing closed subscheme of Gr∇O ⊗OF consists of irreducible components of dimension
≤ dim Mμ. Furthermore, those components with maximal dimension are labelled by
the λ’s appearing in (1). One can also show that Mμ ⊗O F is contained in this closed
subscheme. From these observations we are able to prove (1).

Remark 1.6 Unfortunately, this explicit moduli interpretation is only a good topologi-
cal approximation of Mμ ⊗O F; typically the components appear with much too high
multiplicity.

Part (2) is proved by constructing an explicit resolution of X → Mλ̃ with X smooth
and which is an isomorphism on the generic fibre. Unfortunately, we do not know how
to construct such resolutions when d > 2 (or whether they are likely to exist).

For part (3) we consider the restriction of the determinant line bundle on GrO to
Mμ. Since the generic fibre of Mμ is a product of flag varieties it is easy to compute
that for

H0(Mμ ⊗O E,Ldet) =
⊗

κ

H0(μκ) ⊗K ,κ E (1.7)

where H0(μκ) denotes the algebraic representation ofG over K of highest weightμκ .
We point out that this tensor product differs from the V (μ, 1) appearing in the Breuil–
Mézard conjecture in that V (μ, 1) is obtained as the reduction modulo p of such a
tensor product, but in whichμκ is replaced byμκ −ρ for ρ = (d−1, d−2, . . . , 1, 0).
Nevertheless, these multiplicities are approximately the same, in the sense that if, in
the Grothendieck group of E-representations, one has

[
⊗

κ

H0(μκ − ρ) ⊗K ,κ E

]
=

∑

λ

m(λ, μ)

[
⊗

κ

H0(̃λκ − ρ) ⊗K ,κ E

]

then, for n > 0,

dim

(
⊗

κ

H0(nμκ) ⊗K ,κ E

)
−

∑

λ

m(λ, μ) dim

(
⊗

κ

H0(nλ̃κ ) ⊗K ,κ E

)

equals the value at n of a polynomial of degree < dim Mμ. Since the representations⊗
κ H0(nμκ) ⊗OK ,κ E can be obtained by replacing Ldet with L⊗n

det in (1.7), the
identity of cycles in part (1) implies that
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dim

(
⊗

κ

H0(nμκ) ⊗K ,κ E

)
−

∑

λ

n(λ, μ) dim

(
⊗

κ

H0(nλ̃κ ) ⊗K ,κ E

)

is also the value of a polynomial in n of degree< dim Mμ, at least for n >> 0. Taking
the difference shows that

∑

λ

(n(λ, μ) − m(λ, μ)) dim

(
⊗

κ

H0(nλ̃κ ) ⊗K ,κ E

)
(1.8)

is polynomail in n of degree < dim Mμ for n >> 0. For μ satisfying (1.2) the
multiplicities m(λ, μ) computed in characteristic zero coincide with the m(λ, μ, 1)
computed in characteristic p. Thus, the assumption in (3) is thatn(λ, μ)−m(λ, μ) ≥ 0.
Each term in (1.8) is a polynomial in n of degree dim Mμ and positive leading term.
Therefore we must have n(λ, μ) = m(λ, μ).

Part 2: from local models to moduli of crystalline Galois representations

The second step is to relate the Mμ’s to the geometry of Xd . The basic strategy is to
study the geometry of Xd via a resolution

Yd → Xd

with Yd a stackwhose A-points classify Breuil–Kisinmodules with A-coefficients (i.e.
projective (W (k)⊗Zp A)[[u]]-modules equipped with a semilinear endomorphism ϕ).
A local version of this construction was first made in [19] (with Xd replaced by Spec
of a deformation ring) and its globalisation to stacks first appeared in [24], before
being built upon in [7].

In our case, we takeYd as the stack classifying pairs (M, σ )withM a rank d Breuil–
Kisin module and σ a ϕ-equivariant action of GK on M ⊗W (k)[[u]] Ainf satisfying a
“crystalline” condition (which means that σ − 1 is sufficiently divisible). Inside Yd
there are Zp-flat closed substacks Yμ

d whose O-valued points correspond to Breuil–
Kisin modules associated to crystalline representations of Hodge type μ whenever
O is the ring of integers in a finite extension of Qp. Then Xμ,1

d is, by definition, the
scheme theoretic image of the morphism Yμ

d → Xd .
To relate Yd to the affine grassmannian we use the following diagram:

Yd

←− Ỹd

�−→ GrO (1.9)

Here Ỹd classifies Breuil–Kisin modules in Yd together with a choice of basis (to stay
in the world of finite type stacks this basis is taken modulo uN for N >> 0) and,
using this choice of basis, the morphism � takes a Breuil–Kisin module M to the
relative position ofM and its image of Frobenius. The morphism 
 forgets this choice
of basis. The key result we prove is then
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Proposition 1.10 (1) If μ satisfies the bound from Theorem 1.3 then the restriction
of Ỹd → GrO to Ỹμ

d ⊗O F (for Ỹμ
d the preimage of Yμ

d in Ỹd ) factors through
M−w0μ ⊗O F for w0 ∈ W the longest element.

(2) For such μ, the morphism Ỹd → GrO is smooth over Mμ ⊗O F with irreducible
fibres of dimension equal the relative dimension of Ỹd → Yd .

To prove (1) it suffices to show this factorisation for A-points for every finite F-
algebra A. For simplicity, we sketch the argument only in the case where A = F. The
general case requires only minor technical changes. We also assume k = Fp as this
greatly simplifies the notation. If e = 1 then Mμ = G/Pμ is just a single flag variety

and the claimed factorisation comes down to showing that for any M ∈ Yμ,1
d (A) and

any basis β the module M is generated by

ϕ(β)g

⎛

⎜⎝
u−μ1

. . .

u−μd

⎞

⎟⎠

for some g ∈ GLd(A). This follows from results in [11] where it is shown, for any lift
of M to M ∈ Yμ

d (A), with A the ring of integers in a finite extension of E , and any
basis β that (u − π)pM is generated by

ϕ(β)g

⎡

⎢⎣

⎛

⎜⎝
(u − π)p−μ1

. . .

(u − π)p−μd

⎞

⎟⎠ + Xerr

⎤

⎥⎦

for a matrix Xerr divisible by a power of π p−μ1+μd+1 and g ∈ GLd(A). Here π ∈ K
is a fixed uniformiser. This result does not directly extend to the case e > 1. However,
a variant of the method is able to show that, for each embedding κ : K → E , the
module Mϕ ∩ (u − κ(π))pM can be generated by

ϕ(β)gκ

⎡

⎢⎣

⎛

⎜⎝
(u − κ(π))p−μκ,1

. . .

(u − κ(π))p−μκ,d

⎞

⎟⎠ + Xerr,κ

⎤

⎥⎦

for some gκ ∈ GLd(A) and Xerr,κ a matrix divisible by π p−μκ,1+μκ,d+1. This was
done in [12] (actually they only consider the case d = 2 but it is straightforward to
extend their arguments to higher dimensions). If the Xerr,κ ’s are divisible by a high
enough power of π then it follows that

∏

κ

(u − κ(π))pM =
⋂(

Mϕ ∩ (u − κ(π))pM
)
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is congruent modulo π to the intersection of the submodules generated by

ϕ(β)gκ

⎛

⎜⎝
(u − κ(π))p−μκ,1

. . .

(u − κ(π))p−μκ,d

⎞

⎟⎠

This sufficient divisibility is ensured by the bound onμ fromTheorem1.3 and this con-
gruence is precisely what it means ofM to bemapped onto an element ofM−w0μ⊗OF

by �.
For the proof of (2) we factor the morphism � as Ỹd → Z̃d → GrO where

Z̃d denotes the moduli stack of Breuil–Kisin modules (without a crystalline Galois
action) and Ỹd → Z̃d forgets the Galois action. An easy calculation shows that over
the special fibre Z̃d → GrO is smooth with irreducible fibres of dimension equal
the relative dimension of Ỹd → Yd . Part (2) therefore reduces to understanding when
Ỹd → Z̃d is an isomorphism. To address this we note that for any Breuil–Kisinmodule
M with basis β we can define a naive Galois action σnaive,β on M by semilinearly
extending the trivial GK -action on ϕ(β). Usually σnaive,β will not be ϕ-equivariant
or crystalline. However, we show that if σnaive,β − 1 is suitably divisible and if M
satisfies height conditions imposed by (1.2) (actually a very slight strengthening of
this bound is required to avoid certain “Steinberg” situations) then

limn→∞ ϕn ◦ σnaive,β ◦ ϕ−n

converges to a unique ϕ-equivariant crystallineGK -action. It turns out that the locus of
Z̃d onwhich σnaive,β −1 is sufficiently divisible is closed, and obtained as the preimage
of a closed subscheme in GrO. Part (2) is then proved by showing that Mμ ⊗O F is
contained in this closed subscheme.

Part 3: upper and lower multiplicity bounds

The final ingredient which goes into the proof of Theorem 1.3 is a lower bound on the
multiplicities appearing in the Breuil–Mézard conjecture. The is themost critical place
where we require d = 2. It is also where we use that p > 2. Under these assumptions
it is shown in [7, 8.6] (using global automorphy lifting techniques from [10]) that one
always has

[Xμ,τ

2 ] ≥
∑

λ

m(λ, μ, τ)Cλ

This holds without any assumption on μ or τ . Combining [10] with the potential

diagaonalisability established in [1] one also obtains that Cλ = [X λ̃,1
2 ] so long as λ

is not Steinberg (for d = 2 this means λ is not a twist of
⊗

κ0:k→F
Sym p−1 F2). The

bounds on μ ensure Steinberg λ do not appear in Theorem 1.3 (except if K/Qp is
unramified, but in this case the theorem is trivial). Therefore, for μ as in Theorem 1.3,
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we have

[Xμ,1
2 ] ≥

∑

λ

m(λ, μ, 1)[X λ̃,1
2 ]

Tofinish the proofwe have to show that the results fromparts 1. and 2. can be combined
to give equality.

First we consider the identity [Mμ ⊗O F] = ∑
λ n(λ, μ)[Mλ̃ ⊗O F] from Proposi-

tion 1.5. Applying an involution of GrO which sends a lattice onto its dual allows us
to replace μ and each λ̃ in this identity with −w0μ and −w0̃λ. Thus

[M−w0μ ⊗O F] =
∑

λ

n(λ, μ)[M−w0λ̃
⊗O F]

Part (2) of Proposition 1.10 ensures Ỹ2 → GrO is smooth over the closed subschemes
appearing in this identity of cycles. This allows us to pull the identity back to Ỹd to
obtain

[Yμ,flag
2 ] =

∑

λ

n(λ, μ)[Y λ̃,flag
2 ]

where Yμ,flag
2 equals the preimage of M−w0μ ⊗O F under this map. Part (1) of Propo-

sition 1.10 (together with a dimension comparison) implies [Ỹμ
d ⊗O F] ≤ [Yμ,flag

2 ].
Using part (2) of Proposition 1.5 we are even able to deduce this is an equality when
μ = λ̃. Therefore

[Ỹμ
2 ⊗O F] ≤

∑

λ

n(λ, μ)[Ỹ λ̃
2 ⊗O F]

Since Ỹd → Yd is smooth and surjective it follows that also

[Yμ
2 ⊗O F] ≤

∑

λ

n(λ, μ)[Y λ̃
2 ⊗O F]

Pushing this identity forward along the proper morphism Y2 → X2 gives an inequality

[Xμ

2 ] ≤ ∑
λ n(λ, μ)[X λ̃

2]. Combining this with the lower bound we obtain n(λ, μ) ≥
m(λ, μ, 1). By part (3) of Proposition 1.5 this must be an equality, which proves
Theorem 1.3. Actually, in the paper we follow the same argument, but for the final
step we prefer to work with deformation rings rather than X 2. This allows us to avoid
dealing with stacks. As explained in [7, 8.3], Theorem 1.3 is implied by its analogue
in the setting of deformation rings.
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2 Notation

2.1 We fix a finite extension K of Qp with residue field k of degree f over Fp and
ramification degree e. LetC denote the completed algebraic closure of K , with ring of
integersOC , and fix a compatible system π1/p∞

of p-th power roots of a fixed choice
of uniformiser π ∈ K in OC . Set K∞ = K (π1/p∞

). Write E(u) ∈ W (k)[u] for the
minimal polynomial of π . Thus E(u) is Eisenstein of degree equal to the ramification
degree e of K over Qp.

We also fix another finite extension E of Qp with ring of integers O and residue
field F. We assume that E contains a Galois closure of K . We typically use κ and
κ0 respectively to denote embeddings K → E and k → F. For each κ0 we fix an
embedding κ̃0 : K → E with κ̃0|k = κ0.

2.2 For any Zp-algebra A we writeSA = (W (k)⊗Zp A)[[u]]. This comes equipped
with the A-linear endomorphism ϕ which on W (k) acts as the lift of the p-th power
map on k and sends u �→ u p. We also consider

Ainf,A = lim←−
a

lim←−
i

(W (OC
 )/pa ⊗Zp A)/ui

where OC
 = lim←−x �→x p OC/p and u = [(π, π1/p, π1/p2 , . . .)] ∈ W (OC
 ). We view
Ainf,A as an SA-algebra via u. Note that the lift of Frobenius on W (OC
 ) induces a
Frobenius ϕ on Ainf,A which is compatible with that on SA. The natural GK -action
on OC also induces a continuous (for the (u, p)-adic topology) GK -action on Ainf,A
commuting with ϕ. Write

W (C
)A = lim←−
a

Ainf,A[ 1u ]/pa

If A is topologically of finite type (i.e. A ⊗Zp Fp is of finite type) thenSA → Ainf,A
is faithfully flat (in particular injective) [7, 2.2.13].

We also fix a compatible system (1, ε1, ε2, . . .) of p-th power roots of unity inOC

which we view as an element ε ∈ OC
 . We write μ = [ε] − 1 ∈ Ainf,A.

Lemma 2.3 Let � : Ainf → OC denote the surjection given by
∑

pi xi �→ ∑
pi x (0)

i

with xi = [(x ( j)
i ) j≥1] and extend this to a surjection Ainf,O → O ⊗Zp OC . Then

μAinf,O = {x ∈ Ainf,O | �(ϕn(x)) = 0 for all n ≥ 0}

Proof By choosing a Zp-basis of O this follows immediately from the assertion that
μAinf = {x ∈ Ainf | �(ϕn(x)) = 0 for all n ≥ 0} which is [8, 5.1.3]. ��
2.4 We frequently consider modules as in 2.2 defined over O ⊗Zp W (k) for an O-
algebra A. Using the isomorphism

O ⊗Zp W (k)
∼−→

∏

κ0:k→F

O ∼=
∏

κ0

O ⊗W (k),κ0 W (k)
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given by a ⊗ b �→ (aκ0(b))κ0 (here we write κ0 to its extension to an embedding
W (k) → O) we see that any such module M can be expressed as a product

M =
∏

κ0

Mκ0

where Mκ0 can be identifies with the submodule of M on which the two actions of
W (k) given by (1 ⊗ a)m and a �→ (κ0(a) ⊗ 1)m coincide. Similarly, there is an
isomorphism

E ⊗Zp OK
∼−→

∏

κ:K→E

E ∼=
∏

κ

E ⊗OK ,κ OK (2.5)

given by a ⊗ b �→ (κ(b)a)κ which allows us to write an E ⊗Zp OK -module M as

M =
∏

κ

Mκ

where again Mκ can be identified with the submodule consisting of m ∈ M with
(1 ⊗ a)m = (κ(a) ⊗ 1)m for all a ∈ OK . We warn the reader that the idempotents
in (2.5) will not be contained in O ⊗Zp OK whenever K/Qp is ramifies and so
the product decomposition M = ∏

κ Mκ is not valid integrally, i.e. when M is an
O ⊗Zp OK -module.

2.6 Applying the previous discussion to (A ⊗Zp W (k))[u] allows us to write

(A ⊗Zp W (k))[u] =
∏

κ0

A[u]

Using this identification we define Eκ(u) ∈ (A ⊗Zp W (k))[u] for every embedding
κ : K → E as the element corresponding to

(1, . . . , 1, u − πκ, 1, . . . , 1) ∈
∏

κ0

A[u]

where πκ := κ(π) and the u − πκ appears in the κ|k-th factor in the product. Notice
that E(u) = ∏

κ Eκ(u) inside (A ⊗Zp W (k))[u].

3 Cycles

3.1 For a Noetherian scheme X let Zm(X) denote the free abelian group generated
by integral closed subschemes Z ⊂ X of dimension m. If F is a coherent sheaf on X
with support of dimension ≤ m then we define

[F] =
∑

Z

lengthOX ,ξ
(Fξ )[Z ] ∈ Zm(X)
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for ξ ∈ Z the generic point. If i : Y → X is a closed immersion write [Y ] = [i∗OY ].
Any flat morphism f : X → Y of relative dimension d produces a homomorphism
f ∗ : Zm(Y ) → Zm+d(X) with f ∗[F] = [ f ∗F]. See [26, 02RE]. If instead f is
proper then there is a pushforward homomorphism f∗ : Zm(X) → Zm(Y ) with
f∗[F] = [ f∗F]. See [26, 02R6].
Lemma 3.2 Let X be a projective scheme over k equipped with an ample line bundle
L. Suppose that Y ,Y1, . . . ,Ys are m-dimensional closed subschemes in X and that

[Y ] =
∑

ni [Yi ] ∈ Zm(X)

Then

dim H0(Y ,L⊗n) −
∑

ni dim H0(Yi ,L⊗n)

is, for large n, the value at n of a polynomial of degree < m.

Proof This follows from [26, 0BEN] and the fact that, since L is ample, the higher
cohomologies of L⊗n vanish for n >> 0 [26, 0B5U]. ��
Lemma 3.3 Suppose that f : X → Y is a proper morphism between equidimensional
flat O-schemes which becomes an isomorphism after applying ⊗OE. Suppose ZX ⊂
X , ZY ⊂ Y areO-flat top dimensional closed subschemes for which f restricts to an
isomorphism

f : ZX ⊗O E
∼−→ ZY ⊗O E

Then f∗[ZX ⊗O F] = [ZY ⊗O F].
Proof Let Am(X) denote the quotient of Zm(X) by rational equivalence. Since X is
O-flat there is a specialisation homomorphism

σX : Am(X ⊗O E) → Am(X ⊗O F)

with σX ([ZX ⊗O E]) = [ZX ⊗O F] whenever ZX ⊂ X is a closedO-flat subscheme
of relative dimensionm. Furthermore σX commutes with proper pushforward. All this
is explained in [9, 20.3].

If m = dim X then Am(X) = Zm(X) by [9, 1.3.2]. Therefore, the two stated
properties of the specialisation map give

f∗[ZX ⊗O F] = f∗σX ([ZX ⊗O E]) = σY ( f∗[ZX ⊗O E])
= σY ([ZY ⊗O E]) = [ZY ⊗O F]

in Zdim Y⊗OF(Y ⊗O F). ��
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4 Local models

4.1 We begin by defining an ind-scheme Gr over OK whose A-points classify rank
d-projective A[u]-modules satisfying

(u − π)a A[u]d ⊂ E ⊂
∏

(u − π)−a A[u]d (4.2)

for some a ≥ 0. For each κ0 : k → F, which we extend to an embedding W (k) →
O, we also define Grκ0 as the ind-scheme over O whose A-points classify rank d-
projective A[u]-modules satisfying

κ0(E(u))a A[u]d ⊂ E ⊂
∏

κ0(E(u))−a A[u]d

for some a ≥ 0.
Note that, for each κ : K → E , we can view an A-valued point of Gr⊗OK ,κO

as a rank d projective A[u]-module satisfying (u − κ(π))a A[u]d ⊂ E ⊂ (u −
κ(π))−a A[u]d for some a ≥ 0. Therefore, if κ|k = κ0 then there is a natural closed
embedding

Gr⊗OK ,κO → Grκ0

Remark 4.3 Recall that an A[u]-submodule as in (4.2) is A[u]-projective of rank d
if and only if (u − π)−a A[u]d/E is A-projective. In particular, this illustrates the
ind-representability of the functor; the locus of E as in (4.2) identifies with a closed
subscheme of the usual grassmannian classifying submodules of (u−π)−a A[u]d/(u−
π)a A[u]d .
4.4 Write X(T ) for the group of characters of GLd relative to T , the diagonal torus,
and identify X(T ) = Zd as usual. We say an element μ = (μ1, . . . , μd) ∈ X(T )

is dominant if μi ≥ μi+1 and for any such dominant μ we write Eμ ∈ GrK for the
OK -point generated by

(e1, . . . , ed)

⎛

⎜⎝
(u − π)μ1

. . .

(u − π)μd

⎞

⎟⎠

for (e1, . . . , ed) the standard basis inOK [u]d . There is an obvious action of G = GLd

on Gr and, since the stabiliser of Eμ under this action is a parabolic subgroup Pμ ⊂ G,
the orbit map induces a proper monomorphism

G/Pμ → Gr

i.e. a closed immersion. Notice that if μi ≥ μi+1 then Pμ is the opposite Borel of
lower triangular matrices.
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An alternative description of G/Pμ → Gr can be given after interpreting A-points
of G/Pμ as filtrations

. . . ⊂ Filn+1 ⊂ Filn ⊂ Filn−1 ⊂ . . .

of type μ on Ad (which means the n-th graded piece is A-projective of rank equal to
the multiplicity of −n in μ). Then on A-points the closed immersion G/Pλ → Gr is
given by

Fil• �→
∑

i≥μd

(u − π)i A[u]Fil−i

where we view Ad as a submodule of A[u]d in the obvious way.

Lemma 4.5 If A is a p-adically complete O-algebra then Gr identifies with the set of
rank d projective A[[u]]-modules satisfying

(u − π)a A[[u]] ⊂ E ⊂ (u − π)−a A[[u]]

for some a ≥ 0. Similarly, for each Grκ0 .

Proof This follows from the Beauville–Laszlo gluing lemma [3]. ��
Lemma 4.6 For each κ0 : k → F there is an isomorphism

Grκ0 ⊗OE →
∏

κ|k=κ0

(
Gr⊗OK ,κE

)

with inverse given by (Eκ) �→ ⋂
κ|k=κ0

Eκ .

Proof Let U ⊂ A1
A denote the open obtained by inverting κ0(E(u)) and write Uκ ⊂

A1
A for the open obtained by inverting (u − κ ′(π)) for each κ ′ �= κ with κ ′|k = κ0.

Then U = ⋂
Uκ and if A is an E-algebra then the Uκ form an open cover of A1

A.
Note that an A-valued point of Grκ0 is the same thing as a rank d vector bundle on

A1
A which is trivial over U while an A-valued point of Gr⊗OK ,κO is likewise vector

bundle trivial over
⋃

κ ′ �=κ Uκ .
The map in the lemma can therefore be expressed as E �→ (Eκ) where Eκ is the

vector bundle obtained by glueing E |Uκ with the trivial bundle on
⋃

κ ′ �=κ Uκ ′ . The
inverse of this map sends (Eκ) onto the vector bundle obtained by glueing the Eκ |Uκ .
Concretely, this glueing corresponds to taking the intersection of each of the Eκ ’s
which gives the lemma. ��
4.7 Wedefine one last ind-schemeGrO whose A-points nowclassify rankd projective
(A ⊗Zp W (k))[u]-modules satisfying

E(u)a(A ⊗Zp W (k))[u]d ⊂ E ⊂ E(u)−a(A ⊗Zp W (k))[u]d
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for some a ≥ 0. From 2.4 we see that

GrO ∼=
∏

κ0

Grκ0

Lemma 4.6 implies that the generic fibre of GrO identifieswith
∏

κ

(
Gr⊗OK ,κE

)
with

the product running over all embeddings κ : K → E . Note also that the analogue
of Lemma 4.5 applies to GrO and identifies its points valued in p-adically complete
O-algebras A with rank d projective SA-modules satisfying

E(u)aSd
A ⊂ E ⊂ E(u)−aSd

A

Definition 4.8 Letμ = (μκ) be aHodge type, i.e. a collection of dominantμκ ∈ X(T )

indexed by embeddings κ : K → E . Then we define Mμ as the closure in GrO of

∏

κ

(G/Pμκ ⊗OK ,κ E) ↪→
∏

κ

(
Gr⊗OK ,κE

) ∼= GrO ⊗OE

Lemma 4.9 Let μ be a Hodge type and suppose nκ ≥ 0 so that μκ,d ≥ −nκ for every
κ .

(1) Let A be an E-algebra. Then E ∈ GrO(A) is contained in Mμ if and only if there
are filtrations Fil•κ on Ad of type μκ so that

(
∏

κ

Eκ(u)nκ

)
E =

⋂

κ

⎛

⎝
∑

i≥μκ,d+nκ

Eκ(u)i+nκ (A ⊗Zp W (k))[u]Fil−i
κ

⎞

⎠

(recall the elements Eκ(u) from 2.4).
(2) Let A be a Noetherian O-algebra and suppose there are A-submodules

. . . ⊂ Fili+1
κ ⊂ Filiκ ⊂ Fili−1

κ ⊂ . . . ⊂ Ad

for each κ such that Filiκ /Fili+1
κ becomes A[ 1p ]-projective of constant rank after

inverting p. If E ∈ Gr(A), when viewed as an SA-module, can be expressed as

(
∏

κ

Eκ(u)nκ

)
E =

⋂

κ

⎛

⎝
∑

i≥μκ,d+nκ

Eκ(u)i+nκSA Fil
−i
κ

⎞

⎠

then E ∈ Mμ(A) for μκ the type of Filκ [ 1p ]•.
(3) If A is the ring of integers in a finite extension of E then every A-valued point of

Mμ is as in (2).

Proof Note that multiplication by
(∏

κ Eκ(u)nκ
)
identifies Mμ with Mμ′ for μ′

κ =
μκ + (nκ). Thus we can assume nκ = 0 throughout.
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For (1) we first decompose E = ∏
κ0
Eκ0 ∈ ∏

κ0
Grκ0 according to the action of

W (k). ThenLemma4.6 and the description ofG/Pμκ ↪→ Gr from4.4 impliesE ∈ Mμ

if and only if, for each κ0,

Eκ0 =
⋂

κκ|k=κ0

⎛

⎝
∑

i≥λd

(u − κ(π))i A[u]Fil−i
κ

⎞

⎠

for filtrations Fil•κ on Ad of type μκ . Since λd ≥ 0 we have Eκ0 ⊂ A[u]d for each κ0
and so

E =
⋂

κ0

⎛

⎜⎝A[u]d × · · · × A[u]d × Eκ0︸︷︷︸
κ0-th position

×A[u]d × . . . × A[u]d
⎞

⎟⎠

Thus, to prove (1) we just need to identify the κ0-th term inside this intersection with
⋂

κκ|k=κ0

(∑
i≥μκ,d

Eκ(u)i (A ⊗Zp W (k))[u]Fil−i
κ

)
. This is clear since Eκ(u) corre-

sponds to (1, . . . , 1, (u−κ(π)), 1, . . . , 1) under the identification (O⊗Zp W (k))[u] ∼=∏
κ0

A[u].
For part (2) we use that A is Noetherian to ensure (A⊗Zp W (k))[u] → SA is flat.

Thus ⊗(A⊗ZpW (k))[u]SA commutes with finite intersections and so

E =
⎛

⎝
⋂

κ

⎛

⎝
∑

i≥μκ,d

Eκ(u)i+n(A ⊗Zp W (k))[u]Fil−i
κ

⎞

⎠

⎞

⎠ ⊗(A⊗ZpW (k))[u] SA

As a consequence of (1) it follows that E[ 1p ] ∈ Mμ and so E ∈ Mμ also.
Part (3) relies on the fact that, for A as in the proposition, being A-projective

is equivalent to being p-torsion free and finitely generated. Applying (1) to E[ 1p ]
produces filtrations on A[ 1p ]d for each κ . If Filiκ denotes the intersection of this

filtration with Ad then the graded pieces are p-torsionfree. This is equivalent

to asking that each Sd
A/

(∑
i≥μκ,d

Ei j (u)i+nSA Fil−i
κ

)
is p-torsionfree. Therefore

Sd
A/

⋂
κ

(∑
i≥μκ,d

Ei j (u)i+nSA Fil−i
κ

)
is also p-torsionfree, and so

E ′ =
⋂

κ

⎛

⎝
∑

i≥μκ,d

Ei j (u)i+nSA Fil
−i
κ

⎞

⎠

is SA-projective and E ′ ∈ GrO. Since E ′[ 1p ] = E[ 1p ] the valuative criterion for
properness implies E ′ = E . ��
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5 Cohomology

5.1 Recall G = GLd viewed as an algebraic group over OK . Let λ ∈ X(T ) be
dominant and set

. . . ⊂ Filn+1 ⊂ Filn ⊂ Filn−1 ⊂ . . . ⊂ Od
G/Pλ

equal to the universal filtration on G/Pλ of type λ. Then

L(λ) :=
⊗

n

det(Fil−n /Fil−n+1)⊗n

is a G-equivariant line bundle on G/Pλ and H0(G/Pλ,L(λ)⊗n) can be viewed as an
algebraic representation of G on a flat OK -module.

Lemma 5.2 If λ = (λ1, . . . , λd) ∈ X(T ) is such that λi > λi+1 and n ≥ 1 then

H0(nλ) := H0(G/Pλ,L(λ)⊗n) ⊗OK K

is the unique irreducible algebraic representation of G over K with highest weight
nλ.

Proof It follows from [15, I.5.12] that

H0(G/Pλ,L(λ)⊗n) ⊗OK K = IndGPλ
(λ∗(n))

where λ∗(n) is the character through which T acts on the fibre of L(λ) over the class
of 1 in G/Pλ. Since λi > λi+1 we have Pλ = B− the opposite Borel consisting of
lower triangular matrices and the class of 1 in G/B− is the standard filtration of type
λ, i.e. the filtration with

Fil−λi /Fil−λi+1 = Aei ⊕ . . . . . . Aed/Aei+1 ⊕ · · · ⊕ Aed

As the fibre of L(λ) over this standard filtration is

d⊗

i=1

det(Fil−λi /Fil−λi+1)⊗nλi

we see that T acts on this fibre via the character diag(a1, . . . , ad) �→ ∏
anλi
i . The

representation IndGB−(λ∗(n)) therefore has highest weight nλ by [15, II.2.2] and is
irreducible in characteristic zero by [15, II.5.6]. ��
5.3 On Gr there is an ample G-equivariant line bundle Ldet whose fibre over any
A-valued point E ∈ Gr(A) with E ⊂ (u − π)−aSd

A for a ≥ 0 is given by

det(E0/E) ⊗ det(E0/A[u]d)−1
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for any E0 ∈ Gr with E, A[u]d ⊂ E0. Note this is G-equivariantly independent of E0.
We also write Ldet for the G-equivariant ample line bundle constructed analogously
on GrO.

Lemma 5.4 The restriction of Ldet to G/Pλ inside Gr identifies G-equivariantly with
L(λ).

Proof Suppose E ∈ GrK corresponds to an A-valued point in the image of G/Pλ →
GrK . Then E = ∑

i≥λd
(u − π)i A[u]Fil−i for a filtration Fil• of type λ on Ad and so,

as A-modules, (u − π)λd A[u]/E = ⊕
i≥λd

Ad/Fil−i . Thus,

det
(
(u − π)λd A[u]/E) =

⊗

i≥λd

det(Fil−i /Fil−i+1)⊗(i−λd )

and so the fibre of Ldet over E equals

{⊗
i≥λd

det(Fil−i /Fil−i+1)⊗(i−λd ) ⊗ det((A[u]d/(u − π)λd A[u]d)) if λd ≥ 0⊗
i≥λd

det(Fil−i /Fil−i+1)⊗(i−λd ) ⊗ det(((u − π)λd A[u]d/A[u]d))−1 if λd ≤ 0

In either case, the second factor in these tensor products can be identified with⊗
i≥λd

det(Fil−i /Fil−i+1)λd , which finishes the proof. ��
Corollary 5.5 For any n > 0, there is an identification

H0(Mμ ⊗O E,L⊗n
det ) =

⊗

κ

(H0(nμκ) ⊗K ,κ E)

of G-representations.

Proof Let pκ : Mμ ⊗O E → G/Pμκ ⊗OK ,κ E be the κ-th projection. Then the
restriction of Ldet on GrO to Mμ ⊗O E coincides with

⊗
κ p∗

κ(Ldet ⊗OK ,κ E) where
Ldet here denotes the restriction to G/Pμκ of the determinant line bundle on Gr. The
Kunneth formula [26, 0BED] gives

H0(Mμ ⊗O E,L⊗n
det ) =

⊗

κ

H0(G/Pμκ ,L⊗n
det ) ⊗OK ,κ E

as G-representations. Therefore, we just have to show H0(G/Pμκ ,L⊗n
det ) ⊗OK K =

H0(nμκ) as G-representations, and this follows from Lemma 5.4. ��

6 Multiplicity bounds

6.1 The formal character of an algebraic representation V ofG on a finite dimensional
vector space is defined as

ch(V ) =
∑

λ

Vλe(λ) ∈ Z[X(T )]
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where Vλ is the λ-weight space of V and e(λ) denotes λ viewed as an element of the
group ring Z[X(T )]. This induces an isomorphism between the Grothendieck group
of such representations and Z[X(T )]W where W denotes the Weyl group of G [15,
II.5.7].

6.2 For λ ∈ X(T ) dominant recall the G-representation H0(λ) over K from 5.1.
Weyl’s character formula gives

ch(H0(λ)) = A(λ + ρ)

A(ρ)
, ρ := (d − 1, d − 2, . . . , 1, 0) ∈ X(T )

where A(λ) := ∑
w∈W det(w)e(wλ) [15, II.5.10]. If we write dim : Z[X(T )] → Z

for the map
∑

λ aλe(λ) �→ ∑
aλ then one also has

dim ch(H0(λ)) = dim H0(λ) =
∏

i> j

λ j − λi + i − j

i − j

Though here H0(λ) is defined over a field of characteristic zero, all the above goes
through with H0(λ) replaced by the representation over a field of characteristic p of
highest weight λ. What differs in characteristic p is that this highest weight represen-
tation may not be irreducible.

Lemma 6.3 Let μ1, . . . , μe ∈ X(T ) with μi − ρ dominant for each i and suppose
that

ch

(
e⊗

i=1

H0(μi − ρ)

)
=

∑

λ∈X(T )

m(λ, μ) ch H0(λ)

for m(λ, μ) ∈ Z. Then

dim

(
e⊗

i=1

H0(nμi )

)
−

∑

λ∈X(T )

m(λ, μ) dim H0(n(λ + ρ)) ch
(
H0(nρ)⊗(e−1)

)

is a polynomial in n of degree <
∑

i dimG/Pμi .

Proof Using Weyl’s character formula from 6.2 and multiplying by A(ρ)e gives∏
i A(μi ) = ∑

λ m(λ, μ)A(λ + ρ)A(ρ)e−1. Taking the image of this identity under
the endomorphism of Z[X(T )] induced by multiplication by n on X(T ) gives

∏

i

A(nμi ) =
∑

λ

m(λ, μ)A(n(λ + ρ))A(nρ)e−1

(because the formation of A commutes with this endomorphism). Dividing by A(ρ)e

then gives

∏

i

ch(H0(nμi − ρ)) =
∑

λ

m(λ, μ) ch(H0(n(λ + ρ) − ρ))
(
ch(H0(nρ − ρ))

)e−1
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The lemma therefore follows by considering dimensions and observing that the dif-
ference dim H0(nλ) − dim H0(nλ − ρ) is a polynomial in n of degree < dimG/Pλ

for any dominant λ ∈ X(T ) (use the last equation from 6.2). ��
Remark 6.4 Since K has characteristic zero each H0(λ) is irreducible.Moreover, every
irreducible G-representation is isomorphic to one such H0(λ). The observation from
6.2 that ch induces an identification between Z[X(T )] and the Grothendieck group of
G-representations shows that the integers m(λ, μ) in the previous lemma are ≥ 0 and
are uniquely determined.

Notation 6.5 Recall the fixed elements κ̃0 : K → E lifting the κ0 from 2.1. Then, for
any tuple λ = (λκ0)κ0:k→F of dominant λκ0 ∈ X(T ) write λ̃ = (̃λκ) for the Hodge
type defined by

λ̃κ =
{

λκ0 + ρ if κ = κ̃0

ρ otherwise

Proposition 6.6 Letμ be a Hodge type withμκ −ρ dominant for every κ and suppose
that

[Mμ ⊗O F] =
∑

n(λ, μ)[Mλ̃ ⊗O F]

for integers

n(λ, μ) ≥
∏

κ0

m(λκ0 , (μκ)κ|k=κ0)

Then this inequality is an equality for each λ.

Proof We apply Lemma 3.2 to the line bundle Ldet. This gives that

dim H0(Mμ,L⊗n
det ) −

∑

λ

n(λ, μ) dim H0(M λ̃,L⊗n
det )

is, for large n, equal the value at n of a polynomial of degree<
∑

κ dimG/Pμκ . Since
Mμ is O-flat the same is true of the coherent sheaf L⊗n

det . It therefore follows that the
Euler characteristic ofL⊗n

det onMμ equals the Euler characteristic ofL⊗n
det onMμ⊗O E

(see for example [20, 5.3.28]). Since Ldet is ample we conclude that

dimF H0(Mμ,L⊗n
det ) = dimE H0(Mμ ⊗O E,L⊗n

det )

for sufficiently large n. Therefore, Corollary 5.5 shows that

∏

κ

dim(H0(nμκ)) −
∑

λ=(λκ0 )

n(λ, μ)
∏

κ0

(
dim(H0(n(λκ0 + ρ))) dim(H0(nρ))e−1

)
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is also, for large n, equal the value at n of a polynomial of degree <
∑

κ dimG/Pμκ .
Set mλ = ∏

κ0
m(λκ0 , (μκ)κ|k=κ0). Lemma 6.3 gives that

∏

κ

dim(H0(nμκ)) −
∑

λ=(λκ0 )

mλ

∏

κ0

(
dim(H0(n(λκ0 + ρ))) dim(H0(nρ))e−1

)

is a polynomial of degree <
∑

κ dimG/Pμκ in n. We conclude that the dimension of

∑

λ=(λκ0 )

(n(λ, μ) − m(λ, μ))
∏

κ0

(
dim(H0(n(λκ0 + ρ))) dim(H0(nρ))e−1

)

is also polynomial of degree <
∑

κ dimG/Pμκ in n for n >> 0. Since n(λ, μ) −
m(λ, μ) ≥ 0, each term in the above sum is a polynomial inn of degree

∑
κ dimG/Pμκ

with non-negative leading term. We must therefore have n(λ, μ) = m(λ, μ) for each
λ. ��

7 Topological descriptions

7.1 Recall that for λ, λ′ ∈ X(T ) we write

λ′ ≤ λ

if λd + · · · + λi ≤ λ′
d + · · · + λ′

i for each i with equality when i = 1.

Proposition 7.2 Letμ be a Hodge type withμκ −ρ dominant for each κ . Assume that

∑

κ|k=κ0

μκ,1 − μκ,d ≤ e + p − 1

for each κ0 : k → F. Then:

(1) There are integers n(λ, μ) ∈ Z such that

[Mμ ⊗O F] =
∑

λ

n(λ, μ)[Mλ̃ ⊗O F]

with the sum running over tuples λ = (λκ0) with each λκ0 ∈ X(T ) dominant and
satisfying λκ0 ≤ ∑

κ|k=κ0
(μκ − ρ) and λ̃ defined as in Notation 6.5.

(2) If d = 2 then each Mλ̃ ⊗O F appearing in this sum is irreducible, generically
reduced, and pairwise distinct.

In particular, when d = 2 part (2) implies that the n(λ, μ) in part (1) are ≥ 0.

7.3 To prove the proposition we will approximate Mμ ⊗O F via explicit moduli
conditions. In fact we give two such moduli interpretations, based on the following
two operators:
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• For any O-algebra A set

∇ := u
d

du
: SA

[
1

E(u)

]
→ SA

[
1

E(u)

]

We also write ∇ for the coordinate-wise extension to SA[ 1
E(u)

]d .
• If A is a p-adically complete O-algebra of topologically finite type then for each

σ ∈ GK we can also define

∇σ := σ − Id

μ
: Ainf,A

[
1

μ

]
→ Ainf,A

[
1

μ

]

Note that this is well defined because σ(μ) and μ generate the same ideal in Ainf
(as follows from e.g. Lemma 2.3). Again write ∇σ also for the coordinate-wise
extension to Ainf,A[ 1

μ
]d .

The advantage of ∇ is that it is easier to compute with. The advantage of ∇σ is that it
is more directly related to Galois representations.

Lemma 7.4 There exist closed subfunctors Gr∇σ

O ,Gr∇O ⊂ GrO such that

(1) E ∈ Gr∇(A) if and only if

E(u)∇(E) ⊂ uE

as submodules of SA[ 1
E(u)

]d .
(2) Whenever A is a p-adically complete O-algebra of topologically finite type then

E ∈ Gr∇σ (A) if and only if

E(u)∇σ (E) ⊂ uE ⊗SA Ainf,A

as submodules of Ainf,A[ 1
μ
]d for every σ ∈ GK .

Remark 7.5 Since E(u) and μ

ϕ−1(μ)
generate the same ideal in Ainf the condition defin-

ing Gr∇σ

O can also be expressed as

(σ − 1)(E) ⊂ uϕ−1(μ)E ⊗SA Ainf,A

This description may be more familiar from the point of view of crystalline Breuil–
Kisin modules.

Proof That Gr∇O is a closed subfunctor is clear, so we focus on Gr∇σ

O . First, suppose
that A is any Noetherian O/pn-algebra, for some n ≥ 1, and that E ∈ GrO(A). An
application of [7, B.29] shows that the condition

E(u)∇σ (E) ⊂ uE ⊗SA Ainf,A (7.6)
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is closed in Spec A. More precisely, we specialise the general setting of [7, B.11]
to R = W (k)/pn , C+ = Ainf/pn , and u equal to uϕ−1(μ) ∈ C+. Then, for each
m ∈ E and each σ ∈ GK , apply [7, B.29] with M = E ⊗SA uϕ−1(μ)Ainf,A and
x = (σ − 1)(m) ∈ M . This implies that the condition

(σ − 1)(m) ∈ uϕ−1(μ)E ⊗SA Ainf,A

is closed in Spec A. Taking the intersection of the resulting ideals as m runs over all
elements of E and considering Remark 7.5 shows (7.6) is closed in Spec A.

Since GrO is of ind-finite type over SpecO the previous paragraph shows that
for each n ≥ 1 there exists closed ind-subschemes Gr∇σ

O,n ⊂ GrO ⊗OO/pn which

are compatible with the closed immersions GrO ⊗OO/pn ↪→ GrO ⊗OO/pn−1.
Since Gr∇σ

O,1 is proper over O/p (since GrO is itself ind-projective over O) it fol-

lows from [26, Tag 0899] that there exists a closed ind-subscheme Gr∇σ

O of GrO with

Gr∇,σ
O,n = Gr∇σ

O ⊗OO/pn for each n. This closed ind-subscheme has the desired prop-
erty because if E ∈ GrO(A) for A a p-adically complete O-algebra of topologically
finite type then E ∈ Gr∇σ

O (A) if and only if En = E ⊗O O/pn ∈ Gr∇σ

O,n(A/pn) for
all n ≥ 1, i.e. if and only if E(u)∇σ (En) ⊂ uEn ⊗SA Ainf,A for all n ≥ 1. Since
A is p-adically complete and E is SA-projective one has E = lim←− En and so this is
equivalent to asking that E(u)∇σ (E) ⊂ uE , as required. ��

Proposition 7.7 For every Hodge type μ one has Mμ ⊂ Gr∇σ

O and Mμ ⊂ Gr∇O.

Proof Since Gr∇O is closed it suffices to show E ∈ Mμ(A) is contained in Gr∇O
for any E-algebra A. Lemma 4.9 allows us to write E as an intersection of Eκ =

1
E(u)n

∑
Eκ(u)i+n(A ⊗Zp W (k))[u]Fil−i

κ for some n ≥ 0. It is therefore enough to
show that E(u)∇(Eκ) ⊂ uEκ and this follows since

∇(Eκ) =
∑

i

∇
(
Eκ(u)i+n

E(u)n

)
(A ⊗Zp W (k))[u]Fil−i

κ

and E(u)∇(
Eκ (u)i−n

E(u)n
) ∈ u Eκ (u)i−n

E(u)n
(A ⊗Zp W (k))[u].

There is a slight difficulty in giving an identical argument to show Mμ ⊂ Gr∇σ

O
because the moduli description for Gr∇σ

O does not apply when A is an E-algebra.
To address this we first note that the generic fibre of Mμ is reduced so to show
Mμ ⊗O E ⊂ Gr∇σ

O it suffices to show this on A-points whenever A is a finite extension
of E . By the valuative criterion for properness, any such A-valued point is induced
from a point valued in the ring of integers of A. Thus we are reduced to showing
Mμ(A) ⊂ Gr∇σ

O (A) whenever A is the ring of integers in a finite extension of E .
Using part (3) of Lemma 4.9 this comes down to proving that

E(u)∇σ (Eκ) ⊂ uEκ ⊗SA Ainf,A
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for Eκ = 1
E(u)n

∑
Eκ(u)i+nSA Fil−i

κ . This would follow from the claim that

E(u)∇σ (
Eκ(u)i+n

E(u)n
) ∈ u

Eκ(u)i+n

E(u)n
Ainf,O

To prove the claim first note that σ(Eκ(u)) − Eκ(u) = σ(u)− u ∈ uμAinf . Similarly
σ(E(u)) − E(u) ∈ uμAinf . Writing

∇σ (Eκ(u)i ) = ∇σ (Eκ(u)i−1)σ (Eκ(u)) + Eκ(u)∇σ (Eκ(u))

and arguing by induction on i then gives that ∇σ (Eκ(u)i ) ∈ uEκ(u)i−1Ainf,O. Simi-
larly ∇σ (E(u)i ) ∈ uE(u)i−1Ainf . Since we can write

E(u)n(σ − 1)(
Eκ(u)i+n

E(u)n
) = (σ − 1)(Eκ(u)i+n) − σ(Eκ(u)i+n)

σ (E(u)n)
(σ − 1)(E(u)n)

the claim follows. ��
Remark 7.8 After possibly replacing the compatible system of primitive p-th power
roots of unity ε we can choose σ ∈ GK so that σ(u)/u = [ε]. Then

∇σ (ui ) = ui
(

(
σ(u)
u )i − 1

[ε] − 1

)
= ui

( [ε]i − 1

[ε] − 1

)
= ui (1 + [ε] + · · · + [ε]i−1)

Thus∇σ = u∇q where∇q is theq-derivation forq = [ε]. In particular∇σ ≡ u d
du = ∇

modulo [ε] − 1. This illustrates the close relationship between the Gr∇σ

O and the locus
Gr∇O.

7.9 For the rest of this sectionwe focus onGr∇O ⊗OF. Note that since∇ isW (k)-linear
we have

Gr∇O =
∏

κ0

Gr∇κ0

where Gr∇κ0 is defined similarly. Let us write Gr = Grκ0 ⊗OF (note this is independent

of κ0) and Gr
∇ = Gr∇κ0 ⊗OF. The description from Lemma 4.5 shows that the group

scheme

LG+ : A �→ GLd(A[[u]])

acts on Gr. For λ ∈ X(T ) dominant we set Grλ equal to the LG+-orbit of Eλ ∈ Gr
(recall Eλ is defined in 4.4) and we set Gr≤λ equal to its reduced closure. Then

Gr≤λ =
⋃

λ′≤λ

Grλ′
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Lemma 7.10 Suppose λ ∈ X(T ) is dominant with

λ1 − λd ≤ e + p − 1

Set Cλ equal to the closure of Grλ ∩Gr
∇
in Gr. Then Cλ is reduced and irreducible of

dimension

∑

κ0

∑

i< j

max{λi − λ j , e}

Proof We begin by giving an open cover of Grλ: let Uλ ⊂ L+G denote the subfunctor
whose A-points consist of unipotent upper triangular matrices

⎛

⎜⎝
1 ai j

. . .

1

⎞

⎟⎠ ∈ L+G(A)

where for each i > j , ai j ∈ A[u] has degree < λ j − λi . Consider the morphism
Uλ → Grλ sending g �→ gEλ. Recall that gEλ �→ g0Eλ, for g0 = g modulo u, defines
a morphism Grλ → G/Pλ. Since the parabolic Pλ is contained in the Borel of lower
triangularmatrices B− ⊂ G we can compose thismapwithG/Pλ → G/B−. Then the
morphism U → Grλ identities Uλ with the preimage under this composite of the open
U ⊂ G/B− consisting of upper triangular unipotentmatrices. In particular,Uλ → Grλ
is an open immersion and Grλ = ⋃

w wUλ with w running over the permutation
matrices in G (as follows by considering the open cover G/B− = ⋃

wU ).

Since ∇(w) = 0 we have wUλ ∩ Gr
∇ = w(Uλ ∩ Gr

∇
). Therefore the lemma

reduces to showing Uλ ∩ Gr
∇
is an affine space of the claimed dimension. Observe

that g ∈ Uλ ∩ Gr∇ if and only if

ue−1g−1∇(g) ∈
(

uλ1

. . .
uλd

)
Mat(A[u])

(
u−λ1

. . .
u−λd

)
(7.11)

If we write g−1 = (bi j )i j then, using that b j j = 1, bl j = 0 for l < j , and ∇(aii ) = 0,
we see that (7.11) is equivalent to asking that

∇(ai j ) +
∑

j<l<i

∇(ail)bl j ∈ uλ j−λi−e+1A[u] (7.12)

for every i > j . By assumption λ j −λi −e+1 ≤ p and so
∑

j<l<i ∇(ail)bl j modulo

uλ j−λi−e+1 admits an antiderivative; in other words, there exists a unique X ∈ uA[u]
of degree < λ j − λi − e + 1 with

∇(X) ≡ −
∑

j<l<i

∇(ail)bl j modulo uλ j−λi−e+1
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Since ai j has degree < λ j − λi it follows that

ai j =
{
X + a(0)

i j + uλ j−λi−e+1a(1)
i j + · · · + uλ j−λi−1a(e−1)

i j if λ j − λi ≥ e

X + a(0)
i j + ua(1)

i j + · · · + uλ j−λi−1a
λi−λ j−1
i j if λ j − λi < e

for some a(l)
i j ∈ A. Note that, for i > j , the i j-th entry of gg−1 = 1 is

0 =
d∑

l=0

ailbl j = bi j + ai j +
∑

j<l<i

ailbl j

This shows, by an inductive argument, that bi j is a function of alk for l < k with
k − l ≤ i − j . Therefore the element X ∈ uA[u] considered above depends on alk
with k − l < i − j . As a consequence the morphism

Uλ ∩ Gr
∇ →

∏

i j

A
min{e,λ j−λi }
F

given by (ai j ) �→ (a(l)
i j ) has a well-defined inverse which finishes the proof. ��

Proof of Proposition First observe that under the identification GrO ⊗OF ∼= ∏
κ0
Gr

we have (Mμ ⊗O F)red ↪→ ∏
κ0
Gr≤∑

κ|k=κ0
μκ
. Thus (Mμ ⊗O F)red is contained in

⋃
λ=(λκ0 )

∏
Grλ where the product runs over λ = (λκ0)with λκ0 ≤ ∑

κ|k=κ0
μκ . Since

Mμ ⊂ Gr∇O and eachμκ −ρ is dominant the dimension calculations fromLemma 7.10
imply that

(Mμ ⊗O F)red ⊂
⋃

λ=(λκ0 )

Cλ+eρ

where the union now runs over λ = (λκ0) with λκ0 + eρ ≤ ∑
κ|k=κ0

μκ and where we
write Cλ+eρ = ∏

κ0
Cλκ0+eρ . Thus, one can write

[Mμ ⊗O F] =
∑

λ

n(λ, μ)[Cλ+eρ]

as cycles, for integers n(λ, μ) ≥ 0. Furthermore, since Gr∑
κ|k=κ0

μκ
⊂ Gr≤∑

κ|k=κ0
μκ

is open it follows that Cλ+eρ ∩ (Mμ ⊗O F) is open in (Mμ ⊗O F) for λ = (λκ0) with
λκ0 = ∑

κ|k=κ0
(μκ − ρ). Since this intersection is clearly non-empty it follows that

n(λ, μ) = 1 for this particular λ.
This shows that

[Mλ̃ ⊗O F] − [Cλ+eρ]
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can be expressed as a Z≥0-linear combination of [Cλ′+eρ]’s for λ′ = (λ′
κ0

) with
λ′

κ0
≤ λκ0 . Arguing by induction we conclude that we can always write [Cλ+eρ] =∑

λ′ nλ′ [Mλ̃′ ⊗OF] for λ′ = (λ′
κ0

) satisfying λ′
κ0

≤ λκ0 and some nλ′ ∈ Z. This proves
the first part of the proposition.

The second part follows from the first provided we can show Mλ̃ is irreducible
whenever λκ0,1 − λκ0,d ≤ p − 1. To establish this irreducibility we require d =
2. Choose an indexing κ0,1, . . . , κ0,e of those κ with κ|k = κ0 so that κ0,1 = κ̃0.
Then construct a scheme X which classifies tuples (Ee ⊂ · · · ⊂ E1) with E1 ∈∏

κ0
(G/Pκ0,1 ⊗OK ,κ0,1 O) and

(
∏

κ0

Eκ0,i (u)

)
Ei ⊂ Ei+1 ⊂ Ei

with Ei/Ei+1 of rank one over (A ⊗Zp W (k)) for each i . Then the map (Ei ) �→ Ee
produces a proper morphism X → GrO which on the generic fibre identifies X ⊗O E
with Mλ̃ ⊗O E . In particular, this shows that X ⊗O F → Mλ̃ ⊗O F is surjective.
On the other hand, X is a successive extension of (products of) grassmannians over
a (product of) flag varieties. Thus X is O-smooth, and so X ⊗O F is irreducible. We
conclude the same is true of Mλ̃ ⊗O F.

Finally, note that theMλ̃⊗OF are pairwise distinct because ifMλ̃⊗OF = Mλ̃′ ⊗OF

then Cλ′
κ0

+eρ = Cλκ0+eρ for each κ0. But this implies Eλκ0+eρ ∈ Gr≤λ′
κ0

+eρ and so

λκ0 ≤ λ′
κ0
. By symmetry λκ0 = λ′

κ0
. ��

8 Duality

In this section we introduce an involution of GrO which is useful when dealing with
certain normalisation issueswhich arisewhenpassingbetween the affinegrassmannian
and moduli of Breuil–Kisin modules.

8.1 If E corresponds to an A-valued point of GrO then

E∗ := Hom(A⊗ZpW (k))[u](E, (A ⊗Zp W (k))[u])

is again (A ⊗Zp W (k))[u]-projective and, under the natural identification (A ⊗Zp

W (k))[u]d,∗ ∼= (A ⊗Zp W (k))[u]d , we can view E∗ as an A-valued point of GrO.
Since E∗∗ = E the endomorphism of GrO induced by

E �→ E∗

is an automorphism.

Lemma 8.2 The above automorphism identifies Mλ with M−w0λ where w0 ∈ W
denotes the longest element.

In other words, −w0μ = (−w0μκ) where −w0μκ = (−μκ,d , . . . ,−μκ,1) ∈ X(T ).
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Proof It suffices to prove this on the generic fibre. Thus, one is reduced to prove that for
any λ ∈ X(T ), G/Pλ ⊂ Gr is identified with G/P−w0λ by the version of E �→ E∗ on
Gr. But this follows easily from the fact that if E is generated by (e1, . . . , ed)X then E∗
is generated by (e1, . . . , ed)(X−1)t for (X−1)t the conjugate transpose. In particular,
the G-orbit of any E is mapped onto the G-orbit of E∗. Since E∗

λ = w0E−w0λ the
lemma follows. ��

9 Breuil–Kisin modules

9.1 Let A be a p-adically complete O-algebra. Then a Breuil–Kisin module M over
A is a finite projective SA-module equipped with an SA-linear homomorphism

ϕM = ϕ : M ⊗ϕ,SA SA → M

whose cokernel is killed by a power of E(u). We sayM has height≤ h if the cokernel
is killed by E(u)h . We writeMϕ for the image of ϕM and ϕ(M) for the image of the

compositeM
m �→m⊗1−−−−−→ M ⊗ϕ,SA SA → S. Thus ϕ(M) is an ϕ(SA)-submodule of

Mϕ which generates Mϕ over SA.

Definition 9.2 For any p-adically complete O-algebra A write

• Z≤h
d (A) for the groupoid of rank d Breuil–Kisin modules over A with height ≤ h.

Morphisms are SA-linear isomorphisms compatible with the Frobenius.
• Z̃≤h

d (A) for the groupoid of pairs (M, β) where M ∈ Z≤h
d (A) and β =

(β1, . . . , βd) is anSA-basis ofM. Morphisms areSA-linear isomorphisms com-
patible with the Frobenius and identifying the bases.

With pull-backs defined by base-change these categories form fpqc stacks Z≤h, Z̃≤h
d

over Spf O.

9.3 We consider the following diagram:

Z̃≤h
d

Z≤h
d GrO




� (9.4)

where 
 forgets the choice of basis and, with GrO viewed as a formal scheme over
Spf O, the morphism � sends (M, β) onto E ∈ GrO obtained via

E := M ↪→ 1

E(u)h
Mϕ ϕ(β)−−→ 1

E(u)h
Sd

A

(here ϕ(β) is interpreted as an identificationMϕ ∼= Sd
A). Concretely, ifC is the matrix

with entries inSA for which ϕ(β) = βC then, sinceM is generated by ϕ(β)C−1, we
have �(M, β) = E for E ⊂ SA[ 1

E(u)
]d the submodule generated by C−1.
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Writing L+ GLd for the group scheme given by A �→ GLd(SA) we see that 
 is
an L+ GLd -torsor for the action on Z̃≤h

d given by g · (M, β) = (M, βg). A second
action of L+ GLd on Z̃≤h can be given by

g ∗ (M, β) = (Mg, β)

whereMg = M as anSA-module, with Frobenius given by ϕg(β) = βgC for C the
matrix determined by ϕ(β) = βC . It is easy to see that this action makes � into an
L+ GLd -torsor over its image in GrO.

9.5 An alternative viewpoint on 9.3 is as follows. Let L≤h GLd denote the group
scheme over O given by

A �→ {C ∈ GLd(SA[ 1
E(u)

] | E(u)hC−1,C ∈ Mat(SA)}

Then the morphism Z̃≤h
d → L≤h GLd given by (M, β) �→ C , for C defined by

ϕ(β) = βC , is an isomorphism (here we view L≤h GLd as a formal scheme over
Spf O). Under this isomorphism the action g · (M, β) corresponds to the (right) action
of L+ GLd by ϕ-conjugation: C �→ g−1Cϕ(g). The action g ∗ (M, β) corresponds
to the (left) multiplication action: C �→ gC . Thus (9.4) identifies with the diagram

L≤h GLd

[
L≤h GLd /ϕL+ GLd

] [
L≤h GLd /L+ GLd

]
↪→ GrO

C �→C−1

Here L≤h GLd /ϕL+ GLd indicates the quotient by Frobenius conjugation

The issue with the construction in 9.3 is that Z̃≤h
d

∼= L≤h GLd is not of finite type
over Spf O. To address this we instead consider:

Definition 9.6 For N ≥ 1 let Z̃≤h,N
d (A)denote the categoryof pairs (M, β) ∈ Z̃≤h

d (A)

whose morphisms are ϕ-equivariant morphisms of SA-modules which identify the
bases modulo uN . Equivalently, Z̃≤h,N

d is the quotient of Z̃≤h
d under the action of the

group scheme

UN : A �→ 1 + uN Mat(SA)

Thus Z̃≤h
d

∼= [L≤h GLd /UN ] (the quotient being by Frobenius conjugation).

The following is a essentially [24, 2.1].

Proposition 9.7 Fix n ≥ 1. Then, for N sufficiently large, (9.4) induces a diagram

Z̃≤h,N
d ⊗O O/πn

Z≤h
d ⊗O O/πn GrO ⊗OO/πn


N

�N



   17 Page 30 of 48 R. Bartlett

in which 
N is a GN -torsor for GN the group scheme defined by A �→ GLd(SA/uN )

and �N is smooth of relative dimension dimO GN with irreducible fibres. More pre-
cisely, the action g ∗ (M, β) from 9.3 induces an action of GN on Z̃≤h,N

d ⊗O O/πn

making �N into a GN -torsor over its image in GrO ⊗OO/πn.

We will see in the proof that N is required large enough that E(u)h divides
u(p−1)N−1 in SO/πn (this can be made explicit using e.g. [6, 5.2.6]).

Proof The crucial observation is that if E(u)h divides u(p−1)N−1 in SO/πn then, as
stacks over SpecO/πn , the identity map L≤h GLd → L≤h GLd induces an isomor-
phism

[
L≤h GLd /ϕUN

] ∼= [UN\L≤h GLd ]

(the quotient on the left being by Frobenius conjugation and that on the right being by
left multiplication). This immediately shows that themorphism� induces amorphism
�N as claimed, and that �N is a GN = L+ GLd /UN -torsor over the closed O/πa-
subscheme [L≤h GLd /L+ GLd ] ↪→ GrO.

Concretely, the claimed isomorphism follows from the two assertions: If C ∈
L≤h GLd(A) then

• For each g0 ∈ UN (A) we have g−1
0 Cϕ(g0) = gC for a unique g ∈ UN (A).

• For each g ∈ UN (A) there exists a unique g0 ∈ UN (A) with g−1
0 Cϕ(g0) = gC .

Note these are exactly the same assertions as (1) and (2) in [24, 2.2]. The first point is
easy because g0 ∈ UN (A) implies

g = g−1
0 Cϕ(g0)C

−1 = g−1
0

(
1 + u pNC1C

−1
)

= 1 + uNC2 + u pNC3C
−1

Therefore, the fact that E(u)hC−1 ∈ Mat(SA) and that E(u)h divides u pN ensures
g ∈ UN (A). For the second point notice that, if Jn = (gC)ϕ(gC) . . . ϕn(gC) and
In = Cϕ(C) . . . ϕn−1(C), then any such g0 satisfies

g0 = Inϕ
n(g0)J

−1
n = In J

−1
n + In(ϕ

n(g0) − 1)J−1
n

for every n ≥ 1. We claim that for any g1 ∈ UN (A) we have In(ϕn(g1) − 1)J−1
n ∈

uN Mat(SA) and that this element converges u-adically to zero as n → ∞. This
ensures that In J−1

n converges in UN (A) as n → ∞ and that this limit is the unique
g0 satisfying g−1

0 Cϕ(g0) = gC . Since g1 ≡ 1 modulo uN we can write ϕn(g1) −
1 = uN+(pn−1)N g′

1. Therefore the claim will follow if u(pn−1)N J−1
n−1 ∈ Mat(SA)

converges u-adically to zero. Since ϕi (E(u)h) divides u((p−1)N−1)pi and

E(u)hϕ(E(u))h . . . ϕn−1(E(u)h)I−1
n−1 ∈ Mat(SA)

the claim follows from the observation that (pn − 1)N − ((p − 1)N − 1)(1 + · · · +
pn−1) = 1 + · · · + pn−1 is ≥ 0 and → ∞. ��
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Corollary 9.8 Z̃≤h,N
d ×O O/πn is a finite type O-scheme for N >> 0 and Z≤h

d is a
p-adic formal algebraic stack (in the sense of [7, A7]) of finite type over Spf O.

Proof The first part follows since we’ve just seen that Z̃≤h,N
d ×O O/πn is a torsor for

a finite type group scheme over a finite type O/πn-scheme. The second part follows
from the first and the definition of a p-adic formal algebraic stack. ��

10 Crystalline Breuil–Kisin modules

10.1 If A is a p-adically complete O-algebra which is of topologically finite type
then a crystalline Breuil–Kisin module over A is a pair (M, σ )withM a Breuil–Kisin
module over A and σ a continuous ϕ-equivariant Ainf,A-semilinear action of GK on
M ⊗SA Ainf,A satisfying

(σ − 1)(m) ∈ M ⊗SA [π
]ϕ−1(μ)Ainf,A, (σ∞ − 1)(m) = 0

for every m ∈ M and every σ ∈ GK , σ∞ ∈ GK∞ .

Definition 10.2 WriteY≤h
d (A) for the groupoid consisting of rank d crystallineBreuil–

Kisin modules over A with height ≤ h.

10.3 One can attach a Hodge type to crystalline Breuil–Kisin modules in Y≤h
d (A)

whenever A is O-flat. For n ∈ Z define Filn(Mϕ) = Mϕ ∩ E(u)nM and equip the
finite projective OK ⊗Zp A-module Mϕ/E(u) with the filtration whose n-th filtered
piece is the image of Filn(Mϕ). It is shown in [7, 4.7.2] that the graded pieces of this
filtration become (A ⊗Zp W (k)[ 1p ]-projective after inverting p. This allows us to say

that (M, σ ) has Hodge type μ = (μκ) if the part of grn Mϕ[ 1p ]/E(u) on which K
acts via κ has E-dimension equal the multiplicity of n in μκ .

Remark 10.4 In other words, M has Hodge type μ if the part of Mϕ[ 1p ]/E(u) on
which K acts via κ is a filtration of type

−w0μκ = (−μκ,d , . . . ,−μκ,1)

in the sense of 4.4.

Theorem 10.5 If (M, σ ) ∈ Y≤h
d (A) with A a finite flat O-algebra then

V = (M ⊗SA W (C
)A)ϕ=1

equipped with the GK -action induced by σ is a crystalline representation of GK on
a finite projective A-module. Furthermore, the Hodge type of (M, σ ) coincides with
that attached to V via the filtered module Dcrys(V )K := (V ⊗Zp BdR)GK with n-th
filtered piece given by (V ⊗Zp t

n B+
dR)GK .

Proof The theorem as stated is taken from [2, 2.1.12], but the result originates from a
combination of ideas appearing in [11, 16, 22]. ��
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Remark 10.6 These conventions mean that the Hodge type of the cyclotomic character
is −1.

Proposition 10.7 There exists a limit preserving p-adic algebraic formal stack Y≤h
d of

topologically finite type overO whose groupoid of A-valued points, for any p-adically
completeO-algebra topologically of finite type, is canonically equivalent to Y≤h

d (A).

For each Hodge type μ there exists a unique O-flat closed substack Yμ
d of Y≤h

d

with the property that the full subcategory Yμ
d (A) of Y≤h

d (A) consists of all crystalline
Breuil–Kisin modules with height ≤ h and Hodge type μ whenever A is finite flat
O-algebra.

Proof The first part follows from [7, §4.5]. There, algebraic stacks Ca
π
,s,d,h

over

SpecO/πa are constructed [7, 4.5.8] with π
 = (π, π1/p, . . .) and s some sufficiently
large integer. In the proof of [7, 4.5.15] it is explained how Y≤h

μ ×O O/πa can be
realised as a closed substack of Ca

π
,s,d,h
. The second part is [7, 4.8.2]. ��

We conclude with a useful lemma giving a description of the points of Yμ
d valued

in a finite local F-algebra. For this we make the following construction:

Construction 10.8 Let F′/F be a finite extension. Write Rρ for the framed O-
deformation ring corresponding to some ρ : GK → GLd(F

′). In [2, 2.2.11] a
projective Rρ-scheme L≤h

ρ is constructed with A′-points, for A′ any p-adically com-
pleteO-algebra, classifying pairs (M, ρ) with ρ a framed deformation of ρ to A′ and
M ∈ Z≤h

d (A′) satisfying

M ⊗SA W (C
)A = ρ ⊗A W (C
)A

so that ϕ (induced semilinearly from that on M) is the identity on ρ and so that the
GK -action (induced semilinearly from that on ρ) satisfies

(σ − 1)(m) ∈ M ⊗SA [π
]ϕ−1(μ)Ainf,A, (σ∞ − 1)(m) = 0

for every σ ∈ GK , σ∞ ∈ GK∞ and m ∈ M. In [2, 2.2.15] it is also shown that the
morphism L≤h

ρ → Spec R�
ρ becomes a closed immersion after inverting p, and, if

μκ ⊂ [0, h] for all κ , that the closed subscheme L≤h
ρ [ 1p ] ↪→ Spec R�

ρ [ 1p ] contains
Spec Rμ

ρ [ 1p ], where Rμ
ρ is the reducedO-flat quotient of Rρ constructed in [17, 3.3.8].

If L̂≤h
ρ denotes the mRρ

-adic completion of L≤h
ρ then we see there is a morphism

L̂≤h
ρ → Y≤h

d

given by (M, ρ) �→ (M, σ ). Notice L̂≤h
ρ can equivalently be constructed as the fibre

product Y≤h
d ×XK ,d Spf Rρ where Spf Rρ → XK ,d is the morphism defined in [7,

3.6.3].
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Lemma 10.9 Assume that μκ ⊂ [0, h] for each κ and suppose that (M, σ ) corre-
sponds to an A-valued point of Yμ

d for A some finite local F-algebra. Then there exists
a local finite flat O-algebra A with A = A ⊗O F and an A-valued point (M, σ ) of
Yμ
d with special fibre (M, σ ).

Proof To begin let Rρ be a framed deformation ring as in Construction 10.8 and
set L̂μ

ρ = Yμ
d ×XK ,d Spf Rρ . Since μκ ⊂ [0, h] for each κ we can view L̂μ

d as the

preimage of Yμ
d under the morphism L̂≤h

ρ → Y≤h
d from Construction 10.8. Notice

this is a special case of the formal scheme denoted Ĉ in the proof of [7, 4.8.10]. In
loc. cit it is shown that the scheme theoretic image of the morphism L̂μ

ρ → Spf Rρ

is precisely Spf Rμ
ρ (as in Construction 10.8, Rμ

ρ denotes the reduced O-flat quotient
of Rρ classifying crystalline representations of Hodge type μ). Using [7, 4.5.26] we
see that L̂μ

ρ arises as the mRρ
-adic completion of a projective Rρ-scheme Lμ

ρ . This

scheme embeds as a closed subscheme in L≤h
ρ and, since L≤h

ρ [ 1p ] → Spec Rρ is a

closed immersion, we have Lμ
ρ [ 1p ] = Spec Rμ

ρ [ 1p ].
By [7, A.31] we know that Spf Rρ → XK ,d is flat, and so the same is true of

L̂μ
ρ → Yμ

d . Since Y
μ
d → Spf O is flat we conclude that L̂μ

ρ is O-flat also. Therefore,

reducedness of Rμ
ρ implies Lμ

ρ is reduced too.

Now apply the above construction with ρ = (M ⊗SA
W (C
)A)ϕ=1 ⊗A F′ where

F′ denotes the residue field of A. Then (M, σ ) form the lemma induces an A-valued
point of Lμ

ρ . Since Lμ
ρ is reduced, O-flat, and of finite type over Rμ

ρ we can apply

[2, 4.1.2] to the local ring of Lμ
ρ at this points to produce a finite flat O-algebra A

with A ⊗O F = A and an A-valued point (M, ρ) of Lμ
ρ pulling back to our A-valued

point. Write σ for the GK -action on M ⊗SA Ainf,A induced by ρ. Then (M, σ ) is
a crystalline Breuil–Kisin module with Hodge type μ and so we obtain an A-valued
point in Yμ

d (A) as desired. ��

11 Naive Galois actions

In this sectionwe consider themorphismY≤h
d → Z≤h

d which forgets theGalois action.

More precisely, we consider its base-change Y≤h
d ×Z≤h

d
Z̃≤h,N
d → Z̃≤h,N

d for N >> 0,

and show this is an isomorphism over certain closed subschemes in the special fibre
of Z̃≤h,N

d .

Construction 11.1 The aim is to establish conditions which allow the following
“naive” crystalline GK -action on (M, β) ∈ Z̃≤h,N

d (A) to be perturbed into one which
is ϕ-equivariant. Let σnaive,β denote the continuous Ainf,A-semilinear action of GK on
M⊗SA Ainf,A obtained from the coordinate-wise action on Ad

inf,A via the identifica-
tion

Mϕ ⊗SA Ainf,A ∼= Ad
inf,A
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induced by ϕ(β). Thus, σnaive,β is uniquely determined as the semilinear GK -action
fixing ϕ(β).

11.2 Let us fix integers 0 ≤ rκ ≤ h for each κ . Thenwe consider the closed subfunctor
Gr∇σ ,r

O ⊂ Gr∇σ

O defined by requiring that

Sd
A ⊂ E ⊂

∏

κ

Eκ(u)−rκSd
A

Recall Gr∇σ

O was defined in Lemma 7.4. We then choose N sufficiently large so that

Proposition 9.7 produces the morphism �N : Z̃≤h,N
d ⊗O F → GrO ⊗OF and define

Z̃∇σ ,r
d,F

↪→ Z̃≤h,N
d ⊗O F

as the preimage of Gr∇σ ,r
O ⊗OF under the morphism �N . Notice we suppress the

dependence of Z̃∇σ ,r
d,F

on N from the notation. The A-points of Z̃∇σ ,r
d for A any finite

type F-algebra are precisely those (M, β) ∈ Z̃≤h,N
d,F

(A) satisfying

(1) For every σ ∈ GK

(σnaive,β − 1)(M) ⊂ M ⊗SA [π
]ϕ−1(μ)Ainf,A,i

See Remark 7.5.
(2) For each i = 1, . . . , f

∏

j

Eκ(u)rκMi ⊂ M
ϕ
i ⊂ Mi

Proposition 11.3 Assume that
∑

κ|k=κ0
rκ ≤ e + p − 1 for each κ0 with at least one

inequality strict. Then

Y≤h
d ×Z≤h

d
Z̃∇σ ,r
d,F

→ Z̃∇σ ,r
d,F

is an isomorphism.

Proof By Lemma 15.1 is enough to show that this morphism induces equivalences
on groupoids of A-valued points for any local finite type F-algebra A. Equivalently,
we must show that for any (M, β) ∈ Z̃∇σ ,r

d,F
(A) there exists a unique action σ of

GK making (M, σ ) into an object of Y≤h
d . Existence implies essential surjectivity on

A-valued points and full-faithfulness follows from the uniqueness.
Write Hom(M,M) for the SA-module of SA-linear endomorphisms of M and

equip Hom(M,M)with the Frobenius ϕHom given by h �→ ϕ ◦h ◦ϕ−1. If we identify
Hom(M,M) with matrices in SA using the basis β then ϕHom acts by

M �→ Cϕ(M)C−1
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where ϕ acts entry wise on the matrix M and C is such that ϕ(β) = βC . The follow-
ing claim shows that, after extending scalars to Ainf,A, this operator is topologically
nilpotent on matrices with entries divisible by [π
]ϕ−1(μ).

Claim SetH := Hom(M,M)⊗[π
]ϕ−1(μ)Ainf,A. ThenH is ϕHom-stable and ϕHom
is topologically nilpotent on H.

Proof of claim Recall thatMκ0 ⊂ M is the submodule on whichW (k) acts via κ0 and
ϕ on M restricts to a semilinear map Mκ0 → Mκ0◦ϕ−1[ 1

E(u)
]. Our assumption on M

implies (
∏

κ|k=κ0
Eκ(u)rκ )Mκ0 ⊂ M

ϕ
κ0 and therefore

ϕHom(Hom(M,M)κ0) ⊂
⎛

⎝
∏

κ|k=κ0

Eκ(u)−rκ

⎞

⎠Hom(M,M)κ0◦ϕ−1

Since [π
]pμ
[π
]ϕ−1(μ)

Ainf,A = [π
]p−1E(u)Ainf,A we also have

ϕHom(Hκ0) ⊂ [π
]E(u)

⎛

⎝
∏

κ|k=κ0

Eκ(u)−rκ

⎞

⎠Hκ0◦ϕ−1 = ue+p−1−∑
j ri jHi−1

(the last equality uses that A is an F-algebra) and so, as
∑

κκ|k=κ0
rκ ≤ e + p − 1,

it follows that H is ϕHom-stable. Since the inequality is strict at least once we have
ϕHom(Hκ) ⊂ uHκ0◦ϕ−1 for at least oneκ0. In particularϕHom is topologically nilpotent.

��
SetMinf = M⊗SA Ainf,A. Note that for each σ ∈ GK the endomorphism σnaive,β is
σ -semilinear and so defines an element of

Hom(Minf ,M
σ
inf)

where Mσ
inf := Minf ⊗Ainf,A,σ Ainf,A. Any such semilinear map is determined by

where β is sent; thus we obtain an (additive) identification Hom(Minf ,M
σ
inf) =

Hom(M,M) ⊗SA Ainf,A which identifies Hom(Minf , [π
]ϕ−1(μ)Mσ
inf) andH. Via

this identification we view ϕHom as a Frobenius on Hom(Minf ,M
σ
inf). We claim that

ϕn
Hom(σnaive,β) ∈ Hom(Minf ,M

σ
inf)

for all n ≥ 0 and that this sequence converges to a σ -semilinear endomorphism which
we simply write as σ . By construction this endomorphism is ϕ-equivariant. To see this
claim note that by assumption σnaive,β − 1σ ∈ Hom(Minf , [π
]ϕ−1(μ)Mσ

inf) where
1σ the σ -semilinear extension of the map β �→ β. Since we can write

limn→∞ ϕn
Hom(σnaive,β)

= σnaive,β +
∑

n≥1

(
ϕn
Hom(σnaive,β − 1σ ) − ϕn−1

Hom(σnaive,β − 1σ )
)
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the claimed convergence follows from the topological nilpotence of the operator ϕHom
on Hom(Minf , [π
]ϕ−1(μ)Mσ

inf) = H. This formula also shows that σ(x) − x ∈
M ⊗SA [π
]ϕ−1(μ)Ainf,A for each x ∈ M. Since σnaive,β defines a GK -action so to
does σ . Similarly, continuity of σnaive,β implies continuity of σ .

Finally, to see uniqueness suppose that σ ′ was another such GK -action. Then for
each σ ∈ GK one has

σ − σ ′ ∈ Hom(Minf , [π
]ϕ−1(μ)Mσ
inf) = H

Since σ −σ ′ is ϕHom-fixed the topological nilpotence of ϕHom onH implies σ −σ ′ =
0. ��

12 Comparison with local models

Set Y
μ

d = Yμ
d ⊗O F and choose N sufficiently large that Proposition 9.7 produces the

morphism �N : Z̃≤h,N
d ⊗O F → GrO ⊗OF.

Theorem 12.1 Assume that μκ ⊂ [0, rκ ] for integers rκ ≤ h satisfying

∑

κ|k=κ0

rκ ≤ p − 1

νκ0

+ 1, νκ0 = maxκ|k=κ0{vπ(πκ − πκ ′)}

for all κ0 : k → F. Then the composite

Y
μ

d ×Z≤h
d

Z̃≤h,N
d → Z̃≤h,N

d ⊗O F
�N−−→ GrO ⊗OF

factors through M−w0μ (recall this notation from Lemma 8.2)

Remark 12.2 If K is tamely ramified, i.e. if e is not divisible by p, then πκ − πκ ′
generates the same ideal ofOK as π whenever κ ′ �= κ . Therefore vκ0 = 0 in this case.
To see this consider the π -adic valuation of d

du κ0(E(u))|u=πκ = ∏
κ �=κ ′,κ ′|k=κ0

(πκ −
πκ ′).

The following proposition is the key technical result which goes into the proof of
the theorem. It is a reworking of techniques originally developed in [11, 12].

Proposition 12.3 Let A be a finite flat O-algebra and suppose (M, σ, β) ∈ Yμ
d (A).

Define

Mκ = Mϕ/Eκ(u)

Use the ϕ(SA)-basis ϕ(β) to define a section s of ϕ(M) → Mϕ → Mκ . Then there
exists a filtration Fil•κ on Mκ by A-submodules with p-torsionfree graded pieces such
that

rκ∑

n=0

Eκ(u)rκ−nSA Fil
n
κ +Mϕ

err,κ = Mϕ ∩ Eκ(u)rκM + Mϕ
err,κ
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whenFilnκ is viewedas a submodule ofM
ϕ via s andMϕ

err,κ := ∑p−1
l=1 π p−l Eκ(u)lMϕ .

Note that, by construction, the image of the section s generates Mϕ over SA.

Proof First we define the filtration Fil•κ . Recall that we equippedM := Mϕ/E(u)with
the filtration whose n-th piece is the image ofMϕ ∩ E(u)nM. Then DK := M[ 1p ] is
a filtered A ⊗Zp K -module and can be written as

∏
κ DK ,κ with each DK ,κ a filtered

A[ 1p ]-module. The compositeMϕ → DK → DK ,κ is obtained by base-change along

the mapS → A[ 1p ] given by u �→ πκ . Therefore, its kernel is Eκ(u)Mϕ . This means

Mκ can be viewed as a submodule of DK ,κ and Mκ [ 1p ] = DK ,κ . Define

Filnκ = Filn(DK ,κ ) ∩ Mκ

The filtered pieces of DK ,κ are Qp-vector spaces so the graded pieces of Fil•κ are p-
torsionfree. This also shows that Filnκ [ 1p ] = Filn(DK ,κ ) which proves Corollary 12.4
below.

Next we use:

Claim For x ∈ Filnκ with n ≤ p there exists x1, . . . , xp−1 ∈ Mϕ such that

s(x) + Eκ(u)π p−1x1 + · · · + Eκ(u)p−1πxp−1 ∈ Mϕ ∩ Eκ(u)nM

Proof of Claim This follows from results in [1, §5]. To apply these first note that in loc.
cit. the embeddings K → E are indexed by integers 1 ≤ i ≤ f and 1 ≤ j ≤ e so that
κi j |k depends only on i . This labelling can be chosen so that κ from the proposition
equals κi1 for some i . In [1, 5.2.5] it is shown that for any x ∈ ϕ(M) there exist
x1, . . . , xp−1 ∈ Mϕ so that

x (n) − x + E1(u)π p−1x1 + · · · + E1(u)p−1πxp−1 ∈ E1(u)pMϕ ⊗S S[ 1p ]

where

• S is the ring defined in [1, §5.1],
• x (i) is defined as in [1, §5.2],
• E1(u) = ∏ f

i=1 Ei1(u) ∈ SO for Ei j (u) := Eκi j (u).

We apply this to x = s(x). Then the image of x in DK ,κ is contained in Filn(DK ,κ )

and so [1, 5.2.2] implies x (n) is contained in a submodule of Mϕ ⊗S S[ 1p ] denoted
Fil{n,0,...,0}. In [1, 5.1.3] it is shown that Fil{n,0,...,0} ∩Mϕ = Mϕ∩E1(u)nM. Therefore

s(x) + E1(u)π p−1x1 + · · · + E1(u)p−1πxp−1 ∈ Mϕ ∩ E1(u)nM ⊂ Mϕ ∩ Eκ (u)nM

(the inclusion following because Eκ (u) divides E1(u)). Under the identificationMϕ =∏
κ0
M

ϕ
κ0 the κ0-th part ofMϕ ∩ Eκ(u)nM is justMϕ

κ0 for κ0 �= κ|k . Therefore, in the
above identity we can replace each E1(u) with Eκ(u), and the claim follows. ��
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The claim shows that

m∑

n=0

Eκ(u)m−nSA Fil
n
κ

︸ ︷︷ ︸
:=Ym

+Mϕ
err,κ ⊂ Mϕ ∩ Eκ(u)mM + Mϕ

err,κ

for any 0 ≤ m ≤ rκ and we want to prove the opposite inclusion for 0 ≤ m ≤ rκ by
induction on m. When m = 0 this is clear since both sides equal Mϕ (recall that the
section s was chosen so that s(Mκ) generates Mϕ over SA). For m > 0 note that the
image ofMϕ ∩ Eκ(u)mM in Mκ is contained in Filmκ , while Fil

m
κ equals the image of

Ym . The above inclusion therefore shows these images are equal. As a consequence,
if x ∈ Mϕ ∩ Eκ(u)mM then there exists x ′ ∈ Ym so that

x − x ′ ∈ Eκ(u)Mϕ ∩ (
Mϕ ∩ Eκ(u)mM + Mϕ

err,κ

)

= (
Eκ(u)Mϕ ∩ Eκ(u)mM

) + Mϕ
err,κ

= Eκ(u)
(
Mϕ ∩ Eκ(um−1)M

)
+ Mϕ

err,κ

The second equality uses thatMϕ
err,κ ⊂ Eκ(u)Mϕ . The inductive hypothesis therefore

gives that x − x ′ ∈ Eκ(u)Ym−1 + M
ϕ
err,κ . Since Eκ(u)Ym−1 ⊂ Ym it follows that

x ∈ Ym + M
ϕ
err,κ as desired. ��

Corollary 12.4 The graded pieces of Fil•κ become A[ 1p ]-projective after inverting p

and Fil•κ [ 1p ] has type −w0μκ = (−μκ,d ≥ · · · ≥ −μκ,1).

Proof of Theorem 12.1 By Corollary 15.2 it suffices to prove the factorisation on the
level of A-valued points for A any finite local F-algebra. Let (M, σ , β) be such a
point. Applying Lemma 10.9 we obtain a local finite flat O-algebra A with a map
A → A and (M, σ ) ∈ Yμ

d (A) lifting (M, σ ). Additionally, choose an SA-basis β

lifting β. We will then be done if we can show that the special fibre of (M, σ, β) is
mapped into M−w0μ by �N . We can assume that A = A ⊗O F.

Applying Proposition 12.3 for each κ we obtain filtrations Fil•κ . Define E by

(
∏

κ

Eκ(u)rκ

)
E =

⋂

κ

( rκ∑

n=0

Eκ(u)rκ−nSA Fil
n
κ

)

As in Proposition 12.3 the Filnκ ’s are viewed as submodules of Mϕ using the basis
ϕ(β). Corollary 12.4 together with part (2) of Lemma 4.9 (taking nκ = rκ ) shows that
E[ 1p ] defines an A[ 1p ] point of M−w0μ under the identificationMϕ = Sd

A induced by
ϕ(β). Note, however, that it is not a priori clear E defines an A-valued point. We will
be done if we can show this is the case, and if we can show that E ⊗O F coincides
with the image of (M, σ , β) under �N . In other words, if E defines an A-valued point
and if E ⊗O F = M ⊗O F.
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We begin with the second assertion. Take z ∈ (∏
κ Eκ(u)rκ

)
M. Then z ∈ Mϕ ∩

Eκ(u)rκM for each κ and so Proposition 12.3 ensures the existence of mκ ∈ M
ϕ
err,κ

such that

z − mκ ∈
( rκ∑

n=0

Eκ(u)rκ−nSA Fil
n
κ

)

We claim there then exists m ∈ πMϕ such that

m ≡ mκ mod Eκ(u)rκMϕ

for each κ . Since Mϕ is SA-free this claim follows from Lemma 12.5 below. This is
where we use the bound on the rκ . Since

Eκ(u)rκMϕ ⊂
( rκ∑

n=0

Eκ(u)rκ−nSA Fil
n
κ

)

for each κ (due to the filtration Filnκ being concentrated in degrees [0, rκ ] we have
Fil0κ = Mκ ) it follows that z − m ∈ (∏

κ Eκ(u)rκ
) E . Since m ∈ πMϕ the image of z

in Mϕ ⊗O F is contained in the image of
(∏

κ Eκ(u)rκ
) E . A symmetrical argument

shows also that if z ∈ (∏
κ Eκ(u)rκ

) E then its image inMϕ ⊗O F is contained in the
image of

(∏
κ Eκ(u)rκ

)
M.

Next we show that E is SA-projective. This is equivalent to Mϕ/
(∏

κ Eκ(u)rκ
) E

being A-projective. From the definitions we see that Mϕ/
(∏

κ Eκ(u)rκ
) E is p-

torsionfree. This means that
(∏

κ Eκ(u)rκ
) E ⊗O F equals its image in Mϕ ⊗O F.

It also means that, by [26, 00ML], A-projectivity of Mϕ/
(∏

κ Eκ(u)rκ
) E follows

from A ⊗O F-projectivity of Mϕ ⊗O F/
(∏

κ Eκ(u)rκ
) E ⊗O F. But we saw in the

previous paragraph that
(∏

κ Eκ(u)rκ
) E ⊗O F = (∏

κ Eκ(u)rκ
)
M ⊗O F. Since

Mϕ/
(∏

κ Eκ(u)rκ
)
M is A-projective the claimedSA-projectivity of E follows. This

establishes the two required conditions mentioned in the second paragraph, and there-
fore finishes the proof. ��
Lemma 12.5 Let A be a finite flat O-algebra and suppose

mκ =
p∑

l=1

Eκ(u)p−lπ lmκ,l

are given with mκ,l ∈ A. Then there exists m ∈ πSA with m ≡ mκ modulo Eκ(u)rκ

for each κ .

Proof Firstly, by choosing anO-basis of Awe can reduce to the case A = O. Secondly,
we can fix κ and assume that mκ ′ = 0 for all κ ′ �= κ . Using the identification
SO = ∏

κ0
O[[u]] we are left proving that if m ∈ O[u] can be written as

m =
p∑

l=1

(u − πκ)p−lπ lml , ml ∈ O
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then there exists M ∈ πO[[u]] with
• M divisible by (u − πκ ′)rκ′ for every κ ′ �= κ with κ ′|k = κ|k .
• M ≡ m modulo (u − πκ)rκ .

We will construct M explicitly. For κ ′ with κ ′|k = κ|k and κ ′ �= κ set

Xκ ′ := (−1)rκ
rκ−1∑

n=0

(
rκ ′ − 1 + j

rκ ′ − 1

)
(u − πκ)n

(πκ − πκ ′)n+rκ′

Using the formal identity 1
(1−y)r = ∑∞

n=0

(r−1+i
r−1

)
yi with r = rκ ′ and y = u−πκ

πκ′−πκ

shows that

Xκ ′(u − πκ ′)rκ′ ≡ 1 modulo (u − πκ)rκ

Define N ∈ E[u] to be the polynomial of degree < rκ when viewed as a polynomial
in (u − πκ), obtained by truncating m

∏
κ ′ �=κ Xκ ′ . Then N ≡ m

∏
κ ′ �=κ Xκ ′ modulo

(u − πκ)rκ and so

M := N
∏

κ ′ �=κ

(u − πκ ′)rκ′

satisfies the two bullet points above. To finish it suffices to show that N , and hence M
also, is contained in πO[[u]].

For this view N as a polynomial in (u − πκ). By assumption the coefficient of
(u−πκ)n inm has valuation≥ p−n. On the other hand, the coefficient of (u−πκ) in
Xκ ′ has valuation ≥ −(n + rκ ′)ν for ν := νκ|k . Since ν ≥ 1 we have p − n ≥ p − nν

and as such the coefficient of (u − πκ)n in m
∏

κ ′ �=κ X j has valuation

≥ p − (
∑

κ ′ �=κ

rκ ′ + n)ν

We will be done if p − (
∑

κ ′ �=κ rκ ′ + n)ν ≥ 1 for all n = 0, . . . , rκ − 1, i.e. if

p−(
∑

κ ′|k=κ|k rκ ′ −1)ν ≥ 1. This is equivalent to asking that
∑

κ ′|k=κ|k rκ ′ ≤ p−1
ν

+1
so we are done. ��

13 Lower bounds

In this section we recall from [7, 10] the lower bound on the cycles appearing in
the Breuil–Mézard conjecture attained when d = 2. We do this in the context of
cycles in deformation rings. We also give a minor improvement using the potential
diagaonalisability established in [1].



Degenerating products of flag varieties and applications… Page 41 of 48    17 

13.1 First, recall that isomorphism classes of absolutely irreducible representations
of GLd(k) on F-vector spaces are in bijection with tuples λ = (λκ0) indexed by
embeddings κ0 : k → F with each λκ0 a tuple of integers satisfying

λκ0,1 − λκ0,d ≤ p − 1

This bijection sends (λκ0) onto the GLd(k)-representation obtained by evaluating the
algebraic representation of G = GLd

⊗

κ0

(
L(λκ0) ⊗k,κ0 F

)

on k-points [13]. Here L(λκ0) ⊂ H0(G/Pλκ ,L(λκ)) ⊗OK k denotes the unique irre-
ducible algebraic G-submodule.

13.2 We also recall from the introduction the F-representation V (μ, τ) of GLd(k)
attached to any pair (μ, τ) with μ a Hodge type with each μκ − ρ dominant and τ an
inertial type. Taking τ = 1 we obtain V (μ, 1) by evaluating the algebraic representa-
tion

⊗

κ

(
H0(G/Pμκ−ρ,L(μκ − ρ)) ⊗OK ,κ F

)

(here we write κ also for its composite with the surjectionO → F) on k-points. Since
the exact definition of V (μ, τ) will not be needed for τ �= 1 we refer to [7, 8.2] for
the general construction.

Lemma 13.3 Suppose d = 2 and μ is a Hodge type with μκ ⊂ [0, rκ ] for rκ ≥ 0
satisfying

∑

κ|k=κ0

rκ ≤ e + p − 1

Then the multiplicity of λ in V (μ, 1), for λ an absolutely irreducible F-representation
of GLd(k) corresponding to (λκ0) under 13.1, equals the product

∏

κ0

m(λκ0 , (μκ)κ|k=κ0)

from Proposition 6.6.

Proof Recall from Lemma 6.3 that each m(λκ0 , (μκ)κ|k=κ0) can be interpreted as the
multiplicity of H0(λκ0) in

⊗
κ|k=κ0

H0(μκ − ρ) where H0(−) denotes the generic

fibre of H0(G/P−,L(−)). This coincides with the corresponding multiplicities on
the special fibre, i.e. the multiplicity of H0(G/Pλκ0

,L(λκ0)) ⊗OK k in

⊗

κ|k=κ0

(
H0(G/Pλμκ−ρ ,L(μκ − ρ)) ⊗OK k

)
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The product of these multiplicities therefore equals the multiplicity of

⊗

κ0

H0(G/Pλκ0
,L(λκ0)) ⊗OK ,κ0 F

inside
⊗

κ

(
H0(G/Pλμκ−ρ ,L(μκ − ρ)) ⊗OK ,κ F

)

The lemma will therefore follow if each H0(G/Pλκ0
,L(λκ0)) ⊗OK k is simple, i.e.

equals L(λκ0). Since d = 2 this can be seen from the explicit description given in, for
example, [15, II.2.16]. ��
Notation 13.4 If λ denotes an isomorphism class of absolutely irreducible F-
representation of GLd(k) then we write λ̃ for the Hodge type obtained as in 6.5 for
(λκ0) the tuple corresponding to λ in 13.1.

13.5 In the next proposition we fix a continuous homomorphism ρ : GK → GLd(F)

and, as in the proof of Lemma 10.9, we write Rρ for the O-framed deformation ring
of ρ. If (μ, τ) is a pair consisting of a Hodge type μ and an inertial type τ then we
also write Rμ,τ

ρ for the unique reducedO-flat quotient of Rρ whose points valued in a
finite extension of E are correspond to potentially crystalline representations of type
(μ, τ).

We also say that an absolutely irreducible representation F-representation λ of
GL2(k) is non-Steinberg if λ corresponds to a tuple (λκ0) with λκ0,1 − λκ0,2 �= p − 1
for at least one κ0.

Proposition 13.6 Assume p > 2, d = 2, and thatμκ −ρ is dominant for each κ . Then

(1) There are cycles Cρ,λ in Spec Rρ , indexed by isomorphism classes of absolutely
irreducible F-representations λ of GLd(k), such that, for any pair (μ, τ), one has
an inequality

[Spec Rμ,τ
ρ ⊗O F] ≥

∑

λ

m(λ, μ, τ)Cρ,λ

for m(λ, μ, τ) the multiplicity of λ in V (μ, τ) (where V (μ, τ) is the GLd(k)-
representation attached to μ, τ ).

(2) If λ is non-Steinberg then Cρ,λ = [Spec Rλ̃,1
ρ ⊗O F].

This is the single point where the assumption p > 2 arises.

Proof In [7, 8.6.6] it is shown that, if Xμ,τ
2 denotes the closed algebraic substack

of the Emerton–Gee stack X2 whose A-points (for A a finite flat O-algebra) corre-
spond to potentially crystalline GK -representations of type (μ, τ), then there are top
dimensional cycles Cλ ⊂ X 2 such that

[Xμ,τ

2 ] ≥
∑

λ

m(λ, μ, τ)Cλ
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The cycles Cλ are also described explicitly in [7, 8.6.2]. In particular, if λ is non-
Steinberg then Cλ is the irreducible component of X 2 labelled by λ as in [7, 5.5.11].
As explained in [7, 8.3] the above inequality implies part (1) of the proposition by
pulling back along the formally smooth morphism Spf Rρ ⊗O F → X 2.

For part (2),weobserve that the irreducibility ofMλ̃⊗OF implies, for non-Steinberg

λ, irreducibility of Y λ̃
2 ⊗OF (see the paragraph before (14.3)). By definitionX λ̃,1

2 is the

scheme theoretic image of Yμ
2 and so the topological space ofX λ̃,1

2 is the image of that

of Y λ̃
2 ⊗O F. Therefore X λ̃,1

2 is irreducible and [X λ̃,1
2 ] = mλCλ for some mλ ∈ Z≥0.

We have to show mλ = 1.
If ρ is a smooth point of Cλ then pulling back this identity along Spf Rρ⊗OF → X 2

and taking Hilbert–Samuel multiplicities gives mλ = e(Rλ̃,1
ρ ⊗O F) (smoothness of

Cλ at ρ implying the Hibert-Samuel multiplicity of Cλ at this ρ is 1). We therefore

have to show e(Rλ̃,1
ρ ⊗O F) = 1. As explained in [7, 6.5.1], the component of X 2

representing Cλ contains an open substack consisting of representations which are
maximally non-split of niveau 1. We can therefore assume the smooth point ρ chosen
above is of this form. Since λ is non-Steinberg we ensure ρ is not of the form

ψ ⊗
(
1 ∗
0 χ−1

cyc

)

for ψ an unramified character and χcyc the mod p cyclotomic character. This means ρ

is cyclotomic-free in the sense of [1, 1.1.1] and so [1, 1.1.2] ensures every crystalline
lift ofρ withHodge type λ̃ is potentially diagonalisable. Combinedwith [10, 3.5.5] this

implies e(Rλ̃,1
ρ ⊗O F) = μλ(ρ) where μλ(ρ) equals the Hilbert–Samuel multiplicity

of Cλ,ρ . Thus e(R
λ̃,1
ρ ⊗O F) = 1 as desired. ��

14 Main result

We can now prove our main result.

Theorem 14.1 Assume p > 2 and d = 2. Let μ be a Hodge type with each μκ − ρ

dominant and

∑

κκ|k=κ0

(μκ,1 − μκ,2 − 1) ≤ p

for each κ0 : k → F. Then

[Spec Rμ,1
ρ ⊗O F] =

∑

λ

m(λ, μ, 1)[Spec Rλ̃,1
ρ ⊗O F]

for m(λ, μ, 1) the multiplicity of λ in V (μ, 1).
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Proof First, by a simple twisting argument, we can assume μκ,2 = 0 for each κ . Since
μκ,1 ≥ 1 the bound

∑
κ|k=κ0

μκ,1 ≤ p implies that either e < p or e = p and
μκ,1 = 1 for each κ . In the latter case μ = λ̃ for λ the trivial representation and in this
case there is nothing to prove. Thus, we can assume e < p. This means K is tamely
ramified over Qp and so Remark 12.2 indicates that Theorem 12.1 applies. We can
also assume that e > 1, since if e = 1 then again μ = λ̃ and the theorem is again
trivial. This means that

∑
κ|k=κ0

μκ,1 < p + e− 1 for each κ and so Proposition 11.3
also applies, with rκ = μκ,1.

Proposition 7.2 gives an identity of cycles

[Mμ ⊗O F] =
∑

λ

n(λ, μ)[Mλ̃ ⊗O F]

for integers n(λ, μ) ≥ 0 and λ running over tuples (λκ0)with λκ0 ≤ ∑
κ|k=κ0

(μκ −ρ).
Each such λκ0 then satisfies λκ0,1 − λκ0,2 ≤ p − 1 so we can also view the sum as
running over absolutely irreducible F-representations of GL2(k) by 13.1. Applying
the automorphism from Sect. 8 gives

[M−w0μ ⊗O F] =
∑

λ

n(λ, μ)[M−w0λ̃
⊗O F]

Proposition 7.7 allows us to view this identity of cycles as occurring within the closed
subscheme Gr∇σ ,r

O ⊗OF from 11.2 for r = (rκ). We want to consider its preimage
under the composite

Y≤h
2 ×Z≤h

2
(Z̃∇σ ,r

2 ⊗O F) → Z̃∇σ ,r
2 ⊗O F

�N−−→ Gr∇σ ,r
O ⊗OF (14.2)

(here the auxiliary integer N is chosen sufficiently large so that Proposition9.7 applies).
To do this we need to show the composite is flat. As the first map is an isomorphism by
Proposition 11.3, and GN is a smooth and irreducible group scheme, this composite is
smooth with irreducible fibres. Smooth morphisms are flat so the pull-back of cycles
is well defined and we obtain

[Yμ,flag
2 ] =

∑

λ

n(λ, μ)[Y λ̃,flag
2 ]

where Yμ,flag
2 denotes the preimage of M−w0μ ⊗O F. These are identities of dim GN +∑

κ dimG/Pμκ -dimensional cycles. Theorem 12.1 shows that

Y
μ

2 ×Z≤h
2

Z̃≤h,N
2 ↪→ Yμ,flag

2 ,

fromwhichwe conclude that [Yμ

2 ×Z≤h
2

Z̃≤h,N
2 ] ≤ [Yμ,flag

2 ] as cycles.We also point out

that since eachMλ̃⊗OF is irreducible and generically reduced (see Proposition 7.2) the

same is true ofM−w0λ̃
⊗OF. The same is then also true of Y λ̃,flag

2 since (14.2) is smooth
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with irreducible fibres. In particular, this implies the inequality [Yμ

2 ×Z≤h
2

Z̃≤h,N
2 ] ≤

[Yμ,flag
2 ] is an equality when μ = λ̃. As a consequence

[Yμ

2 ×Z≤h
2

Z̃≤h,N
2 ] ≤

∑

λ

n(λ, μ)[Y λ̃

2 ×Z≤h
2

Z̃≤h,N
2 ] (14.3)

as dim GN + ∑
κ dimG/Pμκ -dimensional cycles inside the scheme Y≤h

2 ×Z≤h
2

(Z̃∇σ ,r
2 ⊗O F).
The next goal is to descend this identity to an inequality of cycles in Spec Rρ ⊗O F.

For this we recall the projective Rρ-scheme L≤h
ρ introduced in Construction 10.8.

The morphism L≤h
ρ ⊗O F → Y≤h

2 ⊗O F is clearly formally smooth, with relative

dimension d2 = 4 arising from the framing variables in Rρ . Pulling back the previous
inequality along

(
L≤h
2 ⊗O F

)
×Z≤h

2
Z̃≤h,N
2 →

(
Y≤h
2 ⊗O F

)
×Z≤h

2
Z̃≤h,N
2

(being a formally smooth morphism between Noetherian schemes, this map is flat and
so the pull-back is defined) gives an inequality

[Lμ

ρ ×Z≤h
2

Z̃≤h,N
2 ] ≤

∑

λ

n(λ, μ)[Lλ̃

ρ ×Z≤h
2

Z̃≤h,N
2 ]

where Lμ

ρ = Lμ
ρ ⊗O F for Lμ

ρ the preimage of Yμ
2 in L≤h

ρ (constructed just as in

the proof of Lemma 10.9). This is an identity of d2 + dim GN + ∑
κ dimG/Pμκ -

dimensional cycles. Since the morphism L≤h
ρ ×Z≤h

2
(Z̃≤h,N

2 ⊗O F) → L≤h
ρ is a GN -

torsor (in particular smooth, surjective, and of relative dimension dim GN ) it follows
that

[Lμ

ρ ] ≤
∑

λ

n(λ, μ)[Lλ̃

ρ]

as d2 +∑
κ dimG/Pκ -dimensional cycles inside L≤h

ρ . Recall that the projective mor-

phism � : L≤h
ρ → Spec Rρ becomes a closed immersion after inverting p and this

closed immersion identifies Lμ
ρ [ 1p ] = Spec Rμ,1

ρ [ 1p ]. This was discussed in the proof

of Lemma 10.9. Since the Rμ,1
ρ are O-flat, an application of Lemma 3.3 shows that

�∗[Lμ

ρ ] = [Spec Rμ,1
ρ ⊗O F]

Therefore, pushing forward the previous inequality of cycles gives

[Spec Rμ,1
ρ ⊗O F] ≤

∑

λ

n(λ, μ)[Spec Rλ̃,1
ρ ⊗O F]
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now as d2+∑
κ dimG/Pκ -dimensional cycles inside Spec Rρ ⊗OF. Proposition 13.6

then gives that n(λ, μ) ≥ m(λ, μ, 1). Combining Lemma 13.3 and Proposition 6.6
shows that this must be an equality. The theorem follows. ��

15 Miscellany

Let X and Y be algebraic stacks of finite type over a field k and let f : X → Y be a
morphism of stacks.

Lemma 15.1 If, for A any local finite k-algebra, the induced functor X (A) → Y(A):

(1) is fully faithful then f is a monomorphism (which by our definition implies being
representable by algebraic spaces and separated).

(2) is an equivalence then X → Y is an isomorphism.

Proof First we prove (2) under the additional assumption that f is representable by
algebraic spaces. Then, by choosing a smooth surjectionU → Y withU an algebraic
space, we can assume that X and Y are algebraic spaces. With this reduction the
argument given in [21, 7.2.4] goes through with schemes replaced by algebraic spaces.
Indeed, by [26, 0APP] this morphism is smooth and quasi-finite, and hence étale. By
[26, 05W1] the diagonal X → X ×Y X is an open immersion. Since it is surjective
on finite type points it is an isomorphism and soX → Y is a monomorphism. By [26,
05W5] it is an open immersion, and so an isomorphism, again by surjectivity on finite
type points.

Now we prove (1). By [26, 04XS] the diagonal � f : X → X ×Y X is repre-
sentable by algebraic spaces. Full faithfulness of f on A-valued points implies that
� f is an equivalence on such points. Therefore the first paragraph implies � f is an
isomorphism. From [26, 04ZZ] we obtain (1).

To finish the proof of (2) note that by (1) we have f representable by algebraic
spaces. ��
Corollary 15.2 Suppose Z is a closed substack of Y and that for every morphism
Spec A → X , with A any local finite k-algebra, the composite Spec A → X → Y
factors through Z . Then X → Y factors through Z .

Proof This follow since by Lemma 15.1 the map X → X ×Y Z is an isomorphism.
��
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