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Abstract
Electrical conductivity of most polymeric insulators can be drastically enhanced by introducing a small volume frac-
tion (∼ 1%) of conductive nanofillers. These nanocomposites find wide-ranging engineering applications from cellular
metamaterials to strain sensors. In this work, we present a mathematical model to predict the effective electrical con-
ductivity of carbon nanotubes (CNTs)/polymer nanocomposites accounting for the conductivity, dimensions, volume
fraction, and alignment of the CNTs. Eshelby’s classical equivalent inclusion method (EIM) is generalized to account for
electron-hopping—a key mechanism of electron transport across CNTs, and is validated with experimental data. Two
measurements, namely, the limit angle of filler orientation and the probability distribution function, are used to control
the alignment of CNTs within the composites. Our simulations show that decreasing the angle from a uniformly ran-
dom distribution to a fully aligned state significantly reduces the transverse electrical conductivity, while the longitudinal
conductivity shows less sensitivity to angle variation. Moreover, it is observed that distributing CNTs with non-uniform
probability distribution functions results in an increase in longitudinal conductivity and a decrease in transverse conduc-
tivity, with these differences becoming more pronounced as the volume fraction of CNTs is increased. A reduction in
CNT length decreases the effective electrical conductivity due to the reduced number of available conductive pathways
while reducing CNT diameter increases the conductivity.
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1. Introduction
The discovery of carbon nanotubes (CNTs) in 1991 by Iijima [1] was an influential achievement because of their
strength, low weight, and high mechanical, thermal, and electrical properties [2, 3]. To take advantage of these
extraordinary physical properties, CNT-reinforced composites are developed as an emerging class of advanced
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lightweight nanocomposites [4–7]. The properties and behavior of various structures made of these composite
materials have been widely evaluated and reported in the literature using different experimental, analytical, and
numerical approaches, and numerous potential applications spanning across automotive, electronics, energy
storage, biomedical engineering, sports equipment, and structural reinforcement are reported for this class of
composites [8–14].

Analytical micromechanics theories such as the rule of mixture [15–17], Eshelby’s equivalent inclusion
method (EIM) [18–20], Halpin–Tsai method [21–24], Lewis–Nielsen method [25, 26], and Mori–Tanaka
method [27–29] have been widely used in many studies to evaluate the overall physical properties of com-
posite materials with reasonable accuracy. Developed by Eshelby [20], one of the most popular theories, the
EIM shows that the elastic fields inside an ellipsoidal inhomogeneity can be assumed to be uniform if the ellip-
soidal particle is perfectly bonded to an infinitely extended matrix with a uniform load applied at infinity. One
of the main advantages of EIM is that the solution is limited to a system of algebraic equations, and it can be
applied to the different behavior of materials such as elastic-plastic, viscoelastic, and creep [30]. The EIM was
extended by Dunn and Taya [31] for the problems with the coupled electro-elastic behavior of piezoelectric
composites based on the rigorous electro-elastic solution of an ellipsoidal inclusion in an infinite piezoelectric
medium. The method in steady-state heat conduction was extended further for the randomly oriented particle
composites with uncoupled thermal and electromagnetic behavior by Hatta and Taya [32, 33]. They considered
two distribution functions for the inclusions and showed that their model is able to consider the effects of inter-
action between different inclusion orientations. Chen and Wang [34] proposed an analytical model based on the
Mori–Tanaka mean field theory and the EIM to evaluate the thermal conductivity of the composite materials.
They developed a new distribution function called Kacir’s single-parameter exponential function to model the
inclusion orientation. Odegard and Gates [35] developed a method to modify the constitutive models of poly-
mer composite reinforced by randomly oriented CNTs. They captured the effect of the discrete nature of the
atomic interactions at the nanoscale and the interphase between CNTs and the polymer matrix using the EIM.
Three different patterns for the dispersion of CNTs including CNTs with an axisymmetric orientation, aligned,
and randomly oriented CNTs were considered in their work. Seidel and Lagoudas [36] used Mori–Tanaka, self-
consistent, and composite cylinders micromechanical models in conjunction with Eshelby’s method to analyze
the elastic behavior of nanocomposites reinforced by CNTs. They used a tessellation procedure and a multi-
phase Mori–Tanaka approach to capture the effect of clustering of CNTs in the polymer matrix. Moreover, the
effects of interphase regions were taken into account. Jin et al. [37] proposed a closed-form solution for the
stress caused by the disturbance of an elliptical inhomogeneity in an infinite isotropic elastic plane. Their study
showed that the EIM is a useful tool at least for solving the classical elliptical inhomogeneity problem.

Several analytical models were developed to analyze the electrical conductivity and piezoresistivity of CNT-
reinforced composites. In another work by Seidel and Lagoudas [38], a micromechanical model based on the
Mori–Tanaka approach and EIM was proposed to investigate the effects of electron hopping by considering
conductive interphase layers around particles. Their results showed that the thickness of the electrical tunneling
interphase layer relative to the CNT radius gives a distinct percolation concentration in which the well-dispersed
CNT fillers are in close vicinity and electrical tunneling easily happens. A simple analytical model was pre-
sented by Deng and Zheng [39] to predict the electrical conductivity of CNT-reinforced composites considering
the effects of the percolation, conductive networks, conductivity anisotropy, and waviness of CNT inclusions.
Their results revealed that the waviness of CNTs has an important influence in evaluating electrical conductivity.
Following their model, Takeda et al. [40] proposed an analytical model for evaluating the electrical conductivity
of CNT-reinforced polymers by taking into account the nanoscale effects and the electron hopping. They also
conducted experiments and compared the results with their analytical model. Feng and Jiang [41] developed
a hybrid analytical model to evaluate the electrical properties of CNT-reinforced polymers by incorporating
electron hopping and conductive networks. An interphase layer surrounding the CNT was used to capture the
nanoscale effect of electrical tunneling based on the electron hopping theory. They illustrated that electron hop-
ping and conductive networks contribute to the electrical conductivity, while the conductive networks’ effect is
dominant above the percolation threshold. Garcia-Macias et al. [12] developed a micromechanics model which
can take into account the non-straightness by a helical waviness model and non-uniform dispersion of CNTs
by a two-parameter agglomeration approach for evaluating the effective electrical conductivity of cement-based
composites. The electron hopping and conductive networks were modeled via an interphase surrounding the
CNTs and changes in the CNTs aspect ratios, respectively. Haghgoo et al. [42] studied the effects of aspect
ratio, volume fraction, clustering, and distribution of CNTs on the electrical conductivity of hybrid polymer
composites reinforced by CNTs and carbon fibers. The effect of electron tunneling was considered by modeling
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an interphase layer. They showed that the electrical conductivity highly depends on the aspect ratio, alignment
angle, and the distance among the CNT particles. A micromechanical model based on the Eshelby–Mori–Tanaka
approach was conducted by Mora et al. [43] to evaluate the electrical conductivity of polymer nanocomposites
with agglomeration and segregation of CNT particles. Their model is able to predict the effect of segrega-
tion on the electrical conductivity of nanocomposites. Their model was validated by comparing the predicted
electrical conductivity to the experimental values. Chanda et al. [44] developed two analytical models based
on micromechanics and a simplified fiber–fiber contact network to calculate the electrical conductivity of ran-
dom and aligned composites. They investigated the effect of aspect ratio, waviness, orientation, interphase, and
percolation threshold on the effective conductivity of composites. Shingare and Naskar [45] investigated the
micromechanical modeling of fiber-based composites, emphasizing the impact of random fiber orientation on
piezoelastic properties. They estimated the effective properties of composites considering the different orienta-
tions, shapes, and geometrical aspects of graphene fibers. Tang et al. [46] presented a simple analytical model
to estimate the percolation threshold and electrical conductivity of CNT-reinforced composites by consider-
ing the effects of waviness, dispersion, volume fraction, and size of particles. They validated their model by
comparing their results with experimental values in the literature. Saberi et al. [47] presented a multi-step ana-
lytical model to predict the electrical conductivity of the short carbon fiber-reinforced hybrid composites with
graphene nanoplatelet particles. They investigated the effects of volume fraction, interphase characteristics, and
fiber aspect ratio. Haghgoo et al. [48] presented a two-step analytical approach considering percolation network
and electron tunneling to predict the electrical resistivity and percolation threshold in CNT-reinforced hybrid
nanocomposites with carbon black. Quinteros et al. [49] proposed a computational framework for evaluating the
electromechanical behavior of CNT-reinforced composites during fracture by combining electrical-deformation-
fracture finite element (FE) modeling with a mixed micromechanics formulation. In their model, the electrical
conductivity has a nonlinear relationship with the volume content of distributed CNTs.

To summarize the above discussion, the idea of equivalent inclusion proposed by Eshelby [20] for elastic-
ity has been widely extended to evaluate the other overall physical properties of inclusion–matrix materials,
e.g., thermal conductivity [32–34, 50] and electrical conductivity [12, 38, 41, 43] of composites. However, in
the case of electrical conductivity, the lack of detailed formulation derivation is notable. Calculations based on
the EIM are highly sensitive to input parameters which are often overlooked. Moreover, while most analytical
calculations focus on isotropic composites, CNTs are commonly distributed in a non-uniform manner in com-
posites, influenced by factors such as the manufacturing process or deformation due to large strain. Specific
applications may call for deliberate manipulation of inclusion distribution to enhance material performance and
achieve optimal designs. To address these issues, we present a rigorous analytical formulation for computing
effective electrical conductivity of polymer nanocomposites accounting for both conductive networks and elec-
tron hopping [32, 38, 51]. Our calculations demonstrate a high sensitivity of results on input parameters such
as energy barrier for electron hopping, intrinsic CNT conductivity, and percolation threshold. Often, the exact
values of these parameters are not reported in experiments and care must be taken to use appropriate values
in computational models. Finally, we model the non-uniform distribution of CNTs using a limit angle of filler
orientation and a probability distribution function. The EIM of homogenization is reviewed in section 2 and is
generalized to include electron hopping in section 3. The model is validated with experimental data in section 4.
We also discuss the role of CNT volume fraction, orientation, distribution, and dimensions in this section with
the help of numerical examples. The conclusions are reported in section 5.

2. EIM
This section summarizes the EIM for calculating the effective electrical or thermal conductivity of two-phase
composites [20, 32, 33, 52, 53]. The inclusions can be modeled with or without an interphase coating with a
different conductivity [41, 54]. First, the method is applied to a matrix with a single ellipsoidal particle and then
extended to a matrix with numerous ellipsoidal particles, considering the interactions between them.

2.1. Overall electrical conductivity of two-phase composites

In general, the overall electrical conductivity of any two-phase composite, Kij, can be estimated by average
electric current density Ji, and average electric field of composite Ei, using Ohm’s law as:

Ji = Kij Ej, (1)
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where horizontal line denotes the averaged quantity over the volume V as � = 1
V

∫
� dV . Unless otherwise

stated, index notation is used through this section defining Einstein’s summation convention as aibi = ∑dim
i=1 aibi,

where dim denotes the dimension of the geometry. The whole domain of composite represented by D, can be
divided by the domain of matrix Dm and the domain of particles Dp such that Dm ∪Dp = D, and Dm ∩Dp = ∅.
By decomposing the average quantities Ji and Ei into a matrix phase and a particle phase, they can be written
as:

Ji = 1

VD

[∫
Dm

Ji dV +
∫

Dp
Ji dV

]
, (2a)

Ei = 1

VD

[∫
Dm

Ei dV +
∫

Dp
Ei dV

]
. (2b)

Ohm’s law in each phase is given as:

Ji = Kmδij Ej in Dm, Ji = Kp
ij Ej in Dp, (3)

where Km is the electrical conductivity of the isotropic matrix and Kp
ij = diag

(
Kp

11, Kp
22, Kp

33

)
is the anisotropic

electrical conductivity of particle, and δij is the Kronecker delta. Equation (3) can be integrated over the
respective domains to give: ∫

Dm
Ji dV = Kmδij

∫
Dm

Ej dV , (4a)∫
Dp

Ji dV = Kp
ij

∫
Dp

Ej dV . (4b)

By calculating Ji from equations (2a), (4a), and (4b), equation (1) yields:

Kij Ej = 1

VD

[
Km

∫
Dm

Ei dV + Kp
ij

∫
Dp

Ej dV

]
. (5)

By substituting
∫
Dm Ei dV from equation (2b), the above equation gives the overall electrical conductivity

as:

Kij Ej = Km Ei + 1

VD

[
Kp

ij − Kmδij

] ∫
Dp

Ej dV . (6)

Hence, in order to estimate Kij, we need to evaluate Ei and
∫
Dp Ei dV in equation (6).

2.2. Matrix with a single ellipsoidal particle

Consider a single ellipsoidal particle embedded in an infinite matrix while the constant electric current density
J0

i is applied at the far field as shown in Figure 1(a). By decomposing the electric field in the composite as
Ei = E0

i + Ed
i , Ohm’s law inside the particle domain holds:

Ji = Kp
ij Ej = Kp

ij [E0
j + Ed

j ] in Dp, (7)

where Ed
i is the disturbed electric field due to the existence of inhomogeneity Dp, and E0

i is the uniform electric
field due to the current density J0

i in the absence of the particle, i.e.,

J0
i = Km E0

i in D. (8)

As shown in Figure 1(b), consider an imaginary subdomain Dp called an inclusion which undergoes trans-
formation electric field but its electrical conductivity is equal to the electrical conductivity of the matrix. It can
be shown that the EIM captures the disturbance of the applied electric current density by an eigenflux field
generated by inclusion with a proper transformation electric field.
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(a) (b)

Figure 1. (a) A single ellipsoidal particle embedded in an infinite matrix subjected to the applied current density and (b) the equivalent
inclusion inducing transformation electric field.

Based on this method, the disturbed current density inside the matrix and particle domains are expressed as:

Ji − J0
i = Km Ed

i in Dm, (9a)

Ji − J0
i = Km

[
Ed

i − E∗
i

]
in Dp. (9b)

Here, we introduce E∗
i , the transformation electric field due to the uniformly distributed electric field.

The second-order tensor Sij is analogous to the so-called Eshelby tensor in elasticity and depends only on the
geometry of the ellipsoidal inclusion. It connects Ed

i , and E∗
i inside the inclusion domain as:

Ed
i = Sij E∗

j in Dp. (10)

The formulas to calculate Sij for inclusions with different geometries can be found in Appendix 1. The
resultant electric current density in the particle is given by the sum of equations (8) and (9b) as:

Ji = Km
[
E0

i + Ed
i − E∗

i

]
in Dp. (11)

Upon comparing equations (7) and (11), we get:

Km
[
E0

i + Ed
i − E∗

i

] = Kp
ij

[
E0

j + Ed
j

]
in Dp. (12)

The above equation expresses a relation between the real composite and the equivalent inclusion.

2.3. Matrix with numerous ellipsoidal particles

The approach presented in section 2.2 for a single ellipsoidal particle can be extended for an infinite matrix with
numerous ellipsoidal particles as shown in Figure 2. In this case, the interactions between the particles should
also be taken into account.

Here, the total electric field Ei is decomposed into three parts as:

Ei = E0
i + Ed

i + En
i in D, (13)

where En
i is the average disturbance of the electric field in the matrix due to conductive networks of particles

and is defined as:

En
i = 1

VDm

∫
Dm

[
Ei − E0

i

]
dV . (14)
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Figure 2. Numerous ellipsoidal particles embedded in an infinite matrix.

With a similar approach to the EIM for a single ellipsoid presented in the previous section, equations (9b)
and (12) can be rewritten for composites with numerous ellipsoidal particles as:

Ji − J0
i = Km

[
Ed

i + En
i − E∗

i

]
in Dp, (15)

and
Km

[
E0

i + Ed
i + En

i − E∗
i

] = Kp
ij

[
E0

j + Ed
j + En

j

]
in Dp. (16)

By defining |�| that specify the outer boundary of � and the partial differentiation operator ∂i� = ∂�/∂xi,
and integrating over the entire domain D, the electric current density Ji − J0

i vanishes using Gauss’ divergence
theorem as: ∫

D
[Ji − J0

i ] dV =
∫

|D|
[Jj − J0

j ] nj xi dV −
∫

D
∂j[Jj − J0

j ] xi dV = 0, (17)

since (Jj − J0
j ) nj = 0 on |D| and ∂j(Jj − J0

j ) = 0 in D. Hence, by integrating over the entire domain of the
composite, equation (15) becomes: ∫

D
En

i dV =
∫

D

[
E∗

i − Ed
i

]
dV , (18)

that results in:

En
i = 1

VD

∫
Dp

[
E∗

i − Ed
i

]
dV . (19)

Thus, recalling equation (13), the volumetric average of the total electric field is given as:

Ei = 1

VD

∫
D

Ei dV = E0
i + 1

VD

∫
D

[En
i + Ed

i ] dV . (20)

Making use of equations (15) and (17), we get:

Ei = E0
i + 1

VD

∫
Dp

E∗
i dV . (21)

The electric field when integrated over the inclusions can be written as:∫
Dp

Ei dV = Km
[
Kmδij − Kp

ij

]−1
∫

Dp
E∗

j dV . (22)
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Hence, using Ei from equation (21) and
∫
Dp Ei dV from equation (22), the non-zero components of overall

electrical conductivity Kij in equation (6) can be estimated as:

K11 = K22 = Km

[
1 −

∫
Dp E∗

1 dV

VD E0
1 + ∫

Dp E∗
1 dV

]
, (23a)

K33 = Km

[
1 −

∫
Dp E∗

3 dV

VD E0
3 + ∫

Dp E∗
3 dV

]
. (23b)

Next, we need to determine
∫
Dp E∗

i dV in the above expression based on the distribution of particles.

2.4. Composites with randomly distributed inclusions

In order to evaluate the overall electrical conductivity of a composite reinforced by randomly distributed inclu-
sions, we need to determine

∫
Dp E∗

i dV . The model used by Takao et al. [53] for the composite reinforced by
randomly distributed inclusions is used in this paper. The orientation of every inclusion is described by Euler
angles θ and ψ as shown in Figure 2. Using the local coordinates {x̂1, x̂2, x̂3, }, where the x̂3-axis is set to coincide
with the inclusion axis, the EIM from equation (16) for a representative inclusion yields:

Km
[
Ê0

i + Êd
i + Ên

i − Ê∗
i

]
= Kp

ij

[
Ê0

j + Êd
j + Ên

j

]
in Dp, (24)

and
Êd

i = Sij Ê∗
j in Dp, (25)

where the hat accent refers to the local coordinate system on representative inclusion. Equations (24) and (25)
can be held for every inclusion distributed in the matrix. From equations (24) and (25), we can obtain:

[Kmδij − Kp
ij] [Ê0

j + Ên
j ] = [Kp

ij − Kmδij] Sjk Ê∗
k + Km Ê∗

i in Dp . (26)

Upon introduction of second-order tensors Aij and Bij:

Aij = [Kp
ik − Kmδik] Skj + Kmδij , (27a)

Bij = A−1
ik [Kmδkj − Kp

kj] , (27b)

the value of Ê∗
i in equation (26) can be stated in a more compact way as:

Ê∗
i = Bij [Ê0

j + Ên
j ] . (28)

From equations (25) and (28), we can eliminate Ê∗
i and obtain:

Êd
i = Sij Bjk [Ê0

k + Ên
k] . (29)

The rotation tensor Qij defined as ai = Qij âj links the local coordinate system of the particle and the global
coordinate system in the matrix. This second-order tensor can be written in a matrix form as:

[Qij] =
[

cosψ cos θ − sinψ cosψ sin θ
cos θ sinψ cosψ sinψ sin θ

− sin θ 0 cos θ

]
. (30)

Using this tensor, we can transform the conductivity tensor into the global coordinate system. So, by
transforming equations (28) and (29), we can obtain:

E∗
i = Qij Bjk Q−1

kl [E0
l + En

l ], (31a)

Ed
i = Qij Sjk Bkl Q−1

lo [E0
o + En

o]. (31b)
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Now, consider a unit sphere where the orientation of inclusion is indicated by Euler angles θ and ψ . The
integration of quantity of E∗

i over particle domain Dp is stated as:

∫
Dp

E∗
i dV =

∫ ∫
E∗

i ξ (θ ,ψ) ds =
2π∫

ψ=0

α∫
θ=0

E∗
i ξ (θ ,ψ) sin θ dθ dψ , (32)

where α is the limit of the inclusion orientation angle θ as |θ | < α and α ∈ [0,π/2]. The orientation distribution
function ξ (θ ,ψ) is defined as the number of particles (ρ) intersecting a unit area of the unit sphere multiplied
by the volume of a single particle Vsp, i.e., ξ (θ ,ψ) = ρVsp. The function ξ is identity for a uniform random
distribution but can take more general forms as shown in further sections.

Similarly, we can compute the integration of the quantity of disturbed electric field over the particle domain
as: ∫

Dp
Ed

i dV =
∫ 2π

0

∫ α

0
Ed

i ξ (θ ,ψ) sin θ dθ dψ . (33)

The volume fraction of inclusions, φ, is evaluated as:

φ = 1

VD

∫
Dp
ξ (θ ,ψ) ds = 1

VD

∫ 2π

0

∫ α

0
ξ (θ ,ψ) sin θ dθ dψ . (34)

By inserting E∗
i in equation (31a) into equation (32), and inserting the expression for Ed

i from equation (31b)
into equation (33), we arrive at:∫

Dp
E∗

i dV =
[∫ 2π

0

∫ α

0
ξ

[
Qik Bkl Q−1

lj

]
sin θ dθ dψ

]
[E0

j + En
j ] , (35a)

∫
Dp

Ed
i dV =

[∫ 2π

0

∫ α

0
ξ

[
Qik Skl Blm Q−1

mj

]
sin θ dθ dψ

]
[E0

j + En
j ] . (35b)

Substituting VD from equation (34) into equation (19) and introducing tensors Cij and Dij as:

Cij =
∫ 2π

0

∫ α
0 ξ

[
Qik Bkl Q−1

lj

]
sin θ dθ dψ∫ 2π

0

∫ α
0 ξ sin θ dθ dψ

, (36a)

Dij =
∫ 2π

0

∫ α
0 ξ

[
Qik Skl Blm Q−1

mj

]
sin θ dθ dψ∫ 2π

0

∫ α
0 ξ sin θ dθ dψ

, (36b)

to compact the formulation further, equation (19) yields:

En
i = φ [Cij − Dij] [E0

j + En
j ] . (37)

Considering the fact that Cij and Dij are the diagonal matrices due to Kp
ij, Kmδij, and Sij being diagonal, the

components of En
i can be explicitly expressed in terms of the components of vector E0

i as:

En
1 = En

2 = φ [C11 − D11] E0
1

1 − φ [C11 − D11]
, (38a)

En
3 = φ [C33 − D33] E0

3

1 − φ [C33 − D33]
, (38b)

so that the components of
∫
Dp E∗

i dV in equation (35a) are written as:∫
Dp

E∗
1 dV =

∫
Dp

E∗
2 dV = φ VD C11 E0

1

1 − φ [C11 − D11]
, (39a)∫

Dp
E∗

3 dV = φ VD C33 E0
3

1 − φ [C33 − D33]
. (39b)
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Figure 3. An equivalent cylinder particle with its interphase layer surrounding it divided into three parts.

Finally, the non-zero components of the overall electrical conductivity Kij of the composite in equation (23)
can be estimated as:

K11 = K22 = Km

[
1 − φ C11

1 + φ D11

]
, (40a)

K33 = Km

[
1 − φ C33

1 + φD33

]
. (40b)

The established EIM for estimating the overall electrical conductivity of randomly distributed inclusions
inside a matrix in equations (40) is only valid when there is no electron hopping between particles, and thus, no
conductive networks of particles are formed in the composite.

2.5. Particles with interphase coatings

To take into account the effects of electron tunneling and conductive networks, the EIM derived in section 2.4 for
randomly distributed particles is extended for a system with particles with interphase layers by replacing every
regular particle with an equivalent particle. For this purpose, it is assumed that every particle is surrounded by
an interphase layer of thickness t and isotropic electrical conductivity of K int as shown in Figure 3. Here, the
particles are chosen to be cylinders.

The effective conductivity of the equivalent cylinder can be derived using Maxwell’s equations and the rule
of mixture [41, 54]. This requires the equivalent cylinder to be divided into two isotropic interphases (parts I
and III) and one transversely isotropic region of CNT/interphase (part II) as shown in Figure 3. The overall
electrical conductivity of part II along x̂3 is denoted by KII

33 and can be evaluated as:

KII
33 = Kp

33 D2 + K int[4Dt + 4t2]

[D + 2t]2
. (41)

The overall electrical conductivity of part II along x̂1 is denoted as KII
11 and is evaluated by applying a test

electric field Et on the equivalent cylinder along the x̂1-axis. Maxwell’s equations require the electric scalar
potential U to satisfy Poisson’s equation that is given in the cylindrical coordinate system {r, θ , z} as:

∇2U = 1

r

∂

∂r

(
r
∂U

∂r

)
+ 1

r2

∂2U

∂θ2
= 0. (42)

The boundary conditions are prescribed as:

Up
∣∣
r=0

= constant, Em
∣∣
r→∞ = −∂Um

∂r

∣∣
r→∞ = Et, (43)

Up
∣∣
r=D/2

= U int
∣∣
r=D/2

, −Kp
11

∂Up

∂r

∣∣
r=D/2

= −K int ∂U int

∂r

∣∣
r=D/2

, (44)

U int
∣∣
r=D/2+t

= Um
∣∣
r=D/2+t

, −K int ∂U int

∂r

∣∣
r=D/2+t

= −Km ∂Um

∂r

∣∣
r=D/2+t

, (45)
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where the superscripts p, m, and int refer to particle, matrix, and interphase, respectively. The above set of
equations for U results in:

Up = 2 γ K intEtr cos θ , 0 ≤ r ≤ D/2, (46)

U int = γ

[
K int + Kp

11 +
[

D

2r

]2

[K int − Kp
11]

]
Etr cos θ , D/2 < r < D/2 + t, (47)

Um =
[
γ

[[
D + 2t

2r

]2

[K int + Kp
11] +

[
D

2r

]2

[K int − Kp
11]

]
+

[
D + 2t

2r

]2

− 1

]
Etr cos θ , D/2 + t < ∞,

(48)

where:

γ = 2Km

[
[K int − Kp

11][K int − Km]

[
D

D + 2t

]2

− [K int + Kp
11][K int + Km]

]−1

. (49)

Also, the transverse electric field of the interphase and CNT parts of the equivalent cylinder can be evaluated
as:

Ep
1 = −∂Up

∂ x̂1
= −∂Up

∂r

∂r

∂ x̂1
= − 1

cos θ

∂Up

∂r
, (50)

Eint
1 = −∂U int

∂ x̂1
= −∂U int

∂r

∂r

∂ x̂1
= − 1

cos θ

∂U int

∂r
, (51)

with:

Jp
1 = Kp

11Ep
1, and J int

1 = K intEint
1 . (52)

Using the volumetric average, we can obtain:

1

V

∫
V

J1 dV = KII
11

1

V

∫
V

E1 dV . (53)

Therefore, using equations (52) and (53), we can write:

KII
11 = D2Kp

11K int + 2K int[K int + Kp
11][t2 + Dt]

D2K int + 2[K int + Kp
11][t2 + Dt]

. (54)

Finally, the effective conductivity of an equivalent cylinder with a length of l and diameter of D along x̂1, x̂2,
and x̂3 is derived by:

K̃p
11 = K̃p

22 = K int

l + 2t

[
2t + l Kp

11 D2/2 + l
[
Kp

11 + K int
] [

t2 + Dt
]

D2 K int/2 + [
Kp

11 + K int
] [

t2 + Dt
]

]
, (55a)

K̃p
33 = K int [l + 2t]

[
Kp

33 D2/4 + K int
[
Dt + t2

]]
t Kp

33 D2/2 + 2 tK int
[
Dt + t2

] + l K int [D/2 + t]2 , (55b)

where the electrical conductivity tensor in the local coordinate system of the equivalent cylinder is given as
diag

(
K̃p

11, K̃p
11, K̃p

33

)
.

Based on these effective cylinders, the effective volume fraction φ̃ can be calculated from the ratio of the
volume of one equivalent particle V ep to the volume of one particle V p multiplied by the volume fraction of
original particles as:

φ̃ = V ep

V p
φ = π [D/2 + t]2 [l + 2t]

π [D/2]2 l
φ = 4φ [D/2 + t]2 [l + 2t]

l D2
. (56)
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Therefore, the EIM described in section 2.4 to estimate the overall electrical conductivity of randomly dis-
tributed inclusion composites can be extended for composites with interphase layer by replacing the inclusions
by equivalent particles, i.e., replacing φ in equation (40) by φ̃ in equation (56) and replacing Kp

ij in equation

(27) by K̃p
ij in equation (55).

Remark. The established EIM in section 2 for estimating the overall electrical conductivity of randomly dis-
tributed inclusions inside a matrix with or without the interphase layer is equivalent to EIM for estimating the
thermal conductivity of composite with or without the interphase layer. In this case, the electrical conductivity
Kij is replaced by the thermal conductivity κij, the electric field Ei is replaced by the gradient of temperature
∂iT , and the electric current density Ji is replaced by the heat flux qi.

3. Electron tunneling and conductive networks
From this section onward, we focus on CNT/polymer nanocomposites and the inclusions are chosen to be CNTs.
When the distance between two CNTs is less than a threshold value, electrons can transport from one CNT to
another via a phenomenon commonly referred to as electron tunneling or electron hopping [55–58]. In this
section, we specialize the EIM developed for composites with interphase layers around inclusions in section 2
by considering the interphase layer around CNTs to be a model for electron hopping [38].

Simmons [59] derived a generalized method to calculate the tunneling current between electrodes separated
by an insulating region. By assuming a uniform thickness of the insulator and neglecting any variations in
barrier height along its thickness, we can apply the formula designed for a rectangular potential barrier. Based
on this, a generalized framework is developed where the fillers are treated as three-dimensional (3D) continuum
objects. This approach is widely used in the literature to model the conductivity due to electron tunneling for
CNT-based composites [12, 41, 43, 44, 49, 60, 61]. The tunneling resistance Rt at a junction between two CNTs
is estimated as:

Rt = h2d

At e2
√

2mE
exp

(
4πd

h

√
2mE

)
, (57)

where h is Planck’s constant, d is the distance between two adjacent CNTs, At is the area available for tunneling,
e is the charge of an electron, m is the mass of an electron, and E is the energy barrier which is equal to the
work required for an electron to tunnel.

The distance d between CNTs is chosen to be different for the electron hopping mechanism in comparison to
the mechanism based on conductive networks. In order to capture the effect of electron tunneling, the thickness
of the interphase layer is considered as t = dc/2, while the conductivity of the layer is described as K int =
dc/(AtRt). In the next section, the value of the gap distance between CNTs d, is determined for conductive
networks of CNTs.

3.1. Conductive networks

In order to consider the effect of the conductive networks of CNTs, the average junction distance between CNTs
da is introduced so that the thickness of the interphase layer is assumed as t = da/2, while the conductivity of
the layer is given by K int = da/(AtRt). The distance da is estimated by a power-law as [41, 62]:

da =
[φc

φ

]1/3
dc, (58)

where φc is the critical volume fraction of percolation (percolation threshold), which is the starting volume
fraction for the formation of the continuous conductive networks.

Eventually, the overall electrical conductivity of CNT-reinforced polymer nanocomposite can be estimated
based on a simple rule of mixture considering the effect of electron hopping and conductive networks of CNTs.
Estimating the fraction of CNTs taking part in forming conductive networks after percolation threshold as [39]:

ζ = φ1/3 − φ1/3
c

1 − φ
1/3
c

; (φc ≤ φ < 1) , (59)
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Table 1. Model parameters with constant values.

Parameter Value Units

dc 1.8 nm
h 6.62607 × 10−34 m2 kg/s
e −1.60218 × 10−19 C
m 9.10938 × 10−31 kg

while the rest contribute to the electron tunneling mechanism, the overall electrical conductivity of the
composite is:

K = (1 − ζ )KT + ζKN. (60)

here, KT is the contribution to the electrical conductivity from the tunneling effect which is evaluated by the
extended EIM derived in section 2 by substituting the thickness t = dc/2 and conductivity K int = dc/(AtRt) of
interphase in equation (55). KN is the contribution to the electrical conductivity from conductive networks and
is evaluated by the extended EIM derived in section 2 by substituting the thickness t = da/2 and conductivity
K int = da/(AtRt) of interphase in equation (55) under the assumption L → ∞ in equation (10).

It is noted that we started from a general equivalent inclusion model with a wider range of applications in
section 2 which is valid in predicting the thermal or electrical conductivity of any type of composite reinforced
by particles that can be assumed as ellipsoids with various aspect ratios. In section 2.5, the general EIM was
specified for fibers (cylinder-shaped fillers) to consider the effect of the interphase layer. It is noteworthy that
this interphase layer consideration for fibers can be re-evaluated when dealing with other shapes of fillers. The
model did not account for quantum phenomena such as electron hopping and conductive networks of particles
yet. The effects of electron tunneling and conductive networks were considered into account in section 3 for
CNT/polymer composites. It should be noted that this electron tunneling and conductive networks consideration
for CNTs can be re-evaluated when dealing with other nanoparticles. Analytical models have some assumptions
which simplify the actual problem in the real world. It is acknowledged that the presented model comes with
certain limitations. For example, it does not account for commonly encountered features such as CNT waviness,
agglomeration, segregation, variability in dimensions, multiple coatings, and possibilities of void formation [12,
43, 44, 60].

4. Results and discussion
In this section, the model developed in section 3 is validated using experimental data and is used to study the
influence of CNT dimension, volume fraction, orientation, and distribution on the overall conductivity of the
nanocomposite. The aspect ratio of CNTs is considered to be high (l/D � 1), and all CNTs are assumed to
be isotropic (Kp

11 = Kp
33) [12, 38]. A value of dc = 1.8 nm is used for the cut-off distance between CNTs to

allow for electron-hopping as has been reported in several papers [41, 63, 64]. The parameters h, e, and m are
the universal constants. The values of these parameters are listed in Table 1.

However, choosing other parameters needs more care since different types of CNTs and polymer matrices
with various manufacturing processes for a wide range of applications have been reported. Accordingly, we
estimate the model parameters by validation with several experimental studies in section 4.1. The length l,
diameter D, and the percolation threshold φc of CNTs are directly chosen from the measured or reported values
in those works. Deng and Zheng [39] and Gao and Li [65], among others, have used an analytical expression to
predict the percolation threshold:

φc(H) = 9H[1 − H]

2 + 15H − 9H2
, (61)

where γ is the aspect ratio of the CNTs defined as γ = l/D, and H(γ ) = 1
γ 2−1

[
γ√
γ 2−1

ln(γ +
√
γ 2 − 1) − 1

]
.

However, our investigation indicates that the above expression does not give an accurate estimation for every
case study and as denoted in some papers in the literature, the value of φc depends on the characteristics of
polymer and CNTs and is hard to predict by an analytical expression for all types of polymer composites.

Nevertheless, the values of electrical conductivity of CNT nanoparticles Kp
11 and the energy barrier E

of various polymers are reported in a very wide range and the effective conductivity is very sensitive to
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Table 2. Parameters used for model validation in section 4.1.

Parameter Units PS/CNT TPU/CNT Epoxy/CNT UHMWPE/CNT

l μm 3 30 30 10
D nm 15 10 15 16
φc % 0.46 0.0723 0.02 0.05
Km S/m 10−11 10−11 10−11 10−13

Reference Wang et al. [60] Mora et al. [43] Kim et al. [67] Lisunova et al. [68]

PS: polystyrene; CNT: carbon nanotube; TPU: thermoplastic polyurethane; UHMWPE: ultrahigh molecular weight polyethylene.

these values. We determine these parameters separately for each experiment in section 4.1 by a least squares
minimization technique. After model validation, parameters for the case of polystyrene (PS) reinforced by
multi-walled CNTs [60] are used for the parametric study in section 4.2.

We utilize Mathematica software to perform numerical study cases in this study. The method proves highly
efficient and economical in terms of time, thanks to the inherent advantages of this analytical approach. The
Mathematica code for this analysis is shared in an open-source format [66]. The link to the code can be accessed
in “Availability of data and materials” at the end of this manuscript.

4.1. Validation with experimental data

In order to verify the accuracy of the presented model, the analytical results are compared with some experi-
mental studies herein. The case studies are chosen from four different nanocomposites—CNT/PS from Wang et
al. [60], CNT/thermoplastic polyurethane (TPU) from Takeda et al. [43], CNT/epoxy from Kim et al. [67], and
CNT/thermoplastic ultrahigh molecular weight polyethylene (UHMWPE) from Lisunova et al. [68]. The values
of length and diameter of CNTs, percolation volume fraction, and intrinsic electrical conductivity of matrices
for all four examples are listed in Table 2.

The unspecified parameters are the intrinsic electrical conductivity of CNTs Kp
11 and the energy barrier

E. These parameters are determined based on the given ranges of Kp
11 = {10 − 106} S/m [41, 69, 70], and

E = {0.1 − 5.0} eV [12, 62, 71], in comparison to the experimental results. Thus, the following function
which expresses the least square logarithmic difference between the analytical value and the experimental data
is introduced:

f (Kp
11,E) =

m∑
n=1

[
log10(K11(Kp

11,E,φi)) − log10(Kexp
11 (φi))

]2
. (62)

In equation (62), m is the number of points in the experimental data for different volume fractions φi and
Kexp

11 is the electrical conductivity measured in the experiments. The goal is to minimize this function to reduce
the difference between the analytical model and experiments and thereby determine optimized values of Kp

11
and E. Optimization using equation (62) results in a value of Kp

11 = 1000 S/m ±10% for all the four cases.
Garcia-Macias et al. [12] reported that analytical results with electrical conductivity of CNT in the range of
{100 − 1000} S/m agree well with the experiments. To simplify the problem, we fix Kp

11 = 1000 S/m for all the
cases, which is the most commonly used value in the literature and we only analyze the influence of the value
of E.

Our computation results in the value of E as 0.7, 1.2, 2.7, and 1.1 eV for CNT/PS, CNT/TPU, CNT/epoxy,
and CNT/UHMWPE, respectively. In comparison, Wang et al. [60] used Kp

11 = 104 S/m and E = 2.5 eV
to model the experiments on CNT/PS polymer. These parameter values differ significantly from the optimized
range and were not experimentally measured but taken from prior modeling data on CNT nanocomposites. On
the contrary, Mora et al. [43] calculated Kp

11 as 987 S/m and used a prior published value of E = 1.5 eV for
modeling the experiments on CNT/TPU. These parameter values are very close to the optimized range obtained
herein.

Figure 4 illustrates the electrical conductivity of PS/CNT, TPU/CNT, epoxy/CNT, and UHMWPE/CNT
nanocomposites predicted by the current model versus those given by experiments for different volume fractions
of CNT. The graphs are plotted for 0.1, 2.5, and 5.0 eV, and the optimized value of E for each case study.

All graphs show a good agreement between the model and the experimental results. In Figure 4(a), it can be
observed that for energy barriers higher or lower than 0.7, the results are far from the experimentally obtained
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(a) (b)

(c) (d)

Figure 4. Comparing present model to experiments for (a) PS/CNT by Wang et al. [60], (b) TPU/CNT by Mora et al. [43],
(c) epoxy/CNT by Kim et al. [67], and (d) UHMWPE/CNT by Lisunova et al. [68]. The black curves with the label E(o) show
the conductivity for optimized values of the energy barrier.

values. The same trend can be observed for other cases which indicates that determining the energy barrier plays
an important role in predicting the electrical conductivity by the present model. Also, as expected, increasing
the value of the energy barrier drastically decreases the electrical conductivity after percolation. This effect is
more pronounced for lower volume fractions of CNTs. Moreover, graphs with a higher energy barrier have a
softer jump after percolation, while graphs with a lower energy barrier show a sharp change after percolation.
It should be noted again that since the distribution of CNTs is uniform in all the cases considered here, the
composites are isotropic, i.e., K11 = K22 = K33.

4.2. Effect of CNT orientation, distribution, and dimensions

Having validated our model with experimental data, we now study the effect of CNT alignment, distribution, and
dimensions on the transverse and longitudinal effective electrical conductivity of the nanocomposites. For this
parametric study, PS/CNT composite material from Wang et al. [60] is selected. The values of the parameters
for PS/CNT composite are listed in Table 2. Also, the value of the energy barrier is obtained as E = 0.7 eV in
the previous section. These values are used for all calculations in this section unless otherwise stated.

4.2.1. Limit angle. As discussed in section 1, non-uniform distribution of CNTs can be achieved by application
of large strains on isotropic composites or directly manufacturing composites with a preferred CNT alignment.
Fabricating devices with well-aligned CNTs is also desirable for better performance with lesser materials and
smaller designs [72]. One of the parameters that control the alignment of CNT particles is the limit angle α
introduced in section 2.4. It is reminded that α is the limit angle of θ , which is the angle made between a CNT
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(a) (b)

Figure 5. The effect of different α angles on the (a) transverse and (b) longitudinal electrical conductivity of the composite.

Figure 6. The effect of different α angles on the transverse (solid lines) and longitudinal (dashed lines) electrical conductivity of the
composite.

and x3 direction as it was shown in Figure 2. Hence, the probability of an inclusion with a tilt angle θ > α is
zero. Figure 5 shows the influence of volume percentage of CNT φ on the transverse and longitudinal electrical
conductivity of composites with different limit angles, α = {π/32,π/16,π/8,π/4,π/2}.

As expected, upon reducing α while maintaining the volume fraction, the transverse electrical conductivity
increases while the longitudinal electrical conductivity decreases. Since the longitudinal conductivity is driven
by long CNTs while the transverse conductivity is driven by a combination of CNTs and matrix, the impact
of limit angle on K11 is significantly more pronounced than that on K33 on a logarithmic scale. However, the
increase of K33 by a decrease of α is more evident here in the linear scale. Figure 6 depicts the effect of
limit angle α on the transverse and longitudinal conductivities on a linear scale for φ = {1%, 1.5%, 2%} > φc

volume fraction of CNTs. These figures provide an insight into the effects of varying the limit angle of inclusion
orientation on transverse and longitudinal electrical conductivity.

Figure 6 confirms that decreasing the angle from 90◦ which represents the full random distribution states
to near 0◦, which is for the fully aligned CNTs along x3-axis, results in a drastic decrease in K11 so that in the
limit α → 0, it approaches the matrix conductivity K11 → Km. For all volume fractions, K33 increases about
three times as α drops from 90◦ to 0◦. These results highlight that the effect of the limit angle on conductivity
has a weak correlation with the volume fraction of CNT, particularly for small φ. As anticipated, for a fully
random distribution (α = 90◦), the transverse and longitudinal conductivities are equal (K11 = K33). This
observation aligns with expectations, further affirming the validity of our model in capturing the conductivity
behavior across various alignment scenarios.
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Figure 7. The uniform, linear, cosine, and exponential distribution functions versus θ .

4.2.2. Distribution function. The other parameter that directs the orientations of inclusions is the distribution func-
tion ξ introduced in section 2.4. Unlike the angle α that acts as a sharp cut-off threshold and is hard to measure
experimentally, the distribution function provides a smooth transition for the probability of the presence of
CNTs along a particular direction and is, therefore, more amenable to modeling approaches. It is also challeng-
ing to accurately define a specific limit angle. Using a distribution function, on the contrary, is more feasible to
account for the variability in inclusion alignment, thereby providing a more realistic and flexible framework for
controlling the alignment of inclusions.

In the preceding analysis, a uniform distribution (ξ = 1), was used. In this section, we study the effect
of using different distribution functions including a linear function, ξ = 2 − 4θ/π , a cosine function,
ξ = π/2 cos(θ), and an exponential function, ξ = π/1.25 exp(−2θ2). The probability distribution function
is normalized as: ∫ π/2

0
ξ (θ) dθ = π

2
, (63)

and is demonstrated in Figure 7 for the uniform, linear, cosine, and exponential distributions. As shown, the
exponential function gives the most aligned inclusions in one direction while in uniform distribution which is
an ideal case, the inclusions are randomly distributed. We note that the probability distribution functions defined
above are not unique. They can also be defined such that the function reaches zero smoothly. For example, the
cosine distribution function ξ = π/2 cos(θ) can be replaced by ξ = cos(θπ/2α) for |θ | < α.

Figure 8 shows the effect of the four different distribution functions on the transverse and longitudinal
electrical conductivity of composite for different volume fractions. As expected, a notable trend is observed;
transitioning from a uniform distribution function to a non-uniform function exerts a pronounced effect on
electrical conductivity. Specifically, such a shift results in higher longitudinal conductivity and lower trans-
verse conductivity. This disparity becomes particularly evident and significant as the volume content of CNTs
is increased. This finding underscores the critical role played by the distribution function in shaping the elec-
trical properties of CNT-based composites, highlighting its significance as a key parameter in the design and
optimization of such materials.

4.2.3. CNT dimensions. Different single-walled and multi-walled CNTs with various architectures such as arm-
chair, chiral, and zigzag can be found in various diameters and lengths, offering a versatile selection of
composite fillers [73, 74]. Here, the effect of the size of CNT length and diameter on the electrical conductivity
is investigated. The analysis of how varying the size of CNTs impacts the electrical conductivity contributes to
a deeper understanding of the relationship between CNT dimensions and conductivity, guiding the selection of
appropriate CNT fillers for various applications.

Figure 9 demonstrates the effect of the size of CNT particles with different volume fractions on the electri-
cal conductivity of the composite with uniform distribution. It can be observed that longer CNTs demonstrate
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Figure 8. The effect of different distribution functions on the transverse (solid lines) and longitudinal (dashed lines) electrical
conductivity of the composite.

(a) (b)

Figure 9. The effect of (a) the length and (b) the diameter of CNTs on the electrical conductivity of composite with uniform
distribution for φ = {1%, 1.5%, 2%}.

higher electrical conductivity compared to shorter ones. This can be attributed to the increased number of con-
ductive pathways formed by longer CNTs, allowing for more electrons to pass through the material. Conversely,
shorter CNTs exhibit lower conductivity due to the reduced number of conductive sites available. Also, keeping
the volume fraction constant, composites made with CNTs of smaller diameters tend to exhibit higher effective
electrical conductivity compared to composites made with CNTs of larger diameters. This is because of the
higher surface area to volume ratio of CNTs with smaller diameters, which enables a greater number of conduc-
tive paths for electrons passing through the composite. Upon increasing the length or decreasing the diameter of
the CNT beyond a certain threshold, no significant change in the conductivity is observed. At this point, the con-
ductivity reaches a plateau as the dominant factors affecting conductivity, such as intrinsic material properties
and the distribution of the CNTs, become more influential.

Figure 10 shows the impact of the size of CNT particles with different distribution functions on the electrical
conductivity behavior of the composite material with φ = 1% volume fraction of CNTs. The effect of different
distribution functions on the electrical conductivity of the composite with different lengths and diameters of
CNTs is notable. In particular, non-uniform distribution functions demonstrate a higher degree of sensitivity
of longitudinal electrical conductivity to the changes in the dimension of the CNTs compared to the uniform
function.

Overall, these results highlight the complex interplay between CNT length, diameter, distribution, and vol-
ume fraction in determining the electrical conductivity of the composite material. This complexity highlights
the need for a detailed understanding of the combined effects of these parameters. The findings emphasize the
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(a) (b)

Figure 10. The effect of (a) the length and (b) the diameter of CNTs on the transverse (solid lines) and longitudinal (dashed lines)
electrical conductivity of composite with φ = 1% volume fraction and different distribution functions.

importance of carefully considering these parameters as they significantly impact the electrical conductivity
and, consequently, the performance of such materials in various applications. The conductivity plays a crucial
role in determining the overall performance of such materials across a spectrum of applications. It is evident
that variations in CNT length, diameter, distribution, and volume fraction contribute to the diverse electrical
properties observed in the composite. This insight emphasizes the necessity for a thoughtful approach to the
design and engineering of CNT/polymer nanocomposites.

5. Conclusion
In this study, the overall electrical conductivity of composites with distributed inclusions is investigated with
a specific focus on the impact of orientation and distribution of inclusion. An analytical model is presented
based on Eshelby’s equivalent inclusion deriving mathematical relationships through a rigorous step-by-step
process. Despite the popularity of EIM for predicting conductivity, a lack of detailed formulation derivation is
sensed in recent literature. This paper addresses this gap and highlights the commonly overlooked non-uniform
distribution of inclusions. The model is developed to predict the electrical conductivity of composites with
random as well as preferred distribution of the fillers. This EIM formulation is valid for predicting the electrical
and thermal conductivity of composites reinforced by randomly oriented ellipsoid fillers. The method is further
extended by considering an interphase layer around the inclusion.

Subsequently, the method is extended for electrical conductivity of CNT-filled composites by assuming the
interphase layers around the particles function as electron tunneling and conductive networks. The validity of
the model is confirmed by comparing its results with experimental data from four different CNT-reinforced
polymer matrices. The values of the energy barrier are determined for each case study based on a comparison
to the experimental data, and it is observed that the energy barrier plays a crucial role in predicting electrical
conductivity. It is worth noting that this issue has been rather avoided to be discussed in depth in the literature,
and the sensitivity of analytical models to these parameters is neglected in most cases except for a few articles.
Furthermore, a parametric study is conducted to investigate the effects of different aspects of the reinforcements
on the transverse and longitudinal electrical properties. The effects of CNT orientation and distribution patterns
on the electrical conductivity, highlighting how the alignment of CNTs influences overall properties, are investi-
gated. Two measurements, namely, the limit angle of inclusion orientation and probability distribution function,
are used to control the orientation. The limit angle of CNT orientation is varied, and it is found that decreas-
ing the angle from a uniformly random distribution to a fully aligned state results in a drastic decrease in the
transverse electrical conductivity. However, the longitudinal electrical conductivity shows less sensitivity to the
angle variation. Also, it is revealed that distributing CNTs with non-uniform probability distribution functions
has a noticeable impact on electrical conductivity. In particular, this shift leads to an increase in longitudinal
conductivity and a decrease in transverse conductivity. This difference becomes more prominent when the vol-
ume content of CNTs is raised. In addition, the effects of particle dimensions are examined. It is observed that
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composites with shorter CNTs demonstrate lower electrical conductivity compared to composites with longer
CNTs. This is due to the reduced number of conductive pathways available in shorter CNTs. CNTs with smaller
diameters exhibit higher electrical conductivity of composite compared to those with larger diameters of CNTs.
However, beyond a certain threshold, further modification of the length or the diameter of CNTs has a minimal
impact on electrical conductivity as other factors become more influential.

The presented analytical model facilitates the design and optimization of composite materials for specific
electrical conductivity requirements. This approach finds applications in fields such as flexible electronics, smart
materials, energy storage, and aerospace, guiding the development of advanced materials. The presented math-
ematical model assumes simplifications such as straight CNT particles with uniform dimensions, neglecting
their actual curviness, variability, agglomeration, segregation, and void formation effects observed in reality.
This analytical framework provides a straightforward method for predicting the electrical conductivity of CNT-
reinforced composites. The same framework can be used to model the thermal or electrical conductivity of any
composite where inclusions might have multiple coatings. However, for modeling CNT nanocomposites more
accurately, certain manufacturing-induced complexities need to be accounted for. Further research directions
may include expanding the model to incorporate additional factors and parameters such as the waviness and the
clustering of CNTs or performing the model on other fillers such as graphite, as well as incorporating exper-
imental data from a wider range of composite materials. Modeling these important features is an important
research direction that will be considered as an extension of this work.
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Appendix 1

Components of Sij for different geometries

Consider an ellipsoidal particle with principal radii of a11, a22, and a33 which its domain is bounded by:

[
x1

a11

]2

+
[

x2

a22

]2

+
[

x3

a33

]2

= 1. (64)

The tensor Sij for this particle can be determined as [32]:

Sij =
[a11 a22 a33

4

]
∂i

(
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, (65)

where (s) =
√

[a2
11 + s][a2

22 + s][a2
33 + s]. Differentiating from the above equation we obtain:

Sii =
[a11 a22 a33

2

] ∫ ∞

0

[
ds

[a2
11 + s](s)

+ ds

[a2
22 + s](s)

+ ds

[a2
33 + s](s)

]
. (66)

In the following, the components of tensor Sij are listed for some specific geometries:

1. Sphere: a11 = a22 = a33
S11 = S22 = S33 = 1/3. (67)

2. Prolate ellipsoid: a11 = a22 < a33

S11 = S22 = a2
11 a33

2
√

[a2
33 − a2

11]3

[
(a33/a11)

√
a2

33/a
2
11 − 1 − cosh−1 (a33/a11)

]
, S33 = 1 − 2S11. (68)

3. Oblate ellipsoid: a11 = a22 > a33

S11 = S22 = a2
11 a33

2
√

[a2
11 − a2

33]3

[
cos−1 (a33/a11) − (a33/a11)

√
1 − a2

33/a
2
11

]
, S33 = 1 − 2S11. (69)

4. Penny-shaped: a11 = a22 � a33

S11 = S22 = πa33

4a11
, S33 = 1 − πa33

2a11
. (70)

5. Elliptic cylinder: a11, a22 � a33 → ∞

S11 = a22

a11 + a22
, S22 = a11

a11 + a22
, S33 = 0. (71)


