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Abstract— Lung sounds can be translated into 
acoustic imaging as an alternative to standard 
imaging to assess lung function frequently for 
improved therapy efficiency. This study proposes a 
comprehensive acoustic lung imaging system 
translated from acquired lung sounds for continual 
and reliable lung function assessment in response 
to the growing clinical interest in frequent lung 
function assessment. The proposed system 
comprises sub-systems such as data acquisition, 
signal processing and imaging algorithm. This study 
demonstrated the design and implementation of a 
robust lung sound acquisition and imaging system 
using microelectromechanical microphones that reduce external noise contamination through redesigned hardware 
and dynamic signal processing. Regarding lung signal acquisition, the proposed system accomplished better root 
mean square error (RMSE) by around 0.15 and signal-to-noise ratio (SNR) by about 7 dB compared to commercial 
digital stethoscopes. RMSE and SNR reflect the accuracy in capturing desired signals and robustness to noise 
contamination and are used to quantitatively compare the system data acquisition to commercially available acoustic 
and electronic devices in a noisy setting. The proposed system sensors’ position is neutral when representing lung 
signals, with a signal power loss ratio of around 5 dB compared to 10 dB from digital stethoscopes, in terms of sensor 
sensing sensitivity power spectrum mapping. The proposed system obtains about 7% to 12% more accurate detection 
of the actual nidus length than digital stethoscopes through imaging translated from acquired lung signals. 
Additionally, the detected airway obstruction results agree closely (91%) with airway remodeling studies. 

 
Index Terms—Acoustic imaging system, airway obstruction sensing, biomedical acoustics sensor, lung sound 

signals, MEMS microphone. 

 

 

 
 

I.  INTRODUCTION 

hest X-rays or Computed Tomography (CT) are usually 

used during periodical medical visits to check the patient’s 

lung function. As a result, adapting medical therapy to each 

patient’s unique medical progression is challenging. The 

therapy result may be strengthened by frequent or continuous 

observation of lung functions throughout the patient’s everyday 

tasks [1], [2]. 

An uncomplicated technique for frequent lung function 

assessment is acoustic imaging. Acoustic imaging may enhance 

healthcare delivery to patients with lung diseases, resulting in 

early detection of the condition worsening, adjusting to the 

therapy and achieving a higher quality of life, and decreased 

hospitalization rates [3], [4]. Thus, a need has arisen for 

portable devices with acceptable accuracy, cost, and simple 

setup to monitor essential parameters such as locating airway 

obstructions (nidus) and tidal volume changes over time. 
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Acoustic imaging systems such as vibration response 

imaging (VRI) [5]–[7] employ an array of digital stethoscopes 

alike, recording the respiratory signals and converting the 

multiple signals from the array of digital stethoscopes to 

acoustic images for lung function assessment [7]. The visual 

representation enhances clinical relevance by providing 

localized data on breath sounds between various lung locations 

[5]–[7]. Although there is a positive quantitative data link 

between VRI and lung problems, such as smoking index and 

the buildup of excess fluid between layers of the pleura outside 

the lungs [5]–[7], there is no positive data correlation in locating 

obstructed airways (nidus) between VRI and airway-related 

diseases, such as asthma and COPD [5]. Hence, biometric 

sensors, such as digital stethoscopes used for capturing lung 

sound and later converting to acoustic images for lung function 

assessment, still need to be developed significantly [7], [8]. 

Additionally, studies in [8] and [9] find no accurate, 

noninvasive, affordable, or simple-to-use biometric sensor to 

measure changes in the airways. An accurate data 

representative, such as acoustic lung signals and images of the 

patient’s lung function, is vital in this study. Therefore, 

designing a portable, low-cost, and efficient lung sound 

acquisition platform is needed for reliable lung function 

assessment via acoustic lung imaging. 

In this paper, a wearable acoustic lung imaging system 

translated from reliable lung signals is proposed. To the best of 

our knowledge, the proposed system, presented in Fig. 1, 

comprises various sensing and functional components, 

including an onboard computer and an array of daisy-chained 

microelectromechanical systems (MEMS) microphones (see 

Fig. 1(b)) packaged into a standalone or wearable mobile device 

for the assessment of lung function via acoustic imaging 

translated from lung sounds captured from the array of MEMS 

microphones have not been investigated. The suggested system 

is straightforward to operate, and no specialized training is 

required to interpret the assessment results. The suggested 

system has the flexibility in implementing the array of MEMS 

microphone, e.g., the number of sensors required and the sensor 

position. A denoising algorithm [10] specifically created to 

enhance captured lung sounds by actively suppressing 

unwanted interfering noise from the environment, including 

noises with a spectral signature that coincide with the body 

sounds, is integrated into the proposed system (see Fig. 1(c)) 

and has outperformed commercial digital stethoscopes, such as 

Thinklabs One [11] and Littmann 3200 [12], in terms of root 

mean square error (RMSE) by about 0.15 and signal-to-noise 

ratio (SNR) by around 7 dB. Thinklabs One [11] and Littmann 

3200 [12] were selected as a benchmark in this study due to 

their filtering capabilities and improved ability to acquire 

acoustic signals. The SNR describes the signal quality and 

strength with respect to the environment noise while 

maintaining the lung signal frequency of interest, while RMSE 

findings show the system’s ability to retain critical 

characteristics of lung sound post-signal processing. Compared 

to the commercial digital stethoscopes, the loss ratio for our 

hardware system is around 5 dB compared to about 10 dB in 

terms of the sensor area sensing sensitivity power spectral 

mapping, so the quality of signals collected is less sensitive by 

the position of the sensor on the chest area. In terms of sensor-

detecting sensitivity mapping, the microphone array maximizes 

measurement sensitivity and uniformity. 

An experimental study on identifying airway blockage via 

imaging was carried out using the proposed system, and the 

results were supported and correlated by the sensor distribution 

and acoustic imaging resolution findings in [13] and [14]. 

Waterbags with various diameter sizes between 50 mm and 80 

mm were placed on the posterior of a healthy volunteer to 

mimic the airway obstruction, akin to the literature [15]–[17], 

to illustrate the effect of presenting accurately obstructed lung 

images from captured lung sounds. Multichannel respiratory 

signals were captured with the proposed system, equipped with 

an array of MEMS microphones with the array design 

recommendation from [13], [14], and the imaging output 

translated from lung signals from our system and commercial 

digital stethoscopes were analyzed [13], [14]. Our system is 

about 7 to 12% more accurate in detecting airway obstruction 

as compared to commercial digital stethoscopes through 

acoustic imaging translated from the captured lung signal. 

Hence, capturing accurate acoustic signals is critical in 

determining lung function. Furthermore, the identified airway 

 
Fig. 1.  The overview of the proposed acoustic imaging system for 
self-assessment of lung function. (a) An array of wearable MEMS 

sensors denoted as ○ for simultaneous acoustic lung signal 

acquisition interconnected with flexible printed circuit cable. (b) Sub-
system data acquisition and control unit consisting of a 
microcontroller and daisy-chained multimicrophone array (without 
cover). (c) The data flow and the acoustic imaging sub-system. 
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obstruction with our hardware system correlates closely (91%) 

to the modeling and simulation design work in [13] and [14]. 

The proposed acoustic imaging system can be used for various 

potential purposes, including home-based screening for 

respiratory disorders by clinicians located elsewhere than the 

patients, gating controls for radiological imaging procedures, 

and reducing infection concerns associated with intra-hospital 

patient transportation to the equipment and lower machine 

operating expenses [3], [4], [18], [19]. 

This paper is organized as follows: A concise literature 

review on lung function assessment is described in Section II. 

The hardware data acquisition and the design setup are 

presented in Section III. The performance index and setup of 

the proposed system signal acquisition in relation to noise, and 

the accuracy of acoustic imaging are presented in Section IV. 

The experimental results and discussion are presented in 

Section V. Lastly, Section VI presents the conclusion and future 

work. 

II. LITERATURE REVIEW 

Although chest X-rays and CT are dubbed as the gold 

standard technique for lung function assessment due to their 

accuracy and reliability method, it is time-consuming, 

expensive (> USD 5000) and complicated to operate, and can 

only be performed in medical settings (patient-to-equipment 

approach) [7], [8]. Moreover, chest X-rays and CT require 

medically trained personnel to interpret the assessment results 

and expose patients to harmful radiation, making frequent lung 

function assessments impractical. 

Acoustic imaging through analysis of the captured acoustic 

signal from an array of sensors at multiple locations is an 

alternative for lung function assessment and has an equipment-

to-patient approach, particularly for cases where the patient’s 

movement is restricted or discouraged due to disabilities, 

pandemic, or inaccessibility to facilities rendering traditional 

techniques unfavorable. Acoustic signals and imaging 

providing intuitive assessment results have been proposed as a 

potential means for frequent monitoring and early assessment 

of lung function [7], [8], [15], [16], [20], [21]. Feasibility 

studies [13], [14] were performed on acoustic signals and 

imaging for detecting and locating airway obstruction via 

remodeling and simulation. The lung disorders’ location and 

severity can be identified via acoustic imaging transmuted from 

the captured lung sounds via an array of digital sensors at 

different locations [6], [8], [13], [15], [16], [20], [21]. Capturing 

robust acoustic signals produced from the patient’s chest wall 

is critical for assessing lung function via acoustic imaging. 

In the quantitative forms of acoustic signal representation, 

VRI employs an array of digital stethoscopes alike, records the 

vibration energy generated during breathing, and converts the 

breath sounds to an image for lung function assessment [5]–[7]. 

Digital stethoscopes such as the Thinklabs One [11] and 

Littmann 3200 [12] are a few examples developed with filtering 

capability for computerized analysis and signal quality 

enhancement to eliminate subjectivity in interpreting results, 

unpredictability, and inconsistency between listeners and 

susceptibility to airborne ambient noise. However, these 

systems are still susceptible to dynamic noise in most real-

world settings [9] and are expensive (> USD 300) [11], [12] as 

a single unit. Background conversation and other 

environmental disturbances are frequent in many settings, and 

patient movement taints the sound signal captured by the 

stethoscope. The denoising function becomes critical in lung-

sound signal processing, as the captured lung sounds can affect 

the acoustic imaging assessment. An additional vacuum seal is 

required for the VRI digital stethoscopes sensor alike to achieve 

proper contact with the patient’s body, making the device 

interfering and impractical to integrate with other body sensor 

networks or respiratory therapy devices for frequent home-

based monitoring. Furthermore, remote monitoring or home-

based assessment through digital stethoscopes requires 

advanced patient compliance and position accuracy. 

III. SYSTEM DESIGN 

Fig. 2 depicts the workflow for the system’s acquisition of 

acoustic signals through an array of MEMS microphones and 

ends with acoustic lung images converted from lung sounds. 

Compactness, dependability, and usability were the three 

design priorities for the hardware. Our distinctive 

programmable system illustrated in Fig. 2’s block diagram 

consists of an array of MEM microphones and was designed to 

address two known limitations with digital stethoscopes: 1) 

robustness in noisy environments; and 2) accurate acoustic 

imaging representation. The MEMS microphone module 

captures the acoustic signals originating from the air hitting the 

airway wall (airflow) and converts the airflow to acoustic 

(electrical) signals, which can then be communicated to the 

microcontroller as digital data. Sections III-A and III-B, 

respectively, each describe the hardware and software system 

design. 

A. Hardware Design 

The following sub-sections discuss the hardware components 

utilized for the proposed system, the data acquisition module, 

and the design of the acoustic sensor array, as shown in Fig. 

1(c). 
1) Hardware Components 

A digital time-division multiplexing (TDM) and daisy 

chained enabled ICS-52000 (TDK, USA) [22] output bottom 

port microphone was utilized in our system design to capture 

lung sound. The ICS-52000 was soldered onto a printed circuit 

board (PCB), as shown in (Fig. 3), with a voltage regulator 

consisting of a ferrite bead and two (2) capacitors denote as C1 

in Fig. 3(b). The ICS-52000 features a broad frequency 

response from 50 Hz to 20 kHz, covering the typical lung sound 

 
Fig. 2.  The overview block diagram of the system setup. 
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frequency range [15], [16], [23], [24]. Digital TDM microphone 

was selected as the 24-bit industry-standard TDM interface 

enables an array of up to 16 ICS-52000 microphones to be daisy 

chained to a single digital signal processor, and without the use 

of an audio codec in the system — reducing the number of 

physical components and computation power. The MEMS 

microphone’s characteristics were selected so that its lung 

signal acquisition capabilities are comparable to those of a 

commercial digital stethoscope [8], [11], [12], [16], [20], [25]. 

Teensy 3.6 (PJRC, USA), a 32-bit, 180 MHz ARM Cortex-

M4 core equipped, was selected as the microcontroller for the 

MEMS microphone due to the compact design that can be 

easily integrated into a wearable device, and it is an all-

inclusive processor configurated for a customized solution that 

offers flexibility in programming, adjusting parameters, and 

updating algorithms. A digital signal processing solution is 

chosen in our system design as it is programmable so that the 

signal processing parameters can be individualized. The Teensy 

3.6 board assembly for the system hardware design is presented 

in Fig. 4, where Teensy 3.6 was soldered to a PCB for stability 

that has a voltage regulator converting 5 V to 3.3 V supplied to 

the MEMS microphones, and a 100 kΩ pulldown resistor at the 

serial data (SD) output to discharge the output line during the 

microphones’ three-state logic on the data bus. 

2) Data Acquisition System Design 

The word select (WS) signal synchronizes ICS-52000 

microphones, ensuring that acoustic signals recorded from 

several microphones using the same clock will be sampled 

simultaneously. A delay to the start of the frame sync WS signal 

is implanted to the ICS-52000 MEMS microphone sensor by 

enabling WS output on the clock master by 512 ms after the 

serial clock (SCK) is activated. The delay allows the internal 

circuits of the microphone to initialize properly before 

beginning the synchronization sequence with other 

microphones in the TDM array. Fig. 5 demonstrates an example 

of an array of MEMS microphones connected on a single data 

bus, in which the slave serial data port’s format is TDM. 

The WS clock master from the microcontroller drives the WS 

signal of the first MEMS microphone. The array of MEMS 

microphones was daisy-chained, allowing the first MEMS 

microphone WS output (WSO) to drive the WS of the second 

MEMS microphone, etc. The first TDM slot will be used to 

output data from the ICS-52000, the second TDM slot will be 

used to output data from the next microphone in the chain, etc. 

The word length output data is 24 bits/channel, and the data 

word format is the most significant bit first and 2’s complement. 

The frequency of SCK utilized in our system design employing 

 
Fig. 3.  (a) PCB design for ICS-52000 and its electrical components 
and connections, where U1 represents ICS-52000, and FPC 
denotes flexible printed circuit cables to transmit the data from U1 
to the microcontroller. (b) The voltage regulator connection for ICS-
52000 is represented as U2. 

 
Fig. 5.  Overview of the connections between daisy-chained MEMS microphone and microcontroller. (a) System block diagram of digital pin 
connections for an array of MEMS microphones. (b) ICS-52000 digital pin and its modules. 

 
Fig. 4.  Digital pins utilized on Teensy 3.6 board for this study. Digital 
pin 4 is only required when multiple Teensy 3.6 board is required 
(see Fig. 7). For other digital pins usage and details, refer to [26]. 
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5–8 MEMS microphones in a chain is given as 256 × fWS, where 

WS frequency (fWS) is about 8000 Hz [22]. 

The design of an array of microphones can assess lung 

function via acoustic imaging, translated from the multichannel 

lung sound signals, similar to VRI [20], [21] and studies in [13] 

and [14]. From Fig. 5, the ICS-52000 package incorporates a 

MEMS microphone sensor with a sensitivity tolerance of ±1 

dB, allowing high-performance microphone arrays and 

eliminating the requirement for system calibration; signal 

conditioning, such as digital filter removing unwanted low-

frequency noise from the direct current and synchronized 

sampling of all microphones in an array of acoustic signals 

enabling accurate array processing; an analog-to-digital 

converter; decimation and anti-aliasing filters; and power 

management. 
3) MEMS Microphone Array Design 

The practicality of designing an acoustic imaging system 

regarding the number of sensors and sensor sensing diameter 

needed to achieve the desired minimum detectable obstructed 

airway (nidus length) is shown in Fig. 6 [13], [14]. With more 

sensors, the detectable minimal nidus length could be resolved 

more precisely due to the larger overlap of the sensor sensitivity 

area, e.g., with the same sensing diameter of 50 mm, a detected 

nidi length of 73 mm requires about 4 sensors and nidi length 

of 25 mm requires about 24 sensors on one side of the chest. 

As up to 16 ICS-52000 can be daisy chained in an array with 

one microcontroller, Fig. 7 demonstrates an array of Teensy 3.6 

board connections for an acoustic signal acquisition system or 

acoustic imaging system [6], [7], [15], [17], [20], [21] requiring 

more than 16 MEMS microphones [13], [14]. 1 microcontroller 

is utilized for up to 8 daisy-chained MEMS microphones in our 

paper. 

The Teensy 3.6 and ICS 52000 MEMS microphones 

connections are demonstrated in Fig. 4, Fig. 5, and Fig. 7. 

Flexible printed circuit (FPC) connectors and cables were 

utilized to connect Teensy 3.6 to the external microphones due 

to its lightweight interconnection enabling the system 

wearability, as illustrated in Fig. 1, and Fig. 3. The standard 

USB type A-USB micro interface was utilized to transfer 

MEMS microphones data to the memory card 115,200 bit/s 

baud rate and then to the computer for digital acoustic signal 

analysis. Arduino sketchbook v1.8.13 was used as the 

programming software activating Teensy 3.6 microcontroller in 

acquiring acoustic signals through the array of MEMs 

microphones. Real-time computerized lung sound analysis, 

adjustments to digital signal processing, and usability 

improvements can all be implemented on the same hardware 

platform owing to the flexibility of the programmability. 

B. Software Design 

The following sub-sections illustrate the software data 

acquisition module, signal processing module and acoustic lung 

image processing from the acquired lung signal, as presented in 

Fig. 1(c). 
1) Data Acquisition Software Design 

The overall block diagram of software design, including the 

data acquisition module, is illustrated in Fig. 8. Through the 

connected serial port, the microcontroller waits for the 

computer to send a data transmission command to collect 

acoustic signals via MEMS microphones. The collected data is 

then stored in the non-volatile flash memory when the acoustic 

signals from the MEMS microphones come in. The collected 

digital data is saved in XLS format with separate columns 

according to the individual MEMS microphone digital data in 

 
Fig. 7.  Teensy 3.6 boards connection for multiple arrays of a 
maximum of 16 MEMS microphones each, with the first Teensy 3.6 
board as a control (master) with a master switch, and the 
subsequent Teensy 3.6 boards as slaves. Grey represents the 
ground connection, and blue represents the interconnection of 
digital pin 4 (SDA2). 

 
Fig. 8.  Software overall flowchart for the acquisition of acoustic 
signals. 

 
Fig. 6.  The typical sensor numbers in a practical acoustic imaging 
system that can be observed on one side (right posterior) of the 
chest wall. 
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an array. 
2) Signal Processing Denoising Module 

Fig. 9 shows the proposed system’s input and output flow of 

the acoustic signal. The input signal sampling frequency FS of 

the system is 8000 Hz. From Fig. 9, an ICS-52000 in-built 

digital low pass filter [22], and denoising algorithm [10] are 

applied to suppress the inference, such as ambient- and patient-

generated noise to enhance the acquired lung signal through 

MATLAB R2023a. 

The ICS-52000 in-built filter’s lower cutoff frequency is set 

to 50 Hz, and the upper cutoff frequencies extend to 0.417 × FS 

and 0.04 dB ripple within the pass band, according to the 

datasheet [22]. E.g., the sampling frequency FS of 8000 Hz 

utilized in this paper results in a bandpass frequency response 

from about 50 Hz to 3336 Hz [22]. The in-built filter was 

utilized to eliminate high-frequency noise as the ICS-52000 

uses a single-bit, high order, sigma-delta analog-to-digital 

converter (ADC) that operates at a high oversampling ratio 

[22]. The in-built filter characteristics scale with sampling 

frequency. 

Delivering denoised signals from ambient noise while 

carefully avoiding the cancellation of auscultation patterns that 

are indicative of diseases, such as crackling that can easily pass 

for noise, is one of the primary concerns of implementing 

denoising in acoustic lung sound recording systems. The simple 

addition of an active noise-canceling filter or typical finite 

impulse response filter [8], [10], [27] to an acoustic MEMs 

microphone does not adequately solve these concerns [24]. 

Hence, a novel denoising method [10] is included in our system 

design, as shown in Fig. 2 and Fig. 9, which is based on wavelet 

transformation that are used in the fields of lung sound signals 

denoising [10], [24], [27]. This approach is optimum for 

removing external noise while retaining the desired signal. An 

empirical Wiener filter and a unified wavelet threshold 

denoising filter (WATV) are combined in the approach. The 

algorithm has been validated and given in-depth details before 

in [10] and has been tested on actual lung sound signals 

collected from patients with respiratory disorders in a noisy 

clinical environment. A summary of the denoising filter 

approach and the implementation is summarized below. 

The captured signal y(n) from the sensor contains the desired 

signal xa(n) and noise v(n) such as the ambient noise, and the 

inherent noise from electronic devices as shown in (1), 

 ( ) ( ) ( ),ay n x n v n= +  (1) 

where n is the sample index n = 1, 2, 3, …, N, and the total 

number of samples N is given as N = FST, where FS is the 

sampling frequency, and T is time.  

Before attempting to achieve a sufficient denoised signal 

coefficient from the lung sounds, WATV is first utilized to 

lessen the interference noise, achieving adequate denoised 

signal coefficients by adjusting a control parameter 0.95 ≤ η < 

1. The control parameter η influences the total variation parts β 

and the regularization parameter λj , where β and λj control the 

pilot estimation of the denoised wavelet coefficients in the 

denoising algorithm [10]. Following the pilot estimation, the 

estimated signal coefficient is sent into the empirical Wiener 

filter for smoothing by minimizing the denoised signal overall 

mean square error through inverse filtering. The pseudocode of 

the denoising algorithm is presented below. 

 

Algorithm 1. WATV-Wiener denoising algorithm 

Input: Noisy data (y); Number of vanishing moment (km); 

            Regularisation parameter (𝜆𝑗); TV parts (𝛽); Step size 

            (𝜇); Number of wavelet scale (𝑗); Number of 

            iterations (𝑛𝑖𝑡𝑒𝑟); Threshold function (𝜃); Wavelet 

            transform (W); Wavelet coefficient (ωc) 

Output: 

1:    Initialisation: 𝜔𝑐 = Wy; 

2:    Identifying wavelet coefficient in (4.10) by iteratively 

           minimising with respect to ωc and 𝑢 with variable 

           splitting and augmented Lagrangian approach. 

3:    𝑢 = 𝜔𝑐; 𝑑 = 𝜔𝑐; 𝑐 = 0; 
4:    Iteration till convergence between 𝝎𝒄 and 𝒖. 

5:    For 𝑖 = 1:𝑛𝑖𝑡𝑒𝑟 

6:    𝑝𝑗,𝑘 = [Wy + 𝜇(𝑢 − 𝑑)] (1 + 𝜇)⁄   

7:    Finding the wavelet coefficient 𝜔𝑐 for all 𝑗, 𝑘𝑚 with  

            the input from 𝜃, 𝑝, 𝜆𝑗, 𝜇, 𝑎𝑗 = 1/𝜆𝑗  

8:     𝜔𝑐(𝑗,𝑘) = 𝜃(𝑝𝑗,𝑘; 𝜆𝑗 (1 + 𝜇⁄ ); 𝑎𝑗)  

9:     𝑐 = 𝑑 + 𝜔𝑐  

10:  Total variation denoising (𝑡𝑣𝑑) requires data input 

            from 𝑐, length of the data input (𝑁) and TV parts 

11:   𝑑 = W[W−1𝑣𝑡 − 𝑡𝑣𝑑(𝑊−1𝑐; 𝑁; 𝛽 𝜇⁄ )]  
12:   𝑢 = 𝑐 − 𝑑  

13:   𝑑 = 𝑑 − (𝑢 − 𝜔𝑐) 

14:   end For 

15: Denoised wavelet coefficient (�̂�𝑐), where the  

             signal   �̂�𝑡 = W−1�̂� 

16:   Empirical Wiener filter design for smoothing: 𝐻 

17:   𝐻 =  �̂�𝑐
2 (�̂�𝑐

2 + 𝜎2)⁄   

18:   Smooth denoised output: �̂�𝑎 = W−1𝐻W�̂�𝑡  

 
3) Image Processing 

Using an image processing approach [13], [14], [21], the 

acquired lung signals are transformed into acoustic images for 

analysis in MATLAB 2023a. The lung signal intensity P̅ at each 

sensor location i in a x- and y-axis coordinate plane is computed 

by accumulating the acquired signals P over a known time t 

interval from t1 to tk, 

 
Fig. 9.  Software flowchart for signal collection and integrated post-
processing denoising. 
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The acoustic lung imaging Q projected from lung signals is 

then, 
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1
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i
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Q P h P t h j
=
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where Q(P̅, h) comprises of acoustic signal P̅(x, y, t1, tk) and 

interpolation function h(j), with j containing the intensity output 

from P̅(x, y, t1, tk) with the sensor position (x, y) information. 

Hermite interpolation polynomial is applied to estimate sound 

intensity outside of the sensor position on the chest area [5], as 

high spatial resolution is required for the limited number of 

sensors that can be placed onto the chest wall [17] and is given 

as, 

( ) ( )2 2

0

2 ( )( ) ( ) ( ) ( ) ,
d

s s s s s s s s s

s

h j h L j j j L j h j j L j h
=
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  (4) 

where the prime (′) symbol refers to the derivative function, d 

is the degree of the polynomial, and L is the Lagrange 

polynomial with the known pixel locations m given as, 

 ( )
0,

.
d

s

s

s s m m s

j j
L j

j j= 

−

−
  (5) 

Refer to [17] for the Hermite interpolation function in-depth 

analysis, computation, and application on acoustic lung 

imaging. The highest, lowest, and in-between values are 

determined as maroon, white, and grey. 

Fig. 10(a)–Fig. 10(c) present the time-domain digital 

amplitude of the three sensors, showing the respiratory 

breathing phase as observed in terms of waveform peak and 

valley. Fig. 10(d) present the frequency spectrum of the three 

devices, where the frequency of interest is in a similar range 

centered around 220 Hz and is within the typical frequency of 

lung sound signals [8]. The ICS-52000 MEMS microphone 

outputs digital amplitude using its internal proprietary ADC 

[22], similar to the two commercial digital stethoscopes. All 

three sensors, MEMS microphone, Thinklabs One, and 

Littmann 3200 output unitless digital amplitude. Each acoustic 

signal P̅(x, y, t1, tk) captured from the single data point is put 

into an array (matrix) form in MATLAB R2023a, the array of 

acoustic signals is normalized, and acoustic images are then 

displayed as the output collected from the intensity (digital 

amplitude) of the sound signal. A cone-shaped lung mask image 

processing, was applied to enhance the acoustic image output 

in (3) for better aesthetic visualization to the end-users, similar 

to acoustic imaging studies in the literature [5], [6], [8], [15], 

[21]. 

 
Fig. 10.  Recorded digital amplitude relation to the respiratory sound signals and the frequency spectrum of the recorded lung signals. (a) 
Thinklabs One time-domain respiratory signals output, (b) Littmann 3200 time-domain respiratory signals output, (c) Proposed system time-
domain respiratory signals output and (d) the frequency of interest for the three devices. 
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IV. SYSTEM PERFORMANCE EVALUATION 

In terms of acquiring robust and accurate lung signals, our 

system’s lung signal acquisition unit is compared with 

commercially available digital stethoscopes, Littmann 3200, 

and Thinklabs One, which are integrated with cutting-edge 

denoising technologies to precisely measure the system design 

standards [11], [12]. Littmann 3200 and Thinklabs One digital 

stethoscopes were selected due to their unique design and 

setting that impact the transmitted sound’s characteristics and 

improve acoustic signal collection performance [11], [12]. The 

homogeneity of the transducing mechanism, quality 

preservation of transmitted lung sounds, and robustness to 

unwanted ambient noise are three critical factors in measuring 

the system’s performance. Hence, RMSE, SNR, and sensing 

sensitivity are crucial performance indicators for measuring 

how well sensors capture accurate lung sound signals in relation 

to noise. 

A concise experimental verification was performed to 

identify airway obstruction and the findings in the airway 

remodeling and simulation studies [13], [14]. All system 

performance analyses and results were performed in MATLAB 

R2023a. The lung sound acquisition and imaging setup are 

described in Section IV-A. Sections IV-B covers the 

performance index of the sub-system data acquisition, such as 

the sensor sensing sensitivity, acquired signals quality, and 

identification of nidi through imaging translated from the 

acquired lung signals. 

A. Acoustic Signals Acquisition and Setup 

The following sub-sections describe the simulation and 

experimental setup for acquiring acoustic lung signals and lung 

imaging in this study. 
1) Acoustic Signals Acquisition 

A lung sound signals simulator, as shown in Fig. 11, is 

preferable for repeatability when multiple devices and systems 

are required to evaluate the acquired signal in regard to noise 

performance [24]. A consistent comparison between multiple 

devices can be obtained when various variables in the actual 

signals recording, such as the patient’s internal body movement 

sound and ambient noise profiles in the real world, are 

repeatable. Hence, 10 unhealthy lung sound signals with 

crackles and wheezing from patients diagnosed with asthma, or 

COPD, and 10 healthy lung signals of 15 seconds duration, 

recorded from the posterior of patients’ chest, were selected 

from a respiratory database [28]. Then, each lung sound signal 

was independently played via a customized lung sound 

simulator at a sound amplitude output level similar to that of 

actual auscultation [9], [29]. 

The following steps were taken to shortlist the 20 lung 

signals (10 unhealthy, 10 healthy) from the large respiratory 

database [28], similar to the selection process utilized in the 

literature [9]. The lung signals collected from patients’ posterior 

chests were first selected from the large respiratory database 

[28]. Next, the lung signals are separated into healthy and 

unhealthy lung sounds. Then, unhealthy lung sounds with 

unannotated adventitious lung sounds, such as crackles or 

wheezing from the clinicians or doctors, were omitted from the 

selection. Similarly, doctors or clinicians annotated 

adventitious lung sounds on healthy lung sounds were 

excluded. Lastly, the 10 unhealthy and 10 healthy lung signals 

were randomly selected from the remaining lung signals for the 

experimental study. Frequencies of interest of about 255 ± 

60.53 Hz from the 10 healthy lung signals and 349 ± 52.39 Hz 

from the 10 unhealthy lung signals were detected using 

MATLAB R2023a frequency spectrum analysis, which also fall 

within the range reported in the literature [8], [30]. 

The customized lung sound simulator (see Fig. 11(a)) utilized 

a 15 mm thick silicone material (Baoblaze, USA) that closely 

resembled a human’s skin, fat, and muscle layers and was 

placed on the top of an S1 Pro portable Bluetooth speaker 

system (BOSE, USA). The S1 Pro portable Bluetooth speaker 

system resembles a typical adult chest wall in terms of its 

overall size and has a frequency response (± 3 dB) ranging from 

62 Hz to 17 kHz, which covers the acoustic frequencies of 

interest from 150 Hz to 1000 Hz [8]. Despite the large 

frequency response bandwidth, the S1 Pro portable Bluetooth 

speaker system has a flat frequency response ranging from 150 

Hz to 1000 Hz [31]. The following setups were utilized to 

simulate the actual recording. The data recorded from the lung 

sound simulator during the signal acquisition study was 

conducted in a controlled acoustic environment with an average 

noise sound pressure level of 59 ± 0.54 dBA, which is 

comparable to a typical noisy clinical setting [32]. To maintain 

a consistent ambient noise power during each device 

assessment, the environmental noise was monitored using an 

omnidirectional sensitive and high SNR MP34DT04 MEMs 

microphone (STMicroelectronics, Switzerland). A JBL Xtreme 

 
Fig. 11.  Acquisition of lung signals. (a) Lung sound simulator for 
consistent and repeatable lung signal output. (b) The lung signals 
acquisition process. 
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3 speaker, placed about 1 meter adjacent to the lung sound 

simulator, independently transmitted intensive care unit noise 

sounds randomly selected from a sound effect database at 

various levels [33]. The JBL Xtreme 3 speaker (Harman, USA) 

output was adjusted accordingly to control the true SNR, 

between -20 dB and 20 dB, with 5 dB intervals, similar to 

studies in [9], [29]. The setup allows us to test the suggested 

system directly against several other digital stethoscopes in a 

wide range of lung sound and background noise combinations. 

The filtering and denoising capabilities of individual digital 

stethoscopes were considered to achieve reasonable signal 

acquisition performance comparison. Hence, the two digital 

stethoscopes’ maximum bandwidth was utilized in this study. 

Littmann 3200 digital stethoscope filter option was set to 

“Extended mode,” which amplifies sounds from 20 Hz to 2000 

Hz, similar to a diaphragm, but provides more low-frequency 

response from 50 Hz to 500 Hz [12], [34]. The filtered lung 

sound signals are saved digitally in accompanying computer 

software. Thinklabs One digital stethoscope filter option was 

set to “Filter mode 5,” wideband mode with a pass band 

between 20 Hz and 2000 Hz [35], and the digital lung sound 

signals are transmitted to the accompanying digital device for 

analysis. The bandwidth setting from the two digital 

stethoscopes covers the range of frequencies of interest (255 ± 

60.53 Hz and 349 ± 52.39 Hz) of the selected lung signals for 

analysis. 

The following steps (see Fig. 11(b)) were performed to 

obtain an equal total number of sample points between the 

broadcasted and recorded lung signals for valid signal analysis 

due to the differences in sample numbers and frequencies 

between the shortlisted lung sound for broadcasting and the 

three devices. The shortlisted lung signals, with a sampling 

frequency FS = 44100 Hz, were first resampled to match the 

default sampling frequency of the two digital stethoscopes and 

our proposed system before the start of the lung signals 

recording by the three devices. The shortlisted lung signals FS 

= 44100 Hz were resampled to 4000 Hz for 3200 Littmann 

digital stethoscope, and 8000 Hz for Thinklabs One digital 

stethoscope and our proposed system. The resampling process 

should not impact the overall broadcasting signals and can be 

justified as the shortlisted lung sounds are mostly low-

frequency (255 ± 60.53 Hz and 349 ± 52.39 Hz) [8], [30]. The 

acquired signals from the three individual devices were 

compared to their respective resampled shortlisted lung sound 

signals for signal analysis. 
2) Acoustic Imaging Generation 

Various diameters of waterbag were positioned on the lung 

sound simulator’s right middle, as illustrated in Fig. 12, to 

emulate the obstructed area in the airway [15], [16], [36] and to 

compare the nidus detection capability of the proposed system 

and the two digital stethoscopes through imaging translated 

from the captured lung signals. For repeatability and 

consistency in the acoustic imaging acquisition, the customized 

lung sound simulator played healthy lung sound from the 

respiratory database [28] and used a waterbag for airway 

obstruction as there are various recording locations from the 

respiratory database [28], such as the trachea, lateral, and 

anterior, and the exact unhealthy or obstructed lung sound 

position is unknown. The experiment is then repeated on a 

healthy volunteer with a waterbag attached to the posterior 

combined with the acoustic sensor design findings in [13] and 

[14] to locate the nidi length via imaging. 

An array of MEMS microphone sensors was placed on the 

lung sound simulator without overlapping and with equal 

spacing to record signals, as shown in Fig. 1(a), while signals 

were taken independently (not simultaneous) by the two digital 

stethoscopes, in the same position as the MEMS microphone 

sensors, collecting an equal number of data points (sensor 

number), as presented in the example Fig. 12(a). The signals 

collected from the array of data points with our system and the 

two digital stethoscopes were then converted into acoustic 

image using the image algorithm in (2) and (3), similar to the 

literature [5]–[7]. Acoustic healthy reference images were 

generated [13], [14] individually with the recording of lung 

sounds from our system, and the two digital stethoscopes 

without the use of waterbag. E.g., Littmann 3200 has its 

independent, healthy image reference for comparison – 

obstructed acoustic image generated from Littmann 3200 is 

compared to healthy image generated from Littmann 3200, 

similarly for Thinklabs One and our proposed system. One 

representative healthy image is shown in Fig. 12(b) as the 

healthy lung image produced from the three devices look 

similar. 

As 3M Littmann and Thinklabs One can only provide a 

single data point, the breathing phase was used to synchronize 

[23], [37] and form an array of lung sound signals and converts 

the lung sound signals into acoustic imaging (see Fig. 13), 

  
Fig. 12.  The experimental and acquisition of acoustic imaging 
setup. (a) The schematic diagram of the experimental setup for 
capturing lung sound signals and nidus detection in the airways with 
waterbags. x denotes the positions of the acoustic sensors, such as 
MEMS and digital stethoscopes. The circular block presents an 
obstruction in the airways. (b) Binarized acoustic imaging for 
experimental results analysis. 
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similar to the typical acoustic imaging systems [15], [20], [21]. 

The respiratory signal synchronization technique from the 

literature [37] has demonstrated the detection of respiratory 

phases with an accuracy up to 0.2s in lung signals recordings 

containing minimal noise or significant noise interference. A 5th 

order FIR bandpass filter [37], consisting of a 1400 Hz low-pass 

cutoff frequency and a 150 Hz high-pass cutoff frequency is 

first applied to the digital stethoscope raw sound signals to 

improves detection of lower airway sounds by further 

eliminating aliasing, muscle, heart, and other low-frequency 

sounds. The identification of respiratory phases is based on the 

observation that louder sounds occur during transitions between 

phases. To detect these transitions more easily [37], an envelope 

of the signal is calculated using the Hilbert transform. The 

Hilbert transform generates a version of the input signal with a 

90-degree phase shift, allowing computation of the signal’s 

envelope while retaining the original time distribution. The 

identified analytic envelope local minima and maxima denote 

the signaling respiratory phase changes [37], as shown in Fig. 

13. 

B. Sensor Sensing Sensitivity, Signal Acquisition, and 
Identification of Nidi Performance Index 

The following sub-section presents the performance metrics 

for sensor sensing sensitivity, acquired signal quality, and 

identifying nidi length through imaging translated from the 

acquired lung signals. 
1) Sensing Sensitivity Performance Index 

The devices and system signal pickup surface’s sensitivity 

can be assessed by the sensor sensing sensitivity area. Fig. 14 

depicts the setup for the sensitivity area measurement. In order 

to evaluate the sensitivity sensing area, our hardware system 

and the commercial digital stethoscopes were mounted directly 

on top of a 20 mm thick sound absorbing sheet (-25 dBA) with 

alternating 3-by-3 array of 6 mm hole diameter, similar to the 

sensor sensitivity study in [9]. 

Throughout the course of the sensor sensing sensitivity 

assessment, output signals yij(n) are recorded for each position 

i = [1, …, 9] and white noise xw(n) with a constant power is 

consecutively played from each hole diameter of the position 

shown in Fig. 14 for j = [1,.., 10] test. 

The spectrum power of each output signal yij(n) was 

calculated for frequencies between 100 Hz and 2000 Hz – the 

typical respiratory frequencies range, the two digital 

stethoscopes’ maximum bandwidth, and the majority of the 

relevant lung sound signals are concentrated [9], [24]. The 

spectrum power from each output signal was compared to the 

center output signal y5j(n) position. The average spectrum 

power for each position i is determined as, 
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where the spectral power of the recorded signals Sij(n) is 

averaged across all j tests. The acquired spectrum power from 

the 9 positions are then interpolated to achieve higher resolution 

for sensor sensing sensitivity analysis [9]. The logarithmic ratio 

S = 10log(S̅i/S5) is then used to compare the average power from 

the intermediate point S̅5 to each S̅i. The logarithmic ratio shows 

the effect of the position of input signals on the acquired signal 

[9]. 
2) Signal Acquisition Performance Index 

RMSE and SNR were utilized as quantitative performance 

indices for indicating signal precision and noise robustness. 

RMSE is determined by employing the normalized digital 

amplitude of captured signal r, the normalized digital amplitude 

of actual signal x, and expressing the signals’ digital amplitude 

differences in root mean squared sense as shown in (7), where 

the result closer to 0 indicates the better performing the device 

 
Fig. 14.  The surface sensitivity performance setup with a single 
position capturing of acoustic signals at each interval, S1, S2, …, S9. 
(a) Overview of sound absorption sheet with alternating 3-by-3 
array. (b) The sensor sensing sensitivity test setup. (c) Example of 
alternating the sensitivity test. 

 
Fig. 13.  Synchronizing an array of lung signals captured at different 
times via the breathing phase. Blue denotes the asynchronous lung 
signals captured due to single-point data. Red represents the 
synchronized lung signals via the breathing phase. 

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3344136

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

is. SNR performance index can be expressed as (8) by finding 

the ratio and expressing the ratio using a logarithmic decibel 

scale between the normalized digital amplitude of captured 

signal r and the normalized digital amplitude of noise an, where 

a larger value indicates better signal strength acquired in 

relation to noise. 
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where N is the total number of samples collected given as 

sampling frequency multiplied by a known time. 
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where an is the digital amplitude of the collected noise signals 

without the lung sound. 
3) Acoustic Imaging Performance Index 

The identification of nidi through imaging transmuted from 

acquired lung signals using (2) and (3) is compared across our 

system and the digital stethoscopes, where smaller differences 

in identified nidi when compared to the nidi true area indicate 

better accuracy. Through local first-order image statistics [38] 

around each pixel, the resulting unhealthy acoustic image area 

with airway blockage is converted into a binary image with a 

locally adaptive image threshold as 0s and all other values to 

1s, as shown in Fig. 12. 1s represent healthy high-intensity data 

areas, whereas 0s represent obstructed low-intensity data areas 

in the binary image. The blockage (missing pixels) in the airway 

can be found by comparing the pixels between the healthy η and 

unhealthy acoustic imaging areas μ using (η – μ). The nidus 

length Ln = 2√(η - μ)/π can then be calculated using the missing 

pixel’s area [38]. 

V. RESULTS AND DISCUSSION 

The sub-system performance, e.g., the acquired signal 

quality and the sensor sensing sensitivity between our system 

data acquisition and digital stethoscopes, are presented in 

Section V-A and Section V-B, respectively. The identification 

of nidi through translating the acquired signals into imaging is 

shown in Section V-C. 

A. Signal Accuracy and Noise Robustness 

Fig. 15 displays the estimated SNR values (averaged across 

all trials, lung sounds, and noise signals) for each evaluated 

digital stethoscope along with our proposed system. Lower 

SNR values indicate deteriorated signal quality and substantial 

noise contamination. Conversely, higher SNR suggests low 

noise contamination and increased signal accuracy with the 

reference signal. 

From Fig. 15, all three devices presented noise robustness in 

terms of the SNR of the input signal, similar to the trend in [9], 

particularly for digital stethoscopes, Littmann 3200, and 

Thinklabs One. The two digital stethoscopes and the proposed 

system feature advanced filtering to reduce interference, such 

as ambient noise and body movement from the lung sound 

signals [10]–[12]. An estimated SNR of about 25 dB was 

attained from the proposed system, and about 18 dB was 

attained by Littmann 3200 and Thinklabs One, regardless of the 

low- or high-SNR of input signals as presented in Fig. 15. Based 

on the overall measured SNR in Fig. 15, our hardware system 

exceeds the competition in terms of SNR in a noisy 

environment, due to the flexibility in implementing and 

optimizing the denoising algorithm [10] into our system 

architecture. 

The mean RMSE results of the proposed system and the 

digital stethoscopes are presented in Fig. 16. RMSE measures 

the sensor’s ability to acquire accurate signals and maintain 

major aspects of lung sound. Low values of the RMSE result 

indicate a low difference in signals captured and desired 

signals, whereas high values of the RMSE result show a certain 

level of error in the acquired signal. Overly suppressed filtered 

signal through the unoptimized and generic filter may result in 

high SNR, despite the filter introducing obvious distortions 

resulting in high RMSE results [10]. Hence, a balance between 

noise suppression (SNR) and signal accuracy (RMSE) is crucial 

for a lung sound acquisition system. 

In contrast to the two digital stethoscopes, the proposed 

system can precisely capture the intended signal in terms of 

RMSE in a noisy environment, as shown in Fig. 16. The 

proposed system achieved better RMSE results by around 0.15 

 
Fig. 15.  The mean SNR performance between various sensors 
capturing lung sound signals in a noisy environment. 

 
Fig. 16.  The mean RMSE result between various sensors capturing 
lung sound signals in a noisy environment. As normalized digital 
amplitude was utilized in the signal analysis, the RMSE is unitless. 
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compared to the digital stethoscopes with the implementation 

of the optimized denoising algorithm in [10]. The proposed 

system showed a high level of noise reduction while retaining 

the desired characteristics of the signal of interest, as 

demonstrated in Fig. 15 and Fig. 16. 

With the addition of a denoising algorithm [10], as illustrated 

in Fig. 15 and Fig. 16, the proposed system has proven to be 

robust to noise and has captured more precise and desirable 

lung sound signals in terms of SNR and RMSE findings, 

respectively. 

B. Sensor Sensitivity 

From Fig. 17, the proposed system surface sensitivity area 

was compared to the two commercial digital stethoscopes. Fig. 

17 illustrates output spectral power as a function of the sound 

signal location in decibels with respect to the sensor’s center 

position, and the spectrum power from the 9 positions are then 

interpolated [9] to achieve higher resolution for sensor sensing 

sensitivity analysis.  

Digital stethoscopes lose their dynamic range substantially as 

the lung sound signals move outward and are most sensitive at 

the center of the stethoscope head, possibly due to the sensor 

sensing design [9], [11], [12]. The proposed system 

demonstrated a uniform sensing sensitivity across the sensing 

surface in terms of positional output spectral power to acquire 

lung sound. 

Despite having a lower overall surface size than the two 

digital stethoscopes, the proposed system has a more uniform 

sensing sensitivity area of about >20 mm compared to the 

digital stethoscopes, which have uniform sensing areas of <10 

mm. The proposed system provides a more uniform surface 

sensitivity in recording lung sound signals with a power spectral 

loss of approximately 5 dB (see Fig. 17) compared to the power 

spectral loss of about 10 dB from the two digital stethoscopes. 

The findings in Fig. 17 are consistent with the study in [9], 

especially with regard to positional output spectral trends in 

digital stethoscopes. Raw interpolated spectrum power data, 

i.e., no mask and outer boundary limit, was used in this section 

of the experiment, as the focus was on the sensitivity trend of 

the sensor surface, similar to the literature [9]. The sound 

absorption sheet utilized in the sensor sensitivity test is slightly 

larger (50 mm diameter) than our proposed system; hence, the 

complete absence of energy outside the sensing head area, as 

compared to the two digital stethoscopes sensing sensitivity 

mapping. 

Fig. 18 further highlights the performance variations in 

acquiring lung sound signals and the power loss at particular 

points. From Fig. 18, position S9, far from the center S5, was 

selected to demonstrate the power loss or sensitivity at a 

specific point on the proposed system and the digital 

stethoscopes. The proposed system maintains signal power at 

about 5 dB, relative to the center and across the frequencies of 

interest, in contrast to the two digital stethoscopes, which show 

a significant loss in power (down to 10 dB less) in Fig. 17 and 

Fig. 18. The results of this study on commercial digital 

stethoscopes support earlier findings that were presented in [9]. 

The sensitivity of the proposed system’s sensor area makes it 

such that the exact location of the sensor on the body is not 

necessary to achieve the maximum amplitude. The other key 

benefit of the proposed system is that it enables better sound 

and data gathering for practice by healthcare practitioners with 

limited training. 

C. Acoustic Imaging 

The proposed system and the digital stethoscopes are utilized 

for experimental study. With the typical adult chest surface area 

and the proposed sensor design, this study uses 12 and 16 sensor 

numbers [14] on a healthy volunteer with a waterbag attached 

to the posterior to record lung sounds. The waterbag’s surface 

diameter of about 46 mm and 65 mm, the minimal detectable 

 
Fig. 17.  Sensing sensitivity (dB) area compared to the power at the 
center position of various sensors, with the dashed line defining the 
sensor size. Thinklabs One digital stethoscope head (left), Littmann 
3200 (center), and our hardware system (right). 

 
Fig. 18.  The spectrum power ratio between the hardware system 
and the two digital stethoscopes from position S9 in relation to the 
central position S5, with 0 dB signifying equal signal power made 
from both positions. 

 
Fig. 19.  Acoustic imaging of obstructed airway translated from 
acquired lung signals with 50 mm nidus length via the waterbag 
simulation, where the encircled dotted line indicates the actual 
waterbag size. (a) Thinklabs One, (b) Littmann 3200, and (c) the 
proposed system. 
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nidus length from the modeling study in [14], was utilized. 

Fig. 19 presented binarized acoustic imaging of obstructed 

airways translated from the captured lung signals with the 

proposed system and the commercial digital stethoscopes, 

simulated with a 50 mm waterbag. Standardized imaging 

algorithm presented in (2) and (3) was applied to the captured 

signals from our system and the commercial digital 

stethoscopes as the commercial digital stethoscopes do not 

produce imaging as an output. Fig. 20 demonstrated the 

accuracy of detecting various obstructed areas via acoustic 

imaging. Various waterbag diameter, ranging from 50 to 80 

mm, was utilized to simulate the airway’s obstructed area [15], 

[16], [36]. 50 to 80 mm waterbag diameters were selected due 

to the typical size that can be identified with acoustic imaging 

systems [14] employing the number of sensors from 12 to 24 

[8], [15], [16], [21] and the typical adult lung size limit [39]. 

From Fig. 19 and Fig. 20, the proposed system outperforms the 

two digital stethoscopes in terms of the detected nidus length 

through acoustic imaging in (2) and (3) translated from lung 

signals, regardless of the number of sensors deployed. The 

proposed system achieved 91% accuracy in detecting the actual 

nidus length. In contrast, the two digital stethoscopes attained 

from 80 to 85% of accuracy in the detection of actual nidus 

length, potentially due to the acquired lung sound signals and 

the robustness to noise as the reliability of lung sound signals 

translates to the closeness of acoustic imaging [13]–[15], [21]. 

Fig. 21 demonstrated the nidus length detected with acoustic 

imaging on a healthy volunteer posterior with waterbag-

simulated airway obstruction. The detected obstructed airway – 

minimum nidus length, is the shortest (higher resolution) with 

16 sensors, whereas the minimum nidus length increases (lower 

resolution) with the decrease in sensor numbers, showing a 

similar trend compared to the modeling study in [14]. The 

results in Fig. 20 and Fig. 21 demonstrated the sensors number 

required to detect the minimum nidus length. E.g., 16 sensors 

can only detect the obstructed airway when the nidus length is 

greater than about 45 mm, while smaller obstructed airway with 

smaller nidus length of about 30 mm requires 35 sensors , as 

presented in Fig. 6 and in the literature [13], [14], and in line 

with the understanding that more sensors provide better 

resolution [5], [8], [17]. The results in Fig. 19–Fig. 21 

demonstrated the potential of frequent lung health imaging 

through acoustic imaging converted from reliable captured lung 

signals, and the potential in enabling smarter high-frequency 

chest wall oscillation therapy by focusing on the obstructed 

lung region, reducing the therapy time. 

A minimal difference of about 9% in the detected nidus 

length may be observed in Fig. 21 comparison between the 

 
Fig. 20.  Comparison between the proposed system and digital stethoscopes in detecting nidus through acoustic imaging with (a) 12, (b) 
16, (c) 20, and (d) 24 sensors number. 
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proposed system-generated experimental acoustic imaging and 

the modeling study in [14]. In contrast, detected nidi length 

differences of about 12 to 15% were observed between the 

digital stethoscopes and modeling study in [14]. The findings in 

Fig. 21 correspond to the earlier experimental results with the 

lung sound simulator, presented in Fig. 20, where the detected 

nidus length is about 91% (proposed system) and 80 to 85% 

(digital stethoscopes) within the actual nidus length. As this 

experimental validation comprises minimal ambient noise 

interference, a minimal difference is expected, given that the 

modeling study in [14] was based on an acoustic signal that was 

ideal and noise-free. Although an optimized denoising 

algorithm [10] was designed and integrated into the proposed 

system to reduce the interference noise pollution to the acoustic 

signals, minimal noise interference will still appear in the actual 

recording. 

The minor discrepancies in the nidus length results in both 

the proposed system and digital stethoscopes, as presented in 

Fig. 20 and Fig. 21, between this experimental investigation and 

the modeling study in [14], may have been due to the airway 

models and the drawings employed. There are various airway 

models, including Horsfield, Weibel, and airway models based 

on animals. However, nidus detection was shown to be possible 

with acoustic imaging in this work and has corresponded with 

the modeling studies in [13] and [14]. Moreover, the nidus 

length is determined by the diameter of the obstructed lung area, 

which is assumed to be a perfect circle by the results in Fig. 21. 

D. General Discussion 

Although the sensor sensitivity of the proposed system is 

neutral to the precise placement on the body, the minimum 

requirement of the array of acoustic sensor design is necessary 

for a reliable imaging output. E.g., detecting an 80 mm nidus 

length with a single sensor is not possible, while using 

minimally 12 sensors to detect an 80 mm nidus length with our 

sensor sensing area is possible [13], [14]. 

The separation of heart sounds from lung sounds was not 

taken into consideration in this study due to the emphasis on 

minimizing external interferences, such as environmental 

noises. The filter option was carefully adapted for the 

shortlisted digital stethoscopes in this study, highlighting lung 

signals’ frequency of interest. The shortlisted lung sounds from 

the respiratory database, and recorded experimental lung 

sounds were signals from the volunteer’s posterior to ensure 

that the heart sounds would be minimal and would not 

significantly interfere with the lung sounds. 

There will likely be some variation in system performance, 

and should be taken into consideration due to several variables, 

such as physical product design, system architecture in terms of 

software and hardware acquisition, and signal filtering. The 

independent characteristics of the digital stethoscopes and the 

proposed system were used to calculate the quality performance 

outcomes in this study. E.g., no further signal processing was 

applied to the captured signals from the two digital stethoscopes 

as they have proprietary ambient noise reduction technology 

[11], [12] embedded in their digital stethoscopes. The proposed 

system uses adaptive noise suppression to remove ambient 

noise while preserving the lung sound signals as much as 

possible. The proposed system provides uniform sensitivity 

across the pickup surface, allowing reliable sound capture, 

while the two digital stethoscopes showed positional 

dependence in sensitivity, with about 10 dB drop in sensitivity 

towards the edges compared to the center, as shown in Fig. 17 

and Fig. 18. The two digital stethoscope positional dependence 

in sensor sensitivity are likely due to the transducer design, 

which enhances the sensor overall aesthetic making it 

marketable but drops in sensor sensitivity, while our proposed 

system uses simple sensor casing design, maximizing the signal 

pick up area. Overall, the proposed system combines hardware 

redesign and signal processing to increase sensitivity, reduce 

noise, and preserve lung sounds of interest. 

Although the experimental study interference was 

comparable to a typical noisy clinical environment, at an 

average sound pressure level of 59 ± 0.54 dBA, the current 

experimental study is performed at a well-controlled/simulated 

additive noise conditions and may have oversimplified 

environments in the actual busy clinical setting, where 

healthcare settings that are loud and rowdy result in unforeseen 

non-additive noise pollution. 

The various lung sound acquisition systems and the proposed 

system should not be ranked in absolute terms based solely on 

signal and image accuracy, and noise robustness. The intention 

of this study is to benchmark our proposed system against 

established systems, proving the viability of utilizing acoustic 

imaging for frequent lung function assessment, converted from 

the captured lung signals. Similarly, the performance attained 

in this study should not be interpreted as showing how well a 

healthcare-trained professional can diagnose a patient using the 

proposed system without extended research. Moreover, the 

selections of digital stethoscopes in this study are not intended 

to be a representation of all digital stethoscopes available 

commercially, nor expressing opinions concerning their 

performances in noisy settings. What has been shown and 

validated in this study is each system’s variability in response 

to acquiring signals with specific simulated external 

interference conditions. 

Identifying early adventitious breath sounds through frequent 

monitoring of acoustics signals coming from the lungs with a 

wearable sensor device can offer critical lung function 

 
Fig. 21.  The relation between the modeling study [14] and 
experimental validation on the minimal nidus length that can be 
observed at a fixed number of sensors on one side of the lung. 
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information. For instance, intermittently turbulent airflow 

moving through the airways may indicate the existence of 

obstructive lung, where the signals are distinctive up to the 1000 

Hz frequency range [8], [30]. Other than acoustic lung sound 

signals, breathing patterns and respiratory rate information with 

respect to lung signals can be utilized by clinicians and doctors 

to provide a more comprehensive diagnosis. E.g., the chest wall 

motion and breathing pattern-related macro vibrations also 

provide information about the patient’s pulmonary health in 

addition to the high-frequency acoustic lung signals. A high 

respiratory rate (>30 breaths/min) is a common symptom of 

pneumonia and is a sensitive indicator of the illness. However, 

the patient’s breathing patterns and respiratory rate was not 

considered in this study, as the study’s main aim is to provide 

an early and accurate acoustic imaging assessment of lung 

function transmuted from lung signals rather than performing a 

diagnosis. The proposed system offers flexibility in acquiring 

lung sounds and then converts the lung signals into intuitive 

lung images to locate obstructed airways. Furthermore, 

substantial approaches to signal processing are needed to isolate 

the signal components and retrieve the pertinent data for 

diagnostic purposes, as the frequency ranges for specific 

breathing patterns and body movements overlap [30], [40]. In 

addition, the selection of the MEMS specification in this study 

was based on the CORSA — computerized respiratory sound 

analysis recommendations for sensor characteristics to detect 

human pulmonary sounds [8], [41]. Other MEMS, such as 

MEMS accelerometers [30], [40], MEMS piezoelectric 

resonant microphones [42], and strain gauges [43], have been 

utilized to capture breathing patterns and respiratory rate, a 

feature that is also currently unavailable in the digital 

stethoscope, to provide a comprehensive diagnosis with respect 

to lung signals. Readers who are interested in the precise 

diagnosis of respiratory disease can refer to [40], [42], [43] and 

the references therein for in-depth details on the fabrication of 

the various state-of-the-art MEMS. 

VI. CONCLUSION AND FUTURE WORK 

This study develops a wearable, extensible, and robust 

system of lung sound acquisition and acoustic imaging, which 

overcomes the limitations of current digital stethoscopes and 

produces more accurate acoustic images for continual lung 

function assessment. The proposed system is low-cost, ranging 

from USD 120 to 280, for a typical 12 to 24 acoustic sensors 

array [6], [7], [15], [17], [20], [21] recording lung sound 

simultaneously at different locations, as compared to digital 

stethoscopes [11], [12] USD 300, with only a single data point 

collection, excluding the cost of the computer for analysis. The 

objective criteria utilized in this study show how well the 

system preserves the characteristics of lung sound signals while 

minimizing external interferences. The proposed system 

outperforms the digital stethoscopes in terms of RMSE by 

around 0.15 and SNR by around 7 dB. Additionally, the 

proposed system has demonstrated a superior sensing 

sensitivity region regarding the recorded signal power spectrum 

compared to two well-known digital stethoscopes. The acoustic 

lung signals were converted into acoustic lung images for 

experimental investigation and analysis. The sensor distribution 

and acoustic imaging resolution modeling studies in [13] and 

[14], validated and supported the nidus detection results via 

acoustic imaging in the experimental study. Future research 

should examine the hardware system processing power in detail 

and consider real-world usage scenarios, such as respiratory 

conditions, to verify the system signal quality. 
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