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Bayesian inversion of frequency-domain airborne EM 
data with spatially correlation prior information  

Jianmei Zhou, Dirk Husmeier, Hao Gao, Changchun Yin, Changkai Qiu, Xu Jing, Yanfu Qi and Wentao Liu 

Abstract—Bayesian inversion of electromagnetic data can obtain key 
information on the uncertainty of subsurface resistivity. However, due to 
its high computational cost, Bayesian inversion is largely limited to 1D 
resistivity models. In this study, a fast Bayesian inversion method is 
implemented by introducing the spatial correlation as prior information. 
The contributions of this paper mainly include: (1) Explicitly introduce the 
expression of spatial correlation prior information, and provide a method 
to determine the parameters in the expression through the variogram 
theory. The influence of parameters in the spatial correlation prior 
information on the inversion results is systematically analyzed with 1D 
synthetic model. (2) The information entropy theory of continuous function 
is introduced to quantify the degrees of freedom of the parameters of the 
spatial correlation prior model. The analysis shows that the degree of 
freedom of model parameters is significantly smaller than the number of 
model parameters when spatial correlation prior information is introduced, 
which is the main reason for the rapid Bayesian inversion. (3) Introducing 
the sengpiel fast imaging algorithm, combined with the variogram theory, 
realized the direct acquisition of spatial correlation prior information from 
the observation data, minimizing the dependence on other information. 
The inversion results of 1D and 2D synthetic models and field dataset show 
that considering the spatial correlation prior information, hundreds of 
thousands of MCMC searches are needed to realize the inversion of up to 
thousands of model parameters. This result provides a possible idea for 
future Bayesian inversion of complex 3D models. 

Index Terms—airborne electromagnetic (AEM), statistical methods, 
Bayesian inversion, Markov chain Monte Carlo. 

I. Introduction 

Frequency-domain airborne electromagnetic (AEM) 
methods are widely used in near-surface geophysical 
exploration [1-4]. AEM data interpretation mainly relies on 
inversion. For a review of various inversion methods for 
AEM data, refer to Yin et al. [5]. AEM inversion methods 
are mainly divided into deterministic inversion methods 
based on regularization theory and Bayesian inversion  
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methods based on random sampling [5]. Deterministic 
inversion methods are based on various optimization 
methods to obtain a single inversion result [6-7], and has 
been developed to the inversion of 3D model [8-10]. The 
Bayesian inversion method does not pursue a single 
inversion result, but obtains a model set that satisfies the 
observation information through random sampling, that is, 
the posterior distribution. Through posterior statistical 
analysis, the probability distribution and uncertainty 
information about the inversion results are provided [11]. 
Since uncertainty information can provide important 
references for subsequent geological interpretation, 
Bayesian inversion methods have received more and more 
attention in recent years [4,12-19]. 

The advantage of the Bayesian inversion method is 
based on the increased computational cost. The 
deterministic inversion method generally only needs tens 
to hundreds of forward computations [8-10]. The Bayesian 
inversion method requires about 105~106 forward 
computations. This cost increase significantly with the 
increase of the dimension [11]. There are two main reasons. 
First, the calculation time of a single forward modeling 
increases as the dimension increases. The calculation time 
of a single frequency domain forward modeling of a 1D 
model only needs milliseconds [14]; while the single 
frequency domain forward modeling time of a 3D simple 
model needs more than seconds [20]. Second, the model 
parameters that need to be sampled increase exponentially 
as the dimension increases. Using the popular pixel 
parameterization strategy [21], the inversion parameters of 
the 1D model are generally tens to hundreds [6], while the 
inversion parameters of the 3D model are increased to tens 
of thousands [10]. 

In order to realize the Bayesian inversion of high-
dimensional models, it is necessary to reduce the total 
inversion time as much as possible. One way is to increase 
the forward speed. Forward modeling acceleration can be 
achieved by improving the spatial grid discretization and 
governing equation solving methods [20,22]. Although 
these methods have made great progress, the forward time 
is still too long for Bayesian inversion [14]. In recent years, 
the development of machine learning [18] and model 
reduction [23] has the potential to greatly increase the 
speed of forward modeling, thereby enabling Bayesian 
inversion of high-dimensional models [23], which is an 
active research area. 

Another way to reduce the total inversion time is to 
reduce the number of model parameters that need to be 
sampled. The pixel-based parameterization strategy can 

have

disadvantage

increases
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easily represent various resistivity distributions, and the 
cost is that there is a large amount of parameter 
redundancy. Taking a 1D three-layer model as an example, 
the pixel-based parameterization is used to discretize it into 
100 uniform thin layers, so the inversion model parameter 
is the resistivity of these 100 thin layers. Obviously, the 
100 resistivity parameters of the three-layer model are not 
all truly independent. In fact, only 5 model parameters (2 
formation thickness and 3 resistivity) are needed to fully 
describe the three-layer model. In actual inversion, the 
number of layers and the resistivity of each layer are 
unknown. Sampling can start with a half-space model that 
describes the fewest parameters, and gradually transition to 
a complex multi-layer model until it fits the observed data. 
This method can minimize the model parameters in the 
process of realizing the inversion. The widely popular 
trans-dimensional Markov chain Monte Carlo (MCMC) 
method [24-25] realizes this inversion process. This 
method is widely used in the probabilistic inversion of 
geophysical electromagnetic data, including 1D layered 
models [26-34] and 2D Voronoi cells [35-37]. However, 
this method is computationally complex and expensive 
when extended to 3D Voronoi cells [38-39].  

From the view of the pixel-based parameterized model, 
the trans-dimensional MCMC method can be regarded as 
an algorithm that embeds the spatial correlation of model 
parameters into the sampling process. Both 1D layered 
model and 2D Voronoi unit can be regarded as the 
performance of strong spatial correlation. In order to avoid 
the difficulties of the trans-dimensional MCMC algorithm 
when it is extended to 3D Voronoi model, the spatial 
correlation of the model parameters can be explicitly added 
as prior information [40-42].  

The effectiveness of Bayesian inversion depends on 
several factors, including the quality of the observed data, 
the accuracy of the forward algorithm and the rationality of 
the prior information. High quality observations 
correspond to low noise levels, and the observations are 
sensitive enough to the model parameters. High-precision 
forward algorithm is used to ensure that the inversion 
search model can have a good mapping relationship with 
the data. Reasonable and effective prior information can 
reduce the complexity of an inverse problem and that a 
prior with little information leads to a hard inverse problem 
[43]. Therefore, the selection of reasonable prior 
information is very important. The spatial correlation priori 
information, which holds that there is a correlation 
between the resistivity of the strata, can describe more 
realistic geological structure characteristics than the spatial 
uncorrelation priori information. 

There are many forms of spatial correlation prior 
information, and a large class of methods that describe the 
spatial correlation of model parameters and the 
characteristics of more realistic geological structures are 
called geostatistical methods [44]. Bayesian inversion 
based on spatial correlation prior information has been 

applied in geophysics [4,14,40-42]. In particular, 
sequential Gibbs sampling [43] and the extended 
Metropolis algorithm [45] construct an inversion method 
that can use arbitrarily complex prior information [46-47]. 
This paper adopts the method of [46-47] to implement 
Bayesian inversion based on spatial correlation prior 
information. 

Spatial correlation prior information affects the 
inversion results [48], so how to give prior information is 
important. Spatially correlated prior information generally 
requires deriving the statistical properties from borehole 
data or prior geological information about the study area 
[40–42]. In practice, this previous drilling or geological 
information may be lacking. To solve this problem, 
Hansen et al. [49] used the linearized stochastic inversion 
method to obtain spatial correlation prior information from 
observation data alone. The method determines the 
effectiveness of prior information selection by comparing 
the posterior probability density function with the prior 
probability density function. However, this method 
requires a large amount of model sampling to obtain 
spatially related prior information. 

Compared with random prior information, spatial 
correlation prior information can reduce the degrees of 
freedom of inversion parameters [50], thereby reducing the 
complexity of probability inversion. But there is no clear 
quantitative description of how much the spatial 
correlation prior information reduces the degrees of 
freedom of the inversion parameters. 

In this paper, we propose a new simple method to obtain 
the approximate spatial correlation prior information 
directly from the observational data. First, the sengpiel fast 
imaging algorithm [51] is introduced to obtain the apparent 
resistivity distribution of the underground model. Then we 
use the variogram theory to calculate the explicit 
variogram function of the model. Finally, the Gaussian 
spatial correlation prior model is obtained by fitting with 
the variogram model. The reasons for choosing the 
Gaussian model are as follows: AEM method is a diffuse 
field method. The observation data is based on the volume 
average of the electrical distribution in the subsurface. It 
naturally has a smoothing effect, so the subsurface model 
can be described by a Gaussian function [44] that also has 
a smoothing effect. 

The spatial correlation prior model obtained by the 
above method is approximate. In order to analyze the 
impact of this approximation on the inversion results, we 
systematically discussed the relationship between the 
spatially related prior model parameters and the inversion 
results. 

In addition, in order to better understand the impact of 
spatial correlation prior on the degree of freedom of model 
parameters, we introduced the information entropy theory 
[52] for quantitative analysis the reduction of the degrees 
of freedom of the parameters by the spatial correlation 
prior information. 



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 3 

The arrangement of this article is as follows: First, the 
forward modeling theory of frequency-domain AEM is 
briefly introduced. Next, the Bayesian inversion theory is 
introduced, emphasizing the spatial correlation prior 
information. Finally, the influence of parameters in the 
spatial correlation prior information on the inversion 
results is systematically analyzed with 1D synthetic model, 
and the inversion results of 2D synthetic models and field 
dataset are used to illustrate the potential of the algorithm 
in this paper in the Bayes inversion of high-dimensional 
models. 

II.  Forward Method 

A.  Model Parameterization 

The frequency domain AEM method uses a loop source to 
transmitter primary magnetic fields of different frequencies. 
Based on the principle of electromagnetic induction, 
different secondary magnetic fields will be induced by 
earth models with different resistivity distributions. 
Another loop is used to receive the total magnetic field 
superimposed by the primary magnetic field and the 
secondary magnetic field. The subsurface resistivity 
distribution is inverted from the observed magnetic field 
data. In this paper, a unified pixel-based parameterization 
strategy is used to describe the geoelectric model in the 
process of forward modeling and inversion. For 1D 
problems, the subsurface resistivity distribution can be 
discretized into a layered model of M layers, and the layer 
thickness of each layer is fixed (generally selected as linear 
or logarithmic equidistant distribution). For 2D and 3D 
problems, the underground conductivity distribution can be 
discretized into a regular rectangular block model with a 
total of M, and the shape of each block is fixed (the 
horizontal direction generally adopts linear and equal 
interval distribution, and the vertical direction can choose 
linear or logarithmic equal interval distributed). The model 
parameters can be uniformly expressed as 

   1 2 1 2, , , log , log , , logM Mm m m    m          (1) 

B.  Forward Response 

Due to the long calculation time of 2D and 3D forward 
modeling [20], this paper uniformly uses the 1D formula 
[12] to calculate the forward modeling response of the 
model. When the model is 2D, such as in sections 4.2 and 
4.3, the electrical distribution directly below each 
measuring point is approximated as a 1D layered model to 
calculate the forward response of the measuring point. Due 
to the footprint effect [5], when the lateral electrical 
distribution of the measuring point area changes not 
particularly sharply, the forward modeling error of one-
dimensional approximation is acceptable. 

The transmitting coil and receiving coil of the frequency 
domain AEM method can adopt three kinds of geometrical 
devices [12]: horizontal coplanar (HCP), vertical coaxial 

(VCX) and vertical coplanar (VCP). The common one is 
the HCP device, which uses a horizontal coil to receive the 
vertical magnetic field transmitter by the vertical magnetic 
dipole source. The forward response in the 1D layered 
model can be expressed as [12]: 

0 0 0 0
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            (2) 

Where q is the transmitting magnetic moment, 0z  is the 
height of the transmitting coil from the ground, L is the 
transmitting and receiving distance, TEr  is the reflection 
coefficient related to the model resistivity and layer 
thickness, and 0J  is the zero-order Bessel function. For 
forward responses of VCX and VCP systems, refer to [12]. 
The data used in frequency domain AEM data processing 
is the normalized secondary magnetic field: 
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where zzH is the total field in equation (2), and 0
zzH  is the 

primary magnetic field. The forward modeling responses 
of equations (1)-(3) can be uniformly expressed as:  

( )gd m                                  (4) 
where d  is the forward response, and g is the nonlinear 
forward operator. 

III.  INVERSE METHOD 

In this paper, the Bayesian method [11] is used to solve the 
inverse problem. This method considers that all available 
information can be described by a probability density 
function (referred to as pdf), and solving the inverse 
problem is to combine the pdf of all known information. In 
a typical inverse problem, information can be described by 
prior information and a likelihood function. 

A.  Prior Information 

Prior information represents a probabilistic representation 
of prior knowledge about the model, where prior 
knowledge can come from geological knowledge, previous 
geophysical exploration, etc. Before using prior 
information, it needs to be described quantitatively. 

In the simplest case, assuming that all model parameters 
are mutually independent (i.e., spatially uncorrelated) and 
uniformly distributed within the parameter range 

maxmin , ][m m , the prior information can be expressed as 
[53]: 

max min min max1 / ( )
( )

0
i

pr i

m m m m m
m

else


  
 


     (5) 

The spatially uncorrelated uniform distribution only gives 
the upper and lower limits of the variable range of 
parameters, contains the least prior information and the 
largest entropy, and corresponds to the largest degree of 
disorder. The spatially uncorrelated uniform distribution 
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described above is usually recommended if it is desired to 
minimize prior information [53]. Since the model 
parameters are spatially uncorrelated, the degrees of 
freedom of the model parameters are equal to the number 
of model parameters, freeM M . 

The spatially uncorrelated assumption can be convenient 
because its probability distribution values can be easily 
computed. However, such simple, spatially uncorrelated 
model parameters may not be a realistic description of the 
actually available information. The assumption of spatial 
uncorrelation means that two model parameters that are 
infinitely close together are assumed to be independent of 
each other. This assumption may often be inconsistent with 
most natural phenomena, since stratigraphic distributions 
may show highly correlated features. Many probability 
distributions exist that can describe spatially correlated 
model parameters and more realistic characterization of 
geological structures. One widely used class is the 
probability distribution model based on two-point 
Gaussian statistics [54]. The prior information is 
completely described by the mean and covariance between 

the model parameter pairs im  and jm , and im  is 

normally distributed, then the prior information is a 
Gaussian distribution with mean 0m  and covariance 

matrix MC  [54]: 

0

T 1

0 0

( | , )

1 1
exp ( ) ( )

2(2 )

pr M

M
M

M





    
 
 

m m C

m m C m m
C

     (6) 

Mean 0m  corresponds to the average or background 
resistivity of the model. The spatial correlation covariance 
matrix MC  can be obtained by adding prior knowledge of 
the geostatistical properties of the subsurface. In 
geostatistical theory, spatial correlation models are 
generally described by variograms ( )h . Commonly used 
variograms include spherical, exponential, and Gaussian 
models [54]. This paper adopts the Gaussian model. It is a 
smooth model. The variogram that specifically describes 
the gauss model is [54]: 

2

2

3
( ) 1 exp

h
h c

r


  
    

  
                       (7) 

where h is the distance between the parameters im  and jm , 

r is the maximum correlation length, and c is the maximum 
value that the model parameters allow to change when h 
increases. Based on formula (7), the spatial correlation 
covariance matrix MC  can be obtained as: 
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Spatial correlation prior information is generally 
unknown. How to obtain accurate spatially correlation 
prior information is an open topic. For areas with borehole 
data or existing geophysical information, the parameter 
mean and covariance matrix information of the spatial 
correlation prior model can be obtained through 
geostatistical analysis [55]. However, in many practical 
works, there is a lack of boreholes or existing geophysical 
information. In areas where only observation data exist, the 
acquisition of spatially correlated prior information may 
not be trivial [56-57]. 

This paper introduces the sengpiel fast imaging method 
[51] to obtain spatial correlation prior information, which 
can ensure the inversion effect without significantly 
increasing the amount of calculation. Firstly, an apparent 
resistivity distribution  apm  of the underground model is 
obtained by using the sengpiel fast imaging method [51]. 
Then the mean 0m  can be obtained by the average of apm . 
Apply the variogram formula [43] to apm , we obtain the 
variogram corresponding to the apparent resistivity model: 

 
( )

2

1

1
( ) ( ) ( )

2 ( )

cN h

c c i c i
ic

h m x h m x
N h




                 (9) 

here ( )im x  is the value of model parameter at position ix , 

ch  is the distance in the specified direction between spatial 

points ( )i cx h  and ix , and ( )cN h  is the number of data 

pairs whose distance is ch . ( )c ch  is somewhat different 

from the theoretical Gaussian model ( )h . We use the 
curve fitting method to obtain the corresponding Gaussian 
model ( )h , and the covariance matrix mC  is then 
obtained according to formula (8).  

( )c ch  is a variogram calculated based on the 

underground resistivity distribution. ( )c ch  does not 
contain spatial correlation constraints, so the prior model 
obtained based on formula (8) of ( )c ch  will not reduce the 
spatial degree of freedom of the model. This paper 
introduces the Gaussian spatial correlation prior constraint 
of formula (7). That is to say, ( )c ch  can be fitted by ( )h  

with appropriate parameters. Therefore, ( )h  is used 

instead of ( )c ch  in the prior model. This constraint 
reduces the variation range of variograms, the degrees of 
freedom of model parameters will be much smaller than 
the number of model parameters [51]. 

B.  Degrees of Freedom of Prior Model 

By calculating the information entropy of the 
multivariate Gaussian distribution, the degrees of freedom 
of the parameters in the prior information can be 
quantitatively analyzed [58]. Since the model parameter 
m  (i.e., the logarithmic conductivity) is a continuous 
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variable, it is necessary to use the information entropy 
formula of continuous random variables [58]: 

 I ( ) log ( )pr pr d 



 m m m m                (10) 

Putting equation (6) into (10), the information entropy of 
the spatially correlated multivariate Gaussian 
distribution is as follows [58]: 

   0

1
I | , 1 log 2 log

2 2m m

M   m m C C        (11) 

The information entropy of continuous variables can be 
positive or negative, but there are upper and lower limits 
[58]. Considering spatial correlation, when all model 
parameters are uncorrelated, it corresponds to the 
maximum entropy maxI ; when all model parameters are 
spatially correlated, that is, the maximum correlation 
length is equal to the number of parameters r = M, 
corresponding to the minimum entropy minI . Referring to 
the definition of the degree of freedom of the discrete 
parameter model [52], the degrees of freedom of the 
continuous parameter model corresponding to different r 
can be defined: 

min

max min

I( ) I

I Ifree

r
M M





                        (12) 

Where I( )r  is the information entropy of a given r. 

Obviously, when freeM M , the model parameters are 

completely uncorrelated; and when 0freeM  , the model 
parameters are completely correlated. In practice, the 
spatial correlation of some model parameters is considered, 
that is, 0 r M  , the degrees of freedom of the 
corresponding model satisfy 0 freeM M  . 

C.  Likelihood Function 

The likelihood function represents a probability measure of 
how well the forward response ( )g m  of a given model m  

matches the observed data obsd . The likelihood function is 
[11]: 

( ( )) ( | )
( )

( )
D

like D
D

g
d

 



 

m d m
m d

d
                (13) 

where ( ( ))D g m  describes the measurement uncertainty. 
( | ) d m  describes the model error, that is, the error 

caused by using imprecise forward operators g or 
imprecise model parameterization. ( )D d  describes a 
homogeneous state of information, ensuring that the 
parameterizations in different coordinate systems are 
consistent. It is generally assumed that ( )D d  can be 
approximated by a constant [53], while ignoring the error 
of the forward operator, the corresponding likelihood 
function can be simplified as [53]: 

( ) ( ( ))like D g m m                            (14) 
For the frequency-domain AEM method, it is assumed that 
the data noise is independent uncorrelated zero-mean 

Gaussian noise, and the standard deviation of the noise is 
5ppm plus 5% of the observed data value, 

2 2(0.05 ) 5
id id    . For N observed data, the 

corresponding likelihood function is expressed as [14]: 
2

2
1

( ( ))
( ) exp 0.5 obs

i

N
i i

like
i d

d d




 
   

 


m
m       (15) 

In the field of geophysical electromagnetics, a more 
intuitive data root mean square error (rms) is often used to 
view the fit of the inversion results: 

2

2
1

( ( ))1
rms obs

i

N
i i

i d

d d
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m
                  (16) 

Ideally the inversion results are a perfect fit, corresponding 
to rms = 1. 

D.  Extended Metropolis Sampling Algorithm 

Once the available information has been quantified, the 
concept of information state combination can be used to 
obtain the combined state of the information (prior 
distribution and likelihood), which leads to the posterior 
probability distribution [11]: 

( ) ( ) ( )post pr likek  m m m           (17) 
where k is a normalization constant. Since the forward 
operator in equation (4) is a nonlinear operator, the 
posterior pdf cannot be directly obtained through equation 
(17). A common approach is to derive the posterior pdf 
based on sampling techniques. In order to evaluate 
equation (17), the classic Metropolis algorithm [59-60] 
needs to solve the prior probabilities and posterior 
probabilities at each sampling. Mosegaard and Tarantola 
proposed the extended Metropolis algorithm [45]. The 
algorithm does not need to solve the prior probability and 
posterior probability for every sampling, but only needs to 
solve the likelihood function, thereby reducing the 
calculate cost. More importantly, the algorithm allows in 
principle to include prior information with arbitrarily 
complex. The extended Metropolis algorithm is as follows 
[45]: 

1. Near the existing model curm , generate a 

candidate model prom , which is consistent with 
the prior information. 

2. Compute the likelihood function ( )like pro m and 
acceptance probability of the candidate model 

( )
min 1,

( )
lik pro

acc
cur

e

like

P



 
  

 

m

m
. 

3. If the candidate model is accepted, then 

cur prom m ; if the candidate model is not accepted, 

then curm  remain unchanged. 
4. Go back to step 1 and continue to walk randomly 

around curm . 
There are only two requirements to run the above extended 
Metropolis algorithm. First, the likelihood function of the 
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candidate model ( )like pro m  can be calculated, as shown in 
equation (15), which is easy to implement, only the 
forward response of the candidate model needs to be 
calculated when solving. Second, the ability to efficiently 
sample the prior pdf enables step 1 in the algorithm. The 
Fast Fourier Transform Moving Average Method (FFTMA) 
provides an efficient way to sample spatially correlated 
multivariate Gaussian prior models [61], ensuring 
aperiodicity and irreducibility, for Multivariate Gaussian 
model generation is unconditionally realized efficiently. 
The specific principle is as follows. The m dimensional 
spatial correlation covariance matrix mC  can be expressed 

as a convolution of a matrix s and its transpose 
( ) ( )x x s s


: 

m  C s s


                                 (18) 
If s can be calculated, the random model satisfying the 
mean 0m  and the covariance matrix mC  can be expressed 
as: 

0  m m s z                              (19) 
where z is an m dimensional uncorrelated normal deviated 
field. In order to solve the time-consuming difficulty of 
calculating equation (18) when the dimension of C is large, 
Le Ravalec et al. proposed to transform the convolution 
calculation in equation (19) into Fourier space to achieve 
its fast solution [61]. The advantage of this method is that 
the spatial structure parameters (mean, covariance) and the 
random z are decoupled, so only changing the random z 
can produce different realizations with the same spatial 
structure parameters. 

E.  Gelman-Rubin Convergence Diagnostic 

One critical question that MCMC practitioners need to 
address is when to stop the simulation. Roy reviews and 
discusses the most widely used MCMC convergence 
diagnostic tools [62]. In this paper, we use the Gelman-
Rubin (GR) convergence diagnostic [63-64], which 
appears to be the most popular method for assessing 
samples [62]. Multiple chains were run in parallel with 
different random initial models, and sampling models from 
the burn-in period were excluded. Then it takes each of 
these chains and split into the first and second half. Let mp 
be the number of chains and np be the length of each chain.  
In this paper, we simulate 4 chains for all test model, each 
of length nt, and discard the 10% of nt as burn-in, so mp = 
8 and np = 0.45nt.   

For each model parameter estimand im , it labels the 

simulations as ( 1, , ; 1, , )kj
im k np j mp   , and compute 

the between-sequence variances B and within-sequence 
variances W:  

 2. ..

11

mp
j

i i
j

np
B m m

mp 

 
                          (20) 

 2.

1 1

1

( 1)

mp np
kj j
i i

j k

W m m
mp np  

 
                 (21) 

where .
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1 mp
j

i i
j

m m
mp 

  . And the 

marginal posterior variance of the estimand var is estimate 
by W and B: 

1 1np
var W B

np np


                         (22) 

Then the potential scale reduction factor (PSRF) is 
estimating for monitor convergence of the simulation:  

var
R

W
                                 (23) 

which declines to 1 as np  . Gelman & Rubin [63] 
argue that the numerator in formula 23 overestimates var 
and underestimates W, making R>1. Simulation is stopped 
when R is sufficiently close to one. In this paper we use the 
cutoff value 1.1, which is generally used by MCMC 
practitioners [64].  

IV.  Numerical experiments 

First, the 1D synthetic model is used to verify the 
improvement of the spatial correlation prior model on 
inversion results. The degrees of freedom of model 
parameters of spatial correlation prior information are 
quantitatively analyzed by using information entropy. The 
influence of imprecise spatial correlation information on 
Bayesian inversion results is discussed in detail. And 
introduce the Sengpiel imaging algorithm combined with 
the variogram formula to obtain the spatial correlation 
prior information and inversion results. Then the algorithm 
is extended to the inversion of 2D synthetic models to 
illustrate the feasibility of the algorithm for inversion of 
high-dimensional models. Finally, through the inversion of 
the field data and the comparison with the deterministic 
inversion results, the effectiveness of the algorithm in the 
actual data processing is illustrated. All the experiments 
were implemented on a laptop with 64G memory and 
2.3GHz CPU i7-11800H. 

A.  1D model 

A 1D three-layer media model [65] is adopted, as shown 
in Fig. 1. The first layer is a high-resistance layer with a 
thickness of 25m and a resistivity of 200 m  ; the second 
layer is a low-resistance layer with a thickness of 20m and 
a resistivity of 20 m  ; the third layer is a high-resistance 
substrate with a resistivity of 500 m  . Using the HCP 
geometric device, the distance between the transmitter and 
the receiver is 8m, and the height of the transmitter from 
the ground is 30m. Calculate the vertical magnetic field for 
5 typical frequencies (320Hz, 1500Hz, 6800Hz, 22000Hz 
and 100000Hz). Add 5% Gaussian random noise to the 
theoretical data as the inverted observation data, as shown 
in Figure 2.  
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Fig.1 1D model 

 
Fig.2 data of 1D model 

The model needs to be parameterized before inversion. 
In this paper, the pixel-based parameterization method is 
used to discretize the model into linear and equally spaced 
thin layers with a layer number of M = 150 and a thickness 
of 1m. 

Using a spatially uncorrelated prior model, all model 
parameters are independent of each other and uniformly 
distributed within the parameter range maxmin , ][m m , 

where minm = 0.1 m  ， maxm = 10000 m  , allowing the 

resistivity to vary continuously. Then the degrees of 
freedom of the model parameters are equal to the number 
of model parameters, freeM M . 

To adopt the spatial correlation prior model, the 
parameter information of the prior model needs to be given 
first. Knowing the real model as shown in Figure 1, the 
real spatial correlation information can be obtained. The 
model mean is set to the mean value of the formation 
logarithmic resistivity, m0 = 2.4479. The parameters r and 
c of the Gaussian variogram can be obtained by fitting the 
variogram. The variogram of the 1D model is calculated by 

equation (9), as shown by the black dotted line in Figure 3. 
The Gaussian variogram of equation (7) is used for fitting, 
as shown by the black solid line in Figure 3. It can be 
obtained that the parameters of the Gaussian variogram 
corresponding to the 1D model shown in Figure 1 are r = 
25, c = 0.25. 

 
Fig.3 The calculated variogram (black dotted line) and the fitted Gaussian 

model variogram (black solid line) of the 1D model   

 

Fig.4 DOF of model parameter freeM corresponding to correlation length r  

For the spatial correlation Gaussian model, the 
information entropy formulas (11) and (12) can be used to 
quantitatively analyze the degrees of freedom of the model 
parameters. Figure 4 shows the degrees of freedom 
corresponding to different correlation lengths r. As the 
correlation length r increases, the degrees of freedom of 
the model parameters decrease rapidly. When r = 0, 

freeM M , the model is simplified to a spatially 

uncorrelated model; when r = 25, 18freeM  , the degrees 
of freedom are reduced to 12% of the number of model 
parameters. Bayesian inversion is a global search of the 
entire model space. The degree of freedom of the model 
parameters is reduced, which is equivalent to the reduction 
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of the search space of the model. When using the same 
number of searches, more efficient inversion results can 
thus be obtained. 

The spatially uncorrelated prior model of formula (5) 
and the spatially correlated prior model of formula (6) are 
used for inversion respectively. The random prior models 
of spatial uncorrelation and spatial correlation are shown in 
Figure 5. Each parameter of the spatial uncorrelated model 
is randomly distributed within the parameter range, while 
the spatial correlation model has spatial continuity. 
Inversion iterative search 200,000 times. The convergence 
curve of the rms of the inversion data with the number of 
samples is shown in Figure 6. The inversion using the 
spatially correlated stochastic prior models converge to a 
stable distribution with rms of about 1, while inversion 
using the spatially uncorrelated prior models converge to a 
stable distribution with rms slightly greater than 1. Figure 
7 shows the potential scale reduction factor R for model 
parameters with 200,000 sampling of spatially uncorrelated 
prior model (red) and spatially correlated prior model 
(green). R values of all model parameters are less than 1.1. 
According to the GR convergence diagnostic [64], we can 
consider that the MCMC search has converged. The R 
values of the inversion parameters of the spatially 
uncorrelated prior model are approximately randomly 
distributed. The R values of the inversion parameters of the 
spatially correlated prior model shows spatial correlation. 
The R value is larger near the interface where the model 
parameters change drastically.  

Figure 8 shows the marginal posterior pdf of two 
different prior models. The probability density increases as 
the color deepens, and the middle area of the two green 
dotted lines is the 95% confidence interval. The solid green 
line is the posterior mean distribution, and the solid red 
line is the true model. Figure 8a is the inversion result of 
the spatially uncorrelated random prior model. The 
distribution of the posterior mean value is weakly reflected 
in the middle low-resistivity layer, but the range of the 
95% confidence interval is too large to provide effective 
information about the distribution of model parameters.  
Figure 8b is the inversion result of the spatially correlated 
random prior model, and the overall curve of the posterior 
mean distribution is smooth, which is similar to the 
deterministic smooth constraint inversion result [6]. The 
posterior mean distribution clearly shows the existence and 
position information of the low-resistivity layer, and 
effectively presents the upper high-resistance layer and the 
lower layer. The 95% confidence interval reflects the 
uncertainty information of the inversion results. The 95% 
confidence intervals of the upper high-resistivity layer and 
the middle low-resistivity layer are relatively narrow, 
indicating that the uncertainty of the inversion results is 
small. The 95% confidence interval of the lower basement 
layer is relatively wide, indicating that the uncertainty of 
the inversion results is large. 

 
Fig.5 prior model. (a) Spatially uncorrelated prior model; (b) Spatially 

correlated prior model 

 
Fig.6 The data rms misfit convergence for sample. (a) Spatially uncorrelated 

prior model; (b) Spatially correlated prior model 

 
Fig.7 The potential scale reduction factor R for model parameters with 200,000 

sampling of spatially uncorrelated prior model (red) and spatially correlated 

prior model (green) 
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Fig.8 The posterior distribution of the 1D model inversion. (a) Spatially 

uncorrelated prior model; (b) Spatially correlated prior model 

Using an accurate spatial correlation prior model, good 
inversion results can be obtained after the MCMC searches. 
However, it is difficult to obtain accurate spatial 
correlation prior model in practice. The influence of the 
inaccurate spatial correlation prior model on the inversion 
results is discussed below. Taking the three-layer model in 
Figure 1 as an example, it is assumed that there are only 
observation data and no other prior information. Taking the 
prior model parameters in Figure 3 as reference accurate 
values, that is, the model mean value m0 = 2.4479, 
corresponding to the average resistivity of 280 m  , the 
parameter values of the Gaussian model variation function 
are r = 25, c = 0.25.  

Figure 9 shows the inversion results of inaccurate m0, 
(a)-(d) are the inversion results of m0 as log10(100), 
log10(200), log10(350), and log10(500), respectively 
corresponding to the average resistivity of 100 m  , 
200 m  , 350 m  and 500 m  . Comparing with Figure 
8b, inaccurate m0 can still accurately invert the overburden 
and low-resistivity layer. The inaccurate m0 mainly affects 
the resistivity of the substrate high-resistivity layer. When 
m0 is too small, the inverted substrate resistivity is also too 
small, as shown in Figure 9a. when m0 is too large, the 
inverted substrate resistivity is also too large, as shown in 
Figure 9d.  

Figure 10 shows the inversion results of inaccurate r, 
(a)-(d) are the inversion results of r being 5, 15, 25, and 35, 
respectively. Compared with Figure 8b, the inaccurate r 
mainly affects the smoothness of the formation curve. 
When r is smaller, the middle low-resistivity layer 
obtained by inversion is sharper, as shown in Fig. 10a, and 
the inversion formation curve is more oscillating. When r 
is too large, the middle low-resistivity layer obtained by 
inversion is smoother, and the inversion formation curve is 
smoother, as shown in Fig. 110d. The value of r reflects 
the knowledge of the minimum thickness of the formation.  

Figure 11 shows the inversion results of inaccurate c, 
and (a)-(d) are the inversion results of c being 0.025, 0.1, 

0.5, and 1, respectively. Compared with Figure 8b, the 
inaccurate c mainly affects the range of resistivity variation 
during the inversion process. When c is small, the 
allowable range of resistivity change in the inversion is 
small, so the inversion result is more concentrated (the 
range of the green dotted line is narrower), but when there 
is a large change in electrical properties, the inversion 
resistivity will deviate, as shown in the figure 11a, the 
inverted substrate resistivity is relatively small. As c 
increases, the allowable range of resistivity variation in the 
inversion gradually increases, and the inversion substrate 
resistivity gradually approaches the true resistivity, while 
the inversion results are more diffuse (the green dotted line 
has a wider range). 

From Figure 9-11, it can be seen that the inaccurate 
spatial correlation prior information will affect the 
inversion results. When the spatial correlation prior model 
parameters deviate less than the real spatial correlation 
parameters of the model, the inversion results have little 
effect, such as (b) and (c) in Figure 8-10. When the spatial 
correlation prior parameters deviate significantly, it will 
have a significant impact on the inversion results. 

In practice, we may only have observational data and 
lack prior information. In order to obtain the spatial 
correlation prior model, the sengpiel imaging method is 
firstly used to obtain the imaging model of electrical 
distribution, and the specific implementation process can 
refer to [63]. The imaging results are shown in Figure 12, 
and the sengpiel method can indicate the existence and 
approximate depth of the low-resistance layer. Then use 
formula (9) to calculate its variogram, and fit through 
formula (7) to obtain the spatial correlation prior model 
parameters, m0 = 2.0965, r = 35, and c = 0.04. 

 

 

Fig.9 The posterior distribution of the 1D model inversion with inaccurate prior 

information. (a) m0=log10(100); (b) m0=log10(200); (c) m0=log10(350); (d) 

m0=log10(500). 
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Fig.10 The posterior distribution of the 1D model inversion with inaccurate 
prior information. (a) r=5; (b) r=15; (c) r=35; (d) r=45. 

 
Fig.11 The posterior distribution of the 1D model inversion with inaccurate 
prior information. (a) c=0.025; (b) c=0.1; (c) c=0.5; (d) c=1. 

 
Sengpiel imaging always tends to over smooth the 

resistivity of the model. Compared with the accurate 
spatial correlation prior parameters, m0 and c are relatively 
small, and r is relatively large. The posterior distribution 
with prior information from sengpiel result is shown in 
Figure 13a. This is the combined result of multiple model 
parameter inaccuracies. A small m0 results in a small 
substrate resistivity. A small value of c results in a small 
search range. A large r value causes the inversion curve to 
be too smooth. So, it is necessary to correct the spatial 
correlation prior model based on sengpiel imaging. Since 
the resistivity of basement are unknown, the correction of 
m0 may be processed in the opposite direction. In order to 

avoid such errors, we still keep m0 unchanged. The r 
obtained based on sengpiel imaging is always too large, 
and the obtained c is always too small. It is recommended 
to reduce r and increase c at the same time. A simple 
method is to reduce r and increase c by a factor, such as r/2 
and 2c, then the corrected r =17.5, and c = 0.08. The 
inversion results based on the corrected spatial correlation 
prior model are shown in Figure 11b. The resistivity and 
position of the first layer and the second layer can be 
clearly inverted, but there is a certain difference in the 
substrate resistivity, which is caused by the small m0 in the 
prior information. We can also estimate r and c based on 
their physical meanings and geological understanding. For 
example, if we think that the thickness of the thinnest 
formation is 20m, and the resistivity contrast of the 
adjacent strata is twice, we can then choose r=20 and c=0.3. 
Obviously, a good understanding of geology can help to 
get more accurate r and c.  

 
 
Fig.12 The sengpiel result of the 1D model. 

 
Fig.13 The sengpiel result (a) and the posterior distribution (b) with prior 
information from sengpiel result of the 1D model. 

B.  2D model 

Spatial correlation can significantly reduce the degrees of 
freedom of model parameters. This feature is more 
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prominent in the inversion of high-dimensional models. 
Consider a 2D wedge geoelectric model [63]. The length 
of the model along the horizontal direction is 100m; along 
the depth direction of the model, the first layer is a high-
resistivity overburden with a thickness of 20m and a 
resistivity of 100 m  ; the second layer is a low-resistivity 
wedge-shaped formation with a thickness gradually 
increasing from 8.9m to 24m and a resistivity of 20 m  ; 
The third layer is a high-resistance substrate with a 
resistivity of 500 m  . Using the HCP geometric device, 
the distance between the transmitter and the receiver is 8m, 
and the height of the transmitter from the ground is 30m 
and the horizontal sampling interval is 20m, that is, the 
data of 6 measuring points are collected in total. Calculate 
the vertical magnetic field for 5 typical frequencies (320Hz, 
1500Hz, 6800Hz, 22000Hz and 100000Hz). Add 5% 
Gaussian random noise to the theoretical data as the 
inverted observation data. During the inversion process, 
the forward response of each station is replaced by a 1D 
approximation of the stratigraphic distribution directly 
below the station. In numerical calculation, the wedge-
shaped 2D model is approximated as a 2D model of step 
distribution, as shown in Figure 14. During the inversion of 
the model, the spatial discretization in the x and z 
directions is a uniform grid of 6×150, the inversion 
parameter is the resistivity of each uniform grid, and the 
number of model parameters is M = 900. 

 

Fig.14 2D model  

Spatially uncorrelated and spatially correlated prior 
models were used for inversion. When the spatially 
uncorrelated prior model is used, all model parameters are 
independent of each other and uniformly distributed within 
the parameter range maxmin , ][m m , where minm = 0.1 m  , 

maxm = 10000 m  , allowing the resistivity to vary 
continuously. Degrees of freedom of the model parameters 
are equal to the number of model parameters, freeM M . 

When the spatial correlation prior model is used, the 
mean of the model is set to the average logarithmic 
resistivity, m0 = 2.4935. To solve the Gaussian variation 

function through the model Figure 15, it is necessary to 
extend the formula (9) to the 2D case, the variogram is 
calculated separately in the x direction and the z direction. 
For details, please refer to [54]. The results are shown in 
Figure 13, where the variograms in the x-direction and z-
direction are shown by the black dotted line in the figure. 
The Gaussian model of formula 7 is used for fitting, as 
shown in the black solid line in Figure 15. The Gaussian 
variogram parameter of the 2D model are rx=5, cx=0.2, 
rz=20, cz=0.2. 

For the spatially correlated Gaussian model, the 
maximum correlation length in x direction is 5, and in z 
direction is 20, so it can be considered that the maximum 
spatial correlation length of the 2D model is r = 100. The 
degrees of freedom of the parameters of the model are 
quantitatively analyzed using information entropy formulas. 
Figure 16 shows the degrees of freedom corresponding to 
different correlation lengths r. When r = 0, freeM M , the 
model is simplified to a spatially uncorrelated model; when 
r = 100, 32freeM  , the degrees of freedom are reduced to 
3.6% of the number of model parameters. 

 
Fig.15 The calculated variogram (black dotted line) and the fitted Gaussian 

model variogram (black solid line) of the 2D model   

 
Fig.16 DOF corresponding to correlation length r of the 2D model 
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The spatially uncorrelated and the spatially correlated 
prior model are used for inversion respectively. Spatially 
uncorrelated and spatially correlated random prior models 
are shown in Figure 17. Each parameter of the spatially 
uncorrelated model is randomly distributed within the 
parameter range, while the spatially correlated model has 
spatial continuity.  

Inversion iterative search 106 times. The convergence 
curve of the rms of the inversion data with the number of 
samples is shown in Figure 18. The inversion using the 
spatially correlated prior models converge to a stable 
distribution with rms of about 1, while inversion using the 
spatially uncorrelated prior models converge to a stable 
distribution with rms slightly greater than 1. Figure 19 
shows the potential scale reduction factor R for model 
parameters with 106 sampling of spatially uncorrelated 
prior model (red) and spatially correlated prior model 
(green). Most model parameters have R-values less than 
1.1, except for a few model parameters at the interface. 
This is similar to the R-value distribution of 1D model 
parameters. 

 

Fig.17 prior 2D model. (a) Spatially uncorrelated prior model; (b) Spatially 

correlated prior model 

 
Fig.18 The data rms misfit convergence for sample. (a) Spatially uncorrelated 

prior model; (b) Spatially correlated prior model 

 
Fig.19 The data rms misfit convergence for sample. (a) Spatially uncorrelated 

prior model; (b) Spatially correlated prior model 

 
Fig.20 The posterior distribution of the 2D model based on spatially 

uncorrelated prior model. (a) posterior mean; (b) posterior standard deviation 

 

Fig.21 The posterior distribution of the 2D model based on spatially correlated 

prior model. (a) posterior mean; (b) posterior standard deviation 

The inversion results using a spatially uncorrelated prior 
model are shown in Figure 20, the posterior distribution 
cannot provide effective information about the electrical 
distribution. The inversion results using the spatial 
correlation prior model are shown in Figure 21. Figure 21a 
is the posterior distribution mean. Compared with the 
model in Figure 14, the posterior distribution mean can 
well invert the distribution of underground electrical 
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properties, including the position of the layer interface and 
the resistivity value of the formation. Figure 21b shows the 
posterior standard deviation, which reflects the uncertainty 
of the inversion results. The uncertainty of the upper high-
resistivity cover layer and the middle low-resistivity layer 
is small, while the uncertainty of the lower basement layer 
is large. This is consistent with the inversion results of the 
1D model. 

Considering the case where there are only observation data, 
we use the sengpiel imaging method to obtain the initial 
model of electrical distribution, as shown in Figure 22. The 
sengpiel method can indicate the presence and approximate 
depth of a low resistivity layer. Then we use formula (9) to 
calculate its variogram, and get the spatial correlation prior 
model parameters by fitting formula (7), m0 = 1.8594, rx = 10, 
cx = 0.04, rz = 80 and cz = 0.04. Due to the smoothing effect 
of sengpiel imaging, the spatially correlated prior model 
parameters in z direction always cause rz to be too large and 
cz to be too small. It is recommended to reduce the value of r 
and increase the value of c: rz = 40, cz =0.08. The inversion 
results based on the corrected spatial correlation prior 
information are shown in Fig. 23. Both the resistivity and 
formation position of the first layer and the second layer can 
be clearly inverted, but there is a certain difference in the 
substrate resistivity, which is caused by the small m0 in the 
prior information. This is consistent with the inversion results 
of the 1D model. 

 

 
Fig.22 The sengpiel result of the 2D model 

 
Fig.23 The posterior distribution of the 2D model with prior information from 

sengpiel results. (a) posterior mean; (b) posterior standard deviation 

C.  Field data  

In order to verify the validity of the method proposed in 
this paper, the Bayesian inversion was performed on the 
field data of near-surface exploration in a certain place, 
and the inversion results were compared with the Occam 
inversion results. The field data are the vertical magnetic 
field components observed by the HCP geometry. The 
distance between the transmitter and the receiver is 7.9m, 
and the height of the transmitter from the ground is around 
30m. The transmission frequencies are 386Hz, 1538Hz, 
6257Hz, 25790Hz and 100264Hz. The horizontal length of 
the observation area is 500m, the distance between the 
measuring points is about 25m, and there are 21 
observation points. Each observation point has 5 frequency 
data, and each data contains real part and imaginary part, 
so there are 210 data in total.  

Figure 24 is the Occam inversion result. It can be seen 
from the figure that the formation of the entire section has 
good horizontal continuity, and the electrical distribution 
of the underground is roughly divided into three layers. 
The first layer is a high-resistivity layer with a thickness of 
about 10m, which is determined to be a sediment layer 
through field investigation. The second low-resistivity 
layer with a thickness of about 10m is determined to be a 
clay layer. The third layer is a high-resistivity basement, 
which is determined to be a sandy layer. 

Fig.24 Inversion results of field data with Occam’s method 

Perform Bayesian inversion on field data. Firstly, the 
Sengpiel rapid imaging results are obtained through 
observation data, as shown in Figure 25. The sengpiel results 
indicated the existence and approximate buried depth of an 
intermediate low-resistivity. But the overall distribution is not 
clear enough. 

 
Fig.25 The sengpiel result of the field data 

 
Next, spatial correlation prior information is obtained based 

on the sengpiel imaging results. According to the processing 
method of 1D and 2D models, formula (9) is used to calculate 
its variogram, and the spatial correlation prior model 
parameters are obtained by fitting formula (7), as shown in 
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Figure 26, and m0 = 0.9318, rx = 10, cx = 0.005, rz = 25 and 
cz = 0.04. Due to the smoothing effect of sengpiel imaging, it 
is recommended to reduce the value of r and increase the 
value of c: rz = 12.5, cz = 0.08. Due to the small resistivity 
m0, compared with the 1D and 2D models, the detection 
depth is reduced, and the maximum depth is set to 50m here. 
The detection area is spatially discretized, and the horizontal 
direction is separated according to the measuring point 
spacing, and the vertical direction is separated according to 
1m equal intervals, so the number of model inversion 
parameters is M = 1050. The degrees of freedom of the 
parameters of the model are quantitatively analyzed using 
information entropy formulas. The total correlation length 
is  r = rx×rz = 125, then 30freeM  , the degrees of 

freedom are reduced to 2.9% of the number of model 
parameters. 

The spatially correlated prior model is used for inversion. 
Inversion iterative search 106 times. The convergence 
curve of the rms of the inversion data with the number of 
samples is shown in Figure 27. The inversion with a 
spatially correlated prior model converged to a stationary 
distribution around rms = 1.5 after 15,000 searches. The 
potential scale reduction factor R is less than 1.1 for all the 
model parameters with 106 MCMC sampling. 
The inversion results using the spatial correlation prior 
model are shown in Figure 28. Figure 28a is the posterior 
distribution mean. Compared with the Occam inverse 
result in Figure 24, the posterior distribution mean also 
gives a similar three-layer distribution, especially the low-
resistance layer with good horizontal continuity. Figure 
28b shows the posterior standard deviation, which reflects 
the uncertainty of the inversion results. Due to the 
shielding effect of the low-resistivity layer, the inversion 
results of formations below the low-resistivity layer are 
more uncertain than the inversion results above the low-
resistivity layer. 

 

Fig.26 The calculated variogram (black dotted line) and the fitted Gaussian 
model variogram (black solid line) of the sengpiel result of field data   

 
Fig.27 The data rms misfit convergence for sample for field data inversion. 

Fig.28 The posterior distribution of the field data with prior information from 

sengpiel results. (a) posterior mean; (b) posterior standard deviation 

 

IV. CONCLUSION 

This paper presents a Bayesian inversion method for 
frequency-domain airborne EM data. By explicitly adding 
spatially correlation prior information, the degree of freedom 
of model parameters is reduced, thereby improving the 
inversion effect and reducing time for inversion. The 
variogram theory is introduced to provide a method to 
determine the parameters in the spatial correlation prior 
information, and the influence of these parameters on the 
inversion results is discussed systematically. The analysis 
shows that the spatially correlated prior information allows a 
large dynamic range. Furthermore, in order to solve the 
practical problem of only observation data, and consider the 
influence characteristics of the spatial correlation prior model 
parameters on the inversion results, this paper introduces the 
sengpiel fast imaging algorithm combined with the variogram 
theory to provide spatial correlation prior information. 

In order to have a quantitative understanding of the degree 
of freedom reduction of the spatial correlation prior model, 
the information entropy theory of continuous function is 
introduced to define the degrees of freedom of the spatial 
correlation model parameters. The calculation of the synthetic 
model shows that the parameter degree of freedom of the 1D 
model with the number of parameters M=150 is only 17.8, 
and the parameter degree of freedom of the 2D model with 
the number of parameters M=900 is only 32. The degree of 
freedom of model parameters will be significantly smaller 
than the number of model parameters by introducing spatial 
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correlation prior information, which provides the possibility 
for high-dimensional model inversion. 

It should be noted that this paper only discusses the 
Gaussian variogram model. There are other more complex 
variograms in practice. In addition, this paper only obtains the 
spatial correlation prior model parameters by simply fitting 
the calculated variogram and Gaussian variogram, which is 
obviously not optimal. A more in-depth discussion of the 
above issues can be found in the detailed analysis in the field 
of Geostatistics [54]. For the case of only observational data, 
we employ the Sengpiel approximation imaging algorithm to 
provide spatially correlated prior information. Theoretically, it 
is possible to use the spatially correlated prior model 
parameters as inversion parameters and use a hierarchical 
model [66] to deal with it, but this may increase the amount of 
calculation and is not easy to implement, so we take it as a 
follow-up study. The Bayesian inversion in this paper only 
uses a single-chain search. In order to improve the inversion 
speed in the future, multi-chain parallelism can be considered. 
At the same time, in order to achieve a more effective search, 
the parallel tempering algorithm can be combined, for details, 
please refer to [67]. In this paper, when calculating 2D 
inversion, in order to reduce calculation time, forward 
modeling uses 1D approximation. In theory, it will lead to 
forward modeling errors, which need to be solved by forward 
modeling of high-dimensional models. However, the forward 
calculation of high-dimensional models is time-consuming. 
Therefore, for 3D probabilistic inversion, it is necessary to 
consider surrogate models or model reduction algorithms [23] 
to improve the forward calculation during the inversion 
process. 
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