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Touch if it’s transparent!
ACTOR: Active Tactile-based Category-Level

Transparent Object Reconstruction

Prajval Kumar Murali, Bernd Porr, and Mohsen Kaboli

Abstract— Accurate shape reconstruction of transparent ob-
jects is a challenging task due to their non-Lambertian surfaces
and yet necessary for robots for accurate pose perception
and safe manipulation. As vision-based sensing can produce
erroneous measurements for transparent objects, the tactile
modality is not sensitive to object transparency and can be
used for reconstructing the object’s shape. We propose AC-
TOR, a novel framework for ACtive tactile-based category-level
Transparent Object Reconstruction. ACTOR leverages large
datasets of synthetic object with our proposed self-supervised
learning approach for object shape reconstruction as the
collection of real-world tactile data is prohibitively expensive.
ACTOR can be used during inference with tactile data from
category-level unknown transparent objects for reconstruction.
Furthermore, we propose an active-tactile object exploration
strategy as probing every part of the object surface can be
sample inefficient. We also demonstrate tactile-based category-
level object pose estimation task using ACTOR. We perform
an extensive evaluation of our proposed methodology with
real-world robotic experiments with comprehensive comparison
studies with state-of-the-art approaches. Our proposed method
outperforms these approaches in terms of tactile-based object
reconstruction and object pose estimation.

I. INTRODUCTION
Transparent objects such as cups, glasses, and bottles are

ubiquitous around us and if robots are expected to work in
unstructured scenarios such as household environments, it
is essential to recognize and safely manipulate transparent
objects. Reconstruction of the object shape is critical for
detecting and identifying its pose and safely manipulating
it [1]. While this is straightforward for opaque objects with
off-the-shelf vision sensors, such sensors produce unreliable
and erroneous data with transparent objects due to their
non-Lambertian surfaces. Sophisticated custom calibrated
setups with specialized scanners or modifying the transparent
surface of objects are often necessary for accurate reconstruc-
tion [2, 3]. This is impractical for on-the-fly reconstruction
of arbitrary unknown objects. On the contrary, high fidelity
tactile sensing can be used for shape reconstruction of
transparent objects as well as pose estimation and safe-
manipulation [4–11].

Tactile perception is inherently action-conditioned as data
depends on the type of contact action performed and local
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Fig. 1: Experimental Setup: A Universal Robots UR5 with sensorised
Robotiq Gripper with 3-axis tactile sensor arrays for active tactile-based
category-level unknown transparent object reconstruction.

as only the local surface information around the contact
area is extracted [12]. Hence, for reconstructing the sur-
faces of an object, multiple contact actions need to be
performed by the robot. This leads to sparse information
and prohibitively long data collection times. Early works
have used offline methods to collect dense tactile data and
used shape-fitting primitives such as superquadratics [13].
Aggregating contact points into a point cloud is often used
to represent the shape of the objects. Some works have
used Bayesian filtering techniques for defining a probabilistic
model of the objects using the tactile point clouds and used
them for other tasks such as classification [14]. Gaussian
process implicit surface (GPIS) has been widely used for
tactile object reconstruction [15–21]. The implicit surface



described by a Gaussian process describes the shape of an
object through a function that decides for each point in
space whether it is part of the object or not. It produces
smooth surface manifolds with a reasonable number of tactile
points as input and also provides probabilistic information
to guide the tactile actions. However, for complex shapes it
typically requires lots of points uniformly distributed on the
object’s surface for reconstruction [21]. Some works have
also used tactile sensing with visual perception in order to
perform shape completion with prior information observed
with visual cameras [18, 22]. While these works focus on
opaque objects, limited works exist for the reconstruction of
transparent objects. Recently, deep learning methods have
been used for point cloud based shape completion given
partial or noisy input point clouds [23, 24]. Seminal works
on PointNet [25] allowed using raw point clouds as inputs
to deep networks for the task of classification and semantic
segmentation. Prior works have worked towards point cloud
completion using deep networks such as [26, 27] but are
mainly evaluated on datasets derived from CAD models
and rarely evaluated on real-world platforms with noisy and
sparse sensors [23].

Using the constructed object shape for pose estimation
of a transparent object through tactile sensing brings further
challenges due to the nature of the tactile data. Typical pose-
estimation methods for visual perception perform poorly with
tactile data as they are sparse and extracted sequentially
through contact probing [1, 4, 24, 28–30]. In summary, there
are limitations in the state-of-the-art for the reconstruction
and further applications such as pose estimation of transpar-
ent objects with tactile perception: (a) existing reconstruction
strategies such as GPIS fail to capture fine shape details
with sparse tactile input data, (b) directly deploying deep
learning based strategies for shape completion with sparse
input data is impractical as the collection of a large dataset of
tactile data for training is prohibitively expensive, (c) existing
tactile-based pose estimation techniques rely upon known
object models or shape primitives but category-level tactile-
based pose estimation wherein objects without a priori
known CAD models but belong to a known category is
necessary.

Contributions:
(I) We propose ACTOR, a novel framework for deep

active tactile-based category-level perception of un-
known transparent objects for reconstruction and pose
estimation. Our proposed network is trained on a
category-level synthetic dataset and tested on sparse
tactile point clouds from real unknown transparent
objects.

(II) Our proposed network consists of a feature-extraction
encoder with self-attention and an upsampling de-
coder for accurate reconstruction of sparse input point
clouds.

(III) We propose an autonomous and active tactile-based
unknown object exploration strategy based on infor-
mation gain.

(IV) We improve our previously presented novel

Translation-Invariant Quaternion Filter (TIQF) [31]
to category-level pose (6DoF) and scale (3DoF)
estimation and relax the need of a prior known model
of the object.

To validate our proposed framework, we perform extensive
experiments on a real robotic setup and provide baseline
comparisons with state-of-the-art methods for tactile-based
object reconstruction and pose estimation.

II. METHODS

A. Problem Definition and Proposed Framework

The objective is to reconstruct a dense point cloud that pre-
cisely represents the shape of unknown transparent objects
from sparse point clouds extracted with active tactile interac-
tive perception. To this end, we propose a novel framework
termed ACTOR shown in Fig. 2. In Fig. 2(a) we propose
a self-surpervised learning approach with an autoencoder
network that is trained on subsampled pointclouds from
synthetic objects belonging to the same category but not
identical as the real objects. In Fig. 2(b), we propose a novel
active tactile-based unknown transparent object exploration
strategy which is used for inference with our trained model to
reconstruct a dense point cloud. We demonstrate downstream
tasks such as tactile-based pose estimation.

B. Deep Self-Supervised Learning for 3D Object Recon-
struction

We generate a dataset D1 of synthetic object models
from the ShapeNet repository [32] in order to leverage the
open-source datasets and avoid expensive real tactile-data
collection. The synthetic object models belong to the same
category but are different from the real unknown transparent
objects. We uniformly sample Nin = 2048 points from the
synthetic object meshes. These pointclouds are normalized
and scaled to fit into a [0,1]3 cube and added to the dataset,
Pin ∈ D. In order to generate the input point clouds P•

in
to the network, we randomly subsample the Pin by voxel-
grid subsampling by the factor k i.e., P•

in ∈ R⌈ 1
k Nin⌉×3. This

creates a challenging task for reconstruction with higher
values for k as simpler techniques based on interpolation
with neighborhood points cannot be used.

Feature-Extraction Encoder: The network architecture
shown in Figure 2(a) is proposed as an autoencoder (AE) that
uses a self-supervised approach to reconstruct the original
point cloud from a subsampled point cloud. The encoder
takes subsampled point clouds as inputs and generates a high
dimensional feature vector. The feature vector captures the
global geometric shape information of the input point cloud.
In general, any deep network that works on raw input point
clouds to provide a high dimensional feature vector can be
used as an encoder. In particular, we use a modified PointNet
architecture [25] for the encoder. PointNet takes unordered
point clouds and generates a global feature descriptor vector
of size 1024. The network learns a set of optimization
functions that select interesting or informative points of the

1https://www.robotact.de/tactile-reconstruction
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Fig. 2: Proposed framework ACTOR: Active Tactile-based Category-Level Transparent Object Reconstruction.

point cloud. The encoder consists of [1 × 1] convolutions
with output channels size (64,64,128,1024) with the first
convolutional layer with kernel size [1× 3] to encode the
input pointcloud of N×3 dimension. The convolution layers
are aggregated by a max-pooling layer. We introduce a self-
attention layer [33] whose outputs are aggregated with the
max-pooled features to provide the global feature vector. We
have summarized the encoder in Figure 2(a).

Self-Attention (SA) Layer: The SA layer is introduced
as it can encode meaningful spatial relationships between
features and focus on important local features. From the input
layer (conv2d−1024), two separate multi-layer perceptrons
(MLPs) are used to get features G and H which are sub-
sequently used to get the weights as W = so f tmax(GT H).
The input features are transformed using another MLP to
obtain K and multiplied with the weights as WT K. These
vectors are summed with the input vector to produce the
output features.

Upsampling Decoder: We design an upsampling decoder
that upsamples the input global feature vector to provide the
reconstructed dense output point cloud Pout . The upsampling
decoder is composed by a fully connected layer with output
dimension of 1024 and five deconvolutional layers with
kernel sizes and output channels shown in Fig. 2(a). The
decoder produces the output point cloud with point size
set to 2048 while training as this is sufficiently dense for
reconstruction purposes.

Loss Function: In order to encourage the upsampled point
cloud to be in proximity to the original input point cloud
and follow the underlying geometrical surface of the object,
we use the Chamfer distance metric [34] as the loss. Given
the input point cloud prior to subsampling, Pin and the

reconstructed output point cloud Pout , the loss is defined as:

LCD(Pin,Pout) =
1

|Pin| ∑
p1∈Pin

min
p2∈Pout

||p1 − p2||2+ (1)

1
|Pout | ∑

p2∈Pout

min
p1∈Pin

||p2 − p1||2,

where | • | refers to the number of points in the point
cloud and || • ||2 refers to the L2 norm. The loss LCD
represents the average distance between the closest points
in the two point clouds. We use the weighted loss for
learning stability as the reconstruction loss Lrec = αLCD
with α = 100 set empirically. For surface reconstruction from
the dense reconstructed point cloud, we use the ball-pivoting
algorithm [35].

C. Active Deep Tactile-based Unknown Transparent Object
Reconstruction and Pose Estimation

1) Active Tactile-based Transparent Object Reconstruc-
tion: The model trained with only synthetic data as described
in Sec. II-B is used during the inference with real-world
transparent objects. The sparse tactile point cloud data is
collected autonomously by the robot using an information
gain-based active strategy. We define two types of tactile
actions for data acquisition: touch and pinch actions as shown
in Figure 3. The touch action is executed as a guarded
horizontal straight-line motion wherein the object is not
moved upon contact. The touch action is defined by a tuple
at = {st ,

−→
dt } where st ∈ R3 is the start point of the tactile-

sensorised gripper and
−→
dt ∈R3 is the direction of the gripper-

motion defined in the world-coordinate frame W. During the
pinch action the robot approaches the object in a vertical
straight-line motion with a completely open gripper and
performs an antipodal enclosure grasp on the object. The



fingers of the gripper are closed until the force on the tactile
sensors exceeds a predefined threshold. The pinch action
is characterized by ap = {sp} where sp ∈ R3 is the start
position of the gripper motion vertically above the object
at a predefined height as shown in Figure 3. Given the 2D
bounding box of the object (a priori known or through a RGB
camera), a probabilistic occupancy grid OGi of preset height
and resolution ogres is defined. Each cell of the occupancy
grid ci is represented by an occupancy probability p(ci)
which is initially set to 0.5. During exploration, if a cell
is discovered to belong to the object, the probability is set
to 1 and similarly, if the cell belongs to free space, the
probability is set to 0. The probabilities are updated through
ray intersections based on the virtual sensor model. We define
a virtual sensor model of the tactile sensor which casts
a set of rays R = {r1,r2, . . . ,rntaxel} where ntaxel refers to
the number of taxels in the sensor array. The independence
assumption of the probability of each grid cell with one
another allows us to calculate the overall entropy of the OG

as the summation of the entropy of each cell. The Shannon
entropy of the overall occupancy grid is calculated as:

H(OG) = ∑
ci∈OG

p(ci)log(p(ci))+(1− p(ci))(1− log(p(ci))).

(2)
Monte-Carlo sampling of possible tactile actions Nnbt are
performed for computing the next best tactile (NBT) action.
The actions space Anbt is comprised of an equal number
of touch and pinch respectively as Anbt = {ap,at}Nnbt . The
expected measurements ẑt for each action at ∈A is computed
using ray-traversal algorithms [36]. Given the observed grid
cell c and the measurement from sensor observation z, the
log-odds is updated as L(c|z) = L(c)+ l(z) wherein L(c) =
log p(c)

1−p(c) and

l(z) =

{
log ph

1−ph
if z=̂ hit

log pm
1−pm

if z=̂ miss
(3)

where ph and pm are the probabilities of hit and miss which
are user-defined values set to 0.7 and 0.4 respectively as
in [36]. The posterior probability p(c|z) can be computed by
inverting L(c|z). The expected information gain by taking an
action at ∈ Anbt with expected measurement ẑt is provided
by the Kullback-Liebler divergence of the posterior entropy
and the prior entropy as:

E[I(p(ci|at , ẑt))] =H(p(ci))−H(p(ci|at , ẑt)) (4)

Therefore, the action that maximizes the expected informa-
tion gain is considered as the NBT action:

anbt∗
t = argmax

a∈A
(E[I(p(ci|at , ẑt))]) (5)

Each tactile action extracts contact positions in 3D space
and contact forces. The direction of the normal force is used
to extract the normal direction n̂ of the object surface. The
contact points are aggregated into the tactile point cloud Pt .
In order to initialize the NBT action calculation, an initial
point cloud (with NPt = 20) is required, which is extracted by
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Fig. 3: Action selection voxelised probabilistic occupancy grid.

randomised touch actions. Further points are collected in an
active manner using the NBT criteria. A minimum number
of points in the tactile point cloud is required to perform
model inference NPt > Nmin which is tuned empirically. The
tactile point cloud is provided as input to the trained network
and the reconstructed point cloud Pout is obtained .

2) Tactile-Based Object Pose Estimation: We perform the
6D pose estimation through dense to sparse point cloud
registration. The sparse scene point cloud si ∈ S is rep-
resented by the tactile points and the dense object point
cloud oi ∈O is represented by the reconstructed point cloud
in II-B without the need for the object model. Point cloud
registration problem with M known correspondences can be
formulated as:

si = S · (Roi)+ t i = 1, . . .M, (6)

where S ∈R3 represents scale, R ∈ SO(3) represents rotation
and t ∈R3 represents translation which are unknown and to
be estimated and · is the element-wise product.

We perform the point cloud registration using our
novel translation-invariant Quaternion filter (TIQF) presented
in [31] to determine R, S and t. The scale, rotation and
translation are decoupled by finding the relative vectors
between corresponding points, i.e., ∀oi,o j ∈ O,si,s j ∈ S the
relative vectors are s ji = s j−si and o ji = o j−oi. Equation (6)
is reformulated as:

s j − si = (S ·Ro j + t)− (S ·Roi + t), (7)
s ji = S ·Ro ji . (8)

We note that equation (8) is independent of translation.
Taking the L2-norm on both sides for Eq. (8) and recalling
that norm is rotation invariant we get:

||s|| ji = ||S|| · ||o|| ji . (9)

The scale S is estimated by taking the ratio of the axis
aligned bounding box (AABB) of the scene and object point
clouds, i.e., if XAABB = {(xmin,xmax),(ymin,ymax),(zmin,zmax)}



represents the AABB for a point cloud X, then:

S = { |xmax − xmin|S
|xmax − xmin|O

,
|ymax − ymin|S
|ymax − ymin|O

,
|zmax − zmin|S
|zmax − zmin|O

} (10)

Using the estimated scale and using õ ji = So ji for conve-
nience we are left with a pure rotation to estimate:

s̃ ji = Rõ ji . (11)

We cast the rotation estimation problem into a recursive
Bayesian estimation framework and derive a linear state and
measurement model. Reformulating Eq.(11) using quater-
nions we get:

s ji = x⊙o ji ⊙x∗, (12)

where x is the quaternion form of R, ⊙ is the quaternion
product, x∗ is the conjugate of x, and s ji = {0, s̃ ji} and o ji =
{0, õ ji}. Using the matrix form of quaternion product, we
can rewrite Eq.(12) as:[

0 −s̃T
ji

s̃ ji s̃×ji

]
x−

[
0 −õT

ji
õ ji −õ×ji

]
x = 0 (13)[

0 −(s̃ ji − õi j)
T

(s̃ ji − õ ji) (s̃ j + s̃i + õ j + õi)
×

]
4×4︸ ︷︷ ︸

Ht

x = 0 , (14)

where ( )× denotes the skew-symmetric matrix formulation.
Equation (14) is of the form Htx= 0 where Ht is the pseudo-
measurement matrix [37]. We note that Eq. (14) represents a
noise-free state estimation where Ht depends only on sparse
and dense point correspondences which are s̃ ji and õ ji. We
design a pseudo-measurement model as Htx = zh and set
zh = 0. Since we have a static process model, the object
does not move and x and zt are Gaussian distributed, the
state xt and covariance matrix Σx

t at each timestep t are
computed through a linear Kalman filter. The Kalman filter
equations are skipped for brevity and a in-depth derivation
is provided in our prior work [31]. As the Kalman filter
does not implicitly ensure the constraints on the quaternion
as ||x|| = 1, we normalise the state and uncertainty after
each update step as x̄t =

xt
||xt ||2

, Σ̄x
t = Σx

t
||xt ||22

. We convert
the estimated rotation x̄t to its equivalent rotation matrix
R. It used to estimate the translation using the following
relation: t = 1

N ∑
N
i=0(s̄i −Rōi). At each iteration, a rotation

and translation estimate is found which is used to transform
the object point cloud and the process is repeated by re-
estimating the correspondence points. The convergence cri-
teria are set by (a) maximum number of iterations or (b) the
relative change in estimated pose parameters is less than a
predefined threshold (0.1mm and 0.1o).

III. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental setup is shown in Fig. 1 consists of
a set of 9 unknown transparent objects belonging to six
categories and a Universal Robots UR5 equipped with a
sensorised Robotiq 2F140 gripper. The tactile sensor array of
the two-finger gripper are sourced from XELA robotics©and

Contactile©. The outer and inner side of each finger are
sensorised and comprise of 3 × 3 sensor array from the
Contactile sensors and 4×4 sensor array from XELA sensors
respectively. The fingertip of the finger sensorised with the
XELA sensors also has 6×1 array. Each taxel of the sensor
array provides 3-axis force measurements. The normalised
force values of the tactile sensors are measured and contact
is established when the force exceeds the baseline threshold
fts ≥ τ f where τ f = 1.1. All operations involving point clouds
use the Point Cloud Library2, occupancy grid computations
uses Octomap library3, and the overall setup uses a ROS-
based framework4. All robot experiments are run on a
workstation using Ubuntu 18.04 with Intel©Xeon(R) Gold
5222 CPU. The object exploration and reconstruction time
is between 5-7 minutes on average as the robot’s maximum
speed is limited to 250 mm/s for safety regulations.

Network Implementation Details: Our proposed network
is implemented using the Tensorflow framework and train-
ing/ inference are performed on Nvidia Quadro RTX 4000
GPU. We used the ADAM optimiser, learning rate set to
10−4, momentum 0.9 and batch size 8. All layers of the
encoder-decoder uses batch normalisation and the decay rate
initialized at 0.5 and gradually increased to 0.99 with decay
step size 2×105. During training with our synthetic dataset
D, random voxel-grid subsampling is done to have input
point clouds with point size between 40 and 120.

Object List: We use the following widely-available trans-
parent objects as unknown objects: bottle 1, bottle 2, can,
detergent, cup 1, cup 2, cup 3, wineglass and spray as shown
in Tab. I.

B. Active Tactile-based Deep Self-Supervised Category-level
Transparent Object Reconstruction

The height of the occupancy grid is set constant for
every object at 0.4m which is larger than the biggest object.
Reconstruction with acceptable accuracy is obtained with
100 points or more as input. For each object, ten tactile
point clouds with point number between 100 and 120 points
are extracted using the active exploration strategy and used
for reconstruction. The ground-truth point cloud and CAD
mesh are obtained by spray-painting the objects and using
a scanning device. For evaluation, we use the following
performance metrics: Hausdorff distance (HD), Chamfer
distance (CD) and Earth Mover distance (EMD). The CD
is described in Sec. II-B. Given two points S1 and S2, the
Hausdorff distance is defined as [38]:

HD(S1,S2) =max{max
x∈S1

min
y∈S2

{||x−y||2},max
y∈S2

min
x∈S1

{||y−x||2}}
(15)

The HD represents the maximum distance between the two
point sets and can be affected by extreme outliers during the
reconstruction. The EMD finds a bijection φ : S1 → S2 to
minimise the average distance between corresponding points

2https://pointclouds.org/
3https://octomap.github.io/
4https://www.ros.org/



(a) Hausdorff distance (HD) (b) Chamfer distance (CD) (c) Earth mover distance (EMD)

Fig. 4: Quantitative reconstruction results. Object numbered as follows: {1: Bottle 1, 2: Bottle 2, 3: Can, 4: Detergent, 5: Cup 1, 6: Cup 2, 7: Cup 3, 8:
Wineglass, 9: Spray }

TABLE I: Qualitative reconstruction results of our proposed method in comparison with Gaussian process implicit surfaces for unknown real test objects.
(Best viewed on screen in color).

Object Tactile PC Ground Truth GPIS ACTOR (ours)
N ∼120 PC Surface Recon. PC Recon. Surf. Recon. PC Recon. Surf.

Bottle 1

Bottle 2

Can

Detergent

Cup 1

Cup 2

Cup 3

Wineglass

Spray

in the point clouds as:

EMD(S1,S2) = min
φ :S1→S2

1
|S1| ∑

x∈S1

||x−φ(x)||2 . (16)

A perfect reconstruction will yield {CD,HD,EMD}→ 0 and
lower values signify better reconstruction.

We use Gaussian Process Implicit Surfaces (GPIS) as base-
line as it is widely used in the literature for tactile-based
object reconstruction [15–21]. For implementation, we utilise
the GP for machine learning toolbox [39] in MATLAB and
the Matérn kernel.



(a) (b) (c)

Fig. 5: (a) Active tactile reconstruction accuracy evaluated using the chamfer distance with ground-truth, (b) Pose estimation with ground truth object point
cloud from CAD mesh, (c) Pose and scale estimation with reconstructed point cloud as object point cloud

The quantitative results of tactile-based reconstruction
using our method and baseline GPIS method are shown in
Fig. 4 and qualitative reconstruction results are presented in
Tab. I. From Fig. 4, we note our proposed approach yields
lower CD values for all objects. For HD and EMD, apart
from the bottle and spray, our method performs better than
the baseline approach. On average, our approach is 45%,
23.5% and 28% lower in CD, HD and EMD values compared
to baseline GPIS. While the quantitative results focus on
local point-distances between the reconstructed and ground-
truth point cloud, the qualitative results in Tab. I demonstrate
the differences in reconstruction accuracy at the object level.
GPIS produces warped reconstructed surfaces due to the
low number of tactile points. Whereas our method, with the
help of the learned model over the category-level synthetic
objects, is able to reconstruct the object to an acceptable
accuracy even with sparse input data.

Active Tactile Reconstruction: Using our proposed
framework ACTOR, we can achieve accurate reconstruction
with fewer tactile actions in comparison to the baselines as
shown in Fig. 5a. We define an uniform object exploration
and random object exploration strategy as baselines as fol-
lows: the bounding box around the object is transformed into
a grid with each grid cell of size 3cm × 3cm (size of the
sensor patch). The grid does not encode the probabilistic
occupancy as in our ACTOR approach. The robot explores
each grid cell in a sequential manner in the uniform strategy.
In contrast, for the random strategy, the robot picks a grid cell
at random for exploration. In order to have an unbiased com-
parison between the exploration methods, a maximum of 20
actions are chosen as on average it takes 20 actions to extract
atleast 100 tactile points. We begin the model inference from
the 4th action onwards to have a minimum of 20 points in the
tactile point cloud. We note that the uniform strategy requires
a large number of tactile actions to completely explore the
object in order for reconstruction. The random strategy has
high variance in terms of reconstruction accuracy and stems
from the stochastic nature of the exploration while ACTOR
deterministically improves reconstruction accuracy with the
increasing number of tactile actions.

C. Tactile-based Transparent Object Pose Estimation

As the error in reconstruction propagates to downstream
tasks, we perform two experiments: firstly, instance-level
estimation using the ground-truth model point cloud as the
object point cloud (Fig. 5b) and secondly, category-level pose
estimation using the reconstructed point cloud as the object
point cloud (Fig. 5c). For category-level pose estimation,
norm scale error is also reported in addition to rotation
and translation. As our proposed TIQF method is a local
registration method, we chose the standard Iterative Closest
Point (ICP) [40] and Sparse Iterative Closest Point (S-
ICP) [41] as baselines. S-ICP is chosen as it demonstrates
higher robustness to outliers and incomplete data as typically
found in tactile point clouds. We use the Average Distance of
model points with Indistinguishable views metric (ADI) [42]
as a combined measure of the rotation and translational error
as we have multiple objects with axis of symmetry. The ADI
metric is defined as:

erradi =
1
|O| ∑

p1∈O
min
p2∈O

||(Rgtp1 + tgt)− (Restp2 + test)||,

(17)
where (Rgt , tgt) and (Rest , test) refers to ground-truth and
estimated rotation and translation respectively. As seen from
Fig. 5b,5c, our proposed approach outperforms the baseline
approaches for all input tactile point clouds with varying
point numbers demonstrating robustness to point sparsity.
The median erradi < 1cm for our proposed approach even
with sparse point clouds with NPt = 20 and improves with
increasing the number of points. The category-level pose
estimation errors are higher than instance-level due to the er-
rors in the reconstructed point clouds. However, the accuracy
improves by reducing scale error with median erradi < 2cm
for NPt = 120 with our proposed method.

D. Discussion

Our proposed approach, ACTOR outperforms the GPIS
strategy by all our evaluation metrics. We also note the
qualitative reconstruction results in Tab. I, wherein GPIS
fails to capture the shape details of the object while our
approach captures the global and local shape accurately
(see object spray and wineglass). Our network implicitly



learns important feature points and is able to reconstruct
the object accurately given few sparse inputs. Our active
exploration strategy converges faster to reconstruct the object
shape thus improving the sample efficiency. Furthermore, our
proposed category-level pose estimation method outperforms
the baseline methods by ≥ 25% ADI error.

A limitation of the work is the need for category-wise
object models for training. A possible future work includes
using neural radiance fields (NeRFs) [43] to generate syn-
thetic models of objects from images that can be used for
training.

IV. CONCLUSIONS
In this work we proposed ACTOR, a novel framework

for active tactile-based category-level transparent object re-
construction. By learning with only synthetic object models,
ACTOR is capable of performing real-world transparent
object reconstruction through sparse tactile data. Our ap-
proach outperforms state-of-the-art GPIS method in terms
of reconstruction accuracy. Furthermore, we demonstrated
category-level pose estimation with the reconstructed object
model and our approach outperforms baseline ICP and S-ICP
methods. As future work, we would like to extend ACTOR
for safely manipulating transparent objects in unstructured
scenarios with possible deformability and dynamic center of
mass [11, 44, 45].
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