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Abstract: This study introduces a machine learning-based framework for mapping street patterns in
urban morphology, offering an objective, scalable approach that transcends traditional methodologies.
Focusing on six diverse cities, the research employed supervised machine learning to classify street
networks into gridiron, organic, hybrid, and cul-de-sac patterns with the street-based local area (SLA)
as the unit of analysis. Utilising quantitative street metrics and GIS, the study analysed the urban
form through the random forest method, which reveals the predictive features of urban patterns and
enables a deeper understanding of the spatial structures of cities. The findings showed distinctive
spatial structures, such as ring formations and urban cores, indicating stages of urban development
and socioeconomic narratives. It also showed that the unit of analysis has a major impact on the
identification and study of street patterns. Concluding that machine learning is a critical tool in urban
morphology, the research suggests that future studies should expand this framework to include
more cities and urban elements. This would enhance the predictive modelling of urban growth and
inform sustainable, human-centric urban planning. The implications of this study are significant
for policymakers and urban planners seeking to harness data-driven insights for the development
of cities.

Keywords: street pattern; urban spatial structure; urban morphology; machine learning

1. Introduction

Studying urban morphology is crucial for a comprehensive understanding of the
built environment in our increasingly complex urban landscapes [1,2], including a broad
spectrum of elements such as buildings, streets, public spaces, and green spaces [3–6].
Streets, in particular, are the backbone of urban connectivity and accessibility, dictating
the flow of people, goods, and information [7–11]. They significantly influence urban
planning decisions, impacting everything from public transportation routes to the location
of services and amenities. Streets are also a very complex subject to study as countless
factors are involved in how a street performs and is perceived by people [7,12]. To ease the
studying process, streets are abstracted as a network layout with street junctions as nodes
and streets as edges. Street patterns further summarise the types of street network layouts
to help scholars and planners ease the understanding of street morphology and provide
effective communication tools for stakeholders. However, recognition of the street pattern
at a large scale remains a challenge. Lately, new opportunities have arisen for identifying
and mapping street patterns with the introduction of new data and quantitative methods.
The new method has great potential to enhance the ability for large-scale urban studies
with street patterns [13,14].

This research introduces a novel approach by utilising supervised machine learning to
analyse these intricate components of urban morphology, emphasising the pivotal role of
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street patterns. First, our study aimed to show the novelty of applying machine learning
and street-based local area (SLA) to urban morphology analysis with street patterns; second,
investigate how the different street patterns may reveal the urban spatial structures of
the cities, which in turn tell the stories of their urban development history and unique
characters; and third, a preliminary comparison of how the different units of analysis may
impact the result. By employing the OpenStreetMap (OSM) dataset from six case study
cities and utilising machine learning techniques, notably the random forest method, we
provide a fresh perspective on the analysis of street morphology. This approach enables
us to categorise street networks into patterns, such as gridiron, organic, hybrid, and cul-
de-sacs, offering insight into how these patterns may reflect urban spatial structure and
development, thus contributing to the resident’s quality of life and sustainability.

2. Literature Review
2.1. Street Patterns in Urban Morphology

The study of street patterns transcends mere aesthetic appreciation; it is a lens through
which the evolution of urban areas can be observed. These patterns reflect a city’s history,
socio-economic status, and the prevailing urban planning philosophies over time [15,16].
The existing literature identifies these patterns as critical indicators of urban functionality,
revealing the segregation of land uses, the hierarchy of transportation networks, and the
delineation of socio-economic zones [17–20].

The challenge arises when attempting to scale these observations for cross-city compar-
isons; the current methodologies show significant variance in categorising and interpreting
street patterns, especially when transitioning from a manual, heuristic-based approach to a
more systematic one. Several ways of categorisation were mentioned in the summarised
work of “Street and Patterns” by Marshall alone [7]. The categorisations, for example,
include the ABCD type of street patterns, which focus on. . . aspects of street life and have
been applied to study the relationship between streets and land use [21]. Another categori-
sation is based on connectivity, depth, and continuity, emphasising the street’s route type.
With many other types of categorisations of street patterns existing in different fields of
studies, there is no standard for which is better, only which classification is suitable. How-
ever, the common premise for these street patterns to be utilised in modern morphological
studies is that they can be digitalised for quantitative analysis like other urban elements.
They can either be stored as a networked structure, facilitating urban morphology analysis
with their network metrics like connectivity [22,23], or stored as a raster file, providing
detailed information for computer vision-based analysis [24,25].

Another challenge lies in how we separate the street network in a city, so in urban
studies and planning, in other words, what is the best unit of analysis for streets? The street
differs from other elements, such as buildings, and is a single continuous entity sprawling
beyond the city. The current street analysis typically uses the administrative boundaries or
the raster matrix to study the street network within a city’s boundary [24,26]. On the one
hand, the performance of the administrative boundary depends on how well it captures the
ground truth of the street network while being disadvantageous for a cross-city analysis.
On the other hand, the raster matrix ignores the network nature of streets and may thus
have a deeper modifiable areal unit problem (MAUP) that impacts the analysis results due
to the different network structures.

Recent advancements have provided tools like OSMnx and NetworkX, which offer
a new level of granularity in the analysis of street networks, allowing for comprehensive
metrics at various scales to be extracted [13,14]. Moreover, the newly proposed street-based
local area has also emerged as a new unit of analysis that uses the street’s network structure
to define the boundary. However, a gap remains in utilising the full spectrum of metrics
available to supervised machine learning algorithms. The opportunity lies in creating
a standardised, scalable approach to map and interpret street patterns across different
urban contexts, which can benefit from the consistent, metric-driven analysis that machine
learning offers.
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2.2. Machine Learning as a Quantitative Lever in Urban Morphological Studies

In urban morphology, machine learning represents a significant shift towards quan-
titative analysis, providing robust tools for assessing and categorising the complexities
of street networks. It is also adept at managing large-scale data and revealing patterns
that may be imperceptible to the human eye. Integrating machine learning with well-
established GIS technology in urban studies is still in development. Machine learning
encompasses a wide array of quantitative methods, from basic clustering and regression
to sophisticated deep learning models based on neural networks. These methods have
progressively infiltrated urban studies, becoming essential for analysing urban morphol-
ogy. They enable researchers to find correlations, identify clusters, and make predictions
with precision and efficiency previously unattainable [27–30]. Hence, integrating machine
learning into urban morphology is not merely technical but methodological, enabling a
profound understanding of urban form dynamics and interactions.

By leveraging the full suite of machine learning tools in concert with GIS, urban
scholars can transition from a primarily descriptive to a predictive approach in urban
morphology. It leverages historical and contemporary data to forecast future urban de-
velopments, offering insights into potential growth patterns, transformations, and the
consequences of urban planning decisions [31–33]. This predictive power is invaluable
for planning resilient and sustainable cities, enabling planners and policymakers to antici-
pate changes and make informed decisions. The scalability of machine learning methods
further enhances their value in urban studies. Urban morphology often deals with large
spatial datasets, encompassing various scales from individual streets to whole cities or re-
gions [34,35]. Machine learning algorithms are adept at efficiently managing and analysing
these large volumes of data, making it possible to conduct extensive studies that provide a
comprehensive view of urban forms across different contexts [36,37]. Lastly, machine learn-
ing algorithms can automate the classification and analysis of urban forms, significantly
reducing the time and effort required for such studies. This automation minimises human
error, leading to more accurate and reliable results.

However, the literature still needs to fully explore the potential of deploying these
technologies to offer profound insights into street patterns. Existing studies have primarily
focused on selective metrics and their impact on urban dynamics; the comprehensive
analysis of generalised street patterns in conjunction with machine learning represents a
novel and crucial contribution to the field [23,38,39].

2.3. Machine Learning Framework for Street Morphology

Given the importance of street patterns in urban morphology and planning, the avail-
ability of street metrics to inform the performance of street networks, and the effectiveness
of machine learning methods in classifying urban patterns on a large scale with repro-
ducibility, the mapping of street patterns meaningfully with consistency is compelling.

The digital classification and mapping of street patterns is standard in the existing
literature and can be summarised into two streams. Starting from the street metrics
we mentioned earlier, street patterns are classified by setting up a manual threshold of
selective dimensions. However, this could be too stringent, as it only focuses on a few
metrics while ignoring other emerging metrics and digital tools that could lead to a better
understanding of street performance [36]. The later start of the more visual aspect of street
layout, utilising methods like deep learning, has been explored for the visual categorisation
of street morphology [24]; however, without considering the various street metrics proposed
and the rich literature backing their ability to inform multiple urban phenomena. Such
could represent a missing opportunity to define the character of street patterns, as they
needed to use the street patterns to their full potential for both scenarios.

Another challenge when applying machine learning in studying street morphology is
stemmed from choosing the unit of analysis. Considering the street as a continuous entity
rather than a discrete urban element like a building, it is more subject to the MAUP [40]
or uncertain geographic context problem (UGCoP) [41]. Currently, there are three ways
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to derive the study unit in street morphology. First, the administrative boundary, which
is commonly used to study the street morphology within a city or cities following the
same administrative systems [16]. Second, a raster matrix, the grid division, is commonly
used in cross-city analysis where consistent administrative division is unavailable [24,42].
Finally, we have the street-based local area (SLA), which divides the unit of analysis based
on the street’s network structure. The SLA is a relatively new unit of analysis in urban
studies that was first introduced by Stephan Law [25]. After that, it was further developed
to incorporate other urban elements for a more refined capture of the local area [10]. We
believe that the SLA has great potential to map street patterns in cross-city research because,
first, SLA’s street-based nature better captures the network structure and thus is more
optimised for studying streets; second, it can be applied to any street network without
prior knowledge, ensuring universal applicability between different cities [36]. However,
the discussion on the merit of SLA over raster matrix division has remained theoretical,
without illustrations in actual studies.

Together, these research gaps provided an opportunity for the comprehensive map-
ping and analysis of street patterns through machine learning. The added value of this
methodology lies in its capacity to explore beyond the conventional single metric of street
analysis, such as connectivity and centrality, to a broader examination of the street patterns
that underpin urban form and function.

3. Methodology

This study proposed a framework to utilise street metrics to identify and map street
patterns in multiple cities by mapping the street pattern with a supervised machine learning
classifier. The SLA was selected as the primary unit of analysis for these classifications.
Meanwhile, we also compared how the pattern identification and mapping results may
differ with a raster matrix unit of analysis.

Figure 1 shows the flowchart of the general methodology. First, street networks were
extracted from a single source of OpenStreetMap. Second, to ensure the consistency and
optimisation of the unit of analysis, this study generated the SLA as the baseline together
with a raster matrix of varying scales, as shown in Figure 1a. Third, all metrics were calcu-
lated quantitatively via NetworkX and OSMnx. Finally, several supervised classification
methods were deployed to identify the street patterns and assess their performance on
the training and testing dataset. Four types of street patterns were adopted from existing
studies for mapping, as shown in Figure 1b: gridiron, organic, hybrid, and cul-de-sacs. The
mapping of the four street patterns in the SLA across the six cities was eventually analysed
and compared against the raster matrix to show the urban spatial structure.

3.1. Case Study Area and Unit of Analysis

In a deliberate effort to encompass a broad spectrum of street morphology, the study
focused on six global cities: Amsterdam, Chengdu, London, Seoul, Houston, and New York
City. These cities stand out not only for their significant differences in history, economy,
culture, and governance, but also for their distinctive patterns of urban development and
transportation dynamics, which have shaped their unique street layouts. Furthermore,
these case studies are advantageous for research due to the extensive existing literature, the
availability of varied data sources, and the accessibility of high-quality open data, all of
which open avenues for ongoing and future scholarly inquiry. Since they have different
sizes and administrative divisions, this study unified the case study area in a square with a
25 km side length. For the same reason, universal units of analysis were adopted: SLA and
raster matrix systems of different resolutions.
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SLA as the unit of analysis offers significant advantages over traditional raster matrix
approaches, particularly in urban morphology and street pattern analysis. Unlike the
raster matrix, which does not consider the network character of the street due to its fixed,
grid-like nature, the SLA methodology leverages the inherent network structure of urban
streets, providing a more nuanced and accurate representation of urban forms. This
methodological shift allows for a more detailed and context-sensitive analysis of street
patterns, capturing the dynamic and interconnected nature of urban environments. By
focusing on the connectivity and relationships within the street network, the SLA approach
facilitates a deeper understanding of urban morphology. It enhances adaptability across
different urban contexts, while its ability to incorporate a wide range of urban metrics
makes it a superior choice for comprehensive urban studies, offering clear methodological
advantages in terms of scalability, transferability, and analytical depth.

This study also sought to investigate how different units of analysis may affect the
identification and mapping of street patterns in cross-study analysis. In contrast to the SLA
is the conventional administrative boundary and raster matrix unit. Unfortunately, we
could not find administrative divisions that worked for all six case study cities that could
be comparable and meaningful for street analysis. For the raster matrix division, this study
chose three scales. The size of the division was based upon two standards: first, the ease
of division to the size of the study area of 25 km square, and second, the size should be
suitable to capture the street network with different levels of detail. Hence, the street metric
and pattern were identified as 2500 × 2500 m, 1250 × 1250 m, and 625 × 625 m square.
This divided the study area into 100, 400, and 1600 standardised units of analysis, and we
identified these as the macro-, meso-, and microscale, respectively.

An examination of the different units of analysis in Chengdu is shown in Figure 2.
The SLA had varying sizes that adapted to the street network structure. In contrast, the
right side shows the street network captured by the three scales of the raster matrix; the
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macroscale had the most information while having higher chances of including streets with
distinctive structures. The microscale, at the different end of the spectrum, may need more
information to deduce the street metrics. In extreme cases, some units of analysis may have
too few or no streets captured. By comparing the mapping of the street pattern across the
four different units of analysis/kernels, we hoped to reveal their strengths and limitations
in capturing and mapping street patterns.
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3.2. Street Metrics and Patterns

Street network data were extracted from OpenStreetMap, an open data platform,
ensuring a universal data source. By representing streets as networks, several street
morphological metrics were computed to capture the physical characteristics of the streets.
The computation was implemented using network analysis tools such as Network and
OSMnx. Due to the variation in the size of the units of analysis, any metric dealing with
absolute size such as the total street length was omitted from the classification. This
study also eliminated high-correlations metrics to ensure a better classification result. The
explanation of the selected metrics is shown in Table 1 [36].

Table 1. List of metrics [36].

Metric Definition Value Remark

C
om

po
si

ti
on

Street Length Calculate the graph’s average edge length. In metres

Diameter It is the shortest distance between the two
most distant nodes in the network.

In metres
A higher value implies slower movement
through the network.

Circuity
Circuity is the sum of edge lengths divided
by the sum of straight-line distances between
edge endpoints.

1 to ½ π

A higher value implies the street is
more circular.

Orientation Entropy
Orientation entropy is the entropy of its
edges’ bidirectional bearings across evenly
spaced bins.

1.386 to 3.584
A higher value implies the streets are
more ordered.
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Table 1. Cont.

Metric Definition Value Remark

C
on

fig
ur

at
io

n

k_avg graph’s average node degree (in-degree and
out-degree)

A higher value implies better
connectivity with more route choices.

Self-loop Calculate the percentage of edges that are
self-loops in a graph. 0 to 1

L-junction The proportion of nodes with two
streets connected. 0 to 1

T-junction The proportion of nodes with three
streets connected. 0 to 1

X-junction The proportion of nodes with four
streets connected. 0 to 1

Ex
pl

an
at

or
y

Degree Pearson

Compute the degree assortativity, the
similarity of connections in the graph
concerning the node degree, which means
the number of streets connected to a
street junction.

−1 to 1
A higher value implies that the streets are
more ordered.

Transitivity
The ratio between the observed number of
triangles and the number of closed triplets in
the graph.

0 to 1
A higher value implies that the network
contains internal communities.

Global reaching centrality

The global reaching centrality of a weighted
directed graph is the average over all nodes
of the difference between the local reaching
centrality of the node and the greatest local
reaching centrality of any node in the graph.

0 to 1
A higher value means the network shows
a more hierarchical structure.

Global Efficiency

The average efficiency of all pairs of nodes in
a graph is the average multiplicative inverse
of the shortest path distance between
the nodes.

0 to 1
A higher value means the network shows
better accessibility.

The metrics were calculated by the unit of analysis, one set by SLA and three sets by
the raster matrix, making a total of four datasets. Note that for reduced sizes, the chances
of the unit of analysis having less than sufficient street crossings to generate meaningful
metrics to identify street patterns will also increase. This will probably skew the dataset
and result in errors in calculating the metrics and street pattern identification. Hence, this
study removed data entries with street junctions less than 20. The removed unit of analysis
was coloured blank in the mapping, indicating no or insufficient streets present in the area.

Existing studies have proposed various street patterns based on the different purposes
of the study. This study adopted the most common street patterns: gridiron, organic,
hybrid, and cul-de-sacs [7], as shown in Figure 1b. Gridiron is a typical street pattern with
uniform directions, straight streets, and right-angled X-shaped crossroads. The organic
street pattern contrasts with gridiron; the street is curly in various directions, and the street
junction also has diverse appearances. Hybrid street patterns fall between the gridiron and
organic. Finally, cul-de-sacs are most recognisable for their dead-ends and circular streets.

To produce the training and testing dataset for the upcoming machine learning classi-
fication, a portion of the dataset needed to be randomly selected to identify street patterns
manually. With the current four datasets of unique units of analysis, training, and testing
datasets were prepared for the dataset with SLA for the following reasons. First, as illus-
trated in Figure 2, consistent manual identification of street patterns is impossible in raster
matrix division because of the random division of the street network. Second, suppose we
provide training and testing datasets with raster matrix division with an additional un-
specified or no pattern, this may greatly skew the dataset and result in unusable predicting
results. Third, the SLA itself has varying sizes, and the metrics we have selected do not
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deal with absolute sizes. Therefore, the resulting classifier from using this training dataset
has the potential to be applied in units of analysis with varying sizes. Hence, 300 SLAs
were randomly picked and manually identified for their street pattern, which was used to
train and test the supervised machine learning classification model.

3.3. Machine Learning Classification

According to the analysis above, there are three characteristics when using machine
learning (ML) for mapping street patterns. First, features used in ML were well-engineered
with the quantitative metrics of Table 1, which could comprehensively describe the street
patterns. This means that the extraction of features does not need to be implemented by
ML itself [43]. Second, the target variable was well-defined label data (i.e., four types of
street patterns). Third, training samples were limited. On the one hand, the lack of relevant
research and the complexity of manual identification means that the amount of sample
data cannot be large. On the other hand, ML should deal with this issue by automatically
mapping street patterns using as few samples as possible, which was also a target of
this research.

Based on these characteristics, the traditional ML approach, instead of deep learn-
ing, was more suitable for this study [43,44]. Referring to the research on urban geogra-
phy [45–47], we compared five representative traditional ML algorithms in the proposed
framework—K-nearest neighbours (KNN), multilayer perceptron (MLP) neural network,
support vector machine (SVM), XGboost (XGB), and random forest (RF).

KNN is one of the simplest and historically supervised machine learning algorithms.
By memorising all the sample data, KNN conducts the classification by looking at the
‘k’ nearest samples to find the majority class among them [48]. KNN is simple to use,
insensitive to outliers, and is particularly suited to classifying geographic phenomena
with spatial autocorrelation structures. However, KNN has a high storage overhead and
high computational cost, which would face plenty of difficulties, especially in the face
of potentially large data street patterns. Moreover, besides spatial autocorrelation, urban
structure, and street patterns also have spatial heterogeneity [49], which might limit the
use of KNN. In this research, the ‘k’ of KNN was set as 5. MLP is a basic and lightweight
feedforward neural network on which various deep learning models are developed. It
comprises a visible layer, an output layer, and only a few hidden layers (neurons inter-
connect all layers). It is capable of learning complex patterns in the sample data by a
specific activation function [50]. MLP specialises in complex patterns and facilitates parallel
computation. However, we must know that MLP is prone to overfitting and has a relatively
tedious hyperparameter turning process, especially in street pattern classifications with
diverse cities and data. There was only one hidden layer in the MLP of this research, and
the activation function was a rectified linear unit function. SVM is also a famous supervised
learning algorithm. SVM works by finding the optimal hyperplane that best separates
data points into different classes while maximising the margin between the classes [51].
SVM is very effective in dealing with nonlinear relationships and high-dimensional data.
However, SVM is also sensitive to feature scaling and noisy data. The kernel function is the
most important hyperparameter of SVM. In this research, we chose a radial basis function
kernel. XGB and RF are both representative ensemble learning methods. Boosting is a kind
of approach that iteratively enhances the performance of the ML model. XGBoost is the
abbreviation of eXtreme Gradient Boosting, an optimised boosting algorithm that is highly
efficient, flexible, and scalable [52] In this research, the number of weak learners was 250,
and the learning rate was 0.3. RF is a type of representative ensemble learning (besides
RF, ensemble learning also has XGboost, Adaboost, etc.), combining multiple individual
decision trees to obtain the final classification results through voting the individual tree’s
results [53]. RF has many noticeable advantages such as being user-friendly and robust,
stable, and accurate performances. In particular, RF has good versatility with data with
different distributions or characteristics, which was quite helpful for our research’s street
pattern mapping of different cities. Two key hyperparameters of RF, the number of trees
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and the maximum number of features were set as 500 and the square root of the number of
covariates, respectively. Since the objective of this research was to build a feasible frame-
work for mapping street patterns with supervised machine learning, after comparing three
ML algorithms, we chose the best-performing one for the entire dataset.

4. Results and Discussion
4.1. Performance of Machine Learning Method

To select the best ML approach in this study, 5-fold cross-validation was implemented
on the same training set to compare the five machine learning methods, where 20% was
used for testing and 80% was used for training. To have a comprehensive comparison of all
ML approaches, five metrics of classification accuracy were calculated simultaneously with
scikit-learn [51], which were accuracy, precision_weighted, recall_weighted, f1_weighted,
and the roc_auc_ovo_weighted (AUC). These five metrics provide different insights and
can complement each other; more details can be found on scikit-learn. Considering that
the street patterns are multiple (instead of binary) classes, and the amount of each class
is balanced, the latter four metrics were modified as weighted averages from the original
binary-class values. The results are shown in Table 2.

Table 2. Performances of the five ML approaches.

KNN MLP SVM XGBoost RF

Accuracy_weighted 0.35 0.40 0.41 0.54 0.56

Precision_weighted 0.34 0.28 0.30 0.56 0.57

Recall_weighted 0.35 0.39 0.41 0.54 0.54

F1_weighted 0.34 0.30 0.27 0.52 0.54

AUC 0.54 0.63 0.54 0.75 0.78

The results showed that RF was the best approach, outperforming KNN, MLP, and
SVM in all of the evaluation metrics. The AUC score of RF was close to 0.8, which indicates
that RF has good discriminatory power for street patterns and performed significantly
better than random guessing. RF has other advantages for classifying street patterns; for
example, RF is robust when facing different datasets [54], which satisfies the requirement
of mapping street patterns in various cities. RF is also user-friendly and does not need
complex parameter tuning process RF can list the feature importance once building the
model, and it can help analyse how the quantitative metrics in Table 3 contribute to the
street pattern identification.

Despite the application of various ML methods, the performance of our classifier in
urban morphology studies—specifically in identifying street patterns—presents unique
challenges not typically encountered in conventional natural sciences. Urban morphological
studies inherently lack clear boundaries for classifying diverse street patterns, contributing
to the complexity of machine learning applications in this field. Our study introduced
four patterns that represent a spectrum rather than discrete categories, acknowledging the
nuanced nature of the urban form. Additionally, the manual identification of the training
data introduced uncertainty, particularly for patterns at the margins. There are several
potential ways to increase the performance of the ML classifier; for example, by excluding
the borderline cases and only including the most typical street patterns in the training
dataset or by proposing pre-defined patterns based on selected metrics rather than the
patterns that are commonly observed in existing practices and the literature. However,
urban morphology, including the streetscape, is an inherent complex study object destined
to be filled with uncertainty and unpredictability [55,56], which urban scholars need to be
able to navigate. Hence, the classifier in this study did not aim to reproduce results from
the training data perfectly but rather to provide a dependable standard that can classify
street patterns with consistency and best capture the essence of manual identification. In
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this context, we consider the prediction performance achieved to be acceptable in the scope
of our research, offering a dependable standard for urban morphology studies.

Table 3. Feature importance.

circuity_avg 0.132234

k_avg 0.070243

diameter 0.048768

edge_length_avg 0.092476

streets_per_node_proportions_2 0.051252

streets_per_node_proportions_3 0.074068

streets_per_node_proportions_4 0.118955

self_loop_proportion 0.046852

degree_pearson 0.090698

orientation_entropy 0.074808

transitivity 0.047868

average_clustering 0.047775

global_reaching_centrality 0.052981

global_efficiency 0.051022

4.2. Street Pattern Features and Urban Spatial Structure with the Street Pattern

The random forest classifier indicated that the five most crucial attributes were: circuity
(13.2%), X-junction (11.9%), street length (9.2%), degree Pearson (9.1%), and orientation
entropy (7.5%), collectively accounting for 55% of the classification outcome explanation.
Table 4 presents the average values of these metrics for each street pattern. Most of these
values corresponded to the general descriptions of the patterns, with gridiron and organic
types at opposite ends of the spectrum and the hybrid situated in between. The cul-de-sac
style had the highest circuity, street length, and the lowest X-junction and degree Pearson
values. Most of these characteristics could be easily discerned through visual observation,
likely due to the original training dataset being manually identified based on the visual
distinctions of the patterns.

Table 4. The average value for the top 5 features.

Gridiron Organic Hybrid Cul-De-Sac

Circuity 1.023 1.071 1.063 1.098

X-junction (%) 38.4 13.5 18.8 12.0

Street Length (m) 119.3 82.8 115.5 131.7

Degree Pearson 0.343 0.104 0.160 0.047

Orientation Entropy 2.803 3.349 3.132 3.265

Figure 3 shows the mapping of street patterns with the first column using the SLA.
Several observations can be made concerning the urban spatial structure after mapping
the street patterns in the SLA. Generally, most cities showed a ring structure with two to
three layers of street patterns. A core was present at the centre of the case study area, which
can be considered the historical urban area. Depending on the city, the core was mainly
occupied by either the gridiron or organic types of street patterns. Surrounding the urban
core was the second layer; this resulted from urban expansion and is considered as an
extension of the urban core. The street network in this layer generally formed at a different
period than the urban core, which broke away from the conventional pattern and appeared
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to be hybrid. Finally, the outermost layer at the city’s periphery mostly showed a cul-de-sac
pattern and are considered suburban areas. Hence, the urban spatial structure revealed by
the street pattern shows urban functions through the urban–suburban division and reflects
the different stages of urban development.
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The distribution of street patterns showed the urban structural differences between
cities. First, as previously mentioned, some cities showed three layers of a ring structure
while others only had two. Houston and London are typical cities with three layers of
urban spatial structure where an urban core, urban extension, and suburban division can be
identifiable. The gridiron inner core in Houston and the organic inner core in London reflect
the differences in the planning and urban development in North American and traditional
European cities. In contrast, Chengdu and Amsterdam showed a two-layer urban spatial
structure where the urban core was not recognisable from the street pattern. In addition, the
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street pattern mapping also, to some degree, reflects the polycentricity [31,57] of the cities.
For example, the study area in the Amsterdam region clearly showed a polycentric urban
spatial structure with multiple urban cores present. This is probably because the study area
covered surrounding cities like Haleem and Zaandam, which the street pattern can capture.
In contrast, cities like Chengdu and Houston appeared to be more monocentric.

4.3. Impact of Different Units of Analysis

The mapping of the street pattern using the different raster matrices showed very
distinctive results. The macro raster matrix size (2500 × 2500 m) tended to oversimplify,
failing to capture the intricacies necessary for cross-city comparison. In stark contrast,
the micro raster matrix size (675 × 675 m) delineated the street patterns more precisely,
revealing distinct ring structures and urban cores, as seen in Amsterdam and London.
Nonetheless, the finer scale also introduced larger areas of undefined space due to the
smaller unit size. The mesoscale (1250 × 1250 m) provided a balanced resolution, capturing
moderate detail without excessive generalisation or fragmentation.

The second observation was that different street patterns were identified with the
shifting unit of analysis. Within the raster matrix system, the street pattern changed
tremendously. In the case of London, the macro resolution almost categorised the entire city
as a hybrid street pattern. In contrast, the cul-de-sac, peripheral, and hybrid street patterns
began to appear for the mesoscale. At the finest micro level, the area for the organic pattern
was significantly reduced, and the majority existed in transitional areas between the hybrid
and cul-de-sac areas. Similar trends could also be observed in other cities like Amsterdam
and Houston. Comparing the SLA mapping with the different resolutions of raster matrix
mapping, a difference in street pattern identification was also observed. For example, in the
meso- and microscales of the raster matrix, Amsterdam showed a grid urban core, while in
the macroscale and SLA, no gird street pattern was identified. Like London, Houston, and
the western part of the New York study area, the street pattern identified differed for the
SLA and raster matrix division.

These variations echo two problems in the geographic analysis. The first is the MAUP
that arises when the results of the spatial analysis change based on the scale or the way the
boundaries are drawn in geographic data [40]. When different units of analysis are adopted,
the street is dissected into different network structures with varying network characters that
eventually end up in different street pattern classifications. The scale problem is especially
evident when adopting the raster matrices, where the analysis results can differ depending
on the size of the geographic units used. Larger units might mask variations that are visible
at smaller scales. The second is the contextual uncertainty inherent in geographic analysis,
a concept known as the uncertain geographic context problem (UGCoP). This refers to
the idea that geographic units or areas are defined based on their relevance to human
activities, behaviours, and social interactions. This concept emphasises that the boundaries
of these units are not just physical or administrative but are also shaped by how people
use and perceive spaces [41,58]. Unlike other urban elements, streets are presented as a
single, continuous network structure and are not just physical spaces, but also channels of
movements that influence and are influenced by human behaviours. Given that the choice
of the spatial unit can profoundly affect the connectivity and accessibility property brought
by the network structure, which is highly correlated to human behaviour, the choice of
the spatial unit can profoundly affect the interpretation of urban form and function as
well as the necessity of a nuanced approach to define urban areas for analysis, considering
the multifaceted nature of urban development and the potential for varied interpretations
arising from different methodological frameworks.

The core aim of this research was to introduce a machine learning approach to identify
street patterns with significant implications for urban studies, especially in urban planning
and policymaking, where accurate recognition of spatial structures is essential in these
fields. However, applying machine learning to urban morphological patterns, especially at
an exploratory stage, presents numerous challenges that must be addressed. Issues such
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as the MAUP and the lack of a quantitative definition for urban patterns highlight the
complexity of this task. Furthermore, the variability in recognising patterns across different
scales underscores the necessity for more sophisticated methods to accurately reflect urban
forms’ intricacies.

5. Conclusions

This study has demonstrated a novel application of a quantitative framework that
employs machine learning to systematically identify and map street patterns, offering a
new dimension to the study of urban morphology. By integrating supervised learning
techniques and street-based metrics with the SLA as the unit of analysis, the research has
provided a consistent and scalable approach for analysing urban spatial structures across
different cities. Machine learning tools have allowed for a transition from traditional, often
subjective classification methods to a more objective, data-driven analysis. This shift is
significant as it empowers urban scholars to move from descriptive assessment to predictive
modelling, enabling the anticipation of urban growth patterns and the identification of
emergent forms within the urban fabric. The methodology is evidently robust in its ability
to handle large-scale data and uncover complex spatial relationships, offering invaluable
insights for urban planners and policymakers.

This study mapped street patterns across six cities, showcasing the diversity of urban
forms from historical cores to suburban peripheries. The observed ring structures signify
the stages of urban development and each city’s unique socio-economic narratives. We
could capture these nuances more accurately through the SLA than traditional raster
matrices, which often neglect the continuous and networked nature of streets. However,
the research acknowledges certain limitations. Although informed by extensive literature,
the categorisation of street patterns still requires further refinement to enhance its precision
and application in varied urban contexts. The manual selection process in the training set
and the partial significance of the employed metrics in the classifier indicate areas where
methodological improvements could be made. Moreover, the study reaffirms that street
patterns alone cannot fully encapsulate urban morphology. A more holistic approach that
includes multiple urban elements is necessary to grasp the complex interplay of the factors
shaping our cities.

Future research should aim to refine the classification of street patterns, expand the
framework’s application to a broader range of cities, and explore integrating additional ur-
ban elements into the analysis. Such advancements will enrich urban morphological studies
and contribute to developing sustainable, resilient, and human-centric urban environments.
This study’s findings underscore the potential of machine learning as a pivotal tool in urban
studies, bridging the gap between theoretical frameworks and practical applications in
urban planning and development.
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