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Abstract 46 

Perception is an intricate interplay between feedforward visual input and internally generated 47 

feedback signals that comprise concurrent contextual and time-distant mnemonic (episodic 48 

and semantic) information. Yet, an unresolved question is how the composition of feedback 49 

signals changes across the lifespan and to what extent feedback signals undergo age-related 50 

dedifferentiation, i.e., a decline in neural specificity. Previous research on this topic has 51 

focused on feedforward perceptual representation and episodic memory reinstatement, 52 

suggesting reduced fidelity of neural representations at the item and category levels. In this 53 

fMRI study, we combined an occlusion paradigm that filters feedforward input to the visual 54 

cortex and multivariate analysis techniques to investigate the information content in cortical 55 

feedback, focusing on age-related differences in its composition. We further asked to what 56 

extent differentiation in feedback signals (in the occluded region) is correlated to 57 

differentiation in feedforward signals. Comparing younger (18 - 30 years) and older female 58 

and male adults (65 -75 years), we found that contextual but not mnemonic feedback was 59 

prone to age-related dedifferentiation. Semantic feedback signals were even better 60 

differentiated in older adults, highlighting the growing importance of generalized knowledge 61 

across age. We also found that differentiation in feedforward signals was correlated with 62 

differentiation in episodic but not semantic feedback signals. Our results provide evidence for 63 

age-related adjustments in the composition of feedback signals and underscore the importance 64 

of examining dedifferentiation in aging for both feedforward and feedback processing.  65 

 66 

 67 
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Significance Statement 73 

Cognitive decline in aging is related to reduced neural specificity (dedifferentiation) in the 74 

brain, which has mainly been examined in feedforward processing. Using an occlusion 75 

paradigm, we tested whether there is dedifferentiation in contextual and mnemonic feedback 76 

signals internally generated in the early visual cortex to aid perception. Older adults’ 77 

contextual but not mnemonic feedback signals suffered from dedifferentiation, with semantic 78 

mnemonic representations being even better differentiated in older age. Neural differentiation 79 

between feedforward and episodic feedback signals was positively correlated in both age 80 

groups. In sum, these results highlight the growing importance of semantic knowledge across 81 

the lifespan and imply that the impact of dedifferentiation on cognition highly depends on the 82 

nature of the recruited information.  83 

 84 
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Introduction 100 

Throughout the lifespan, our brain undergoes structural and functional changes. A notable 101 

pattern emerges within the memory systems as we approach later stages of life: episodic 102 

memory tends to decline, while semantic memory is mostly preserved (Shing et al., 2008; 103 

Ofen and Shing, 2013; Lalla et al., 2022). At the same time, the notion of dedifferentiation 104 

has emerged in the literature as an important factor contributing to age-related functional 105 

changes in cognition. Age-related dedifferentiation refers to the finding that neural 106 

representations become less distinct with advancing age and, therefore, less representative of 107 

the evoking stimulus. Support for this view comes from non-human animal (Schmolesky et 108 

al., 2000; Yang et al., 2008, 2009) and human neuroimaging studies, which showed that 109 

neural selectivity for visual stimuli declines with age (Voss et al., 2008; Zheng et al., 2018; 110 

Koen et al., 2019, 2020). The visual system has been widely used for studying neural 111 

differentiation (Park et al., 2004; Payer et al., 2006; Carp et al., 2010, 2011a, 2011b). Its 112 

hierarchical and retinotopic organization allows the mapping of the visual field onto brain 113 

voxels, which enables nuanced control of the feedforward input reaching a given portion of 114 

the visual cortex. In this study, we combined nuanced control with multivariate analysis 115 

techniques to enable us to test the influence of internal models on the constellation and quality 116 

of perceptual representations. 117 

State-of-the-art models of perception recognize the brain’s heavy reliance on internal 118 

representations of the outside world that are formed early in life and updated throughout the 119 

lifespan (Berkes et al., 2011; Larkum, 2013; Shin et al., 2021). The predictive processing 120 

framework integrates this influence, postulating that feedback signals travel from higher-level 121 

brain areas to the earliest sensory regions (Rao and Ballard, 1999; Friston, 2005; Clark, 2013). 122 

Importantly, neural units and long-range connections transmitting internally generated 123 

feedback signals are distinct from and proportionally more numerous than pathways 124 

transmitting external feedforward visual input (Markov et al., 2014). As a result, feedback 125 
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signals can traverse the visual hierarchy and powerfully drive disambiguation of the percept at 126 

early stages. Thus, exploring to what extent age-related dedifferentiation manifests in these 127 

top-down directed perceptual processing streams can provide key insights into the interplay 128 

between mnemonic and perceptual systems. 129 

So far, several studies have investigated age-related dedifferentiation in feedback 130 

signals mostly in the form of memory reinstatement (Bowman et al., 2019; Deng et al., 2021; 131 

Katsumi et al., 2021; St-Laurent et al., 2011, 2014). The overall finding is that 132 

dedifferentiation affects the older brains’ integrity by acting on both feedforward sensory 133 

input and internally generated representations of information. A recent study by Ortiz-Tudela 134 

and colleagues (2023) showed that feedback signals carry information of different natures. 135 

More concretely, their results showed that concurrent contextual and time-distant mnemonic 136 

information coexist as feedback signals in primary and secondary visual cortices V1 and V2. 137 

Concurrent contextual information refers to visual input that does not reach a given brain 138 

region via feedforward but lateral connections. Time-distant mnemonic information describes 139 

content drawn from stored knowledge acquired in the past. They found that mnemonic 140 

episodic and semantic components explained different portions of the variance of the 141 

multivariate neural pattern of feedback signals. Such compositional complexity of feedback 142 

signals has not been considered in studies of age-related dedifferentiation so far. 143 

In this study, we combined an occlusion paradigm with fMRI and multivariate pattern 144 

analysis to examine: 1) if concurrent contextual and time-distant mnemonic information can 145 

be decoded in feedback signals within V1 and V2 of older adults, as it was found in younger 146 

adults; 2) if feedback signals in older adults are less differentiated; and 3) how the 147 

relationship between feedforward and feedback signals is characterized across age. We 148 

hypothesized to find contextual and mnemonic information in older adults’ V1 and V2 149 

feedback signals. Compared to contextual feedback, we expected mnemonic episodic, but not 150 

semantic, feedback to be impacted by age-related dedifferentiation, as episodic memory 151 
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decline is a well-established aging phenomenon. Finally, we predicted a positive relationship 152 

between feedforward and feedback signals in older compared to younger adults. To our 153 

knowledge, this is the first study that examined the detailed interplay of feedforward and 154 

feedback components in a cross-sectional lifespan sample.  155 

 156 

Materials and Methods 157 

Reanalysis of published data and registration 158 

The current study is an extension of a previous study by Ortiz-Tudela et al. (2023), 159 

which reported data from 30 younger participants. We collected additional data from younger 160 

adults to match the sample size of older adults. All reported results for younger adults in this 161 

study refer to the topped-up sample. We pre-registered the study prior to data collection on 162 

the OSF platform. The preregistration is available at https://doi.org/10.17605/OSF.IO/X7B6Z, 163 

and any deviations from it are indicated in the corresponding sections.  164 

 165 

Participants 166 

We conducted sensitivity and a priori power analyses using G*Power (Faul et al., 167 

2007) and validated the results using WebPower (version 0.6; Zhang & Yuan, 2018). Based 168 

on the data of Ortiz-Tudela et al. (2023), we obtained a minimal statistically detectable effect 169 

size of f = .37. The sample size calculation resulted in 80 participants, i.e., 40 participants per 170 

age group to detect this effect with a power of .90 and an alpha of .05. For the younger adults’ 171 

sample, we reused 30 participants from the Ortiz-Tudela et al. (2023) study and recruited 172 

additional 15 younger adults between 18 and 30 years of age via advertisements across the 173 

campus of the Goethe University Frankfurt. We excluded three participants in the younger 174 

adults’ sample due to low training performance (< 80%) on day one, one due to low retrieval 175 

performance (< 25%) in the post-scan phase on day two, three due to technical issues during 176 

scanning, one because of excessive movement, and one participant who had diagnosed 177 
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aphantasia. Additionally, we recruited 46 healthy older adults between 65 and 74 years of age 178 

via E-Mail advertisements to attendees of the University study program for the third age and 179 

via invitation letters to residents within the required age range. We excluded two participants 180 

due to low training performance (< 80%) on day one, another one due to low retrieval 181 

performance (< 25%) in the post-scan phase on day two, two due to MRI incompatibility, one 182 

due to technical issues during scanning, and one participant due to no-show on day two. The 183 

final sample included 36 younger adults (23 female, M= 24.18 years, SD = 2.54) and 39 old 184 

adults (18 female, M = 69.28 years, SD = 2.99). Before participation, we screened all 185 

participants for MRI compatibility, visual capacity, and state of health via phone. We tested 186 

older adults additionally with a phone-compatible version of the Mini-Mental State 187 

Examination (Folstein et al., 1975) and invited them only if they correctly responded to 16 out 188 

of 18 questions. All participants gave written informed consent as approved by the 189 

Department for Psychology ethics committee at Goethe University Frankfurt (Protocol 190 

number: 2019-38). For their participation, participants received either course credits (only for 191 

psychology students) or monetary compensation (8€/h for behavioral tests and 10€/h for the 192 

fMRI session).  193 

 194 

Stimuli and materials 195 

The stimulus set consisted of the same cartoon image material as in the study from 196 

Ortiz-Tudela et al. (2023) and is available at https://github.com/ortiztud/feedbes. It comprised 197 

16 indoor room images (e.g., bathroom, kitchen, electronic store) and four object images (i.e., 198 

bathtub, oven, bed, and TV). With this material, we created two sets of object-room category 199 

pairs. One set consisted of eight combinations with minimal semantic relation (e.g., “bed” in 200 

“bathroom”), providing the stimulus material for the episodic trials. The episodic nature of 201 

these combinations is given by the need to create new associative memories binding object 202 

and room context, which must be retrieved 24 hours later during the fMRI scan. The other set 203 
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consisted of eight combinations with maximal semantic relation (e.g., “oven” in “kitchen”), 204 

providing the stimulus material for the semantic trials. Note that the same four objects were 205 

used for episodic and semantic trials, but the rooms were unique for each trial type. This was 206 

done to ensure comparability between the retrieved object content for episodic and semantic 207 

trials and to equate the difficulty between the pairings as much as possible. Object-room 208 

combinations and the assignment of room categories to either episodic or semantic trials were 209 

counterbalanced across participants. Thereby, we preserved the required (in)congruent 210 

relationships in the respective stimulus sets and ensured that every object would be presented 211 

in every possible room and in episodic trials as well as semantic trials across the entire 212 

sample. Importantly, the objects were always placed in the lower right corner of the room. 213 

Depending on the task, they were either visible or hidden behind a white patch that occluded 214 

the respective corner. Previous studies successfully used such an occlusion paradigm to 215 

separate feedback signals from feedforward visual input (Smith and Muckli, 2010; Muckli et 216 

al., 2015; Morgan et al., 2019). During the learning phase on day one, we presented the 217 

stimuli on a 60 Hz monitor (resolution 1680 x 1050, full HD) approximately 60 cm from the 218 

participant’s head. Subjects responded using a standard QWERTY keyboard. In the scanner, 219 

participants saw the stimuli on a 60 Hz monitor (resolution 1920 x 1080, full HD) via a coil-220 

mounted mirror with an approximate total distance of 162 cm to the participants’ eye. The 221 

size of the stimuli spanned 16.4° x 12.1° of visual angle. 222 

 223 

Procedure 224 

For younger adults, the procedure was identical to the original study (see Ortiz-Tudela 225 

et al., 2023). All necessary adjustments to ensure that older adults could manage the task as 226 

similarly as younger adults are specified in the corresponding sections. The procedure was 227 

split into two sessions across two consecutive days. 228 

 229 
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Day one 230 

The first session took place in a quiet testing room. Participants started the first session 231 

by answering a set of questionnaires, including the Vividness of Visual Imagery 232 

Questionnaire (Marks, 1973), the Spot-the-Word test (Baddeley et al., 1993), the Digit 233 

Symbol test, which is a subtest of the Wechsler Adult Intelligence Scale (Wechsler, 1981), 234 

and the Health Dynamics Inventory (Saunders and Wojcik, 2004). After that, they proceeded 235 

with the learning phase. 236 

 237 

Learning phase  238 

In the learning phase, the participant’s task was to study and remember the episodic 239 

object-room pairs, i.e., combinations with minimal semantic relation (Figure 1A). Younger 240 

and older participants underwent five and nine learning cycles, respectively, in which the 241 

object-room pairs were presented for 10 s sequentially and repeated ten times. The number of 242 

additional learning cycles was piloted to make sure that old adults could reach the threshold 243 

of at least 80% accuracy in the final block in order to compensate for the known decline of 244 

episodic memory in older adults (Shing et al., 2008). We instructed participants to memorize 245 

the object-room combinations and as many details as possible, including the object’s exact 246 

position in the lower right corner. At the end of each learning block, their memory of the 247 

object-room pairings and the object’s position was tested. In a 4AFC format, we presented a 248 

previously studied room with a white occluder and the four available objects; participants 249 

selected one object by pressing a number key, ranging from 1 to 4, on the keyboard with their 250 

left hand. We tested the remembered position by presenting the same room with the correct 251 

but slightly displaced object and asked the participants to move the object to its original place 252 

by pressing the arrow key corresponding to the moving direction with their right hand. While 253 

younger adults pressed the keys independently within a 2-s time window, older adults 254 

indicated their choice verbally, and the experimenter pressed the keys on their behalf within a 255 
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4-s time window. We adjusted the procedure after observing in pilots that some older adults 256 

struggled to coordinate choice and response in time.  257 

After completing all learning cycles, we familiarized participants with the structure 258 

and timing of the scanner task on day two. In this task, the episodic rooms with the occluder 259 

were presented sequentially for four seconds each; participants were instructed to fixate on the 260 

cross in the center of the screen and to reinstate and hold the room in mind, including the 261 

learned object in its original position. After each trial, participants rated the vividness of the 262 

retrieved object on a 4-point Likert scale. Younger adults entered their ratings via the 263 

keyboard, and older adults responded verbally. Finally, all participants conducted another 264 

learning block to refresh their memory for the object-room pairs. Unlike in the preregistration 265 

announced, participants did not additionally draw the objects on a printed version of the 266 

occluded rooms due to time limitations.  267 

 268 

Day two 269 

The second session took place at the Brain Imaging Center (Frankfurt am Main).  270 

 271 

Pre-scan phase 272 

Before entering the scanner, we introduced participants to the semantic object-room 273 

pairings (Figure 1B), with all rooms being novel to the participants. The eight new room 274 

images appeared one after another, always with the occluder, and participants had to name 275 

one among the four studied objects with the best semantic fit. The experimenter gave 276 

feedback on incorrect object choices. Unlike the episodic object-room pairings, the semantic 277 

room images were never directly shown together with the objects to participants. Older adults 278 

were exposed to the semantic rooms for two more rounds and received additional practice. In 279 

this practice, we presented both episodic and semantic rooms with occluder in random order, 280 

and participants had to indicate the correct associated object, which was, depending on the 281 
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room, semantically or episodically retrieved. We added this practice to ensure that older 282 

adults would understand the alternating order of episodic and semantic trials in the occlusion 283 

task during scanning and would retrieve the required object depending on the presented room. 284 

  285 

Scanning phase 286 

The reported structure of the scanning session was identical to the one in Ortiz-Tudela 287 

et al. (2023). The scanning sequences were distributed across two blocks of approximately 50 288 

minutes, with a ten-minute break in between these two blocks. The break allowed participants 289 

to go to the bathroom and refresh themselves to prevent discomfort and unwanted 290 

movements. In block one, participants performed two occlusion task runs, a structural scan 291 

and a functional retinotopy run. In block two, participants performed two more occlusion task 292 

runs, another structural scan, another functional retinotopy scan, and a sensory template run. 293 

One additional functional scan and one additional anatomical scan were collected but not used 294 

for this project, and thus, they are not discussed further.  295 

 296 

Occlusion task. Each of the four occlusion task runs presented all episodic and semantic 297 

rooms intermixed. We optimized the presentation order using the MATLAB toolbox easy-298 

optimize-x by Spunt (2016) to obtain the most efficient design for detecting activation 299 

differences between episodic and semantic trials. A white patch occluded the lower right 300 

corner of the rooms, and a fixation cross designed to minimize unwanted eye movements 301 

(Thaler et al., 2013) on a small white square covered the foveal region. In each run, all 16 302 

rooms were repeated six times with a presentation duration of 4 s and an inter-trial interval of 303 

2 s. Each run lasted 576 s. While the room images flashed at a 5 Hz frequency, the white 304 

patches and the fixation cross remained stable, helping the participants focus their gaze on the 305 

center of the room. We asked participants not to move, to focus on the fixation cross, and to 306 

retrieve the associated object as vividly as possible. When an episodic room (studied on day 307 
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one) was presented, they had to retrieve the object that was studied together with this room on 308 

day one (i.e., episodic trial). When a semantic room (introduced on day two) was shown, the 309 

object with the best semantic fit had to be retrieved (i.e., semantic trial). This procedure 310 

ensured the comparability of episodic and semantic trials, with the main difference being the 311 

mnemonic retrieval route accessed by the participants.  312 

 313 

Sensory Template. In order to compare feedback with feedforward signals, we ran an 314 

additional task in which we showed the 16 correct object-room pairings 12 times (without 315 

occlusions) for 1.5 s with an inter-trial interval of 1 s. The run lasted 480 s. We optimized the 316 

presentation order, as in the occlusion task runs, using easy-optimize-x (Spunt, 2016). 317 

Participants fixated on the cross in the center of the screen and performed a 1-back task, 318 

which served as a cover task to ensure attention was paid to the stimuli. Whenever they 319 

detected image repetitions, they had to press a button with the index finger on an MRI-320 

compatible button box.  321 

 322 

Functional Retinotopy and Target Area Mapping. We used standard stimulation 323 

procedures to demarcate the early visual cortex (EVC) primary and secondary subfields V1 324 

and V2. For eccentricity mapping, we showed flashing and expanding contrast-reversing 325 

checkerboard rings (9 cycles, 56 seconds/ expansion). For polar angle mapping, we showed a 326 

flashing and rotating contrast-reversing checkerboard wedge (eight clockwise rotations, 64 327 

seconds/ rotation). Through target area mapping, we identified voxels that topographically 328 

represented the lower right corner within areas V1 and V2. To this end, we used two different 329 

checkerboard patterns. The first pattern spanned 1° of visual angle along the inner boundary 330 

of the occluded lower right corner, and the other pattern covered the remaining inside of the 331 

occluded region. Voxels that represented the boundary of the occluder were eventually 332 

excluded from further analyses to prevent spillover from adjacent receptive fields and to have 333 

JN
eurosci

 Acce
pted M

an
uscr

ipt



15 

a buffer for small misalignments across functional runs (Smith and Muckli, 2010). For further 334 

details, see the identical procedure in Ortiz-Tudela et al. (2023).  335 

 336 

Post-scan phase 337 

After both scanning blocks, we asked participants to do one last retrieval task on a 338 

laptop outside the scanner. Identical to the memory test for object-room pairings and object 339 

position on day one, each occluded room was presented together with the four available 340 

object options. The presentation order was sequential, with all rooms from the episodic set 341 

showing first, followed by all semantic rooms. As on day one, younger adults pressed the 342 

number and arrow keys themselves with their left hand and within 2s, and older adults 343 

communicated their decision verbally to the experimenter, who pressed the keys on their 344 

behalf within 4s.  345 

 346 

MRI setup and data acquisition 347 

We scanned participants with a 3.0 Tesla Siemens MAGNETOM Prisma scanner with 348 

a 32-channel head coil system. 3D structural scans (MPRAGE sequence; resolution: 1 x 1 x 1 349 

mm; iPAT factor: 2) were acquired in both blocks for anatomical reference. Echo-planar 350 

imaging sequences (EPI; TE=38ms; TR = 800ms, resolution = 2 x 2 x 2 mm; MB factor = 8; 351 

flip angle= 52°; field of view = 208 mm; 72 axial slices, phase encoding direction = AP) were 352 

applied to measure the brains’ blood oxygen level-dependent (BOLD) response. After the first 353 

occlusion task run in each block, we acquired five extra volumes for each phase-encoding 354 

direction to allow susceptibility distortion correction in EPI sequences.  355 

 356 

Behavioral data analysis 357 
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We conducted all behavioral analyses in R (version 4.0.3; R Core Team, 2020) and 358 

used the results to explore the data and to identify participants performing below a threshold 359 

of 80%.  360 

 361 

fMRI data analysis 362 

Preprocessing 363 

Except for the retinotopic and target mapping runs, we preprocessed the fMRI data 364 

using fMRIPREP 20.1.1 (Esteban et al., 2019, 2020). fMRIPREP’s output provides a CC0-365 

licensed citation boilerplate that includes all preprocessing details. As requested by 366 

fMRIPREP’s authors, an unchanged copy is available in the corresponding OSF repository. 367 

The preprocessing of retinotopic and target mapping runs was conducted in BrainVoyager 368 

21.4 (Brain Innovation) for Linux and included slice time correction, 3D motion correction, 369 

and temporal high-pass filtering at 0.01 Hz with linear detrending.   370 

 371 

ROI definitions 372 

We defined regions of interest as the subset of voxels in the left EVC for V1 and V2, 373 

topographically representing the room images’ lower right corner. In this corner, the object 374 

was either presented as feedforward visual input (in the sensory template run) or covered (in 375 

the occlusion task runs). Covering the corner removed any meaningful feedforward visual 376 

stimulation because all the trials in the occlusion task included the same-sized white patch in 377 

the identical position. We conducted all further analyses on this particular subset of voxels. 378 

We created masks for early visual areas V1 and V2 using standard retinotopic mapping 379 

procedures (see Retinotopic and Target mapping section) and manual delineation of the 380 

subfields. The resulting masks were restricted exclusively to the voxels representing the 381 

room’s lower right corner using the target mapping run (see Ortiz-Tudela et al. (2023) for a 382 

detailed procedure description). 383 
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 384 

Generalized linear model 385 

We extracted single-trial beta estimates by applying a Least Squares Separate (LSS) 386 

approach, where each trial is modeled as a separate regressor (Mumford et al., 2012; 387 

Abdulrahman and Henson, 2016). For each of the four occlusion task runs, we computed 96 388 

GLMs. A single GLM comprised one regressor for the onset of the current trial, 16 regressors 389 

for the onsets of each room, six raw head motion regressors (three for displacement and three 390 

for rotation), and three regressors for global, WM, and CSF intensities. For the sensory 391 

template run, we conducted 192 GLMs with the same combination of regressor coefficients. 392 

In our preregistration, we planned to include six additional nuisance regressors for volume-to-393 

volume eye motion measures in each spatial axis for each eye. We extracted the eye bulbs of 394 

each participant using Eye State fMRI (Brodoehl et al., 2016) to compute directional vectors 395 

for each eye along the anteroposterior axis in a three-dimensional space (x,y,z). However, in 396 

our older adults sample, due to large head sizes, the EPI’s field of view (208 mm) did not 397 

always include a sufficient portion of the eye bulbs to calculate those directional vectors 398 

reliably. Thus, to provide comparability of findings across age groups, we decided not to 399 

include regressors for eye motion in either sample.  400 

 401 

Multi-voxel pattern analysis 402 

We applied multivariate pattern analysis (MVPA) to decode the different components 403 

of feedback signals in nonstimulated voxels of V1 and V2 during the occlusion task. We used 404 

binary linear support vector machine (SVM) classifiers with a 4-fold leave-one-run out cross-405 

validation procedure. We trained classifiers on three of four occlusion task runs (288 trials) 406 

and tested on the remaining run (96 trials). We repeated this train-test procedure for all four 407 

runs and averaged the resulting classification accuracies across folds. All classification 408 

analyses were performed separately for episodic and semantic trials. Figure 2 illustrates the 409 
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classification schemes we adopted to decode the specific feedback components, i.e., 410 

contextual and mnemonic. Contextual refers to the visual information provided by the room 411 

image surrounding the occluded region. This contextual information is fed through lateral 412 

connections to the adjacent nonstimulated receptive fields, where it can be used to 413 

disambiguate the percept and aid the retrieval of the associated object. To capture contextual 414 

information in V1 and V2, we trained a classifier with and tested on “same object – different 415 

room” combinations (i.e., the two class labels share the object but differ in the room) so that 416 

only contextual feedback could provide the classifier with information to discriminate 417 

between room and object. Mnemonic refers to the object information retrieved through an 418 

episodic or semantic route and transmitted to nonstimulated receptive fields in V1 and V2. 419 

We trained another classifier based on a cross-classification schema to decode mnemonic 420 

information. The training set consisted of “different object – different room” combinations 421 

(i.e., the two class labels neither share the object nor the room), in which the classifier learned 422 

to discriminate between object and room using both feedback information types. A classifier 423 

tested in this set could use either (or both) the object and the room to discriminate the classes.  424 

However, when tested on a different subset of rooms that shared the same objects across 425 

training and test sets, above-chance classification could be achieved only by relying on the 426 

mnemonic object information. We chose this more conservative cross-classification schema 427 

as it prevents using any learned room information and enables classification solely on object 428 

information. Note that an alternative classification schema would be training a classifier with 429 

and testing on “different object – same set of rooms” combinations. However, this 430 

combination was not part of the experimental design and would lead to interference if a 431 

particular room cues two different objects. We performed all decoding analyses with The 432 

Decoding Toolbox (Hebart et al. (2015). We averaged classification estimates across 433 

participants and tested for significance using a two-step bootstrapping approach (Stelzer et al., 434 

2013). An accuracy distribution was created for each participant by randomly permuting the 435 
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trial labels 100 times and calculating classification accuracies for each iteration. We drew a 436 

random sample (with replacement) from each distribution and averaged across participants 437 

1000 times, thus creating a null distribution of 1000 average accuracies. If classification 438 

estimates were larger than 99.9% of the accuracies in the null distribution (p < .001), they 439 

were considered significant. For age group comparisons, we used linear mixed effect models 440 

(LMMs, lmer function in the lme4 package; Bates et al., 2015) instead of ANOVAs, as 441 

written in the preregistration, to control for additional variance attributed to participants. Age 442 

group (older versus younger), trial type (episodic versus semantic), and ROI (V1 versus V2) 443 

were included as predictors and random intercepts were specified per subject. For main effect 444 

testing, we calculated type-II Wald F tests using the Anova function in the car package (Fox 445 

and Weisberg, 2019) and type-III Wald F tests for interaction testing. Confidence intervals 446 

were determined using the confint function from the stats package (R Core Team, 2020). 447 

  448 

Representational similarity analysis 449 

For each participant, we used single-trial beta estimates to compute Representational 450 

Dissimilarity Matrices (RDMs) between every pair of individual trials (Kriegeskorte et al., 451 

2008). We calculated all RDMs using The Decoding Toolbox (Hebart et al., 2015). As 452 

distance measures, we used the cross-validated Mahalanobis distance for the occlusion task 453 

RDMs and Pearson r for the single-run sensory template RDMs.  454 

 455 

Model correlations 456 

To investigate to what extent contextual and mnemonic information is represented in 457 

feedback signals within both ROIs, we created two model RDMs that reflected the ideal 458 

correlation pattern for each feedback component (see Figure 3). Both model matrices were 459 

equally sized as the individual neural RDMs, spanning 96x96 trials (48 episodic and semantic 460 

trials, respectively). The contextual model had zero values for “same object – same room” 461 
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cells because we expected those combinations to have the lowest dis-similarity and maximal 462 

values (i.e., ones) for the remaining high dissimilarity cells. The diagonal, containing only 463 

zeros, was excluded from all analyses. In the mnemonic model, we expected the lowest 464 

dissimilarity for “same object – different room” cells, therefore having zero values. “Different 465 

object – different room” cells had maximal values representing the highest dissimilarity. 466 

“Same object – same room” cells were removed as the low dissimilarity between the same 467 

rooms would artificially reduce the final dissimilarity measure, which should be solely based 468 

on the object. Both models were Spearman rank correlated with all individual RDMs. 469 

Correlating the dissimilarity matrices results in correlation values that can range from zero to 470 

one, with low values representing low similarity between the model and individual RDMs and 471 

high values representing high similarity between the model and individual RDMs. The 472 

correlation coefficients were Fisher-z transformed and compared against zero using Wilcoxon 473 

signed-rank tests (wilcox.test function from stats package, R Core Team, 2020). As for 474 

MVPA, we performed age comparisons using LMMs with random intercepts per participant, 475 

and model (object versus room), trials (episodic versus semantic), and age (older versus 476 

younger) as predictors. 477 

 478 

Differentiation index 479 

Similar to the procedure in Koen et al. (2019), we calculated Differentiation indices 480 

(DIs) to obtain a measure for the specificity of neural responses. For the DI calculation, we 481 

used the dissimilarity values from the individual neural RDMs and subtracted the average 482 

within from the average between dissimilarities. Within dissimilarity refers to the pairwise 483 

distance of trials that share the same object, for example, TV versus TV, whereas between 484 

dissimilarity refers to the pairwise distance of trails comprising different objects, for example, 485 

TV versus bathtub. Thus, well-preserved neural differentiation is represented by higher DIs 486 

resulting from lower within and higher between dissimilarities. We computed DIs for each 487 
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participant, occlusion task trials (episodic or semantic), and ROI. We followed the same 488 

procedure for the sensory template runs. DIs for the occlusion task are henceforth referred to 489 

as feedback DIs, and DIs for the sensory template run as feedforward DIs. We contrasted the 490 

resulting indices against zero with one-sided Wilcoxon tests and conducted age group 491 

comparisons separately for feedforward and feedback DIs using LMMs with age (older versus 492 

younger), trial type (episodic versus semantic), and ROI (V1 versus V2) as predictors and 493 

random intercepts per subject. 494 

 495 

Correlation of feedforward and feedback differentiation indices 496 

We transformed all feedforward and feedback DIs into z-scores. Note that a single 497 

feedforward DI was computed per participant and ROI as the 1-back task in the sensory 498 

template run did not include a distinction between episodic and semantic trials. Outliers were 499 

defined as DIs above or below 3.29 standard deviations (signaling the most extreme 0.1%) 500 

from the mean and excluded from further analyses. For younger adults, we removed two 501 

feedforward and two feedback outliers from DI data of ROI V2, and for older adults, we 502 

excluded two feedforward and one feedback outlier from DI data of ROI V1. Finally, we 503 

Spearman correlated (one-sided) the average feedforward DIs with episodic and semantic 504 

feedback DIs separately for age groups and ROIs. All p-values were adjusted using the 505 

Benjamini & Hochberg correction (Park et al., 2010). 506 

 507 

Results 508 

Behavioral results 509 

Training performance on day one 510 

Both age groups learned the object-room associations successfully across their designated 511 

number of learning cycles, i.e., five for younger and nine for older adults, plus one refresher 512 

cycle at the end of the session. All participants crossed the threshold of at least 80% learning 513 
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performance either in the last training or in the refresher cycle at the latest. Figure 4 shows the 514 

learning progress of both age groups for object recognition and object position memory, 515 

respectively.  516 

 517 

Post-scan memory performance on day two 518 

After being scanned, we tested participants’ memory for object-room associations and object 519 

position to ensure they maintained the required retrieval performance during scanning. On 520 

average, both age groups performed above 80 % in both trial types (episodic: Myounger = .81, 521 

SDyounger = .16; Molder = .86, SDolder = .16; semantic: Myounger = .84, SDyounger = .15, Molder= .95, 522 

SDolder = .07). Unpaired two-sided t-tests showed no differences across age groups in episodic 523 

trials for either object memory (t(68.49) = -1.43, p = .156) or object position (Myounger = .77, 524 

SDyounger = .18, Molder =.78, SDolder = .21, t(69.95) = -0.24, p = .805). The mean recognition 525 

memory performance for objects from semantic trials was better for older compared to 526 

younger participants (t(43.77) = -3.61, p <.001). 527 

 528 

fMRI results 529 

The previous study with only younger adults (Ortiz-Tudela et al., 2023) showed that 530 

contextual and mnemonic feedback signals contributed to the activation pattern in 531 

nonstimulated voxels of the primary and secondary visual cortices V1 and V2.  Interestingly, 532 

the extent to which mnemonic feedback signals fed down to these early cortices depended 533 

critically on the retrieval route. That is, only episodic mnemonic content was represented but 534 

not semantic mnemonic content. This difference in content was revealed through RSA, which 535 

was conducted after observing that the initial MVPA decoding approach was only sensitive to 536 

contextual information and failed to capture mnemonic information.  537 

Notably, the lifespan trajectories of episodic and semantic memory are different; 538 

semantic memory remains relatively stable across age with later and less decline than episodic 539 

JN
eurosci

 Acce
pted M

an
uscr

ipt



23 

memory (Li et al., 2004; Rönnlund et al., 2005). We, therefore, hypothesized that the 540 

individual components of feedback would also change with age. More concretely, we 541 

expected that the amount of episodic feedback would be reduced in older adults. Semantic 542 

feedback, on the contrary, should be less affected by age-related changes as semantic memory 543 

content tends to be relatively preserved in older age (Nyberg et al., 2003, 2012; Haitas et al., 544 

2021). Hence, we anticipated less or no decay in semantic feedback signals compared to 545 

episodic feedback signals. For contextual feedback signals, we expected no substantial 546 

differences between age groups because the contextual visual input was identical and 547 

immediately available, and any visual impairment was corrected for all participants with 548 

appropriate MRI-compatible glasses.  549 

 550 

Decoding contextual (and mnemonic) feedback signals 551 

Following the previous study by Ortiz-Tudela et al. (2023), we addressed our 552 

hypothesis first with a classifier-based approach. We set up two classification schemes to 553 

decode contextual and mnemonic information, respectively, from nonstimulated voxels of V1 554 

and V2 (for details about classifier arrangements, see MVPA section). The first classifier 555 

arrangement aimed at capturing contextual room information. In both age groups, the 556 

classifier performed above chance level (.50) for both episodic and semantic trials in both 557 

ROIs (younger adults: V1epi = .69, V2epi = .68, V1sem = .65, V2sem = .66; older adults: V1epi = 558 

.58, V2epi = .58, V1sem = .58, V2sem = .58, all p’s < .001; one-sided one-sample t-test). Linear 559 

mixed model analysis revealed a significant main effect of age on contextual room 560 

information, with classification accuracy in older adults being lower than in younger adults (β 561 

= -0.077, 95% CI [-0.111, -0.043], t = -4.424, p < .001). These results replicate and extend 562 

previous findings by showing that contextual information is a reliably traceable constituent of 563 

feedback signals in nonstimulated voxels of early visual areas not only in younger but also in 564 

older adults. Although we did not anticipate a significant age effect on contextual feedback, 565 

JN
eurosci

 Acce
pted M

an
uscr

ipt



24 

the result is in line with some studies that found an age-related decrease in neural specificity 566 

within feedback signals (St-Laurent et al., 2014; Trelle et al., 2019).  567 

The second classifier arrangement aimed at capturing mnemonic object information. 568 

The classifier did not perform above chance level (.50) in younger or older adults. Therefore, 569 

we were unable to look further into age comparisons (younger adults: V1epi = .49, V2epi = .47, 570 

V1sem = .49, V2sem = .49; older adults: V1epi = .51, V2epi = .51, V1sem = .50, V2sem = .51, all 571 

p’s> .05, one-sided one-sample t-test). This classification failure in older adults replicates the 572 

previous study’s finding with younger adults (Ortiz-Tudela et al., 2023). Nevertheless, this 573 

null result does not rule out the possibility of mnemonic object information existence in 574 

feedback signals. We reasoned that the classifier might have failed to decode object 575 

information at test because it might have learned to classify primarily based on room 576 

information and consequently could not generalize its’ knowledge to a test set of new rooms.  577 

 578 

Coexistence of contextual and mnemonic feedback signals revealed by RSA 579 

Similar to the previous study, we addressed the null result for decoding mnemonic 580 

information by using RSA, which enabled the identification of different sources of variance 581 

within the same data (Ortiz-Tudela et al., 2023). We correlated individual RDMs from 582 

episodic and semantic trials of both ROIs with two model RDMs that represent ideal 583 

dissimilarity correlation patterns for room (contextual model) and object categories 584 

(mnemonic model; see RSA section for further details about RDM model specifications). 585 

Figures 5 A) and B) show the correlations with both model RDMs for younger and older 586 

adults, respectively. Correlating the contextual room model with episodic RDMs resulted in a 587 

moderate relationship for younger (rhoV1 = .31, rhoV2 = .33, both p’s < .001) and a weaker 588 

relationship for older participants (rhoV1 = .15, rhoV2 = .20, both p’s < .001). We observed a 589 

similar age pattern in the correlations between the contextual room model with semantic 590 

RDMs: moderate for younger and weaker for older participants (younger: rhoV1 = .31, rhoV2 = 591 
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.30, both p’s <.001; older: rhoV1 = .14, rhoV2 = .16, both p’s < .001). Interestingly, correlating 592 

the mnemonic model with episodic RDMs resulted in a low positive relationship for both age 593 

groups (younger: rhoV1 = .08, rhoV2 = .11, both p’s < .001; older: rhoV1 = .06, rhoV2 = .08, both 594 

p’s < .001), whereas correlating the mnemonic model with semantic RDMs resulted in 595 

different relationships for the two age groups: In younger adults, a low negative relationship 596 

emerged (rhoV1 = -.03, p < .001, rhov2 = -.01, p = .009) but in older adults, the correlation 597 

turned out positive (rhoV1 = .01, p = .037, rhov2 = .02, p < .001).  598 

Testing these observations formally, LMM analysis revealed a significant three-way 599 

interaction between model, trial type, and age (β = -0.093, 95% CI [-0.183, -0.003], t = -600 

2.023, p = 0.043). We further investigated the interaction by running LMMs separately for the 601 

two models. For the contextual model, only a main effect of age emerged (β = 0.153, 95% CI 602 

[0.114, 0.191], t = 7.793, p < .001) but no significant interaction between age and trial type (β 603 

= 0.006, 95% CI [-0.046, 0.059], t = 0.252, p = .800). In particular, older adults, compared to 604 

younger adults, showed lower correlations between the contextual model with both episodic 605 

and semantic RDMs. For the mnemonic model, we found a significant interaction between 606 

age and trial type (β = -0.073, 95% CI [-0.103, -0.044], t = -4.859, p < .001), indicating that 607 

the difference between younger and older age groups was larger in semantic trials (t(276) =    608 

4.42, p < .001) than in episodic trials (t(276) = -2.37, p = .018), specifically because younger 609 

adults showed lower correlation estimates in the negative direction, while older adults showed 610 

higher, positive correlation estimates.  611 

Taken together, these findings are in line with our classification results by showing 612 

that 1) contextual information is present in feedback signals in both age groups, trial types, 613 

and ROIs, and 2) the amount of contextual information is overall reduced in older adults early 614 

visual areas V1 and V2, suggesting dedifferentiation of contextual feedback signals. In 615 

contrast to our classification results and in line with the original study with younger adults 616 

only, RSA revealed that mnemonic information exists in both younger and older adults’ 617 
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primary and secondary cortices. Interestingly, episodic feedback was comparably well 618 

reinstated in younger and older adults, whereas semantic feedback was more reliably 619 

reinstated in older but not in younger participants. Even though these results are contrary to 620 

our expectations, they lend support to previous research showing that older adults rely on 621 

semantic knowledge more extensively, especially benefiting from it when learning new 622 

information in line with their prior knowledge (Badham and Maylor, 2014; Mohanty et al., 623 

2016; Lalla et al., 2022). 624 

In our preregistration, we included a variance partitioning approach to further explore 625 

the unique contribution of different sources of information on activation patterns, particularly 626 

the age differences therein. However, in observation of dedifferentiation, the reduced 627 

contextual feedback results indicated a higher noise level in older adults’ brains. Thus, the 628 

amount of variance that could be explained is presumably lower in older adults and, 629 

consequently, not comparable to the amount of variance available in younger adults. 630 

Consequently, we did not pursue this analysis to prevent inappropriate interpretations when 631 

comparing the amount of variance between age groups. 632 

 633 

Dedifferentiation in mnemonic feedback signals and feedforward visual input 634 

So far, we have provided empirical evidence for the existence of contextual and 635 

mnemonic feedback signals not only in younger but also in older adults. We further showed 636 

that the composition of feedback signals changes over the lifespan. Compared to younger 637 

adults, contextual feedback was reduced, episodic feedback was similar, and semantic 638 

feedback was stronger in older adults. To further characterize dedifferentiation in mnemonic 639 

feedback (i.e., specificity in object information), we calculated DIs for each trial type and 640 

ROI. DIs were tested against zero and compared across age groups. Following previous 641 

research on age-related episodic memory decline, we expected primarily episodic feedback to 642 
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suffer from age-related dedifferentiation; that is, older adults would have lower DIs in 643 

episodic trials than younger adults.  644 

Figures 5 C) and D) show feedback DIs for younger and older adults, respectively. 645 

Feedback DIs for both age groups were significantly different from zero (younger adults: 646 

V1epi = 25.34, z = 4.43, p < .001; V2epi = 22.05, z = 5.64, p < .001; V1sem = -3.87, z = -3.30, p 647 

< .001; V2sem = -3.69, z = -2.29, p = .010; older adults: V1epi = 10.71, z = 5.70, p < .001; V2epi 648 

= 3.41, z = 6.09, p < .001; V1sem = .50, z = 1.65, p = .049; V2sem = 1.15, z = 2.74, p = .002; 649 

one-sided Wilcoxon test). LMM analyses resulted in a significant two-way interaction 650 

between age and trial type (β = -6.75466, 95% CI [-10.521, -2.969], t = -3.478, p < .001). The 651 

difference between age groups was higher in semantic trials (t(284) = 3.21, p = .001) 652 

compared to episodic trials (t(284) = -3.61, p < .001), with younger adults having lower 653 

semantic DIs than older adults. This finding is in line with the RSA model correlation results 654 

suggesting that episodic feedback does not show compromise in neural specificity in older 655 

age. Interestingly, semantic feedback signals even increased in DIs, such that the neural 656 

specificity for this mnemonic content improves in older age. To complement those findings, 657 

we explored neural differentiation within our ROIs when the objects were presented as 658 

feedforward visual input during the sensory template run (i.e., episodic and semantic object-659 

room pairings were consecutively presented during scanning; for details, see Sensory 660 

Template in the methods section). All feedforward DIs were different from zero (younger 661 

adults: V1epi = .021, z = 6.08; V2epi = .014, z = 5.64; V1sem = .024, z = 6.23; V2sem = .012, z = 662 

5.56; older adults: V1epi = .009, z = 5.25; V2epi = .009, z = 5.65; V1sem = .006, z = 4.10; V2sem 663 

= .005, z = 4.42; all p’s < .001, one-sided Wilcoxon test). Through LMM analysis, we 664 

observed a significant main effect of age on neural differentiation (β < .001, 95% CI 665 

[0.009338798, 0.027471357], t = 3.936, p < .001), meaning that feedforward DIs were lower 666 

in older compared to younger adults. Therewith, we replicated previous research and 667 
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contributed additional evidence for age-related neural dedifferentiation at the item level in the 668 

early visual areas V1 and V2. 669 

 670 

Relating feedforward and feedback components across age 671 

It has been suggested that dedifferentiation could result from a general age-related 672 

deficient dopaminergic modulation (Li et al., 2001; Abdulrahman et al., 2017). If the 673 

underlying mechanism for age-related dedifferentiation is general across brain areas and 674 

pathways, feedforward and feedback signals might be impacted to a comparable extent. Based 675 

on this assumption, we expected to find a positive relationship between neural specificity in 676 

feedforward and individual feedback components as age increases. To this end, we correlated 677 

the feedforward DIs with DIs for episodic and semantic feedback separately per age group 678 

and ROI. The correlation between feedforward and semantic feedback DIs (see Figure 6) 679 

neither resulted in a significant relationship in older (rhoV1 = -.11, p = .736, rhov2 = .11, p = 680 

.334) nor in younger adults (rhoV1 = -.3, p = .179, rhov2 = -.05, p =.616). A different picture 681 

emerged when we correlated feedforward with episodic feedback DIs. In older adults, we 682 

observed a low positive relationship between feedforward and episodic feedback DIs in V1 683 

and V2 (rhoV1 = .34, p = .044, rhov2 = .35, p = .044), whereas, in younger adults, this positive 684 

relationship appeared only in V1 (rhoV1 = .41, p = .035, rhoV2 = .18, p = .215). This pattern 685 

supports the hypothesis that the putative mechanism of dedifferentiation (e.g., dopaminergic 686 

modulation) impacts both feedforward and feedback signals but points out that this is only 687 

true for a specific component of the feedback signal. Specifically, mnemonic content retrieved 688 

through an episodic route was especially prone to age-related changes in the neural 689 

mechanism that fosters dedifferentiation, while semantic content was spared. Furthermore, 690 

this result implies that certain brain areas, such as V1, are more affected by dedifferentiation 691 

than others.  692 

 693 
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Discussion 694 

The present study examined age-related changes in the composition of feedback signals in the 695 

early visual areas of younger and older adults. We combined an occlusion paradigm with 696 

multivariate fMRI pattern analysis, allowing us to isolate and examine concurrent contextual 697 

and time-distant mnemonic information in feedback signals in V1 and V2. As the first study 698 

that scrutinized age-related differences in feedback signals, four main findings emerged.  699 

First, concurrent contextual and time-distant mnemonic information coexist as 700 

feedback signals in V1 and V2 of both younger and older adults. By this, we replicated 701 

previous research that identified contextual (Smith and Muckli, 2010; Muckli et al., 2015) and 702 

mnemonic (episodic or semantic) information in feedback signals (Ortiz-Tudela et al., 2023) 703 

in younger adults’ visual cortex occluded from feedforward visual input and extended this 704 

finding to older adults. As occlusions are ubiquitous in everyday life, both young and 705 

senescent visual systems must overcome the perceptual challenge of disambiguating uncertain 706 

visual input. Feedback signals facilitate this process by carrying information from the 707 

concurrent surroundings and internally retrieved time-distant memory representations to “fill 708 

in the blank” in the case of occlusion.   709 

Second, decoding accuracy of contextual feedback was reduced in older adults’ V1 710 

and V2. Lower correlations between a contextual feedback model and multivariate activation 711 

patterns in older adults supported this finding. Reduced classification accuracy and 712 

(dis)similarity measures have been previously interpreted to indicate age-related 713 

dedifferentiation in neural representations (Abdulrahman et al., 2017; Trelle et al., 2019; 714 

Folville et al., 2020). Our results showed that contextual feedback is prone to age-related 715 

dedifferentiation. Common age-related changes in the neural circuitry within the visual cortex 716 

could account for this reduction. For example, demyelination, reduced spine, and synapse 717 

densities may lead to dendritic and axonal regressions, which may hamper the integrity of 718 

neural signal that is transferred via lateral intracortical connections to adjacent receptive fields 719 
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(Smith and Muckli, 2010; Larkum, 2013; Danka Mohammed, 2021). However, the exact 720 

nature and impact of age-related decline in micro-structure integrity within early visual 721 

regions is not fully known and needs to be examined in future research. Additionally, an 722 

increased baseline noise level in older adults’ EVC has been shown to compromise perceptual 723 

processing (Li et al., 2001; Tran et al., 2020). In line with this, we found feedforward DIs to 724 

be significantly lower in older adults, probably rendering the transmitted contextual feedback 725 

less representative of the original input. Future studies should consider including diffusion 726 

tensor imaging to obtain measures for the structural integrity of lateral neural connections to 727 

account for such changes (Voss et al., 2008).  728 

Despite the compromised lateral transfer of contextual information, the 729 

representational quality of mnemonic feedback could nevertheless be preserved due to 730 

compensatory mechanisms (Park et al., 2001). For example, older adults have been shown to 731 

recruit more neural resources at low task demand levels as a compensatory strategy, 732 

improving neural distinctiveness (Reuter-Lorenz and Cappell, 2008; Carp et al., 2010). This 733 

observation may be important to consider with our third main finding: episodic feedback 734 

remained well differentiated across age groups, whereas semantic feedback was even better 735 

differentiated in older adults than in younger adults. The maintenance of episodic feedback 736 

signals was unexpected for several reasons. Age-related episodic memory decline is well 737 

established in the aging literature, as well as the notion that older adults tend to retrieve only 738 

the gist of a previously experienced episode; namely, contextual details are lost while the 739 

central aspects are preserved (Koutstaal and Schacter, 1997; Old and Naveh-Benjamin, 2008; 740 

Nyberg et al., 2012; Abadie et al., 2021). Interestingly, while there is evidence for reduced 741 

episodic memory reinstatement in the visual cortex (Zheng et al., 2018), some studies found 742 

neural reinstatement of episodic memory content as age-invariant (Wang et al., 2016; Thakral 743 

et al., 2017, 2019). According to the Lifetime Experience Hypothesis by Koen and Rugg 744 

(2019), the absence of age-related dedifferentiation could be explained by high familiarity 745 
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with the stimulus material in both age groups, attenuating differences in neural specificity of 746 

episodically retrieved feedback. Furthermore, our training procedure might have contributed 747 

to the well-differentiated episodic feedback, which was also mirrored by very high post-scan 748 

recognition memory performance for episodic object-room combinations. Older adults 749 

received four additional learning cycles for encoding the episodic set on day one. These 750 

additional cycles, together with the relatively small training set (eight object-room 751 

combinations), could have provided older adults the opportunity to compensate for any 752 

attentional or binding deficits during encoding and eventually diminished effects of 753 

dedifferentiation, leading to a comparable behavioral performance (for a similar pattern, see 754 

St-Laurent et al., 2014). Furthermore, we assume that due to our recruiting strategy through 755 

the university, the older adults were positively biased, characterized by youth-like memory 756 

integrity and distinctiveness of neural representations (Fandakova et al., 2015; Zhang et al., 757 

2020; Katsumi et al., 2021). Taken together, our results show that episodic feedback is not 758 

compromised when performance level is matched between age groups. 759 

In terms of semantic feedback, we expected no age difference or only slightly less 760 

differentiation in older compared to younger adults. Somewhat surprisingly, our results 761 

showed that semantic feedback was even better differentiated in older than younger adults. 762 

This finding supports studies suggesting that the semantic memory system remains relatively 763 

intact in older adults, even with improvements in some domains (Laumann Long and Shaw, 764 

2000; Levine et al., 2002; Lalla et al., 2022). Interestingly, while most studies investigated 765 

dedifferentiation using episodic retrieval tasks, the only study that employed an additional 766 

semantic task did not find neural dedifferentiation, pointing to the preservation of generalized 767 

knowledge in older age (St-Laurent et al., 2011). Moreover, the ecological validity of our 768 

stimulus material, as well as the congruity between semantic object-room pairs, might have 769 

helped older adults at retrieval and thereby enhanced neural differentiation of semantic 770 

feedback (Badham and Maylor, 2014; Mohanty et al., 2016; Brod and Shing, 2019). Although 771 
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the semantic set was not as extensively trained as the episodic set, the semantic post-scan 772 

retrieval performance was better in older adults than younger adults, which underlines the 773 

growing impact of semantic knowledge over the lifespan and supports previously reported 774 

relationship between higher neural differentiation and better memory retrieval (Katsumi et al., 775 

2021). Nevertheless, it should also be noted that the poorer post-scan memory performance of 776 

younger adults for semantic trials could have been a by-product of the different response 777 

formats between age groups. Younger adults entered their responses with their left hand 778 

within 2 seconds time window, potentially leading to some premature response errors (note 779 

that two errors would already result in a performance level of 75%). In contrast, older adults 780 

verbally indicated the objects within 4 s, and the responses were entered by the experimenter. 781 

In addition to the growing relevance of semantic memory, a decline in inhibitory 782 

control might challenge older adults to suppress accessing semantic information, which 783 

happens largely automatically (Karl Healey et al., 2013; Vachon et al., 2019). At the same 784 

time, intensified recruitment of semantic knowledge could compensate for deterioration 785 

elsewhere, such as feedforward perception and contextual feedback. Future research should 786 

employ longitudinal study designs to track changes in feedback signals as they may emerge 787 

gradually over the lifespan. To further scrutinize the sources and compensatory mechanisms 788 

that may underlie age-related changes in feedback composition, connectivity analysis 789 

techniques such as psychophysiological interaction analysis or deep neural networks could be 790 

utilized (cf. Deng et al., 2021; Ortiz-Tudela et al., 2023). 791 

Fourth, while differentiation of feedforward visual input was overall reduced in older 792 

adults, the extent of differentiation was positively related to episodic feedback signals in both 793 

older adults’ V1 and V2 and younger adults’ V1. That is, the retrieval of better-differentiated 794 

information through an episodic route correlated with better differentiation of visual input in 795 

early visual areas across age groups. This result partly met our hypothesis predicting a 796 

positive relationship between neural differentiation in feedforward and feedback signals, 797 
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especially in older adults. Age-invariant relationships between neural selectivity at perception 798 

and retrieval have been demonstrated before (Johnson et al., 2015; Hill et al., 2021; Katsumi 799 

et al., 2021). In line with this research, our findings suggest that regardless of age, neural 800 

specificity during feedforward processing is correlated with neural specificity of feedback. 801 

We extend this postulation by demonstrating that this age-invariant relationship is only 802 

present for information retrieved episodically but not semantically and that it holds even in 803 

the absence of reduced neural differentiation of episodic feedback. The lack of relation 804 

between feedforward and semantic feedback aligns well with Park et al. (2010), who showed 805 

that neural specificity was associated with measures of fluid processing ability but not 806 

crystallized knowledge. A possible interpretation is that as accumulated knowledge increases, 807 

it is less dependent on the quality of neural differentiation in feedforward visual input. On the 808 

contrary, episodic memory ability is more variable across the lifespan, and the integrity of 809 

stored episodic content depends on the initial quality of neural differentiation at perception. 810 

Hence, episodic memory is more prone to differences in neural selectivity regardless of age.  811 

In sum, we demonstrated the coexistence of concurrent contextual and time-distant 812 

mnemonic information in feedback signals in early visual areas V1 and V2 across age. 813 

Furthermore, we showed that individual feedback components follow distinct trajectories 814 

regarding neural dedifferentiation. Episodic feedback signals were comparably differentiated 815 

across age, whereas semantic feedback signals showed better neural differentiation in older 816 

adults than in younger adults, probably reflecting the lifelong accumulation of generalized 817 

knowledge. Notably, while feedforward differentiation was reduced in older adults, it was 818 

positively correlated with episodic feedback in both age groups. This suggests that measuring 819 

dedifferentiation of internally generated signals depends on the nature of the retrieved 820 

information. Our findings have important implications for the investigation of memory 821 

reinstatement and aging, highlighting dissociations among different components of feedback 822 

signals across the lifespan.   823 
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 1030 

Figure Legends 1031 

Figure 1. Schematic overview of training and test phases across days. A) During day one 1032 

training, participants studied room-object combinations with minimal semantic relation, i.e., 1033 

the episodic set. The target objects were always placed in the lower right corner of the room 1034 

image. After each training cycle, we tested object memory with a 4AFC format, followed by 1035 

memory for the objects’ original position. B) On day two, participants were introduced to the 1036 

semantic set consisting of new room images and verbally indicated the object with maximal 1037 

semantic relation to the room. During scanning, the occlusion task showed rooms from both 1038 

episodic and semantic sets with a white occluder hiding the area of the target object. 1039 

Participants were asked to focus on the cross in the center of the screen and to reinstate and 1040 

hold the entire room in mind, including the associated object, with as much detail as possible. 1041 

 1042 

Figure 2. Classification setup. All trials used for decoding analyses stem from the occlusion 1043 

task performed in the scanner on day two. Note that the objects were never shown during the 1044 
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actual task (shown here only for illustration purposes). We performed decoding on voxels in 1045 

V1 and V2 that represented the occluded lower right corner. A) To decode contextual 1046 

information, we provided the classifier with a training set of different rooms associated with 1047 

the same objects (solid box). Based on this arrangement, the classifier could use only the 1048 

contextual room information in feedback signals to distinguish trials of the upper stack from 1049 

trials of the lower stack. The test set (dashed box) comprised the same object-room 1050 

combinations from a separate run from the training set. B) To decode mnemonic information, 1051 

the classifier was trained with two trial sets of different rooms associated with different 1052 

objects (solid box). Here the classifier could use contextual and mnemonic feedback to learn 1053 

to distinguish the upper from the lower stack. When tested on a set of new rooms that shared 1054 

the same object (dashed box), only the mnemonic feedback that was consistent (across 1055 

training and test sets) could provide sufficient information to discriminate between them. 1056 

Figure 3. Model RDMs. Two model RDMs representing an ideal neural response pattern 1057 

were created and correlated with the neural RDM of a participant. For illustration purposes, 1058 

reduced model matrices spanning 24x24 trials instead of 96x96 trials are plotted. Cells 1059 

represent four object-room pairings (TV-Room A, TV-Room B, Bed-Room A, Bed-Room B) 1060 

containing either zeros (= lowest possible dis-similarity) or ones (= highest possible dis-1061 

similarity). In the left panel mnemonic model, “same object – different room” cells are 1062 

colored in red, indicating zeros since retrieving the same object should ideally result in the 1063 

lowest possible dissimilar neural signal. “Different object – different room” cells are colored 1064 

in blue, indicating ones since retrieving different objects should ideally result in the highest 1065 

possible dissimilar neural signal. “Same object – same room” cells are colored in white and 1066 

were removed from the correlation analysis to prevent the coefficient from being artificially 1067 

lowered through room similarity. In the right panel contextual model, “same object – same 1068 

room” cells are colored in red, indicating zeros since perceiving the same room images should 1069 

ideally result in the lowest possible dissimilar neural signal. “Same object – different room” 1070 
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cells are colored in blue, indicating ones since perceiving different rooms should ideally result 1071 

in the highest possible dissimilar neural signal. The diagonal cells are colored in white and 1072 

were removed from the correlation analysis to prevent the coefficient from being artificially 1073 

lowered through overall similarity. 1074 

 1075 

Figure 4. Memory performance across learning cycles on day one. The proportion of correct 1076 

responses for object recognition (upper panel) and position memory (lower panel) across five 1077 

learning cycles for younger (left panel) and nine learning cycles for older adults (right panel), 1078 

plus one refresher cycle at the end of the session, respectively. The dashed red line indicates 1079 

the threshold of 80% that had to be crossed, either in the last or the refresher cycle of the 1080 

object recognition task, to be included for fMRI analysis. 1081 

 1082 

Figure 5. Model correlations and feedback differentiation indices. The upper panel shows 1083 

Spearman correlations (z scores) for A) younger and B) older participants between individual 1084 

RDMs and two model RDMs representing ideal dissimilarity correlation patterns for context 1085 

(contextual model) and object categories (mnemonic model), respectively. Correlations are 1086 

separately shown for episodic and semantic trials in ROIs V1 and V2. The lower panel shows 1087 

differentiation indices separately for episodic and semantic mnemonic feedback for C) 1088 

younger and D) older participants in both ROIs V1 and V2. The dashed vertical line indicates 1089 

zero. 1090 

 1091 

Figure 6. Relationship between visual feedforward and mnemonic feedback DIs. Spearman 1092 

correlations between average feedforward DIs and episodic and semantic feedback DIs are 1093 

plotted for younger (left panel) and older adults (right panel) and separately for ROIs V1 (top) 1094 

and V2 (bottom). Darker colors and solid lines represent episodic feedback DIs, and lighter 1095 

colors and dashed lines represent semantic feedback DIs. Shaded ribbons represent the 95% 1096 
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confidence intervals. Average feedforward DIs were positively related to episodic feedback 1097 

DIs in younger adults’ V1 and older adults’ V1 and V2. 1098 
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