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A B S T R A C T

The occurrence of manufacturing defects in wind turbine blade (WTB) production can result
in significant increases in operation and maintenance costs of WTBs, reduce capacity factors of
wind farms, and occasionally lead to severe and disastrous consequences. Therefore, inspection
during the manufacturing process is crucial to ensure consistent fabrication of composite
materials. Non-contact sensing techniques, such as Frequency Modulated Continuous Wave
(FMCW) radar, are becoming increasingly popular as they offer a full view – cross sectional
analysis – of these complex structures during assembly and curing. In this paper, we enhance
the quality assurance of WTB manufacturing utilising FMCW radar as a non-destructive sensing
modality. Additionally, a novel anomaly detection pipeline is developed that offers the following
advantages: (1) We use the analytic representation of the Intermediate Frequency signal of
the FMCW radar as a feature to disentangle material-specific and round-trip delay information
from the received wave. (2) We propose a novel anomaly detection methodology called
focus Support Vector Data Description (focus-SVDD). This methodology involves defining the
limit boundaries of the dataset after removing healthy data features, thereby focusing on
the attributes of anomalies. (3) The proposed method employs a complex-valued autoencoder
to remove healthy features and we introduces a new activation function called Exponential
Amplitude Decay (EAD). EAD takes advantage of the Rayleigh distribution, which characterises
an instantaneous amplitude signal. The effectiveness of the proposed method is demonstrated
through its application to collected data, where it shows superior performance compared to
other state-of-the-art unsupervised anomaly detection methods. This method is expected to make
a significant contribution not only to structural health monitoring but also to the field of deep
complex-valued data processing and SVDD application. The code and dataset will be made
publicly available. The code and dataset are available here 1

. Introduction

The wind turbine industry is experiencing consistent expansion within its sector, with projections indicating a compound annual
rowth rate of 10.1% from 2022 to 2027. As a result of this growth, the wind turbine industry is expected to increase its market
ize from $18.75 billion in 2020 to $26.82 billion by 2027 [1]. The growth of the wind turbine industry is largely attributed to
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advancements in turbine design, such as the use of larger wind turbines, longer turbine blades (measuring over 100 m in length)
and the implementation of floating wind turbines, allowing for positioning further from the shoreline [2]. The increasing size and
complexity of wind turbine designs have resulted in a greater need for improvements in quality assurance due to the increased risks
and complexity when creating larger designs, especially since manufacturing defects can lead to crack formation, propagation under
cyclic stresses and defects further in the operational lifecycle [3–5].

Despite wind turbine blade composites manufacturing being predominantly a manual process, efforts have been made to improve
he manufacturing method. Automation is an approach which aims at reducing manufacturing cycle duration’s alongside consequent
anufacturing unit cost reductions [6]. Improvements in manufacturing techniques to date have mainly consisted of developing

utomation in the layup technique, positioning of blade composite to be prepared for sanding, trimming and grinding, as well as
educing the number of personnel working at height, particularly for larger blades [7]. To improve the accuracy in automation,
igital twins are being explored as means to couple real-world data into simulations that improve design and assembly processes,
nd allow for an overview of quality assurance in the manufacturing phase [8,9]. The intention being that by leveraging historical
esults and data from SCADA and structural health monitoring techniques to inform current manufacturing at pace that reduces
efects occurring in the manufacturing stages [10,11].

Inspection during the manufacturing process is essential to ensure that composite materials are fabricated consistently. It can
inimise the occurrence of imperfections, which in turn could lead to complications, resulting in cost overruns and asset downtime.
he manufacturing process of composite materials poses several challenges, which can vary depending on the technique used.
onsistent hardening of the of composite materials when injecting epoxy resin can be challenging and may result imperfections.
ence, there is a need for sensing methodologies that can verify the quality of the asset as a high quality material. In this research,
e employed a non-contact method using Frequency Modulated Continuous Wave (FMCW) radar to inspect defects in epoxy resin

njection, which are known to pose challenges. The sensor is low power, lightweight and operates in the K-band. Initial experiments
ere conducted on replicated defects during Operation and Maintenance (O&M) [12]. This work specifically focuses on quality
ssurance during the production of composite wind turbine blades.

There are several methods of inspection which are currently available or in development for structural health monitoring within
omposites. Montazerian et al. conducted a comprehensive review of the various types of sensors that can be embedded within
omposite materials, including piezoelectric, piezoresistive and optical fiber sensors [13]. However, embedding sensors within a
omposite being cured can alter the curing process, resulting in delaminations. Hassani et al. present a comprehensive review of
tructural health monitoring techniques for composite structures detailing the types of damage that can be present on a composite
tructure via non-destructive testing techniques and vibration-based damage detection [14]. Listed below are some of the critical
equirements for sensing methods that emerged as key limitations in the reviewed papers: affordability, continuous monitoring
apability, sensitivity to low level of damage, ability to detect different damage types,robustness to different ambient loading
onditions, resistance to measured noise, and resilience to environmental factors like weather. Gupta et al. provide an in depth
eview of sensing technologies for non-destructive evaluation of structural composite materials [5]. The review paper highlights
ifferent sensing mechanisms alongside their working principles, setups, advantages, limitations and usage levels for structural
omposites. The article also provides an insight into current and future research trends for composites and prognostics and health
anagement (PHM). The current research imperative displays a trend towards non-contact sensing, including methods such as digital

mage correlation, infrared tomography and FMCW. To sum up, current research in the field highlights the difficulties associated
ith detecting subsurface defects that are present in composite materials. Detecting potential defects or weaknesses in turbine blades
uring the manufacturing process is critical for effective prognostics and health management. As the turbine blades become larger,
he risks associated with undetected defects in the early phases also increase. The primary objective of this article is to improve
he quality assurance of manufactured blades using FMCW radar as a non-destructive tool. By using this technology, manufacturing
enters can increase production to meet demand while ensuring that high-quality products with extended overall lifecycles and
apabilities are delivered to the market.

The FMCW radar is a non-destructive sensing method with the ability to address open challenges in composite structure
haracterisation via surface and subsurface detection of defects. To date, the sensor has been utilised for several defects within
orous dielectric materials including delamination, water ingress, embedded materials and subsurface anomalies. The technology
as been applied to sandstones representing civil infrastructure, sandwich and monolithic composite wind turbine blades and
armac with surface salt dispersions [15–19] In addition, the sensor has the ability to detect dynamic load deformations where
or a dynamically compressed sandstone, the sensor provided up to 30 s of warning in sandstone [20]. This article introduces
ovel framework that combines signal processing and deep learning approaches for detecting anomalies during the manufacturing
hase. This work demonstrates the significance of employing FMCW radar for non-invasive real-time data capture and monitoring
hroughout the entire manufacturing process, rather than during the O&M stage, due to the nature of the simulated manufacturing
efect. For example, during resin injection, the sensor could be positioned to monitor the flow rate of injection and identify areas
hich require more resin to assure successful composite bonding; leading to quality assurance. While composite materials have seen
n increase in the wind industry, their usage has also increased due to new use cases within aerospace, hydrogen storage tanks,
utomotive and civil infrastructure, which will also face similar challenges in future to ensure effective manufacture and operational
ifecycle [21–23].

The proposed novel framework makes two methodological contributions that leverages the characteristics of the FMCW radar
ata. We also recognise the potential transferability of the method to the O&M sector for asset integrity inspection via deployed
obotics for improved integrity analysis. Firstly, we introduce an unsupervised anomaly detection approach using support vector
2

ata description (SVDD) [24]. Our approach represents a specific case of a one-class classifier, where the model is exclusively trained
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using samples of healthy data. Although SVDD is not a new technique for anomaly detection, it has been recently applied various
studies such as [25] for rolling bearing performance degradation assessment, [26] for detecting faults in gearbox vibrational signals
and [27] for structural health monitoring. The reason behind its recent popularity is its efficient learning capabilities and the ease
of interpretation of the obtained results. Although there are notable extensions for semi-supervised cases [28], or data that can be
mapped to a graph [29], utilising more advanced strategies such as deep models have not demonstrated better results than the
standard approach for unsupervised cases [30]. Our study is to streamline the SVDD task by focusing on the residuals between
the expected healthy behavior and the observed one, enabling us to focus on anomaly attributes that deviate from the healthy
distribution. To achieve this, we propose a new approach called focus-SVDD that removes healthy data features from the dataset.
We propose utilising an Autoencoder (AE) to eliminate these features, and also modify the SVDD boundary to address any potential
overfitting issues that may arise from using this model.

Our second methodological contribution involves exploring various representations of the Intermediate Frequency signal, with a
ocus on the analytical representation. This representation provides a better separation between the effects of round trip propagation
nd the frequency-dependent reflectivity of the surface target. However, since the analytical signal is complex-valued, an AE capable
f handling this type of data is necessary. The use of complex-valued network [31] is a recent development in this field, with
pplications in remaining useful life prediction of rotating machinery [32], object discovery [33] and speech enhancement [34] .
ne major challenge faced in this domain is the lack of a standard activation function, such as the Rectified Linear Units (ReLU),
sed for real-valued autoencoders. In this work, we introduce a novel complex activation function called Exponential Amplitude
ecay (EAD) that leverages the Rayleigh distribution of the complex amplitude distribution to achieve better performance.

. Materials and methods

.1. Investigation procedure: Monolithic composite

The material under test included a monolithic composite material representing a sample of a wind turbine blade and can be
iewed in Fig. 1A with detailed schematic in Fig. 1B. The thickness of the material measured 51.4 mm ±0.4 at 18 points across

the material. The material exhibited a dry adhesive defect typically found during the manufacturing process and is formed during
the resin infusion process. This occurs when insufficient resin penetrates the fiberglass material resulting in an uncured adhesive.
The regions of uncured adhesive measured approx. 12 cm in height and 10 cm in width. The sample was intentionally created to
exhibit this defect using the methods and materials used to construct very large WT blades for offshore use. As seen in Fig. 1B, the
red line represents the extent of absent resin on the surface of the sample. The yellow line represents an estimate of where the resin
is absent within the sample.

Fig. 1C depicts the FMCW radar setup comprising the electronics that generate the electromagnetic wave and the horn antenna
that is attached to it. The controller board requires a 12 V supply and contains a serial port for data extraction. The sensor
weighs approximately 400 grams, consumes low power and can detect surface and subsurface defects within dielectric materials
and composites. The radar operated from 24–25.5 GHz, bandwidth of 1500MHz with chirp duration of 300 ms and sample rate
of 0.2 Hz. To ensure an accurate data collection process, we employed a universal robotic manipulator to automate the process
(Fig. 2.). The time taken to complete one scan of the sample was approximately 10 min, where several waypoints were positioned
in advance of the scan to cover the full area of the composite. Expecting a recording distance of approximately 10 cm from the
surface interface, we acknowledge that slight variations may occur during blade production. To ensure robustness in the face of
such operating conditions, we have captured the dataset at three distinct distance ranges: 5 cm, 10 cm, and 15 cm from the surface.
This approach ensured continuous scanning of different areas of the sample. The dataset utilised during this research was acquired
during the experimentation phase of Tang et al. 2023 [18].

2.2. Data representation

The raw data obtained from the radar sensor is in the time domain and consists of 1501 data points. The signal output from
the FMCW sensor is the Intermediate Frequency (IF), which is the difference between the emitted signal and the target interaction
with the incident wave. According to [35], the IF signal, noted here 𝐱 ∈ R1501, can be modelised as a superposition of 𝑁 weighted
cosine function such as:

𝑥(𝑡) =
𝑁
∑

𝑛=1
𝑎𝑛 cos(𝑤𝑛𝑡 + 𝜙𝑛) (1)

where 𝑁 is the number of radar target or reflective elements. For each target, 𝑤𝑛 and 𝜙𝑛 are proportional to the round trip
propagation time, which is the distance between the target and the radar. The factor 𝑎𝑛 is the frequency dependant reflectivity
and is a function of the target property and frequency sweep range. As a first step, we standardise the IF signal using the average
mean and standard deviation of a set of healthy signals.

To disentangle information about the round trip propagation and frequency dependant reflectivity, we propose using the analytic
representation of the signals. The analytic representation is based on the Hilbert transform [∙] [35], is shown in the following
equation when applied to the IF signal:

[𝐱](𝑡) =
𝑁
∑

𝑎𝑛 sin(𝑤𝑛𝑡 + 𝜙𝑛), (2)
3

𝑛=1
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Fig. 1. A- Composite with dry adhesive defect, B- Schematic of the monolithic material and C- FMCW radar setup.

Fig. 2. The data collection technique using FMCW radar and manipulator arm.

The goal of the analytic representation is to propose a natural extension of a real signal in the complex domain by removing the
negative frequencies. It can be computed as:

𝐱H = 𝐱 + 𝑖[𝐱], (3)

Thus by substituting Eqs. (1) and (2) into Eq. (3):

𝑥H(𝑡) =
𝑁
∑

𝑛=1
𝑎𝑛e𝑖(𝑤𝑛𝑡+𝜙𝑛). (4)

To ensure an accurate separation of the frequency-dependent reflectivity of the surface and its round-trip propagation time into
their respective amplitude and phase, it is essential for the surface of interest to exhibit a higher frequency-dependent reflectivity
compared to other reflective elements. This condition necessitates that the radar remains close to the surface of interest. For the radar
target with the highest amplitude, which is expected to be the monolithic composite material, we expect its frequency dependant
reflectivity amplitude to remain unchanged over time due to the cosine function. Additionally, we anticipate that the round trip
propagation time to be encoded in the phase of the signal.

In addition, we propose to study the instantaneous amplitude representation of the IF signal. This will put more emphasis on
the frequency dependant reflectivity coefficients. By taking the modulus | ∙ | of the analytic representation, we have:

𝐱A = |𝐱H| (5)

Finally, we consider two additional features, that are real-valued representation of complex valued vectors. Considering that
𝐱H = |𝐱H|𝑒𝑖𝝓, where 𝝓 is the instantaneous phase of the element of the vector 𝐱H, we consider the feature recently utilised in [36]
4
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and noted 𝐱A𝜙 which is the concatenation of the instantaneous phase and amplitude of the signals. With [𝐱; 𝐲] the notation for the
concatenation between the two vector 𝐱 and 𝐲, the feature 𝐱A𝜙 can be noted as:

𝐱A𝜙 =
[

|𝐱H|;𝝓
]

(6)

Another viable configuration, as employed in previous work, such as in [37], involves concatenating the real and imaginary
components. This configuration noted 𝐱RI can be computed as:

𝐱RI =
[

|𝐱H| cos(𝝓); |𝐱H| sin(𝝓)
]

(7)

.3. Anomaly detection with kernel Support Vector Data Description

Support Vector Data Description (SVDD) is a method developed for dataset characterisation [24]. Its purpose to find the boundary
f a dataset and has been successfully used for anomaly detection in various applications [26,27]. Analogous to the support vector
achine model, SVDD also uses a kernel function to provide flexibility. The most widely used kernel function is the Radial Basis

unction (RBF) [24]. The application of the RBF kernel between two vectors 𝐱𝑘 and 𝐱𝑘′ can be written as:

𝛾 (𝐱𝑘, 𝐱𝑘′ ) = 𝑒−𝛾‖𝐱𝑘−𝐱𝑘′ ‖
2
𝐹 (8)

here ‖ ∙ ‖𝐹 is the Frobenius norm and 𝛾 is a free parameter that needs to be carefully choosen. In this work, our focus is solely on
he RBF-SVDD method due to its efficiency. The RBF-SVDD can be regarded as a constrained kernel density estimation problem with
density limit 𝐷𝛾

𝐗𝑇
, which characterises the boundary between healthy and unhealthy samples. This density limit can be expressed

s follows:

𝐷𝛾
𝐗𝑇

=
𝐾
∑

𝑘=1

𝐾
∑

𝑘′=1
𝛼𝑘𝛼𝑘′𝛾 (𝐱𝑘, 𝐱𝑘′ ) (9)

where 𝐗𝑇 = {𝐱1, 𝐱2,… , 𝐱𝐾} is the training dataset containing 𝐾 healthy samples. Here, 𝛼 ∈ R𝐾 is a vector that describes the
importance of each training vector to characterise the density distribution of the dataset. The vector 𝛼 is computed by minimising
the following optimisation problem:

argmin
𝜶

𝐷𝛾
𝐗𝑇

(10)

s.t.
𝐾
∑

𝑘=1
𝛼𝑘 = 1,

0 ≤ 𝛼𝑘 ≤ 𝐶 ∀𝑘 ∈ {1,… , 𝐾}.

where 𝐶 is the SVDD hyperparameter that can take values from the segment [ 1
𝐾 , 1]. When 𝐶 = 1

𝐾 , the optimisation problem has a
traightforward solution with 𝛼𝑘 = 1

𝐾 ∀𝑘 due to its constraints. In this case, all vectors are support vectors, which corresponds to a
asic case of kernel density estimation. This approach does not include the data at the border or the outliers in the density limit.
n contrast, when 𝐶 = 1, the optimisation problem is less constrained, and the support vectors represent the border of the dataset.
ll training data are then included in the density limit, and the optimisation problem, shown in Eq. (10) can be solved using linear
rogramming. Considering the optimal values of 𝛼 for a fixed parameter 𝐶 and the training dataset 𝐗𝑇 , one can compute the value

of the density 𝑑𝛾𝐗𝑇
(𝐱) for any sample 𝐱 using the following formula:

𝑑𝛾𝐗𝑇
(𝐱) =

∑

𝐱𝑘∈𝐗𝑇

𝛼𝑘𝛾 (𝐱𝑘, 𝐱) (11)

We can use the previously computed density limit 𝐷𝛾
𝐗𝑇

to create a decision function  𝛾 (𝐱) that detects if the sample 𝐱 is part of the
healthy training dataset, labeled as 0, or an abnormal sample, labeled as 1, based on its density value. If the density value of 𝐱 is
below the density limit, it is considered an abnormal sample, and if it is above, it is considered part of the healthy training dataset.
We have:

 𝛾 (𝐱) =
⎧

⎪

⎨

⎪

⎩

0 if 𝑑𝛾𝐗𝑇
(𝐱) ≥ 𝐷𝛾

𝐗𝑇
,

1 if 𝑑𝛾𝐗𝑇
(𝐱) < 𝐷𝛾

𝐗𝑇
.

(12)

2.4. Focus-SVDD for abnormal feature detection

2.4.1. Focus by removing information about the healthy state
While the SVDD aims to find the distribution of the healthy condition from the training dataset, it can be difficult to assess this

distribution under different operating conditions of a system. In this work, we propose not to apply the SVDD directly to a raw
dataset. Instead, we suggest applying it to a residual dataset where the new samples, denoted as 𝐫 can be computed as:

𝐫 = 𝐱 −(𝐱). (13)
5
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Here, (∙) is a function that computes the best explanation of 𝐱 while assuming it is part of the healthy dataset. Thus, 𝐫 only contains
values that indicates a deviation from the healthy state. We propose to use an autoencoder trained only with healthy data to estimate
the function (∙) and denote the approximation as H𝜽(∙) where 𝜽 represents the trainable parameters of the autoencoder. To train
he autoencoder, we aim to find the values of 𝜽 that minimise the error between the input and its reconstruction:

argmin
𝜽

∑

𝐱𝑘∈𝐗𝑇

‖𝐱𝑘 − H𝜽(𝐱𝑘)‖2𝐹 , (14)

Notice that autoencoders are widely used for anomaly detection in various fields [38–40]. Similar to the SVDD method, the
training of this model also involves using only healthy samples, and the decision is based on the residual norm [41]. However,
this approach assumes the residual data follows an isotropic multivariate Gaussian distribution, which may not always hold in
practical applications. To address this issue, we suggest estimating a more complex boundary using SVDD instead of using the
norm of the residual. Additionally, we anticipate that there will be greater variation in density values when comparing raw data to
abnormal sample residuals. It is important to highlight that we opt for SVDD over deepSVDD [42]. The overparametrization in the
latter model poses challenges in maintaining a robust boundary, especially considering the size of the data we use for training.

2.4.2. Anomaly detection with focus-SVDD
We denote the residual training dataset 𝐑𝑇 as follows:

𝐑𝑇 = {𝐱1 − H𝜽(𝐱1), 𝐱2 − H𝜽(𝐱2),… , 𝐱𝐾 − H𝜽(𝐱𝐾 )} (15)

The RBF-SVDD is applied to the residual data and solves the optimisation problem in Eq. (10) using the density limit 𝐷𝛾
𝐑𝑇

. The
density limit 𝐷𝛾

𝐑𝑇
is obtained by computing the value of Eq. (9) using the residual training data instead of the raw data. By using

the optimal values of 𝛼, this leads to a new density function 𝑑𝛾𝐑𝑇
(∙), which is given by Eq. (11) and computed using the residual

data. Therefore, the decision function of focus-SVDD is:

 𝛾
𝑟 (𝐱) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑑𝛾𝐑𝑇
(𝐱 − H𝜽(𝐱)) ≥ 𝐷𝛾

𝐑𝑇
,

1 if 𝑑𝛾𝐑𝑇
(𝐱 − H𝜽(𝐱)) < 𝐷𝛾

𝐑𝑇
.

(16)

2.4.3. Density limit correction
A key issue when using autoencoders is the difficulty in assessing how much the network overfits to the training dataset.

Furthermore, when applied to a dataset with different operating conditions, the SVDD may lack robustness. In this work, we
propose a simple modification of the density limit, denoted 𝐷𝛾

𝑚, using a validation dataset 𝐗𝑉 containing healthy samples only.
We hypothesise that overfitting of the autoencoder, or a new operating condition, may induce a systematic bias in the density
values. To correct this bias, we propose the following modification:

𝐷𝛾
𝑚 = 𝐷𝛾

𝐑𝑇
− 𝑚𝑇 + 𝑚𝑉 . (17)

where 𝑚𝑇 is the mean density value of the training dataset 𝐑𝑇 and 𝑚𝑉 is the mean density value of the validation dataset 𝐑𝑉 . The
modified decision function of the focus-SVDD can be expressed as follows:

 𝛾
𝑚(𝐱) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑑𝛾𝐑𝑇
(𝐱 − H𝜽(𝐱)) ≥ 𝐷𝛾

𝑚,

1 if 𝑑𝛾𝐑𝑇
(𝐱 − H𝜽(𝐱)) < 𝐷𝛾

𝑚.
(18)

2.5. Proposed activation function for complex-valued AE

2.5.1. Complex-valued AE
In this paper, we propose to use a simple architecture for the autoencoder composed of linear layers and Rectified Linear Units

(ReLU) activation functions [43]. Considering a value 𝑥, we have ReLU(𝑥) = max(0, 𝑥). However, since the analytic representation
𝐱𝐻 is a vector of complex values, the ReLU activation function cannot be used in that case. There exist some extensions of the ReLU
activation function for complex valued autoencoder [31]. To account for the polar representation of a complex number 𝑧 = |𝑧|𝑒𝑖𝜙𝑧 ,
where 𝜙𝑧 denotes the phase value, the most widely used extension of the ReLU layer is [44]:

CReLU(𝑧) = ReLU(|𝑧| cos(𝜙𝑧)) + 𝑖ReLU(|𝑧| sin(𝜙𝑧)). (19)

The application of Eq. (19) involves applying the ReLU activation function to the real and imaginary parts of the complex number
𝑧. Another common extension involves soft-thresholding the amplitude of the complex number 𝑧, which can be written as [45]:

modReLU(𝑧) = ReLU(|𝑧| − 𝑏)𝑒𝑖𝜙𝑧 , (20)

where 𝑏 is a trainable parameter. However, this second activation function was shown to perform worse than Eq. (19) in
6

practice [45]. To explain this behavior, we first make the assumption that the output of a complex-valued linear layer node follows
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Fig. 3. Proposed framework for anomaly detection using IF signal of FMCW radars, 𝐗𝑇 corresponds to the training dataset, 𝐑𝑇 and 𝐑𝑇 correspond respectively
to the residual training and validation dataset.

a centered complex Gaussian distribution. This assumption can be supported by applying the central limit theorem. Thus, we can
know the distribution of the modulus 𝑟 = |𝑧| which follows a Rayleigh distribution with parameter 𝛺:

p(𝑟) = 2𝛺𝑟𝑒−𝛺𝑟2 (21)

This distribution has the disadvantage of be skewed and leptokurtic, impeding the learning of the trainable parameter 𝑏. Moreover,
the threshold is done starting from low values, which are the thin-tailed part of the distribution, outputting a data distribution that
is still skewed and leptokurtic. This is a notable difference between the application of the ReLU activation function on real input
assumed to be Gaussian or uniform.

2.5.2. Exponential amplitude decay activation function
In this work, we propose a new activation function called Exponential Amplitude Decay (EAD). This new extension of the ReLU

layer for complex number is denoted as:

EAD(𝑧) = (1 − 𝑒−𝑏|𝑧|
2
)𝑒𝑖𝜙𝑧 (22)

The proposed EAD activation function has several advantages. Firstly, it is a smooth differentiable function. Secondly, it constrains
the amplitude values to remain within the unit circle, which is not the case with the other two activation functions where the output
can have arbitrary high values. Finally, when trainable parameter 𝑏 = 𝛺, the resulting variable 𝑣 = P(𝑟) = 1−𝑒−𝑏𝑟2 follows a uniform
distribution from 0 to 1. This can be proven by observing that P(𝑟) is the cumulative distribution function of the Rayleigh distribution.
Consequently, the amplitudes distribution is non-skewed and thin-tailed, which is not the case for the modReLU activation function.

Finally, one advantage of the EAD activation function is its ability to compute the mean, variance, skewness, and kurtosis
statistics of the amplitudes for any value of 𝑏. The analytical formulas for these statistics are provided in Appendix, which provides
interpretability to the output of each layer of the network.

The proposed approach is summarised in Fig. 3

3. Experiment

3.1. Preprocessing and parameter selection

The dataset was divided into three subsets: the training dataset 𝐗𝑇 , the validation dataset 𝐗𝑉 , and the test dataset 𝐗𝐴. The
training and validation datasets included only samples from the healthy condition, while the test dataset contained both healthy
and abnormal samples. A total of 530 healthy samples and 362 abnormal samples were available for testing. For the experiment, a
5-fold cross-validation was proposed. In this setup, 318 healthy samples were used in 𝐗𝑇 , 106 healthy samples were used in 𝐗𝑉 ,
and the remaining 106 healthy samples were used in 𝐗𝐴. The abnormal samples were present only in the test dataset 𝐗𝐴.

To determine the optimal 𝛾 value for the RBF kernel, we perform a grid search to identify the highest possible value of 𝛾 at which
a fraction 𝜖 of the validation dataset is flagged as anomalous. In this study, we have set 𝐶 = 1. There are two main reasons behind this
decision. Firstly, opting for 𝐶 = 1 will result in a more detailed boundary for distinguishing between healthy and unhealthy samples.
This is a key benefit when employing focus-SVDD compared to relying on the residual norm of the autoencoder. Furthermore, we
are in a situation where we are rather confident in the accuracy of the labeling, even though there may be some noise contamination
associated with the anomaly. During radar passage through the surface, it may approach nearby areas of damage, leading to reflected
7
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Table 1
Average F1 score over the 5 fold for different signal representation and decision function.

 𝛾 (Eq. (12))  𝛾 (Eq. (12) with 𝐷𝑚)  𝛾
𝑟 (Eq. (16))  𝛾

𝑚 (Eq. (18))
𝐱 0.822 0.825 0.884 0.946
𝐱𝐴 0.795 0.795 0.916 0.920

Fig. 4. T-SNE representation with a perplexity of 50 of (a) - the IF test data 𝐗𝐴 (b) - the residual data 𝐑𝐴 after training an AE on the IF training dataset. The
point shapes correspond to the distance between the radar and the surface, with possible values of 0.05, 0.1, or 0.15 m.

information from the abnormal region and potentially introducing noise that affects healthy data. However, the labeling method we
employed offers specificity regarding the locations of anomalies within the dataset. Finally, We have chosen 𝜖 to be 0.05 since we
have observed that it leads also to a more specific decision boundary and yields superior results when using this approach for all
methods. Regarding the AE, the encoder network consists of two dense layers of 64 nodes plus one of 32 nodes while the decoder
is composed of two dense layers of 64 nodes. We use the ReLU activation function (or one of its complex extensions) in each layer
except for the last one.

3.2. Ablation study 1: focus-SVDD

We conducted two ablation studies to evaluate the effectiveness of the one on focus SVDD and the EAD activation function. The
first study compares the performance of focus-SVDD methodology to standard SVDD. Table 1 presents the average F1 scores obtained
from five folds when using the real signal 𝐱 or its instantaneous amplitude 𝐱𝐴 as inputs for three different decision functions:  𝛾

(Eq. (12)),  𝛾
𝑟 (Eq. (16)), and  𝛾

𝑚 (Eq. (18)). To remind,  𝛾 applies SVDD directly to the raw data, while the other two decision
functions are instances of focus-SVDD that use either the density limit 𝐷𝐑𝑇

or the modified density limit 𝐷𝑚. We also present the
results of applying the standard decision function (Eq. (12)) with the modified density limit (𝐷𝑚). The results suggest that the
performance is comparable when using the standard SVDD decision function  𝛾 , regardless of whether we use the density limit
𝐷𝐗𝑇

or 𝐷𝑚. This is because the density values of the validation dataset are not expected to differ significantly from those of the
training dataset, and thus 𝐷𝐗𝑇 and 𝐷𝑚 are similar. However, there is a significant improvement in performance when using the
focus-SVDD methodology and the modified density limit, particularly when considering the real signal as input 𝐱. This results in an
increase in F1 score of 0.062. Morevoer, the focus-SVDD approach outperforms the standard SVDD anomaly detection method by
up to an F1 score of 0.121.

In Fig. 4, we used t-Distributed Stochastic Neighbor Embedding (t-SNE) [46] with a perplexity of 50 to analyze the IF test data
𝐗𝐴 and the residual data 𝐑𝐴 obtained after training an AE on the IF training dataset 𝐗𝑇 . As one of the most important operating
condition we show using different shapes the distance between the radar and the surface, with possible values of 0.05, 0.1, or 0.15
m. Fig. 4 shows that the IF consists of several clusters mostly related to the three operating conditions. Notably, the third operating
condition appears to be the most difficult to assess, with an unclear boundary between healthy and unhealthy samples. Identifying
the density limit using SVDD may be challenging due to the need for adapting to varying clusters. However, after applying the AE
to compute the residual, the dataset was predominantly composed of a single main cluster.We can also see that the samples from
the third operating condition are now grouped together.

It is important to highlight that employing a PCA dimensionality reduction method instead of the non-linear t-SNE would result
in a much more mixed representation of samples between the healthy and unhealthy conditions in Fig. 4.(b). This indicates that a
simple circular boundary, as provided by the autoencoder’s residual, is insufficient for effectively distinguishing between healthy
8

and anomalous instances. SVDD becomes a relevant solution to derive a data-driven and refined boundary.
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Table 2
Average F1 score over the 5 folds using different activation
function and decision function.

Norm  𝛾
𝑟 (Eq. (16))  𝛾

𝑚 (Eq. (18))
𝐱 0.916 0.884 0.946
𝐱A 0.841 0.916 0.920
𝐱A𝜙 0.692 0.872 0.890
𝐱RI 0.913 0.885 0.950
𝐱H (CReLU) 0.931 0.878 0.941
𝐱H (modReLU) 0.884 0.905 0.895
𝐱H (EAD) 0.940 0.928 0.958

3.3. Ablation study 2: EAD activation function

In order to characterise the EAD activation function and its advantages over other activation functions, we show in Table 2
he average F1 score over five folds for all three signal representations and the three different complex extensions of the ReLU
ctivation function when using the analytic representation 𝐱𝐻 . In the ‘Norm’ case, the decision is based on the residual norm of the
utoencoder, where a proportion 𝜖 of the validation dataset is identified as abnormal. The results show that the autoencoder using
he EAD activation function and analytical representation 𝐫𝐻 outperforms all other models when using the ‘Norm’ method, achieving
n F1 score 0.024 higher than the baseline case that uses the signal 𝐱 with a real-valued autoencoder. Moreover, it outperforms
he state-of-the-art complex-valued activation function CReLU by 0.009. The density limit modification is crucial, as it leads to

significant increase in performance for most cases. Specifically, when using the analytical residual 𝐫𝐻 with CReLU activation
unction, we observe an improvement of up to 0.064, except for the case of modReLU, which exhibits a drop in performance of
.01. Generally, using the  𝛾

𝑟 decision function leads to decreased performance compared to the ‘Norm’ decision method. However,
sing the decision function  𝛾

𝑚 with modified density limit 𝐷𝑚 outperforms the other methods and the best F1 score is obtained by
ombining the  𝛾

𝑚 decision function with the EAD activation function, achieving a score of 0.958.
In recent work [36,37], there is a prevailing preference for reconfiguring complex inputs to avoid adapting the entire network

tructure for complex values. To highlight the benefits of the complex-valued neural network, we compare it to the real-valued
eural network with as input the real-valued representation of the complex-valued data, composed of the features 𝐱RI and 𝐱A𝜙. We
chieved comparable performance to that of real signals with 𝐱RI, likely due to the dataset containing real signals. However, when
mploying Focus-SVDD with density limit modification, we attained an even higher F1-score, improving it from 0.946 to 0.950. In
he case of 𝐱A𝜙, the results deteriorated compared to real signals, which might be attributed to the neural network struggling to
rasp the circular nature of the instantaneous phase data. This feature is a good example of the advantages of using a density limit
stimated from the SVDD instead of the norm of the residuals, enhancing the F1-score from 0.692 to 0.872. This can be explained
y the fact that phases and amplitudes exist in distinct amplitude ranges, where the hypersphere boundary induced by the norm of
he residual is not relevant in this scenario.

In Fig. 5, we demonstrate how the use of our EAD activation function results in the propagation of stable and sub-Gaussian data
istribution throughout the network. We display the normalised skewness and excess kurtosis (calculated by subtracting three from
he normalised kurtosis) of the amplitude distribution after each layer of the AE for the three activation functions. The green areas
epresent data distribution with low skewness and platykurtosis which are indicative of a sub-Gaussian distribution. The red dotted
ines depict the statistics of the uniform distribution. ModRelu and CReLU both produce heavily skewed and leptokurtic amplitudes,
ndicating a lack of robustness during training. After applying AED, the resulting distribution is in the green area for both statistics
n three out of the five layers. For two layers, the statistics are very close to a uniform distribution. It appears that the proposed
ctivation function is able to improve the network performances by propagating light-tailed amplitude distributions throughout the
etwork.

.4. Comparison to other unsupervised anomaly detection methods

Finally, we compare the performances of our approach with other state of the art unsupervised anomaly detection method.
n Table 3, we compare the focus-SVDD method with EAD activation function to other unsupervised anomaly detection methods,
amely K-Nearest Neighbors using (KNN) [47], Isolation Forest (IForest) [48], DeepSVDD [42], Local Outlier Factor (LOF) [49],
he AutoEncoder (AE) the Variational AutoEncoder (VAE) [50]. Our implementation of KNN, IForest, DeepSVDD, LOF and VAE are
onsistent with the APIs of PyOD, which is a comprehensive and scalable Python toolkit for outlier and anomaly detection [51].
ll the mentioned methods provide a score. In order to keep consistency with the focus-SVDD, the decision is made based on the
core value where a proportion 𝜖 of the validation dataset are considered as abnormal samples. We employ the parameters that
emonstrated effective results on datasets characterised by low levels of noise contamination from abnormal samples [30]. We set
he number of neighbors to 5 in KNN and 20 for LOF. We set the number of tree to 100 for the IForest method. Finally, for the
eepSVDD, we use the encoding architecture of the focus-SVDD method with a 𝓁2 regularisation of 0.001 and for the VAE we use

exactly the same architecture as the focus-SVDD methodology. For the VAE, the loss function is modified because a second term
is added: the Kullback–Leibler Divergence between the unit Gaussian and the latent distribution, however, only the reconstruction
9

error is used for the anomaly score. Since those method are designed for real data, we use the real signal 𝐱 as input for comparison.
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Fig. 5. Mean and standard deviation of (a) Skewness and (b) Kurtosis of the amplitude distribution calculated after each layer of the AE for the three activation
functions. In (a) the green area corresponds to low skewness value, in (b) it corresponds to light-tail distribution. The red dotted lines are the statistics of the
uniform distribution.

Table 3
Anomaly detection performances of different methods. (Acc.=
Accuracy score, Prec.= Precision score).
Method F1 Acc. AUC Prec. Recall
focus-SVDD 𝟎.𝟗𝟔 𝟎.𝟗𝟑 𝟎.𝟗𝟖𝟐 0.94 𝟎.𝟗𝟕
KNN 0.90 0.85 0.971 0.97 0.83
IForest 0.75 0.69 0.92 0.97 0.62
DeepSVDD 0.81 0.75 0.87 0.97 0.70
LOF 0.90 0.86 0.970 𝟎.𝟗𝟖 0.84
AE 0.92 0.89 0.970 0.97 0.85
VAE 0.87 0.81 0.95 0.97 0.78

All the previously mentioned methods provide a score. In order to keep consistency with the focus-SVDD, the decision is made
based on the score value where a proportion 𝜖 of the validation dataset are considered as abnormal samples. In summary, the
performance of each method is evaluated based on F1 score, accuracy, Area Under the Curve (AUC), precision, and recall. The
focus-SVDD method outperforms the other models in terms of F1 score, accuracy, AUC, and recall. In contrast, methods such as
KNN and Local Outlier Factor (LOF), which use the boundary of the dataset, have a very good AUC score compared to methods that
estimate the distribution of the dataset, such as Variational AutoEncoder (VAE) or DeepSVDD.

4. Conclusion

In this study, we have identified a candidate sensing modality, FMCW radar, for supporting the surface and subsurface analysis of
composite – WTB – samples. We utilise a robotic manipulator for the collection of data from the sensing modality. We demonstrate a
novel anomaly detection pipeline that utilises FMCW radar as a non-destructive sensing modality as to enhance the quality assurance
of WTB manufacturing processes. Using composite material samples, the analytic representation of the IF signal of the FMCW radar
is utilised to distinguish between the information related to the round-trip propagation and the frequency dependent reflectivity.
We propose a new methodology for anomaly detection, called focus-SVDD, which involves characterising the limit boundaries of the
residual dataset by removing healthy data features that are mainly related to the operating conditions and are not relevant for the
anomaly detection task. Our approach utilises a complex-valued autoencoder and introduces a novel activation function called EAD,
which takes advantage of the Rayleigh distribution to effectively deskew the amplitudes of the output in each layer of the network.
To demonstrate the benefits of utilising the SVDD on the residual data rather than directly on the raw data, we conduct an ablation
study. We also emphasise the significance of modifying the density limit in this scenario as the autoencoder’s behavior is susceptible
to overfitting. In addition, we show that our proposed activation function outperforms other complex activation functions and that
utilising the analytic representation of the IF signal is more advantageous than using the raw IF signal. Finally, we compare our
pipeline with a state-of-the-art unsupervised methodology, and the results show superior performance with an F1 score of 0.96,
which surpasses the best performing SOTA method by a margin of 0.04. These findings suggest that our approach holds promise for
enhancing the quality assurance of the manufacturing process of WTB and other composite structures.

This work highlights several promising avenues for future research in asset integrity and quality assurance inspections. A trend
exists in the robotic deployment of sensors to reduce risks (in both manufacturing and operational phases) and increase accuracy
of inspections. A pathway leading to robotic deployment includes testing robotic systems in a controlled environment utilising the
non-destructive tool. Additionally, the development of deployment modes and parameter settings optimised for the manufacturing
environment, such as gantries above a manufacturing site to facilitate rapid scanning, is essential. To meet this need, the data
10
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acquisition rate will be increased to reduce the time required to perform integrity assessment. This will enable data and results
from the FMCW radar to be fed into a centralised database to facilitate optimised decision making for quality assurance or damage
identification and rectification. Our proposed focus-SVDD approach has the potential to be extended to a semi-supervised approach,
where a semi-supervised deep models estimate the boundary of the healthy class. In conclusion, the suggested approach has the
potential for application in other non-destructive detection scenarios. While thermographic and radiographic methods that generate
images, and the acoustic methods need adapted autoencoder for the focus-SVDD strategy, the entire framework would be directly
applicable to ultrasonic and ground-penetrating radar.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
nterests: Frusque reports financial support was provided by Innosuisse Swiss Innovation Agency. Mitchell reports financial support
as provided by Offshore Robotics for Certification of Assets.

ata availability

Data will be made available on request.

cknowledgments

This study was financed by the Swiss Innovation Agency (Innosuisse) under grant number: 47231.1 IP-ENG and the ORCA Hub
EP/R026173/1]. We would like to thanks MicroSense Technologies Ltd (MTL) in the provision of their patented microwave sensing
echnology (PCT/GB2017/053275) and EDF R&D division in the provision of wind turbine composite samples.

Researchers using this data set should acknowledge the Smart Systems Group University of Glasgow and cite this paper and the
ollowing paper within their references which have created this data library of FMCW analysis of composites [18].

ppendix. Statistics of the EAD activation function.

Considering that the output of a complex-valued linear layer follows a Rician distribution with parameter 𝛺, it is possible to
estimate the statistics of the amplitudes after the application of the EAD activation function (Eq. (22)) for any value of the trainable
parameter 𝑏. The statistics 𝜇, 𝜎, 𝜈, and 𝜅, corresponding respectively to the mean, standard deviation, normalised skewness, and
normalised kurtosis of the variable 𝑢 = 𝑒−𝑏𝑟2 , when 𝑟 follows a Rician distribution, have an analytical solution, and are as follows:

𝜇 = E[𝑒−𝑏𝑟
2
], (A.1)

= ∫0
𝑒−𝑏𝑟

2
𝑝(𝑟)𝑑𝑟,

= 2𝛺 ∫0
𝑟𝑒−(𝛺+𝑏)𝑟2𝑑𝑟,

= 𝛺
𝛺 + 𝑏

.

𝜎2 = E[(𝑒−𝑏𝑟
2
− 𝜇)2], (A.2)

= E[𝑒−2𝑏𝑟
2
] − 𝜇2,

= 𝛺
𝛺 + 2𝑏

−
( 𝛺
𝛺 + 𝑏

)2
.

𝜈 = E
⎡

⎢

⎢

⎣

(

𝑒−𝑏𝑟2 − 𝜇
𝜎

)3
⎤

⎥

⎥

⎦

, (A.3)

= 1
𝜎3

(E[𝑒−3𝑏𝑟
2
] − 3𝜇𝜎2 − 𝜇3),

𝜎3𝜈 = 𝛺
𝛺 + 3𝑏

− 3
( 𝛺
𝛺 + 𝑏

)( 𝛺
𝛺 + 2𝑏

)
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.
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]

, (A.4)

= 𝛺
𝛺 + 4𝑏

− 4
( 𝛺
𝛺 + 𝑏

)( 𝛺
𝛺 + 3𝑏

)

+ 6
( 𝛺
𝛺 + 𝑏

)2 ( 𝛺
𝛺 + 2𝑏

)

− 3
( 𝛺
𝛺 + 𝑏

)4
.

When 𝑏 = 𝛺, we obtain the statistics of an uniform distribution from 0 to 1, i.e. 𝜇 = 1
2 , 𝜎 = 1

12 , 𝜈 = 0 and 𝜅 = 9
5 (− 6

5 considering
xcess kurtosis).
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