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Abstract 
Circulating biomarkers have emerged as valuable surrogates for evaluating disease states in solid malignancies. Their relative ease of access 
and rapid turnover has bolstered clinical applications in monitoring treatment efficacy and cancer progression. In this review, the roles of various 
circulating biomarkers in monitoring treatment response are described. Non-specific markers of disease burden, tumor markers (eg CA 125, 
CEA, PSA, etc.), circulating tumor cells, nucleic acids, exosomes, and metabolomic arrays are highlighted. Specifically, the discovery of each of 
these markers is reviewed, with examples illustrating their use in influencing treatment decisions, and barriers to their application noted where 
these exist. Finally, opportunities for future work using these circulating biomarkers are discussed.
Key words: biomarker; tumor marker; ctDNA; exosomes; metabolomics; treatment response.

Implications for Practice
In oncology, blood-borne biomarkers are becoming increasingly used for assessing treatment efficacy. A multitude of such surrogates 
have been studied over the last several decades, each with particular advantages, operating characteristics, and challenges. Practicing 
oncologists should be aware of existing circulating biomarkers and their recommended use, as well as new technologies on the horizon 
which may eventually enter routine practice.

Introduction
In the clinical practice of oncology, prompt determination 
of treatment efficacy is a laudable goal. The swift identifica-
tion of disease progression on a particular therapy affords 
patients and their treating clinicians an opportunity to ad-
vance onto alternative agents which might offer improved 
efficacy and limits needless toxicities from non-efficacious 
treatments. Treatment response of solid malignancies has 
historically been defined by the absence of clinical symptoms 
as well as stability/regression of lesions on radiological im-
aging over time. Given that these are often delayed markers 
of treatment response, there is tremendous interest in the 
use of surrogate markers for the early detection of disease 
progression.

In contrast to prognostic markers, which provide insights 
into an expected disease course, and predictive markers, 
which supply information about anticipated response to 
therapy, biomarkers for therapeutic monitoring offer infor-
mation as to the efficacy of an ongoing treatment. Dynamic 
changes in the biomarker through therapy provide evidence 
that a currently applied therapy is having the intended effect 
of reducing tumor burden or slowing cancer growth. Beyond 
assessing for disease progression, an ideal therapeutic bio-
marker also has the potential to be used for determining the 

optimal duration and dosage of therapy, or for gaining in-
sights into the evolution of tumor biology.

Circulating biomarkers represent particularly attractive 
surrogates for these purposes and provide numerous advan-
tages in practice (Fig. 1). This review will provide an overview 
of circulating biomarkers for therapeutic monitoring of anti-
cancer agents. In particular, the use of non-specific markers 
of disease burden, tumor markers, circulating tumor cells, 
nucleic acids, exosomes, and metabolomic arrays as surro-
gate markers for treatment response is explored. Finally, chal-
lenges in the application of these markers and opportunities 
for future work are described.

Non-Specific Markers of Disease Burden
Many of the earliest discovered circulating tumor biomarkers 
were non-specific indicators of disease burden. These surrogates 
largely consist of naturally occurring macromolecules that are 
aberrantly upregulated by rapidly dividing cancer cells, or that 
are released into circulation by loss of cell membrane integrity.1,2

Lactate Dehydrogenase
Lactate dehydrogenase (LDH) is one of the most commonly 
expressed enzymes in nature and plays a physiologic role in 
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anerobic metabolism.3 The rather ubiquitous expression of 
LDH across tissue types has led to broad clinical applications 
in detecting cellular damage across pathologies which in-
clude myopathies, myocardial infarction, hemolytic anemias, 
hepatocellular damage, and cancer.

LDH has been known to correlate with cancer disease 
burden in pre-clinical and clinical studies for decades, al-
though recent nuances have been described.4-6 Indeed, LDH 
is a frequently used stratification factor in clinical trials and 
has been integrated into prognostic scoring systems (eg, Royal 
Marsden Hospital score, Gustave Roussy immune score).7,8 
Notably, the predictive value of LDH in melanoma is so ro-
bust that it has been incorporated into TNM staging to differ-
entiate M1a/b/c/d (0) from M1a/b/c/d (1) disease.9

In terms of dynamic monitoring, LDH is a fairly useful in-
dicator for disease relapse in lymphoma and is included in 
guidelines from the European Society for Medical Oncology 
for post-treatment monitoring.10-12 LDH changes through 
therapy have been associated with survival outcomes in ad-
vanced breast, non–small cell lung, hepatocellular, and tes-
ticular cancers.13-16 In some cases, changes of LDH through 
therapy have proven superior to baseline LDH values in 
predicting treatment responses.16 Although compelling, these 
observations have been challenged. In certain cohorts, LDH 
levels through treatment have been found to not be correlated 
with response.17,18 Others have argued that LDH does not add 
much to clinical decision making, as patients with increased 
LDH prior to relapse or progression often have overt clinical 
symptoms that would have prompted further investigations 
regardless.19

Cell Death Products
Cell death products released into circulation by apoptotic 
or necrosing malignant cells represent another non-specific 
marker of disease state. Caspase-cleaved cytokeratin 18 
(CK18 M30 and M65) has been studied as a potential 

surrogate for treatment efficacy in patients with breast cancer 
during neoadjuvant chemotherapy as well as in advanced gas-
tric cancers among others.20,21 Other markers under study in-
clude HMGB1, RAGE, and DNase.22 Overall, these molecules 
provide an indiscriminate measure of cell death in vivo which 
might reflect on-target killing of neoplastic cells but also in-
cludes off-target effects on healthy tissues. At present, these 
markers are not used in clinical practice.

Neutrophil-to-Lymphocyte Ratio and Other 
Hematologic Markers
Further non-specific circulating biomarkers aim to explore 
how immune mediators are associated with responses to 
therapy. Certainly, the role of the immune system in providing 
a hospitable environment for cancer growth and key mech-
anisms underlying this interaction including the “immune 
checkpoint” (programmed death-1 (PD-1) binding to its 
ligand PD-L1) have gained recent prominence.23 Additional 
factors affecting this interaction, such as the overall extent 
of somatic mutations present in cancer cells (ie, tumor muta-
tional burden, TMB), have also been described.24

Gross metrics for evaluating the immune milieu are rou-
tinely collected through cytotoxic therapy follow-up and 
include ratios of various hematologic cell types (neutrophil-
to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio, and 
monocyte-to-lymphocyte ratio).25 High NLR predicts worse 
outcomes for patients with metastatic prostate cancer, local-
ized or metastatic head and neck cancer, and advanced upper-
tract urothelial carcinomas.26-28 Conversely, a low blood NLR 
is associated with longer survival in patients with metastatic 
melanoma with brain involvement or advanced non–small-
cell lung cancer (NSCLC) treated with PD-1-targeted ther-
apies.29,30 NLR has also been investigated in aggregate with 
other markers. Ren et al showed among advanced NSCLC 
patients with TMB > 10 mutations/Mb, those with NLR ≤ 
2.5 had significantly more favorable overall survival (OS) 

Figure 1. Features of ideal circulating biomarker. In evaluating a circulating biomarker, various factors must be considered. The biomarker must be easily 
detected, quantifiable, and objectively measured. Detection of the biomarker should be inexpensive. Assays for measurement should have robust 
validation, with optimized sensitivity and specificity. Further, testing should be reliable/reproducible allowing for results to be standardized across 
different testing centers. In terms of clinical characteristics, an ideal circulating biomarker is conveniently collected through a procedure which subjects 
patients to minimal toxicities or adverse effects. The biomarker may be non-invasively detected. There should be opportunities for repeated assessment 
through a treatment course. For biologic characteristics, biologic plausibility is preferred and may facilitate interpretation and communication around 
testing results with patients. Rapid turnover is essential for securing real-time responses to ongoing interventions. Finally, the circulating biomarker 
must be validated in clinical practice and should have proven clinical utility.
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and progression-free survival (PFS) compared with patients 
with NLR > 2.5.31 Saravia et al have demonstrated that low 
intratumoural PD-L1/high NLR predicts of lack of response 
to PD-1 inhibition in patients with advanced lung cancer.32 
Finally, in patients with advanced melanoma receiving 
ipilimumab, Ferrucci et al showed that patients with raised 
baseline neutrophils and NLR had increased risk of disease 
progression and death.33

Soluble PD-1
Soluble levels of PD-1 (sPD-1) and their dynamics through 
treatment can reflect anti-cancer immune responses and treat-
ment efficacy.34 Increased sPD-1 levels have been associated 
with prolonged survival in patients with nasopharyngeal car-
cinoma after curative-intent radiotherapy, as well as improved 
PFS and OS in advanced NSCLC patients receiving anti-PD-1 
antibody nivolumab or tyrosine kinase inhibitors against epi-
dermal growth factor receptor (EGFR).35-37 However, integra-
tion of sPD-1 into therapeutic monitoring has been limited 
by a lack of standardized methods for quantification, and 
an underdeveloped literature supporting its use in treatment 
monitoring.

Clinical Considerations
Overall, non-specific markers of disease state are attractive 
circulating biomarkers for monitoring therapeutic responses. 
They are often inexpensively collected, frequently have es-
tablished normal values, and robust methods exist for their 
detection. These advantages are somewhat mitigated by the 
non-specific nature of these biomarkers leading to difficulties 
in their interpretation and an overall lack of prospective, ran-
domized data demonstrating clinical utility.

Tumor Markers
Extensive efforts have been invested into identifying tumor 
markers with greater specificity in evaluating tumor burden 
and response to therapy. Biomarkers with variable clinical 
utility have been proposed, including those that attempt to 
recapitulate the tumor burden of cancers with certain histo-
pathological origins.

Cancer Antigen 125
Bast et al first suggested CA 125 (MUC16) as a diagnostic 
marker of epithelial ovarian cancer in 1983.38 At present, CA 
125 maintains a role in monitoring disease response and is 
recommended alongside imaging criteria for response assess-
ment in relapsed ovarian cancer by the Gynecological Cancer 
Intergroup.39 Despite this, the use of CA 125 elevation as a 
threshold for initiating treatment before radiological disease 
recurrence has not been linked to an improvement in OS.40-43 
Moreover, the sensitivity of CA 125 declines in heavily treated 
ovarian cancer that is resistant to platinum chemotherapy, re-
flecting a potential concerning dynamic change in test per-
formance as cancer biology evolves.44

Prostate-Specific Antigen
Prostate-specific antigen (PSA) is a serine protease which is 
exclusively produced by prostatic epithelium and escapes into 
circulation in the setting of malignancy.45 Blood PSA levels 
are highly specific for disease recurrence and are also directly 
linked with survival outcomes in advanced disease.46-49 Serum 
PSA is routinely used to assess disease response in patients 

with advanced prostate cancer treated with either chemo-
therapy or androgen receptor axis-targeted treatment.47,50 
Indeed, PSA is included in standard response assessment cri-
teria in castrate-resistant prostate cancer put forth by the 
Prostate Cancer Clinical Trials Working Group 3.51 A notable 
exception to this would be prostate tumors with neuroendo-
crine features without significant PSA production.52

Carcinoembryonic Antigen
Carcinoembryonic antigen (CEA) is an adhesion molecule 
involved in signal transduction within adenocarcinomas.53,54 
Increased serum CEA levels have been described in breast, 
colorectal, gastric, lung, pancreatic, and ovarian malignan-
cies but can also be observed in benign conditions including 
inflammatory bowel disease, cigarette smoking, diverticu-
litis, pancreatitis, liver disease, and alcohol consumption.55-57 
Although CEA has a weak role as a screening tool for colo-
rectal cancer (CRC), it has been validated as a prognostic bio-
marker and surrogate of disease burden pre-operatively for 
patients undergoing CRC resection, as well as a predictor of 
disease recurrence during follow-up.56,58,59 Stable CEA levels 
are associated with significantly improved PFS in patients 
with unresectable metastatic CRC.60-63

Carbohydrate Antigen 19-9
Although carbohydrate antigen 19-9 (CA 19-9) has also been 
investigated in CRC, pancreatic adenocarcinoma is perhaps 
the tumor type in which CA 19-9 has been most extensively 
studied.64-67 Decreasing CA 19-9 levels through treatment and 
persistence of sustainably low levels have both been used in 
assessing treatment response in both resectable and meta-
static disease states.68-70 However, notable confounding fac-
tors have been described, including its relatedness to Lewis 
blood group antigens and elevation in the setting of ob-
structive jaundice.66,71

Clinical Considerations
Overall, circulating tumor markers are a diverse set of mol-
ecules that provide insights into underlying cancer biology. 
In some cases, these markers have already been established 
into clinical practice. Presently, CA 125 and PSA are robust 
predictors in aiding decisions on clinical intervention, as evi-
dent by their incorporation into globally accepted disease re-
sponse criteria for both early and advanced stages of ovarian 
and prostate cancer, respectively. In contrast, CEA and CA 
19-9 have inferior sensitivity and specificity and although 
they play a significant prognostic and monitoring role in CRC 
and pancreatic cancer, their impact in clinical decisions is not 
as strong. Hence, with variable sensitivity and specificity for 
assessing therapeutic response, only certain tumor markers 
offer improved performance over non-specific markers of 
disease burden and are recommended for routine use.

Circulating Tumor Cells
Since their discovery in 1869, our understanding of circu-
lating tumor cells (CTCs) has evolved from a rare compli-
cation of solid cancers (“carcinocythemia”) to a relatively 
frequent observation in solid malignancies.72,73 In the recent 
literature, CTCs have been evaluated as a correlate in clin-
ical trials where, intuitively, their persistence through therapy 
uniformly confers an unfavourable prognosis. For example, 
a recent analysis of 5 prospective randomized clinical trials 
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of patients with metastatic prostate cancer showed that a de-
cline in CTCs number to zero after 13 weeks of treatment 
had a higher discriminatory power for OS than PSA.74 CTCs 
have also been integrated into composite surrogates alongside 
other biomarkers (eg, LDH).75 Subsequent work in metastatic 
prostate cancer has supported the integration of CTCs into 
standard measures of assessment when determining prognosis 
and response to treatment.76

Others have explored whether subtypes of CTCs expressing 
certain proteins might be used in monitoring responses to 
therapy. Accordingly, CTCs expressing IGF-1R have been 
monitored in patients with advanced prostate cancer receiving 
IGF-1R-directed therapy, HER2-expressing CTCs have been 
followed in patients with breast cancer receiving neoadjuvant 
trastuzumab, and PD-L1 expression on CTCs has been de-
scribed in stage IV NSCLC patients receiving nivolumab.77-79

Despite a wealth of compelling supportive data, CTCs are 
rarely used in routine clinical practice. Although technological 
advances are allowing for improved detection of CTCs, their 
presence in circulation is vastly outweighed by normal cells, 
with a signal-to-noise ratio of approximately a billion-to-
one.80 There is also significant variability in the quantities 
of CTCs among patients of the same cancer type and stage 
which presents a challenge in developing standardized cut-
offs for interpretation. Thus, the greatest utility of CTCs may 
for monitoring treatment responses by longitudinal sampling 
within individual patients.

Circulating Nucleic Acids
Circulating unbound nucleic acids (ie, cell-free DNA (cfDNA) 
and RNA (cfRNA)) represent an attractive alternative to 
CTCs. Circulating nucleic acids were discovered in 1948 and 
were subsequently found to exist in elevated quantities in pa-
tients with cancer.81,82 Ensuing qualitative analyses of cfDNA 
in patients with cancer confirmed that a proportion of cfDNA 
harbors molecular patterns observed in tumor tissue samples, 
supporting a tumor-cell origin for some cfDNA (defined as 
“circulating tumor DNA”, ctDNA).83,84 Single-nucleotide 
variants, insertions, and deletions are the most common al-
terations used to differentiate ctDNA from cfDNA from 
other sources, although novel approaches including methy-
lation signatures and bespoke panels personalized to an in-
dividual patient’s tumor mutations have been used for this 
purpose.85,86 Occasionally, the molecular patterns used to dis-
tinguish ctDNA from cfDNA are actionable mutations sup-
porting the application of targeted therapies.87,88

A relatively unique feature of cfDNA is its short half-life in 
circulation of approximately 4 minutes to 2 hours.89 In fact, 
the kinetics of cfDNA in circulation including its recapitula-
tion by animal models, phases of clearance in humans, and 
even elimination by hemodialysis have been rather well char-
acterized. This concept of rapid turnover has been leveraged 
in discussions of using ctDNA as a dynamic marker for moni-
toring treatment responses.90 Indeed, in order for a circulating 
biomarker to be used longitudinally for therapeutic moni-
toring it must be cleared from circulation rapidly enough to 
reflect underlying changes in tumor burden.

Circulating Tumor DNA
Early proof-of-concept evidence for the use of ctDNA as a 
biomarker was provided in a landmark paper by Diehl et al in 
which the authors followed ctDNA in 18 patients with stages 

II-IV colorectal cancer undergoing multimodal cancer therapy 
and found that total ctDNA quantities reflected systemic 
tumor burden.91 Subsequent work by Dawson et al repro-
duced these findings in patients with metastatic breast cancer 
and further demonstrated that increases in ctDNA suggestive 
of treatment failure preceded imaging evidence of progression 
by months in some patients.92 In metastatic melanoma pa-
tients receiving BRAF/MEK-targeted therapy, mutant BRAF 
V600mut ctDNA has been reported to have a sensitivity of 
70% and specificity of 100% for detecting progressive disease 
and in this cohort elevated BRAF V600mut ctDNA preceded 
clinically evident progression in nearly half of cases studied.93 
In fact, having undetectable mutant BRAF V600mut ctDNA 
after 4 weeks of targeted therapy has recently been reported 
to be significantly associated with improved PFS and OS in 
patients with advanced melanoma.94

Beyond cytotoxic and targeted therapies, multiple potential 
roles for ctDNA have been proposed in patients receiving im-
munotherapies. First, ultrasensitive ctDNA assays have been 
offered as a tool to identify molecular residual disease in pa-
tients having undergone definitive treatment which might in-
dicate a need for further interception therapy. Powles et al 
have reported results from a trial of 581 patients with op-
erable urothelial carcinoma (IMvigor010) and showed that 
patients with detectable ctDNA after surgery had a worse 
prognosis but achieved a survival benefit from atezolizumab, 
whereas patients with undetectable ctDNA had an overall 
better prognosis but experienced no benefit from adjuvant 
atezolizumab.95 In the metastatic setting, dynamics of ctDNA 
levels through therapy (ie, ΔctDNA) have also been associ-
ated with disease response in patients receiving checkpoint 
blockade. In a phase II trial of patients with advanced solid 
cancer treated with pembrolizumab (INSPIRE), patients with 
negative (ie, decreasing) ΔctDNA levels through therapy had 
improved PFS and OS compared with patients with positive 
ΔctDNA.96 Nabet et al have reported similar observations 
in patients with stage IV NSCLC and have further created 
a composite surrogate biomarker integrating pre-treatment 
parameters (tumor PD-L1 levels, TMB, and circulating CD8 
T cells) with early ctDNA kinetics on treatment that could 
identify patients achieving durable clinical benefit.97 ΔctDNA 
has also been shown to be useful in distinguishing progres-
sion from pseudoprogression—a transient radiologic increase 
in tumor size reflective of acute inflammation after immuno-
therapy rather than tumor growth which can be difficult to 
identify.98,99 In a similar vein, ΔctDNA was used alongside 
radiographic responses in the INSPIRE study to stratify pa-
tients into differing immunotherapy sensitivity groups which 
provided insights into the molecular mechanisms governing 
treatment response or failure.99

Other Cell-Free DNA
Other types of cfDNA have been explored as potentially 
useful biomarkers. For example, mitochondrial ctDNA has 
been highlighted for its shorter size, simpler organization, 
and higher copy number when compared with genomic 
cfDNA.100,101 Virally derived sequences are another fre-
quently reported circulating nucleic acid with specific utility 
in virus-associated malignancies (eg, Epstein-Barr virus in 
nasopharyngeal cancer, human papillomavirus in cervical and 
head and neck squamous cell cancers).102-104 Finally, cfDNA 
originating from non-malignant cells can also provide infor-
mation about treatment response in certain clinical scenarios. 
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Valpione et al have recently sequenced T-cell receptor genes 
from cfDNA in patients with metastatic melanoma under-
going immune checkpoint therapy and identified dynamics 
that are suggestive of treatment response.105

Circulating Tumor RNA
Many different types of ctRNA have been reported to exist 
including messenger and microRNAs (miRNA), as well as 
non-coding RNAs such as circular, tRNA-derived, PIWI-
interacting, and long non-coding subtypes.106 Seminal descrip-
tions of stable RNA molecules in circulation were received 
with some surprise, owing to the belief that serum RNases 
would render these molecules insufficiently stable for detec-
tion.107-109 Nonetheless, with demonstrated stability in circu-
lation, in addition to reports of tissue-specific expression and 
frequent dysregulation in cancer, ctRNA have achieved sci-
entific interest as potential circulating biomarkers for moni-
toring responses to anti-neoplastic therapies.

Perhaps the most widely studied ctRNA are miRNA. 
Indeed, a plethora of plasma miRNA have been characterized 
as diagnostic, prognostic, and predictive markers in gastro-
intestinal, hematologic, lung, prostate, and testicular cancers 
(among many others).110-113 As an example, Hansen et al have 
studied miRNA-126 in patients with metastatic colorectal 
cancer receiving chemotherapy and bevacizumab and have 
shown that patients with progressive disease tended to have 
increasing miRNA-126 levels through therapy compared with 
patients with stable disease or partial/complete responses.114 
Screens for miRNA recapitulating responses to therapy have 
also been conducted, such as a recent study by Benson et al in 
which the authors identified miRNA-148a as a surrogate for 
response in patients with recurrent platinum-resistant ovarian 
cancer receiving carboplatin and decitabine.115 Finally, as the 
sensitivity and specificity of single miRNA markers can be 
suboptimal, there has also been tremendous interest into the 
possibility of combining multiple circulating miRNA to create 
a panel with improved operating characteristics.

Clinical Considerations
The relative affordability and ease of detection of cir-
culating nucleic acids have already facilitated their entry 
into clinical practice. Indeed, the US FDA has already ap-
proved the use of several companion diagnostic assays to 
identify actionable mutations in cfDNA from patients with 
advanced cancer. Both single gene and next-generation 
sequencing approaches have been approved for certain in-
dications (eg, EGFR in NSCLC for osimertinib/gefitinib/
erlotinib, BRCA1/2 in prostate cancer for rucaparib). 
Additional efforts are underway to characterize the analyt-
ical performance of frequently used assays which should 
provide fundamental data for the development of clinical 
guidelines for their routine use.116

Exosomes
Extracellular vesicles (EVs) are lipid-bilayer-enclosed, non-
replicating endocytic products that are released by a variety 
of cell types and that have been implicated in diverse bio-
logic functions.117 Although initially discovered in algae, EVs 
are now understood to be produced by mammalian cells and 
are released in vivo in humans.118-120 Significant quantities of 
exosomes can be isolated from malignant ascites or pleural 
effusions in patients with metastatic cancers and EVs have 

further been detected in saliva, nasal secretions, breast milk, 
urine, and blood.121-126 The finding that miRNA expression 
profiles from isolated circulating exosomes often reflect such 
profiles from parent tumor tissue samples provided significant 
credibility to a tumor cell origin for some EVs.127

Although not yet routinely used as circulating biomarkers 
in practice, multiple potential methods for EV analysis have 
been proposed including measurement of their overall levels 
and contents.128 For example, Yu et al have monitored plasma 
exosomes through combination ruxolitinib and erlotinib in 
stage IV or recurrent EGFR-mutated lung adenocarcinomas 
with erlotinib resistance.129 Interestingly, the authors ob-
served that the 3 patients with the longest PFS had decreasing 
exosomal EGFR through therapy, whereas the 13 patients 
with stable or increasing exosomal EGFR all had shorter 
PFS. While rather preliminary, these findings highlight the po-
tential for quantitative and qualitative exosomal analysis in 
prognostication.

The immune checkpoint molecule PD-L1 has been found 
to exist in circulation on exosomes and changes in re-
sponse to immunotherapy.130 Conflicting data exist as to 
whether increasing or decreasing exosomal PD-L1 through 
therapy confers a favorable prognosis. Chen et al have 
found that stage III/IV melanoma patients who responded to 
pembrolizumab tended to have increasing exosomal PD-L1 
through therapy which was proposed to be related to height-
ened IFN-γ-induced PD-L1 expression in the context of T-cell 
re-invigoration.131 In contrast, Cordonnier et al analyzed 
exosomal PD-L1 content in patients with stages II-IV mel-
anoma receiving PD-1-, CTLA4-, BRAF-, or MEK-targeted 
therapies and reported that decreasing exosomal PD-L1 con-
tent through therapy is suggestive of treatment response.132

As advances are made in characterizing exosomes as 
circulating biomarkers, existing barriers will have to be 
overcome to facilitate their integration into clinical prac-
tice. New methodologies may be required to replace the 
rather cumbersome present-day techniques for isolating 
exosomes from small volume clinical samples. Further, as 
new techniques with improved detection limits are created, 
additional efforts may be necessary to distinguish cancer 
cell-released EV “signal” from background “noise” given 
the ubiquitous release of EVs from non-neoplastic cells 
in vivo. Certainly, progress is underway to generate such 
assays including microfluidic, electrokinetic, and CRISPR-
Cas9-based approaches.133-135

Metabolomics
Metabolomics refers to the study of the global metabolic 
profile within a cell or tissue. In contrast to genetic profiling, 
which reflects biological events that may or may not influence 
present cellular behavior, metabolic profiling represents cur-
rent biological state.

Cancer cells rely heavily on aerobic glycolysis and 
glutaminolysis and this metabolic status is closely linked 
to aberrant function of oncogenes and tumor suppressor 
genes.136-139 Through metabolomics, endogenous metabolites 
initiating or sustaining oncogenesis (“oncometabolites”) were 
discovered, with 2-hydroxyglutarate being the earliest such 
molecule described.140 Nuclear magnetic resonance spectros-
copy, gas chromatography mass spectrometry (MS), and li-
quid chromatography MS are the current technologies used 
to interrogate the metabolome.141-143
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Oncometabolites have been offered as biomarkers for 
cancer diagnosis. Serum levels of lysophosphatidylcholine 
(LPC) can distinguish the presence of colorectal cancer com-
pared with healthy controls with a 93% specificity and 82% 
sensitivity.144 Three other metabolites (histidine, tryptophane, 
and phenylacetylglutamine) are perturbed during the evo-
lution of precursor lesions into gastric carcinoma and are 
readily detectable in serum.145 A number of metabolites have 
also been characterized in other body fluids from specific 
tumor types including urine in patients with bladder cancer, 
and saliva in patients with oral malignancies.146,147 In the 
study of pharmacometabolomics, metabolites are used to ad-
dress questions about pharmacokinetics and therapeutic ef-
fect. For example, Backshall et al have showed that higher 
levels of low-density lipoprotein-derived lipids were asso-
ciated with increased severity of side effects in patients re-
ceiving capecitabine for inoperable CRC.148

Despite growing enthusiasm about the field of “onco-
metabolism”, a few notable barriers hinder the integration 
of oncometabolites into clinical practice. Metabolic pathways 
are highly complex with susceptibility to be influenced by en-
vironmental factors, such as diet and gut microbiota.149 The 
relatively short half-life of endogenous metabolites, as well as 
their dependence on environmental factors, makes it impera-
tive that consistency in sampling is sought. Further globally 
accepted validation studies in large cohorts of patients are 
still needed. Due to the complexity of metabolic networks, it 
is widely believed that panels of metabolites are a more rep-
resentative biomarker of the metabolic state, rather than iso-
lated single metabolites. However, panel analysis can lead to 
generation of large databases which can be challenging to in-
terpret. Thus, metabolomics are not yet widely implemented 
in clinical spaces.

Conclusions and Future Directions
The rapid determination of treatment response has been a 
longstanding priority in oncology. Prompt identification of 
disease relapse after definitive treatment may indicate the need 
for interception therapy whereas, in the metastatic setting, 
early recognition of treatment failure may provide patients an 
opportunity to move on to more efficacious treatments and 
limits exposures to toxicities. Circulating biomarkers such as 
non-specific markers of disease burden and tumor markers 
have been used in the clinical setting to aid treatment moni-
toring. With notable exceptions such as PSA, the majority of 
these markers have not replaced standard radiological im-
aging for decision-making. Other circulating biomarkers re-
viewed in this manuscript are actively under investigation, 
each with particular advantages and disadvantages (Fig. 2).

As future work continues, it will be essential that the per-
formance of these biomarkers is well-characterized prior to 
their integration into routine clinical practice. Indeed, over-
reliance on poorly understood biomarkers poses significant 
risks to patients including increased frequency of interactions 
with the healthcare system, financial cost, stress from false 
positives/negatives, and even the possibility of abandoning 
efficacious treatments prematurely or exhausting lines of 
therapy. Additional careful consideration will need to be 
given to the role of proprietary industry-generated assays for 
biomarker detection. Finally, and ideally, the integration of 
these biomarkers into clinical practice would be justified by 
clinical data showing that their use in identifying subclinical 
disease progression has an actual effect on improving patient-
centered outcomes.

Certainly, there are plentiful opportunities for the de-
velopment of circulating biomarkers that meet these high 

Figure 2. Strengths and weaknesses of circulating biomarkers for monitoring treatment response.
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standards. The diverse cancer secretome provides no shortage 
of circulating macromolecules that can be evaluated indi-
vidually or in combination through multiplexed approaches 
as well as machine learning algorithms to create composite 
biomarkers. Beyond blood-based biomarkers, assessment of 
additional non-invasive biomarkers, for instance, radiomic 
evaluation of quantitative features on routine radiological 
imaging, as well as interrogation of other body substances 
such as urine or stool for microbiome analysis, may offer 
a holistic understanding of the interactions between host, 
tumor, and the microenvironment.150 With efforts to this end 
already underway, and a wealth of further possibilities, the 
field of circulating biomarkers for disease monitoring ap-
pears promising.
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