
Pacific
Journal of
Mathematics

THE HOMOLOGY OF THE PARTITION ALGEBRAS

RACHAEL BOYD, RICHARD HEPWORTH AND PETER PATZT

Volume 327 No. 1 November 2023





PACIFIC JOURNAL OF MATHEMATICS
Vol. 327, No. 1, 2023

https://doi.org/10.2140/pjm.2023.327.1

THE HOMOLOGY OF THE PARTITION ALGEBRAS

RACHAEL BOYD, RICHARD HEPWORTH AND PETER PATZT

We show that the homology of the partition algebras, interpreted as appropri-
ate Tor-groups, is isomorphic to that of the symmetric groups in a range of
degrees that increases with the number of nodes. Further, we show that when
the defining parameter δ of the partition algebra is invertible, the homology of
the partition algebra is in fact isomorphic to the homology of the symmetric
group in all degrees. These results parallel those obtained for the Brauer
algebras in the authors’ earlier work, but with significant differences and
difficulties in the inductive resolution and high acyclicity arguments required
to prove them. Our results join the growing literature on homological stabil-
ity for algebras, which now encompasses the Temperley–Lieb, Brauer and
partition algebras, as well as the Iwahori–Hecke algebras of types A and B.

1. Introduction

In the last few years it has become increasingly apparent that the techniques of
homological stability, which are most commonly applied to families of groups, can
be successfully applied to families of algebras, where homology is interpreted as an
appropriate Tor group. Indeed, Boyd and Hepworth [2020], Boyd, Hepworth and
Patzt [2021], Hepworth [2022] and Moselle [2022] proved homological stability for
Temperley–Lieb algebras, Brauer algebras, and Iwahori–Hecke algebras of types A
and B respectively, and identified the stable homology in the first two cases. The
Temperley–Lieb and Brauer algebras failed to satisfy a certain flatness condition
that holds automatically for families of groups, necessitating the introduction of
the new technique of inductive resolutions. Using related techniques, Sroka [2023]
showed that the homology of the Temperley–Lieb algebra on an odd number of
strands vanishes in positive degrees, in contrast to the known nonvanishing for
an even number of strands. More recently, Boyde [2022] used a careful study of
idempotents to unify and generalise the “invertible parameter” results from [Boyd
and Hepworth 2020; Boyd et al. 2021], together with Sroka’s vanishing result.
In this paper, we prove homological stability for the partition algebras, and we
identify their stable homology.
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The partition algebras were introduced independently by Jones [1994] and
Martin [1994] for their relevance in studying Potts models in statistical mechanics.
They are also important in representation theory as a Schur–Weyl dual to the
symmetric group, as in the work of Halverson and Ram [2005, Theorems 5.4, 3.6]
and Bowman, Doty and Martin [2022]. They contain a rich variety of subalgebras,
including the planar partition, rook Brauer, rook, planar rook, Brauer, Motzkin and
Temperley–Lieb algebras.

Given a commutative ring R, an element δ ∈ R, and a nonnegative integer n, the
partition algebra Pn(R, δ) is defined to be the free module over R with basis given
by the partitions of the set {−1, . . . ,−n, 1, . . . , n}. These partitions can be drawn
as diagrams with n nodes labelled −1, . . . ,−n on the left and n nodes labelled
1, . . . , n on the right. Nodes in the same block of a partition are then joined by edges.
For ease of drawing, we do not include all edges but instead rely on transitivity.
Disconnected nodes are allowed, corresponding to blocks of size one. For example,
the following diagram shows the basis element {{−1, −3}, {−2, −4, 4}, {2, 3}, {1}}

of P4(R, δ):
−4
−3
−2
−1

4
3
2
1

Multiplication is given by placing the diagrams side by side, identifying the middle
nodes, and replacing any blocks not connected to the right or left by a factor of δ.

Diagrams in which every node on the left is connected to a single node on the right,
and nothing else, are called permutation diagrams, and are in bijection with elements
of the symmetric group Sn . This gives rise to inclusion and projection maps

RSn
ι

−→ Pn(R, δ)
π

−→ RSn

where ι sends permutations to permutation diagrams, and π does the reverse while
sending all remaining diagrams to 0. In particular, π ◦ ι is the identity map on RSn .

We denote the trivial module of RSn by 1. Pulling back along π , we obtain
the trivial module 1 of Pn(R, δ). This gives us the homology groups H∗(Sn, 1) =

TorRSn
∗

(1, 1) of Sn and TorPn(R,δ)
∗

(1, 1) of Pn(R, δ). There are induced homomor-
phisms ι∗ and π∗ on homology groups for which π∗ ◦ ι∗ is again the identity, so that
the homology of Sn appears as a direct summand of the homology of Pn(R, δ).

Theorem A. Suppose that δ is invertible in R. Then the homology of the partition
algebra is isomorphic to the homology of the symmetric group:

TorPn(R,δ)
∗

(1, 1) ∼= H∗(Sn; 1).
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Indeed, the inclusion and projection maps

RSn
ι

−→ Pn(R, δ)
π

−→ RSn

induce inverse isomorphisms

TorRSn
∗

(1, 1)
ι∗
∼=

−→ TorPn(R,δ)
∗

(1, 1)
π∗

∼=
−→ TorRSn

∗
(1, 1).

Our second result holds without any assumptions on the value of δ.

Theorem B. The inclusion map ι : RSn → Pn(R, δ) induces a map in homology

ι∗ : Hi (Sn; 1) → TorPn(R,δ)
i (1, 1)

that is an isomorphism in the range n ≥ 2i + 1.

An immediate consequence of Theorem B is the following corollary.

Corollary C. The partition algebras satisfy homological stability, that is, the
inclusion Pn−1(R, δ) ↪→ Pn(R, δ) induces a map

TorPn−1(R,δ)

i (1, 1) → TorPn(R,δ)
i (1, 1)

that is an isomorphism in degrees n ≥ 2i + 1, and this stable range is sharp.
Furthermore, Pn(R, δ) and Sn have the same stable homology:

lim
n→∞

H∗(Sn; 1) ∼= lim
n→∞

TorPn(R,δ)
∗

(1, 1).

The first part of this corollary follows by combining Theorem B with Nakaoka’s
homological stability result for the symmetric groups, for which the stable range
is sharp [Nakaoka 1960]. For the stable homology, the left-hand side of this
isomorphism is well known by the Barratt–Priddy–Quillen theorem [Barratt and
Priddy 1972; Friedlander and Mazur 1994]. The above results exactly parallel
the situation for the Brauer algebras, and as discussed in [Boyd et al. 2021] are
reminiscent of the relationship between Sn and the automorphism groups of free
groups Aut(Fn) (see Galatius [2011]).

1A. Outline, and comparison to previous work. In Section 2 we introduce partition
algebras and provide the necessary background needed for the rest of the paper. In
Section 3 we restate an abstract form of the principle that lies behind the technique
of inductive resolutions that was introduced in [Boyd and Hepworth 2020], and
was a crucial ingredient in [Boyd and Hepworth 2020] and [Boyd et al. 2021].
In Section 4 we establish the existence of inductive resolutions for the partition
algebras. These are significantly more complicated than the Temperley–Lieb [Boyd
and Hepworth 2020] and Brauer [Boyd et al. 2021] cases, and we find that we must
consider several families of distinct modules in order to carry out our induction
argument. In Section 5 we follow the argument of Boyd et al. [2021] to replace
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Shapiro’s lemma in the setting of partition algebras. The high connectivity result
required for any new proof of homological stability is found in Section 6. Like our
inductive resolutions argument, this is again more complicated than the analogous
result in [Boyd et al. 2021], and heavily utilises the high connectivity of the complex
of injective words with separators, introduced in that paper. We finish in Section 7
by giving an account of the proof of the main theorem, which follows the same
general argument as in [Boyd et al. 2021].

It is common, in homological stability for families of groups, to find that proofs
of different results have a very similar overall structure, yet the proofs that the
relevant complexes are highly acyclic can differ radically. What we can now see
in homological stability for algebras, comparing the work of this paper to that
of [Boyd and Hepworth 2020] and [Boyd et al. 2021], is an analogous situation
where the overall technique is used in multiple situations, but the details of the
acyclicity proofs — and now also of the inductive resolutions proofs — are where
the important differences and difficulties lie.

2. Partition algebras

In this section we introduce the partition algebra, together with some specific
elements and modules that will be important later in the paper.

Definition 2.1 (the partition algebra [Jones 1994; Martin 1994]). As explained in
the introduction, if R is a commutative ring, δ is a chosen element in R, and n is
a nonnegative integer, then the partition algebra Pn(R, δ) is defined to be the free
module over R with basis given by the partitions of the set {−n, . . . ,−1, 1, . . . , n}.
These are drawn as diagrams with nodes −1, . . . ,−n on the left and nodes 1, . . . , n
on the right, with arcs indicating which nodes lie in the same block of the partition.
(We allow ourselves to omit some arcs and instead use transitivity to determine the
blocks.) An example is shown in Figure 1. Multiplication is given by placing the
diagrams side by side, identifying the middle nodes, and replacing any blocks not
connected to the right or left by a factor of δ, as in Figure 2.

We will use the terms “partition” and “diagram” interchangeably to mean a basis
element of Pn(R, δ), and we will frequently abbreviate Pn(R, δ) as Pn .

−5
−4
−3
−2
−1

5
4
3
2
1

Figure 1. Visualization of the partition {{−5, −3}, {−4, −2, −1, 3, 4}, {1, 5}, {2}}.
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· = = δ ·

Figure 2. Multiplication in the partition algebra.

S2 V13 T3

Figure 3. The elements S2, V13, T3 ∈ P4.

The partition algebra is generated by three types of diagrams [Martin 1996],
corresponding to the following partitions:

• For 1 ≤ i ≤ n −1, Si is the diagram corresponding to the partition with blocks of
pairs {− j, j} for j ̸= i, i + 1, together with {−(i + 1), i} and {−i, (i + 1)}. These
generate the group ring of the symmetric group, Sn , as a subalgebra of Pn .
• For 1 ≤ i ̸= j ≤ n − 1, Vi j is the diagram corresponding to the partition with
blocks of pairs {−k, k} for k ̸= i, j and one block of size four {− j, −i, i, j}.
• For 1 ≤ i ≤ n, Ti is the diagram corresponding to the partition with blocks of
pairs {− j, j} for j ̸= i and two singleton blocks {−i} and {i}.

See Figure 3 for depictions of some of these.
We now introduce the modules we will be working with.
Recall that by a permutation diagram we mean a diagram in which each node

on the left is joined to a single node on the right, and nothing else. Equivalently,
permutation diagrams are ones that do not contain any singletons on the right or
any blocks that contain ≥ 2 elements on the right.

Definition 2.2 (the trivial module 1). For any n, we define the trivial RSn-
bimodule 1 to be the module given by the ring R, upon which the permutations act
as the identity.

For any n, we define the trivial Pn-bimodule 1 to be the module given by the
ring R, upon which the permutation diagrams act as the identity, and all other
diagrams act as 0. This is the same as acting with Pn on R via the projection
π : Pn → Sn .

Definition 2.3. For m ≤ n, we can view Pm as a subalgebra of Pn . Given a parti-
tion of {−m, . . . ,−1, 1, . . . , m}, the map which sends (±1, . . . ,±m) to (±(n −

m +1), . . . ,±n) induces a partition on {−n . . . , −(n−m +1), (n−m +1), . . . , n}.
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We add the blocks {−i, i} for all i ∈ {1, . . . , (n − m)}, resulting in a partition in Pn .
Pictorially, we are taking diagrams in Pm and extending them to ones in Pn by
adding new nodes below the existing ones, with horizontal connections between
the new nodes. Then, under the action of this subalgebra, Pn can be viewed as a
left Pn-module and a right Pm-module, and we obtain the induced left Pn-module
Pn ⊗Pm 1.

Proposition 2.4 [Patzt 2024, Proposition 2.5]. The induced module Pn ⊗Pm 1 is a
free R-module and a quotient of Pn .

In terms of diagrams, a basis for this module is the set of diagrams in which the
top m nodes on the right are placed under a box, satisfying the following condition:

• The box is connected to exactly m distinct blocks.

Under this description, the action of Pn on Pn ⊗Pm 1 is given by pasting and sim-
plifying the diagrams just as in the multiplication of Pn , and then identifying a
diagram with 0 if it violates the condition above.

Thus there are two ways that a diagram could be identified with 0 after left
multiplication by a diagram in Pn: One of the blocks attached to the box could, after
pasting, consist only of nodes in the centre (visually, that block is free to be retracted
into the box, and then disappears). Alternatively, two or more distinct blocks that
were attached to the box can become fused into a single block (visually, there is
now a path of arcs with both ends attached to the box). These two possibilities
correspond to the two ways in which a diagram in Pm can fail to be a permutation
diagram, and therefore act as 0 on 1: It can have a singleton on the right, or it can
have two nodes on the right belonging to the same block.

Example 2.5. Figure 4 depicts the module structure of P5 ⊗P3 1. In the first example
one of the blocks connected to the box consists entirely of nodes in the centre and
therefore “vanishes” or “retracts into the box”. In the second example the factor
of δ arises due to a block that consists entirely of nodes in the centre and is not
attached to the box.

3. The principle of inductive resolutions

In this brief section we state an abstract form of the principle that underlies the
technique of inductive resolutions that appeared in [Boyd and Hepworth 2020]
and [Boyd et al. 2021]. It allows us to identify modules that vanish under a fixed
functor of the form TorA

i (M, −) by resolving them using modules that already have
this property, hence the name “inductive resolutions”. The theorem below is an
abstraction of Section 3.3 of [Boyd and Hepworth 2020]. It can be regarded as an
application of the general principle that a derived functor can be computed using
resolutions by objects that are acyclic for that derived functor.
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·

3
=

3
=

3
= 0

·

3
=

3
= δ ·

3

Figure 4. The module structure of P5 ⊗P3 1.

Theorem 3.1. Let A be an algebra over a ring R, and let M be a right A-module.
Suppose that N is a left A-module equipped with a resolution Q∗ → N with the
following two properties:

• TorA
∗
(M, Q j ) vanishes in positive degrees for all j ⩾ 0.

• M ⊗A Q∗ → M ⊗A N is a resolution.

Then TorA
∗
(M, N ) vanishes in positive degrees.

Proof. Let P∗ → M be a projective resolution, so that for any left A-module B, the
groups TorA

∗
(M, B) are computed by the complex P∗ ⊗A B. Consider the double

complex P∗ ⊗A Q∗. There are two natural spectral sequences converging to the
homology of the totalisation Tot(P∗ ⊗A Q∗). For more on these spectral sequences,
see Section 5.6 of [Weibel 1994] and the summary in Section 3.2 of [Boyd and
Hepworth 2020].

The first spectral sequence has E1-term given by
IE1

i, j = H j (Pi ⊗A Q∗) ∼= Pi ⊗A H j (Q∗),

with d1 induced by the differential of P . The isomorphism holds because each Pi

is projective and therefore flat. It follows that the E2-term is
IE2

i, j = TorA
i (M, H j (Q∗)).

Since Q∗ is a resolution of N , it follows that IE2
∗,∗ is simply TorA

∗
(M, N ) concen-

trated on the x-axis, so that the same is true of IE∞
∗,∗, and therefore we conclude

that H∗(Tot(P∗ ⊗A Q∗)) ∼= TorA
∗
(M, N ).

The second spectral sequence has E1-term given by IIE1
i, j = H j (P∗ ⊗A Qi ), i.e.,

IIE1
i, j = TorA

j (M, Qi ),

with d1 induced by the boundary maps of Q∗. Our first assumption now shows that
IIE1

∗,∗ is concentrated on the x-axis, where it is given by TorA
0 (M, Q∗) = M ⊗A Q∗.
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Consequently IIE2
∗,∗ is given by the homology of M ⊗A Q∗, which by our second

assumption is simply a copy of M ⊗A N at the origin. This shows that the homology
of Tot(P∗ ⊗A Q∗) is simply a copy of M ⊗A N in degree 0.

Comparing the outcomes of the two spectral sequences, we see that TorA
∗
(M, N )

vanishes in positive degrees, as required. □

4. Inductive resolutions

In this section, we will use the technique of inductive resolutions, which originated
in [Boyd and Hepworth 2020] and was further used in [Boyd et al. 2021].

Definition 4.1. Suppose that X is a subset of the set {1, . . . , n}. Define JX to be
the left-ideal in Pn that is the R-span of all diagrams in which, among the nodes on
the right labelled by elements of X , there is at least one singleton or one pair of
nodes that are in the same block. For m ≤ n, let J{n−m+1,...,n} be denoted by Jm .

Observe that Jn = J{1,...,n} is the span of precisely the diagrams that are not
permutation diagrams. It is therefore the kernel of the projection map π : Pn → RSn .

Our aim in this section is to prove the following theorem, which will be used in
the final section to understand the Tor groups TorPn

∗
(1, Pn ⊗Pm 1).

Theorem 4.2. Let X ⊆ {1, . . . , n} and suppose that one of the following conditions
holds:

• |X | ≤ n and δ is invertible in R.

• |X | < n.

Then the groups TorPn
∗

(1, Pn /JX ) vanish in positive degrees.

The proof of Theorem 4.2 will occupy the rest of the section. Aspects of the
material are close to [Boyd and Hepworth 2020, Section 3] and [Boyd et al. 2021,
Section 3], but overall the material here is significantly more complex.

Before we continue, we record the following lemma, which extends Theorem 4.2
to degree 0. We will need this lemma to prove the theorem.

Lemma 4.3. Let J be a left ideal of Pn that is included in Jn . Then

1 ⊗Pn Pn /J ∼= 1.

In particular,
TorPn

0 (1, Pn /JX ) ∼= 1

for all X ⊂ {1, . . . , n}.

Proof. Due to the inclusions 0 ⊂ J ⊂ Jn , we have the surjections

1 ⊗Pn Pn ↠ 1 ⊗Pn Pn /J ↠ 1 ⊗Pn Pn /Jn.
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Because

1 ⊗Pn Pn ∼= 1 and 1 ⊗Pn Pn /Jn ∼= 1 ⊗Pn RSn ∼= 1 ⊗RSn RSn ∼= 1,

the above composition is an isomorphism and the first map must be also injective. □

4A. Reducing to AX,x and BX,x . Our proof of Theorem 4.2 will be by induction
on the cardinality of X . Ideally we would prove the inductive step by resolving
Pn /JX in terms of modules Pn /JX ′ with |X ′

| < |X |. However, we were not able to
find a straightforward argument along these lines. To organise the argument, in this
subsection we introduce some intermediate modules, and later on we will build our
resolutions with these.

Definition 4.4. Let Y ⊆ X ⊆ {1, . . . , n}, and let x ∈ X and y ∈ Y . We define three
left Pn-submodules of Pn:

• Ax is the span of all diagrams in which x is a singleton.
• BX,x is the span of all diagrams in which x lies in the same block as some other
element of X .
• MY is the span of all diagrams in which the elements of Y lie in the same block.

We define quotients of these as follows:

AX,x =
Ax

Ax ∩ JX−{x}

, BX,x =
BX,x

BX,x ∩ JX−{x}

, MX,Y =
MY

MY ∩ JX−Y

The following result will be useful to verify the second condition of Theorem 3.1.

Lemma 4.5. The modules AX,x , BX,x , and MX,Y behave as follows under tensor
product with 1.

• Let x ∈ X ⊆ {1, . . . , n}, and suppose that n ≥ 2. Then 1 ⊗Pn AX,x = 0.

• Let x ∈ X ⊆ {1, . . . , n}. Then 1 ⊗Pn BX,x = 0.

• Let Y ⊆ X ⊆ {1, . . . , n} with |Y | ≥ 2. Then 1 ⊗Pn MX,Y = 0 and MX,Y is a
direct summand of Pn /JX−Y .

Proof. We will show that, under the relevant conditions, each of Ax , BX,x and MY

vanishes under 1 ⊗Pn−, and the same will then follow for AX,x , BX,x and MX,Y .
To show that 1 ⊗Pn Ax = 0, we take a diagram α in Ax , so that x is a singleton

in α. Let β denote a diagram obtained from α by placing x into the same block as
some other element on the right. (This is possible by the assumption that n ≥ 2.)
Then α = β · Tx , and β acts as 0 on 1, so that

1 ⊗ α = 1 ⊗ β · Tx = 1 · β ⊗ Tx = 0 ⊗ Tx = 0,

noting that Tx ∈ Ax . Since Ax is the span of such diagrams α, this completes the
proof.
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The argument for the other two modules is similar. For 1 ⊗Pn BX,x , we take a
diagram α ∈ BX,x , so that x is in the same block as some other element w ∈ X , and
we use the factorisation α = α · Vwx , noting that Vwx ∈ BX,x .

For MY we take a diagram α ∈ MY , so that all elements of Y lie in the same
block, and factorise it as α = α · VY where VY ∈ MY is the diagram with blocks
−Y ∪ Y and {−p, p} for p ̸∈ Y ; the assumption |Y | ≥ 2 ensures that α acts as 0
on 1.

For the final claim about MX,Y , we use the fact that the element VY above is
idempotent and sends JX−Y into itself. □

The following proposition breaks down the problem of resolving Pn /JX into the
analogous problem for AX,x and BX,x .

Proposition 4.6. Let X ⊆ {1, . . . , n}, let x ∈ X , and assume n ≥ 2. The sequence
below, in which all maps are induced by either an inclusion or an identity map, is a
resolution of Pn /JX :

. . . // 0 // AX,x ⊕BX,x // Pn /JX−{x}
// Pn /JX

2 1 0 −1

Moreover, applying 1 ⊗Pn− to the sequence gives a resolution of 1 ⊗Pn Pn /JX .

Proof. The map Pn /JX−{x} → Pn /JX is induced by the identity map on Pn and is
well defined since JX−{x} ⊂ JX . The map AX,x → Pn /JX−{x} is induced by the
inclusion Ax ⊂ Pn and is well defined since (Ax ∩ JX−{x}) ⊂ JX−{x}, and a similar
argument holds for the map BX,x → Pn /JX−{x}.

Surjectivity of the right-hand map is immediate, giving exactness in degree −1.
To show exactness in degree 0, observe that the ideals JX−{x} ⊆ JX are both

spanned by certain diagrams, so that the kernel of

Pn /JX−{x} → Pn /JX

is spanned by those diagrams that lie in JX but not JX−{x}. For a diagram to lie
in JX , some element of X must be a singleton, or two elements of X must lie in
the same block. For it to not also be an element of JX−{x}, there must only be one
singleton, namely x , or only one pair of elements lying in the same block, of which
one must be x . The diagrams with x a singleton are precisely the diagrams that
span Ax , the diagrams in which x lies in the same block as some other element
of X are precisely those that span BX,x , and the proof follows.

To show exactness in degree 1, after unravelling the definitions of AX,x and BX,x ,
it is sufficient to show that if we have a ∈ Ax and b ∈ BX,x with a + b ∈ JX−{x},
then a, b ∈ JX−{x}. This follows quickly from fact that Ax and BX,x have no basis
elements in common.
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To prove the second claim, we will show that after applying 1⊗Pn−, the resolution
becomes

. . . // 0 // 0 // 1
Id
// 1

2 1 0 −1

so that the claim follows directly. The identification of the final two terms and
the map between them follows from Lemma 4.3. The terms in degree 1 vanish by
Lemma 4.5. (This is where we use the assumption n ≥ 2.) □

The last result, together with Theorem 3.1, shows that, in order to prove vanishing
of higher Tor’s for Pn /JX by induction, we must first do the same for AX,x and BX,x .
In the next two subsections we will construct resolutions of these.

4B. Resolving AX,x . We now attempt to resolve AX,x . It will turn out that this
requires different methods depending on which assumption from Theorem 4.2 we
use: that δ is invertible, or that |X | < n. Under the first assumption we have:

Proposition 4.7. Suppose that X ⊆ {1, . . . , n} and that δ is invertible in R. Then
the module AX,x is a direct summand of Pn /JX−{x}.

Proof. The element δ−1Tx is an idempotent, thanks to the computation T 2
x = δTx .

Right-multiplication by δ−1Tx sends JX−{x} into itself, and therefore induces an
idempotent endomorphism of Pn /JX−{x}. The image of this endomorphism consists
of all left multiples of Tx , and this is precisely AX,x =

Ax
Ax∩JX−{x}

as in the second
paragraph of the proof of Lemma 4.5. □

The above result shows that, if Pn /JX−{x} has vanishing higher Tor’s, then so
does AX,x . When δ is not invertible, we need a more elaborate method using the
following resolution.

Definition 4.8 (the resolution C(X, x, y)). Let X ⊂ {1, . . . , n} with |X | < n, let
x ∈ X , and let y ∈ {1, . . . , n} − X . We define C(X, x, y) → AX,x as in Figure 5.

Thus C(X, x, y) is given by Pn /JX−{x} in each degree. The maps are all given by
right-multiplication by the indicated elements, so that the boundary maps alternate
between (1 − Tx Vxy) and Tx Vxy , and the augmentation Pn /JX−{x} → AX,x is given
by Tx . The maps are well defined thanks to the fact that Tx Vxy and Tx send JX−{x}

into itself; in the former case this follows from the fact that y ̸∈ X .
To check that consecutive maps compose to 0, one uses Tx VxyTx = Tx together

with the resulting fact that Tx Vxy is an idempotent. The fact that this really does
define a resolution is given next.

Proposition 4.9. Suppose that X ⊂ {1, . . . , n} with |X | < n, let x ∈ X , and let
y ∈ {1, . . . , n} − X. Assume that n ≥ 2. Then

C(X, x, y) → AX,x and 1 ⊗Pn C(X, x, y) → 1 ⊗Pn AX,x

are both resolutions.
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...

(1−Tx Vxy)

��

Pn /JX−{x}

Tx Vxy

��

2

Pn /JX−{x}

(1−Tx Vxy)

��

1

Pn /JX−{x}

Tx

��

0

AX,x −1

Figure 5. The resolution C(X, x, y) → AX,x .

Proof. First, we must show that C(X, x, y) → AX,x is acyclic. In degree −1 this is
clear since Ax consists of all left multiples of Tx . In degrees 1 and above, this is
an immediate consequence of the fact that Tx Vxy is an idempotent. In degree 0 we
require a more complex argument, as follows.

Suppose α is a diagram in which x is a singleton. If B is a block of α other
than {x}, then we write αB for the diagram obtained from α by incorporating x
into B. And we write αy for the diagram αBy , where By is the block containing y.
For example, the following diagrams show α with By and another block B, together
with αB and αy .

x

y

α αB αy

Now observe that we have the relations

(4-1) α − δαy = α(1 − Tx Vxy)

and, for each block B in α,

(4-2) αB − αy = αB(1 − Tx Vxy).

Now consider an element a ∈ Pn /JX−{x} in degree 0 that lies in the kernel of the
augmentation Tx : Pn /JX−{x} →AX,x . We wish to show that a is in the image of the
differential, and we will do this by explaining how to adjust a by elements in the
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image of the differential (which does not change the fact that it lies in the kernel)
in order to reduce it to 0. We can write a as a linear combination of diagrams in Pn

that do not lie in JX−{x}, and these can be divided into the following cases:

(1) Diagrams α in which x is a singleton. Using elements of the form (4-1), we
may adjust a by elements in the image of the differential in order to replace all
such diagrams α with ones of the form αy .

(2) Diagrams in which x is connected to some element outwith X − {x}. These
diagrams all have the form αB , where α is the diagram obtained from the original
by making x a singleton, and B is the block of α that originally contained x . Note
that the assumption that the original diagram did not lie in JX−{x} means that α

also does not lie in JX−{x}. Using elements of the form (4-2), we may adjust a by
elements in the image of the differential in order to replace all such diagrams αB

with ones of the form αy .

(3) Diagrams β in which x is connected to exactly one element, say w, in X −{x}.
Then in βTx Vxy the element w ∈ X − {x} is a singleton, so that βTx Vxy ∈ JX−{x}.
Consequently β = β(1 − Tx Vxy) in Pn /JX−{x}, and in particular β lies in the image
of the differential. We may therefore adjust a by elements in the image of the
differential to remove all diagrams of this form.

After modifying a as explained in each item above, we may now write it as a
linear combination a =

∑
α λα αy where α ranges over all diagrams that are not

in JX−{x} and in which x is a singleton. We know that a lies in the kernel of the
differential, so that a ·Tx = 0. However, we have a ·Tx =

∑
α λα αy ·Tx =

∑
α λα α,

and since the α are distinct diagrams not in JX−{x}, we can conclude that λα = 0
for all α, or in other words that a = 0. This completes the argument in degree 0,
and so completes the proof that C(X, x, y) → AX,x is a resolution.

We now prove that 1 ⊗Pn C(X, x, y) → 1 ⊗Pn AX,x is a resolution. The target
vanishes by Lemma 4.5, and 1 ⊗Pn Pn /JX−{x} = 1 since JX−{x} acts as 0 on 1.
Under the latter identification, the boundary maps, which used to be given by
right-multiplication by the indicated elements, are now given by the action of those
elements on 1, and therefore alternate between 0 and 1. The result follows. □

4C. Resolving BX,x . We now turn to the module BX,x , for which we build the
following resolution.

Definition 4.10 (the resolution D(X, x) → BX,x ). Let X ⊆ {1, . . . , n} and let
x ∈ X . Define an augmented complex D(X, x) → BX,x as follows. In degree i ≥ 0,
D(X, x) is given by ⊕

(x0,...,xi )

MX,{x,x0,...,xi },
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...

δ3

��⊕
(x0,x1,x2)

MX,{x,x0,x1,x2}

δ2
��

2

⊕
(x0,x1)

MX,{x,x0,x1}

δ1
��

1

⊕
(x0)

MX,{x,x0}

δ0
��

0

BX,x −1

Figure 6. The resolution D(X, x) → BX,x . Summations are over
tuples of distinct elements of X − {x}.

where the sum is over all tuples (x0, . . . , xi ) of distinct elements of X −{x}. And on
the summand corresponding to a tuple (x0, . . . , xi ), the map δi is given by the map

MX,{x,x0,...,xi } → MX,{x,x0,...,xi−1}

obtained from the inclusions

M{x,x0,...,xi } ↪→ M{x,x0,...,xi−1}, JX−{x,x0,...,xi } ↪→ JX−{x,x0,...,xi−1}.

The map δi is simply the sum of these individual maps. To it put briefly, δi is the
map that forgets that xi had to be in the same block as x, x0, . . . , xi−1. The complex
is illustrated in Figure 6.

Each composite δi−1 ◦ δi vanishes, because any element in its image is a sum
of diagrams that each contain two elements xi−1, xi ∈ X − {x, x1, . . . , xi−2} in the
same block, and which therefore lie in JX−{x,x1,...,xi−2}. We prove that this is indeed
a resolution in Proposition 4.11.

Proposition 4.11. D(X, x) → BX,x is indeed a resolution, and the same is true for
1 ⊗Pn D(X, x) → 1 ⊗Pn BX,x .

Proof. We first prove that D(X, x) → BX,x is acyclic.
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In degree −1 we must show that δ0 is surjective. A diagram in BX,x has x in the
same block as some other element x0 of X −{x}, and therefore lies in the image of
the inclusion M{x,x0} ↪→ BX,x , and surjectivity follows.

In degree 0, we first observe that if we consider any two summands in degree 0,
then their images under δ0 have trivial intersection. Indeed, this follows quickly
from the fact that if x0 and x ′

0 are distinct elements of X − {x}, then

M{x,x0} ∩ M{x,x ′

0}
⊆ JX−{x},

which itself holds because a diagram in M{x,x0} ∩ M{x,x ′

0}
has x0 and x ′

0 in the same
block as x , and therefore in the same block as one another. So to prove exactness
in degree 0 we can look at just one x0-summand at a time:⊕

x1∈X−{x,x0}

MX,{x,x0,x1}

δ1
��

1

MX,{x,x0}

δ0
��

0

BX,x −1

To prove that this sequence is exact at its middle term, observe that the kernel of δ0

is spanned by diagrams in M{x,x0} that lie in JX−{x}− JX−{x,x0}. Pick such a diagram.
For the diagram to lie in JX−{x}, two elements of X − {x} must be in the same
block, or an element of X −{x} must be a singleton. For the diagram to lie outwith
JX−{x,x0}, since x0 cannot be a singleton in M{x,x0}, we conclude that x0 must be in
the same block as some other element of X −{x}. So, x0 lies in the same block as
some element x1 ∈ X − {x, x0}, and since the diagram is in M{x,x0} it follows that
x, x0, x1 must all be in the same block. Thus the diagram is in M{x,x0,x1}, and so
lies in the image of δ1.

To prove exactness in degree i ⩾ 1 and above, one first observes that in degrees
i − 1, i, i + 1 the complex splits as a direct sum over (x0, . . . , xi−1). It is therefore
enough to concentrate on a single (x0, . . . , xi−1)-summand at a time. Having
restricted to such a summand, one now proves exactness similarly to the degree 0
case, and we leave the details of this to the reader.

The fact that the resolution remains acyclic after applying 1 ⊗Pn− follows imme-
diately from Lemma 4.5, which shows that in fact the resolution vanishes under
this operation. □

Proof of Theorem 4.2. We first tackle the cases n = 0, 1. When n = 0 we have
Pn = R and the claim follows immediately. When n = 1, we either have X = ∅, or
we have X ={1} and δ invertible. When X =∅ we have JX = 0, so that Pn /JX = Pn
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and the claim follows. Finally, when X = {1} and δ is invertible, then JX is the
R-span, and indeed the Pn-span, of the idempotent δ−1T1. Thus JX and Pn /JX are
both direct summands of Pn , and in particular the latter is projective, so that the
claim follows.

We now assume that n ≥ 2, and prove the claim by strong induction on the
cardinality of X . When X = ∅ we have JX = 0, so that Pn /JX = Pn and the claim
is immediate.

Suppose now that |X | > 0 and that the claim holds for all X ′ of a smaller
cardinality. According to Proposition 4.6 and Theorem 3.1, it will be sufficient to
show that the modules

Pn /JX−{x} AX,x BX,x

all vanish under TorPn
i (1, −) for i > 0.

In the case of Pn /JX−{x} we have TorPn
i (1, Pn /JX−{x}) = 0 by the inductive

hypothesis.
For AX,x , we divide into the case where δ is invertible, and the case where

|X | < n. When δ is invertible, Proposition 4.7 shows that AX,x is a direct summand
of Pn /JX−{x}, which vanishes under TorPn

i (1, −) by the inductive hypothesis, so
that AX,x does as well. When |X | < n, Proposition 4.9 gives us resolutions

C(X, x, y) → AX,x and 1 ⊗Pn C(X, x, y) → 1 ⊗Pn AX,x .

The terms of C(X, x, y) are all Pn /JX−{x}, which vanish under TorPn
i (1, −) by the

inductive hypothesis, so that Theorem 3.1 applies to tell us that the same is true
for AX,x itself.

For BX,x , Proposition 4.11 gives us the resolutions

D(X, x) → BX,x and 1 ⊗Pn D(X, x) → 1 ⊗Pn BX,x .

The terms of D(X, x) are direct sums of modules of the form MX,{x,x0,...,xi }. Each
MX,{x,x0,...,xi } is a direct summand of Pn /JX−{x,x0,...,xi } by Lemma 4.5, and since
TorPn

i (1, −) vanishes on the latter, it also vanishes on the former. (Note that this
is the only place in our argument where we have used strong induction.) We can
now apply Theorem 3.1 to D(X, x) to find that BX,x vanishes under TorPn

i (1, −)

as required. □

5. Replacing Shapiro’s lemma

This section closely follows Section 4 of [Boyd et al. 2021]. We include all
statements, and proofs of the lemmas which slightly differ in the case of partition
algebras. The proof of Theorem 5.1 is identical to that in [Boyd et al. 2021], with
adapted inputs.
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As in the case for the Brauer algebras, we have inclusion and projection maps

RSm
ι

−→ Pm
π

−→ RSm .

These are compatible with the inclusions Pm → Pn and RSm → RSn , and also
respect the actions on the trivial module. They therefore induce the following maps
of Tor-groups:

TorRSn
∗

(1, RSn ⊗RSm 1)
ι∗

−→ TorPn
∗

(1, Pn ⊗Pm 1)
π∗

−→ TorRSn
∗

(1, RSn ⊗RSm 1).

Then the main result of this section is the next theorem, which replaces Shapiro’s
lemma in the Quillen style proof of homological stability for groups.

Theorem 5.1. Let n ⩾m ⩾ 0. Suppose that δ is invertible in R, or that m < n. Then
the maps

ι∗ : TorRSn
∗

(1, RSn ⊗RSm 1) → TorPn
∗

(1, Pn ⊗Pm 1)

and
π∗ : TorPn

∗
(1, Pn ⊗Pm 1) → TorRSn

∗
(1, RSn ⊗RSm 1)

are mutually inverse isomorphisms.

Theorem A follows immediately from Theorem 5.1 by taking δ invertible and
m = n, using the identifications RSn ⊗RSm 1 ∼= 1 and Pn ⊗Pm 1 ∼= 1.

The remainder of this section is devoted to proving Theorem 5.1, which follows
in exactly the same way as Theorem 4.1 of [Boyd et al. 2021] after some preparatory
definitions and lemmas.

Recall from Definition 4.1 that Jm ⊆ Pn denotes the ideal consisting of all
diagrams in which, among the nodes on the right labelled by {n − m + 1, . . . , n},
there is a least one singleton or one pair of nodes in the same block. Observe
that Pn is a right RSm-module, via the inclusions RSm ⊆ Pm ⊆ Pn , and that this
module structure preserves Jm , since right multiplying by a diagram which permutes
the nodes {n − m + 1, . . . , n} does not change whether there exists a singleton or
two nodes in the same block in this set. Therefore we have that Pn /Jm is a right
RSm-module.

Lemma 5.2. For m ≤ n, Pn /Jm is free when regarded as a right RSm-module.

Proof. We have that Pn /Jm has basis consisting of the diagrams for which the nodes
in {n − m + 1, . . . , n} have no singleton, and no two nodes in the same block. This
means that each node in {n − m + 1, . . . , n} is attached to a distinct block in the
diagram. Now, Sm acts freely on this basis, since multiplying such a diagram with a
permutation in Sm results again in a diagram where the nodes in {n−m +1, . . . , n}

are attached to distinct blocks. Under this action, the stabilizer of any such diagram
is trivial. □
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Lemma 5.3. For m ≤ n, there is an isomorphism of left Pn-modules

Pn /Jm ⊗RSm 1 ∼= Pn ⊗Pm 1,

under which (b + Jm) ⊗ r ∈ Pn /Jm ⊗RSm 1 corresponds to b ⊗ r ∈ Pn ⊗Pm 1.

Proof. Throughout this proof we regard Jm as an ideal in Pn , and write Jm ∩ Pm for
the corresponding ideal in Pm .

Let us show that the maps

(b + Jm) ⊗ r 7→ b ⊗ r and b ⊗ r 7→ (b + Jm) ⊗ r

are well defined. It then immediately follows that they are inverses and thus
isomorphisms.

For the first map, we need to show that bσ ⊗ r = b ⊗ r for σ ∈ Sm and that
j ⊗ r ∈ Pn ⊗Pm 1 is zero if j ∈ Jm . The first equation follows immediately as
σ ∈ Sm ⊂ Pm acts as the identity on 1. The second condition holds because if
j ∈ Jm , then we can write j as a sum of products of the form b · j ′ where b ∈ Pn and
j ′

∈ Jm ∩Pm , and for each such summand we have b · j ′
⊗r = b⊗ j ′

·b = b⊗0 = 0.
For the second map, we let b ∈ Pn , b′

∈ Pm , and r ∈ 1, and show that

(bb′
+ Jm) ⊗ r = (b + Jm) ⊗ (b′

· r).

It is enough to prove this for b′
∈ RSm and b′

∈ Jm ∩Pm as Pm = RSm ⊕(Jm ∩Pm).
For b′

∈ RSm , we get the equation directly from the definition of the tensor product.
For b′

∈ Jm ∩ Pm , we note that bb′
∈ Jm = Pn · Jm and thus (bb′

+ Jm) ⊗ r is zero,
as is (b + Jm) ⊗ (b′

· r) since b′
· r = 0. □

Now recall from Theorem 4.2 that, under the hypotheses of Theorem 5.1,

TorPn
∗

(1, Pn /Jm) =

{
1 if ∗ = 0,

0 if ∗ > 0.

Proof of Theorem 5.1. The proof of Theorem 5.1 now follows exactly as in [Boyd
et al. 2021, Proof of Theorem 4.1], replacing the occurrences of Brn with Pn ,
and inputting Lemma 5.3 and Theorem 4.2 as appropriate. □

6. High connectivity

We build a complex similar to the one in [Hepworth 2022] and [Boyd et al. 2021].

Definition 6.1. For n a nonnegative integer, we define the chain complex Cn = (Cn)∗

of Pn-modules as follows. The degree p part (Cn)p is nonzero in degrees −1 ≤ p ≤

n − 1, where it is given by

(Cn)p = Pn ⊗Pn−(p+1)
1.
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So in degree −1 it follows that (Cn)−1 = Pn ⊗Pn 1 ∼= 1. For 0 ≤ p ≤ n − 1 the
degree p differential ∂ p is given by the alternating sum

∂ p
=

p∑
i=0

(−1)i d p
i : (Cn)p → (Cn)p−1,

where, algebraically, the map d p
i for 1 ≤ i ≤ p is given by

d p
i : Pn ⊗Pn−(p+1)

1 → Pn ⊗Pn−p 1, x ⊗ r 7→ (x · Sn−p+i−1 . . . Sn−p) ⊗ r

and
d p

0 : Pn ⊗Pn−(p+1)
1 → Pn ⊗Pn−p 1, x ⊗ r 7→ x ⊗ r.

In other words, when i = 0 the product Sn−p+i−1 . . . Sn−p is taken to be the empty
product, i.e., the identity element.

In terms of diagrams, elements in degree p can be described as diagrams with
an (n − (p +1))-box at the top right, as in Proposition 2.4 and the paragraph which
follows it. If we label the nodes below the (n − (p + 1))-box by 0, . . . , p from top
to bottom, then d p

i lifts up node i and plugs it into the box.

We now filter Cn . Note that in [Boyd et al. 2021] we first decomposed Cn

based on the number of disjoint blocks on the left, and we could also do that here.
However this is not necessary for the proof.

Definition 6.2. We define a filtration

F0 Cn ⊆ F1 Cn ⊆ · · · ⊆ F⌊n/2⌋Cn = Cn

of Cn as follows. The j-th level F j Cn is generated by diagrams with at most j
blocks that have at least 2 positive (right-hand) nodes and are not connected to the
box. Note that this is indeed a filtration, since the boundary map can only decrease
the number of blocks on the right not connected to the box.

We briefly recall the definition of the complex of injective words with separators.

Definition 6.3 (injective words with separators). Let X be a finite set and let k ⩾ 0.
An injective word on X with k separators is a word with letters taken from the
set X ⊔ { | } consisting of X and the separator |, where each letter from X appears
at most once, and where the separator appears exactly k times. When k = 0, then
these are simply the injective words on X .

Definition 6.4 (the complex of injective words with separators). Let X be a finite
set, let s ⩾ 0, and let R be a commutative ring. The complex of injective words with s
separators is the R-chain complex W (s)

X concentrated in degrees −1 ≤ p ≤ |X |− 1,
and defined as follows. In degree p, (W (s)

X )p has basis given by the injective
words on X with s separators, and with (p + 1) letters from X . Thus such a word
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a ∈ (W (s)
X )p has length s + p +1. Let r = s + p and a = a0 a1 . . . ar . The boundary

operator ∂ p
: (W (s)

X )p → (W (s)
X )p−1 is defined by the rule

∂ p(a0 a1 . . . ar ) =

r∑
i=0

(−1)i a0 . . . âi . . . ar

subject to the condition that if the omitted letter is a separator, then the corresponding
term is omitted (or identified with 0). In other words, the boundary is the signed sum
of the words obtained by deleting the letters that come from X and not deleting any
separators, but with signs determined by the position of the deleted letter among
all letters including the separator:

∂ p(a0 a1 . . . ar ) =
∑

ai ∈X
(−1)i a0 . . . âi . . . ar .

We will aim to identify the filtration quotients F j Cn/F j−1 Cn with a sum of
shifted copies of the complex of injective words with separators, as in [Boyd et al.
2021]. (Note that in [Boyd et al. 2021] the argument for the Brauer algebras is
somewhat simpler, and so the reader may wish to look at the Brauer proof first.)

To complete this identification, we exhibit a one-to-one correspondence between
diagrams and tuples of data. This correspondence is complicated, so we start with
the simple example of the tuple corresponding to a diagram with no box, and no
restriction on the right-hand side blocks. Recall that a diagram is a pictorial way of
representing a partition of the set {−n, . . . ,−1, 1, . . . , n}.

A diagram D determines, and is determined by, a tuple (L , R, φ) consisting of:

• A partition L of {−1, . . . ,−n}.

• A partition R of {1, . . . , n}.

• A labelling φ : R → {∅} ∪ L with the property that φ(r) = φ(r ′) only when
r = r ′ or φ(r) = φ(r ′) = ∅.

The correspondence sends a diagram D to the tuple (L , R, φ) for which:

• L is the induced partition on the left-hand nodes −1, . . . ,−n.

• R is the induced partition on the right-hand nodes 1, . . . , n.

• φ labels a block on the right by the (necessarily unique) block on the left to
which it is attached, if any, and labels it by ∅ otherwise.

An example is shown in Figure 7. Here, the process of restricting the partition
to the left and right sides of the diagram amounts to discarding all the left-to-right
connections. Those left-to-right connections are instead recorded in the labelling φ.
To see that φ satisfies the third property above because, observe that if it did not,
then the diagram would have two distinct blocks r, r ′ on the right attached to the
same block on the left. That would be a contradiction because then r and r ′ would
in fact themselves be the same.
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P1

P2

P3

P4

P5

7→ P5

7→ P2

7→ ∅

7→ P1

7→ ∅

L D R φ

Figure 7. The process of extracting from a diagram D the tuple
(L , R, φ). Blocks in L , and the labellings of R are indicated at
their lowermost node.

2

D

Figure 8. An example of a diagram D, when n = 9, j = 1 and p = 6.

We now observe that the filtration quotient F j Cn/F j−1 Cn has a basis in degree p
consisting of diagrams which have an (n − (p + 1))-box on the right, and exactly
j blocks with ≥ 2 nodes on the right that are not connected to the box. Here, the
size of the box is determined by the degree as in Definition 6.1, and the condition
on the j blocks follows from the definition of the filtration given in Definition 6.2.
An example is given in Figure 8.

In the next definition, we explain how these basis diagrams determine a tuple of
data, analogously to the discussion above. Once this data has been stripped from
the diagram, we are left with the desired information of an injective word with
separators. In this injective word, the letters encode left-to-right connections for
which the block on the right has a single element; and the separators correspond to
all other nodes below the box on the right. There are at least 2 j of these separators,
because there are precisely j blocks on the right that have 2 or more right-hand
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nodes and are not connected to the box. Later, in Lemma 6.8 we show how to
conversely start with an injective word with separators and our tuple of data and
rebuild the diagram.

Definition 6.5. A diagram in the basis of (F j Cn/F j−1 Cn)p determines a tuple

(P, X, s, Y, f )

consisting of the following data:

• A partition P of {−1, . . . ,−n}.
• A subset X of the blocks of P .
• A number 2 j ≤ s ≤ n − |X |.
• A partition Y of {1, . . . , s}, such that ≥ j blocks have size ≥ 2.
• A labelling f :Y → ({∅}∪P\X)×{□, ¬□} (where the symbols □, ¬□ represent
“box” and “not-box” respectively) such that

– singletons have first label ∅
– no two blocks in Y can have the same first label in P \ X

– exactly j blocks of size ≥ 2 have second label ¬□

– exactly n − s − |X | blocks have second label □.

The diagram D determines the tuple as follows (an example is shown in Figure 9):

• P is the partition of {−1, . . . ,−n} given by restricting the blocks of D to the
negative elements, i.e., to the nodes on the left-hand side of the diagram.
• X is the set of blocks in P which, when viewed in D, are connected to exactly
one thing on the right (this can be a connection to the box, or to a single node).
• The number s is equal to the number of nodes on the right of D not connected to a
block in X . These nodes are precisely those which are singletons, or are connected
to another element on the right, or to the box. Therefore, every node in one of the
j blocks of D that have at least 2 positive (right-hand) nodes and are not connected
to the box (as in Definition 6.2) is included and so s ≥ 2 j . Also, none of the nodes
that are connected to a block in X are included, so s ≤ n − |X |. It follows that
n − |X | − s is the number of blocks connected to the box and to at least one node
on the right.
• Y is the partition given by restricting D to the set of s nodes on the right that are
not connected to the blocks of X (we relabel these 1, . . . , s, maintaining the order).
• The first entry of the labelling f , in ∅∪ P \ X , indicates whether the blocks of Y
are disconnected from the rest of D (in which case the label is ∅), or connected
to the left-hand side (in which case the label is the block in P \ X that they are
connected to). Singletons in Y cannot be connected to the left because otherwise
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2

P1

P2

P3

P4

P5

P2

P5

7→ (∅,□)

7→ (P1, ¬□)

7→ (∅, ¬□)

P2

X P D s = 6 Y f a = ∥P2∥

Figure 9. The process of extracting from the diagram D in
Figure 8 the tuple (P, X, s, Y, f ) and injective word a described in
Definition 6.5. Blocks in P and the labelling f of Y are indicated
at their lowermost node.

they would be connected to a block in X on the left. Thus their first label must
be ∅. Two blocks in Y cannot be connected to the same block in P \ X , so two
first labels can only be the same if they are both ∅.

The second entry of the labelling f is □ if the block in Y is connected to the
box in D and ¬□ if it is not. The condition that there are exactly j blocks of
size ≥ 2 with second label ¬□ accounts for the diagram being in the filtration
quotient F j Cn/F j−1 Cn . The condition that there are exactly n − s − |X | blocks
with second label □ follows from the above observation that this is the number of
blocks connected to the box, containing at least one node on the right.

The remaining data in the diagram determines an injective word with s separa-
tors a, of length p +1− s, on the set X , obtained as follows: If the i-th node (from
the top) on the right is connected to a block in X , then the i-th letter of a is the
corresponding element of X . Otherwise the i-th letter of a is a separator, and there
are exactly s of these.

Definition 6.6. By the above discussion, we can define a map

8∗ :
F j Cn

F j−1 Cn
→

⊕
P,X,s,Y, f

W (s)
X [−s].

The direct sum is over all 5-tuples (P, X, s, Y, f ) satisfying the properties listed
at the start of Definition 6.5. A diagram D in (F j Cn/F j−1 Cn)p is sent by 8p to
the injective word with separators a in the degree p part of the summand W (s)

X [−s]
corresponding to (P, X, s, Y, f ), where (P, X, s, Y, f ) and a are obtained as in
Definition 6.5.
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We now prove that 8∗ is a chain map and isomorphism. This will allow us to
leverage the high connectivity of the complex of injective words with separators
[Boyd et al. 2021, Proposition 5.14] to a high connectivity result for Cn , via the
filtration.

Lemma 6.7. 8∗ is a chain map.

Proof. First, we claim that the 5-tuple (P, X, s, Y, f ) associated, via 8∗, to a
basis diagram D in (F j Cn/F j−1 Cn)p is preserved in all diagrams appearing in
the boundary of D. Recall from Definition 6.1 that the boundary map ∂ p sends a
diagram to the alternating sum of the diagrams obtained as follows: work through
the nodes on the right of the diagram, and in each case move the node into the
box. This clearly does not change the left-hand end of the diagram, and therefore
all of the diagrams in the boundary have the same X and P associated to them.
If the node that is moved into the box is a singleton, or was part of a block that
was connected to the box, then these nodes are included in the count for s, but
after moving it into the box, the resulting diagram either has a singleton in the box
or has a loop at the box, and therefore again vanishes. The other nodes counting
towards s are those that are part of a block with ≥ 2 elements from the right, and
are not connected to the box. There are exactly j such blocks, and so moving any
of their nodes into the box gives zero in the quotient (F j Cn/F j−1 Cn)p. Therefore
the only nodes we can move into the box without getting zero, are those that are
not counted by s, i.e., s remains constant under the boundary map. It follows that
Y and f remain constant, since Y partitions these s nodes and f labels them.

The above paragraph demonstrates that F j Cn/F j−1 Cn splits as a direct sum
indexed by the 5-tuples (P, X, s, Y, f ). It now suffices to show that the assignment
that sends a diagram with fixed (P, X, s, Y, f ) to the corresponding injective word
with separators a respects the boundary map. But this is clear: moving a node
joined to a block in X into the box corresponds exactly to deleting one of the
nonseparator letters from a. □

Lemma 6.8. 8∗ is an isomorphism.

Proof. We will prove that 8∗ is an isomorphism by showing that it is obtained from
a bijection between the basis of (F j Cn/F j−1 Cn), which is given by diagrams, and
the basis of

⊕
X,P,s,Y, f W (s)

X [−s], which is given by injective words with separators.
To do this, we will explain how to (re)build a diagram in (F j Cn/F j−1 Cn) from a
tuple (P, X, s, Y, f ) and an injective word with separators a.

We work in degree s + k − 1 in the summand W (s)
X [−s] associated to a 5-tuple

(P, X, s, Y, f ). We therefore take an injective word a of length k with s separators,
and we will build a diagram in (F j Cn/F j−1 Cn)s+k−1. We begin with an empty
diagram with s + k nodes on the right-hand side, and a box of size n − s − k; this
is possible since s + k ≤ s + |X | ≤ n, where the latter inequality is one of the



THE HOMOLOGY OF THE PARTITION ALGEBRAS 25

conditions imposed on the 5-tuple. Next, we build all the blocks on the left using P ,
and draw half-edges from the blocks in X to the right (don’t connect these edges to
anything yet). We place the injective word with separators vertically against the
s + k nodes on the right-hand side, and the word indicates connections from k of
the nodes to half-edges from X . We connect the remaining half edges from X to
the box. The separators indicate the positioning of the s nodes {1, . . . , s} which
are then partitioned by Y , and labelled by f . The first labels of Y indicate which
blocks are connected to blocks on the left-hand side in P \ X . Finally, if the second
label of a block in Y is □ we connect the block to the box. Note that |X |−k blocks
of X are connected to the box, and n −s −|X | blocks of Y are connected to the box,
the latter property being another of our conditions on the 5-tuple. This means that
exactly n − s − k distinct blocks are connected to the box, and since this is the size
of the box the diagram is nonzero in (Cn)s+k . The diagram lies in F j Cn/F j−1 Cn

since exactly j blocks in Y of size ≥ 2 have second label ¬□ and are therefore not
joined to the box, again by our conditions on the 5-tuple.

The last paragraph shows how to obtain, from a tuple (P, X, s, Y, f ) and an
injective word a ∈ W (s)

X [−s]s+k−1, a diagram in the basis of (F j Cn/F j−1 Cn)s+k−1.
It is now immediate to verify that this is inverse to the effect of 8∗ on bases. □

Proposition 6.9. For all 0 ≤ j ≤
⌊ n

2

⌋
, the filtration quotients F j Cn/F j−1 Cn satisfy

Hi (F j Cn/F j−1 Cn) = 0 for i ≤
n−3

2 .

Proof. We first consider the case n = 0, where the only possibility is that j = 0
so that F0 C0 = C0. The claim is then that Hi (C0) = 0 for i ≤ −

3
2 , but since C0

consists of a single copy of 1 in degree −1, this is immediate.
We now consider the case n > 0. Using Lemma 6.8 this is equivalent to the ho-

mology of W (s)
X [−s] vanishing in the desired range, for each 5-tuple (P, X, s, Y, f )

satisfying the conditions of Definition 6.5. By [Boyd et al. 2021, Proposition 5.14],
Hi (W (s)

X ) = 0 for i ≤ |X |− 2, so that Hi (W (s)
X [−s]) = 0 for i ≤ |X |+ s − 2. It will

therefore suffice to show that
⌊ n−3

2

⌋
≤ |X | + s − 2, or equivalently{

n ≤ 2|X | + 2s if n even,

n ≤ 2|X | + 2s − 1 if n odd.

Let us first prove that we always have n ≤ 2|X |+2s. Our conditions on the 5-tuple
(P, X, s, Y, f ) mean that n − s − |X | is the number of blocks of Y with second
f -label □, so that in particular n − s − |X | ≤ |Y |. And since Y is a partition of
{1, . . . , s} we have |Y | ≤ s. Combining the last two inequalities and rearranging
gives us n ≤ |X | + 2s. Because |X | ≥ 0, we therefore have n ≤ 2|X | + 2s. In
particular, this proves the proposition if n is even. If n is odd, it certainly cannot
be equal to 2|X | + 2s which is even. Therefore it can be at most one smaller:
n ≤ 2|X | + 2s − 1. □
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Theorem 6.10. Hi (Cn) = 0 for i ≤
n−3

2 .

Proof. By Proposition 6.9, the homology of the filtration quotient F j Cn/F j−1 Cn

vanishes in degrees i ≤
n−3

2 for all j . The same then holds for Cn itself by
considering the long exact sequences associated to the short exact sequences

0 → F j−1 Cn → F j Cn →
F j Cn

F j−1 Cn
→ 0. □

7. Proof of Theorem B

The proof of Theorem B directly mirrors the proof of [Boyd et al. 2021, Theorem B],
with the following substitutions:

• All instances of the Brauer algebra should be replaced with the partition algebra.

• The maps ι and π of [Boyd et al. 2021] should be replaced by the maps of the
same name in the current paper. Similarly for the complex C∗.

• Theorem 5.4 of [Boyd et al. 2021] should be replaced with Theorem 6.10.

• Theorem 4.1 of [Boyd et al. 2021] should be replaced with Theorem 5.1.

We note that in the second paragraph of the proof of [Boyd et al. 2021, Theorem 6.3],
there is an error, and the words “odd” and “even” should be transposed.

Acknowledgements

Boyd was supported by the United Kingdom Engineering and Physical Sciences
Research Council grants EP/V043323/1 and EP/V043323/2. Patzt was supported
by a Simons collaboration grant. Our thanks to the referee for detailed reading and
helpful comments.

References

[Barratt and Priddy 1972] M. Barratt and S. Priddy, “On the homology of non-connected monoids
and their associated groups”, Comment. Math. Helv. 47 (1972), 1–14. MR Zbl

[Bowman et al. 2022] C. Bowman, S. Doty, and S. Martin, “Integral Schur–Weyl duality for partition
algebras”, Algebr. Comb. 5:2 (2022), 371–399. MR Zbl

[Boyd and Hepworth 2020] R. Boyd and R. Hepworth, “The homology of the Temperley–Lieb
algebras”, preprint, 2020. To appear in Geom. Topol. Zbl arXiv 2006.04256

[Boyd et al. 2021] R. Boyd, R. Hepworth, and P. Patzt, “The homology of the Brauer algebras”,
Selecta Math. (N.S.) 27:5 (2021), art. id. 85. MR Zbl

[Boyde 2022] G. Boyde, “Idempotents and homology of diagram algebras”, preprint, 2022. Zbl
arXiv 2212.01826

[Friedlander and Mazur 1994] E. M. Friedlander and B. Mazur, “Filtrations on the homology of
algebraic varieties”, Mem. Amer. Math. Soc. 529, 1994. MR Zbl

http://dx.doi.org/10.1007/BF02566785
http://dx.doi.org/10.1007/BF02566785
http://msp.org/idx/mr/314940
http://msp.org/idx/zbl/0262.55015
http://dx.doi.org/10.5802/alco.214
http://dx.doi.org/10.5802/alco.214
http://msp.org/idx/mr/4426444
http://msp.org/idx/zbl/1498.16022
http://msp.org/idx/zbl/1479.05375
http://msp.org/idx/arx/2006.04256
http://dx.doi.org/10.1007/s00029-021-00697-4
http://msp.org/idx/mr/4304560
http://msp.org/idx/zbl/1484.20088
http://msp.org/idx/zbl/1523.16047
http://msp.org/idx/arx/2212.01826
http://dx.doi.org/10.1090/memo/0529
http://dx.doi.org/10.1090/memo/0529
http://msp.org/idx/mr/1211371
http://msp.org/idx/zbl/0841.14019


THE HOMOLOGY OF THE PARTITION ALGEBRAS 27

[Galatius 2011] S. Galatius, “Stable homology of automorphism groups of free groups”, Ann. of
Math. (2) 173:2 (2011), 705–768. MR Zbl

[Halverson and Ram 2005] T. Halverson and A. Ram, “Partition algebras”, European J. Combin. 26:6
(2005), 869–921. MR Zbl

[Hepworth 2022] R. Hepworth, “Homological stability for Iwahori–Hecke algebras”, J. Topol. 15:4
(2022), 2174–2215. MR Zbl

[Jones 1994] V. F. R. Jones, “The Potts model and the symmetric group”, pp. 259–267 in Subfactors
(Kyuzeso, 1993), World Sci. Publ., River Edge, NJ, 1994. MR Zbl

[Martin 1994] P. Martin, “Temperley–Lieb algebras for nonplanar statistical mechanics — the partition
algebra construction”, J. Knot Theory Ramifications 3:1 (1994), 51–82. MR Zbl

[Martin 1996] P. Martin, “The structure of the partition algebras”, J. Algebra 183:2 (1996), 319–358.
MR Zbl

[Moselle 2022] I. Moselle, “Homological stability for Iwahori–Hecke algebras of type B”, preprint,
2022. Zbl arXiv 2211.06230

[Nakaoka 1960] M. Nakaoka, “Decomposition theorem for homology groups of symmetric groups”,
Ann. of Math. (2) 71 (1960), 16–42. MR Zbl

[Patzt 2024] P. Patzt, “Representation stability for diagram algebras”, J. Algebra 638 (2024), 625–669.
MR Zbl

[Sroka 2023] R. J. Sroka, “The homology of a Temperley–Lieb algebra on an odd number of strands”,
preprint, 2023. To appear in Algebr. Geom. Topol. Zbl arXiv 2202.08799

[Weibel 1994] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced
Mathematics 38, Cambridge University Press, Cambridge, 1994. MR Zbl

Received June 20, 2023. Revised October 19, 2023.

RACHAEL BOYD

SCHOOL OF MATHEMATICS AND STATISTICS

UNIVERSITY OF GLASGOW

GLASGOW

UNITED KINGDOM

rachael.boyd@glasgow.ac.uk

RICHARD HEPWORTH

INSTITUTE OF MATHEMATICS

UNIVERSITY OF ABERDEEN

ABERDEEN

UNITED KINGDOM

r.hepworth@abdn.ac.uk

PETER PATZT

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF OKLAHOMA

NORMAN, OK
UNITED STATES

ppatzt@ou.edu

http://dx.doi.org/10.4007/annals.2011.173.2.3
http://msp.org/idx/mr/2784914
http://msp.org/idx/zbl/1268.20057
http://dx.doi.org/10.1016/j.ejc.2004.06.005
http://msp.org/idx/mr/2143201
http://msp.org/idx/zbl/1112.20010
http://dx.doi.org/10.1112/topo.12262
http://msp.org/idx/mr/4584588
http://msp.org/idx/zbl/07738273
http://msp.org/idx/mr/1317365
http://msp.org/idx/zbl/0938.20505
http://dx.doi.org/10.1142/S0218216594000071
http://dx.doi.org/10.1142/S0218216594000071
http://msp.org/idx/mr/1265453
http://msp.org/idx/zbl/0804.16002
http://dx.doi.org/10.1006/jabr.1996.0223
http://msp.org/idx/mr/1399030
http://msp.org/idx/zbl/0863.20009
http://msp.org/idx/zbl/07738273
http://msp.org/idx/arx/2211.06230
http://dx.doi.org/10.2307/1969878
http://msp.org/idx/mr/112134
http://msp.org/idx/zbl/0090.39002
http://dx.doi.org/10.1016/j.jalgebra.2023.09.017
http://msp.org/idx/mr/4656649
http://msp.org/idx/zbl/07766118
http://msp.org/idx/zbl/07690306
http://msp.org/idx/arx/2202.08799
http://dx.doi.org/10.1017/CBO9781139644136
http://msp.org/idx/mr/1269324
http://msp.org/idx/zbl/0797.18001
mailto:rachael.boyd@glasgow.ac.uk
mailto:r.hepworth@abdn.ac.uk
mailto:ppatzt@ou.edu




PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Fakultät für Mathematik

Universität Wien
Vienna, Austria

matthias.aschenbrenner@univie.ac.at

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Atsushi Ichino
Department of Mathematics

Kyoto University
Kyoto 606-8502, Japan

atsushi.ichino@gmail.com

Robert Lipshitz
Department of Mathematics

University of Oregon
Eugene, OR 97403

lipshitz@uoregon.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Dimitri Shlyakhtenko
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

shlyakht@ipam.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Ruixiang Zhang
Department of Mathematics

University of California
Berkeley, CA 94720-3840

ruixiang@berkeley.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2023 is US $605/year for the electronic version, and $820/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias.aschenbrenner@univie.ac.at
mailto:balmer@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:atsushi.ichino@gmail.com
mailto:lipshitz@uoregon.edu
mailto:liu@math.ucla.edu
mailto:shlyakht@ipam.ucla.edu
mailto:yang@math.princeton.edu
mailto:ruixiang@berkeley.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 327 No. 1 November 2023

1The homology of the partition algebras
RACHAEL BOYD, RICHARD HEPWORTH and PETER PATZT

29Remarks on eigenspectra of isolated singularities
BEN CASTOR, HAOHUA DENG, MATT KERR and GREGORY
PEARLSTEIN

55Fourier bases of a class of planar self-affine measures
MING-LIANG CHEN, JING-CHENG LIU and ZHI-YONG WANG

83Group topologies on automorphism groups of homogeneous structures
ZANIAR GHADERNEZHAD and JAVIER DE LA NUEZ GONZÁLEZ

107Prime spectrum and dynamics for nilpotent Cantor actions
STEVEN HURDER and OLGA LUKINA

129A note on the distinct distances problem in the hyperbolic plane
ZHIPENG LU and XIANCHANG MENG

139The algebraic topology of 4-manifold multisections
DELPHINE MOUSSARD and TRENTON SCHIRMER

167Approximation of regular Sasakian manifolds
GIOVANNI PLACINI

Pacific
JournalofM

athem
atics

2023
Vol.327,N

o.1


	1. Introduction
	1A. Outline, and comparison to previous work

	2. Partition algebras
	3. The principle of inductive resolutions
	4. Inductive resolutions
	4A. Reducing to AX,x and BX,x
	4B. Resolving AX,x
	4C. Resolving BX,x

	5. Replacing Shapiro's lemma
	6. High connectivity
	7. Proof of @0=atheorem.31=Theorem B
	Acknowledgements
	References
	
	

