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Abstract: Ongoing backscatter communications and localisation research have been able to ob-
tain incredibly accurate results in controlled environments. The main issue with these systems is
faced in complex RF environments. This paper investigates concurrent localization and ambient
radio frequency (RF) energy harvesting using backscatter communication systems for Internet of
Things networks. Dynamic real-world environments introduce complexity from multipath reflection
and shadowing, as well as interference from movements. A machine learning framework leverag-
ing K-Nearest Neighbors and Random Forest classifiers creates robustness against such variability.
Historically, received signal measurements construct a location fingerprint database resilient to per-
turbations. The Random Forest model demonstrates precise localization across customized benches
with programmable shuffling of chairs outfitted with RF identification tags. Average precision
accuracy exceeds 99% despite deliberate placement modifications, inducing signal fluctuations em-
ulating mobility and clutter. Significantly, directional antennas can harvest over −3 dBm, while
even omnidirectional antennas provide −10 dBm—both suitable for perpetually replenishing low-
energy electronics. Consequently, the intelligent backscatter platform localizes unmodified objects to
customizable precision while promoting self-sustainability.

Keywords: RFID; backscatter; RF energy harvesting; 6G; IoT; machine learning; localisation

1. Introduction

Backscatter technology has been a promising area of research in recent years, with
applications in various fields, such as low-power wireless communication [1,2], medical
imaging [3,4], and secure authentication systems [5], which are always being hardened
against attacks [6,7]. It is also commonly used in Internet of Things (IoT) systems, such
as environmental monitoring [8] and battery-free IoT solutions [9–11]. In addition to its
role in data transmission, backscatter communication (BSC) can also play a key role in the
localisation of devices in 6G networks and effective densification of IoT devices [12,13].
Localisation is the act of determining an object’s exact position within a set space; this
can provide a range of benefits to 6G networks, including allowing wireless networks to
dynamically adjust their settings based on the position of connected devices or improved
location-based services, such as indoor navigation and augmented reality. Various locali-
sation methods have been proposed over the years, using several measurement methods,
such as radio frequency, inertial measurements, visible light, ultrasound, and different
hybrid applications. Since cellular and wireless local area network (WLAN) infrastructures
are prevalent in modern wireless communication systems and bring value to user-oriented
services and network management, RF signals are among these modalities that are most
frequently used [12], and they will be the focus of our research.
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Localisation in 6G is an active research area within IoT, and the concept of backscatter
localisation has been explored in the recent literature. In [14], the authors designed a
radio simultaneous localisation and mapping (R-SLAM) algorithm using Terahertz (THz)
frequencies, which is less computationally heavy than state-of-the-art R-SLAM techniques,
and provide an evaluation of backscattering using the THz channel. They found that
simplified Fourier–Mellin (SFM) gave the best trajectory estimation for an object out of the
algorithms they tested as it was less affected by image artefacts. They concluded that using
personal radar is feasible to create infrastructure-less localisation and mapping in future
6G systems.

The authors in [15] propose a wireless localisation system that uses re-configurable
intelligent surfaces (RISs). The RISs are smart metasurfaces that can change the direction
which reflect radio signals; therefore, they can direct the wireless signals more directly
toward the reader. In [15], they propose machine learning and heuristic algorithms to select
a smaller subset of RIS configurations for near-optimal localisation accuracy. Through
the use of simulations, they conclude that such an algorithm will provide a 33% accuracy
increase compared to a random selection of RIS configurations while still being able to
scale to multiple simultaneous users. A method of using visible light backscatter (VLB) for
localisation is looked at in [16]. VLB tags work similarly to BSC tags, modulating the visible
light (rather than radio waves) from a light-emitting diode (LED) using an LCD shutter
or advanced metasurfaces to control reflection. Lastly, the receiver antenna is replaced by
photodiodes, which can detect the light shining on them. The authors propose using VLB
systems in healthcare to avoid repeat exposure to more traditional backscatter radio waves.

The lack of a battery requirement for BSC technology has led authors in [17] to look
at using it for in-body localisation. Since backscatter requires zero transition power and
therefore does not need a battery, they propose its use to decrease the size of micro-implants
which are put inside a person’s body, known as deep-tissue backscatter. This idea brings
many challenges due to the nature of human skin, which they overcame using a ReMix
backscatter system. Using chicken meat and human phantom tissue, they found that
localisation was possible to an accuracy of at least 2.2 cm. A fingerprinting method using
6G communication is explored in [18] for vehicle-to-infrastructure communication, which
is used to localise an antenna attached to a vehicle, comparing position-assisted and radar-
assisted beam management (BM) with a multi-technology BM solution. They find that the
best BM performance comes when the vehicle-to-base-station communication is constant.
However, this is unlikely to happen in a real-world situation, snd therefore the authors
conclude that both positionally assisted and radar-assisted BM solutions are required for a
working system and the accurate localisation of a vehicle’s radar remains an open problem.

In [19], passive RFID tags are analysed for use in a library localisation system for
books. The research proposes passive ultra-high frequency (UHF) RFID tags for use in
their book-localisation system. The authors use a simulation to show how this system
can capture a book’s true position in the library. One main reason they propose a new
library system is the high probability of current systems misreading books; that is to say, the
systems would misidentify a book’s ID number. The system they simulate assumes that the
Received Signal Strength correlates with the distance and that the library will remain static.
With these assumptions, they state that their system can significantly increase performance
and accuracy without needing extra resources compared to current methods.

This paper aims to explore the possibilities of utilising BSC in developing next-
generation 6G mobile networks; 6G, the successor of the current wireless technology,
promises to offer exceptional speed and dependability in connectivity. Among the various
communication techniques, BSC stands out for its ability to facilitate communications with
minimal power and resources, making it a promising contender in fulfilling the goals of
6G in providing massive connectivity to end devices with optimum energy efficiency. A
backscatter tag modulates data onto an RF signal while simultaneously reflecting the signal,
as explained in Section 2. After modulation, the signal has been modified to carry new
data, which are then decoded when they return to the reader. As backscatter relies on
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reflecting or scattering existing signals rather than transmitting its own, it offers a potential
solution to the battery-related challenges faced by Internet of Things (IoT) applications.
In comparison to traditional communication methods, BSC requires much less energy,
making it an attractive option for IoT devices that need to operate for an extended period
without charging.

Building upon and addressing the shortcomings in previous studies, this paper in-
vestigates the advantages and obstacles of implementing BSC in upcoming wireless IoT
networks, as well as its role in developing a more energy-efficient and sustainable local-
ization technique. The technical aspects of BSC are scrutinized, focusing on its integration
into 6G networks and its potential influence on the overall performance of these networks.
Through a comprehensive analysis of BSC’s function in 6G and its prospects for sustainabil-
ity, this research seeks to offer valuable insights into the future landscape of the 6G-enabled
Internet of Things (IoT).

This goal is accomplished by introducing a machine learning (ML) model that precisely
forecasts the placement of Radio Frequency Identification (RFID) tags within a predeter-
mined area. The demonstration involves a testbed featuring eight tagged targets (chairs, in
this case) surrounding a large desk. The testbed supports consistent experimentation in
an indoor setting resembling a workplace. The study emphasizes the crucial parameters
that enhance the model’s accuracy and examines the effects of changing these parameters.
Moreover, the research delves into the prospects of utilizing these technologies to establish
a low-energy IoT network, capitalizing on their innate energy efficiency.

The following are the main contributions of this paper:

1. A comprehensive overview of the current state of localisation with backscatter and its
significance in future 6G networks.

2. Implementing a testbed that allows the evaluation of RFID-based BSC technologies in
a complex indoor environment. The RF signal strength at different positions within
the testbed and its effect on the result is also examined.

3. Development and evaluation of the RFID-based machine learning model for indoor
localisation and occupancy monitoring

4. Experimental demonstration of indoor localisation along with a detailed RF power
survey, evidencing the possibility of having localisation and energy harvesting in the
same space, including a discussion on the effect of varying parameters.

5. An outlook on applying similar methods in the future to create energy-efficient IoT
networks, leveraging the unique benefits of BSC technology.

The structure of this paper is organized as follows. Section 2 analyzes the strengths
and limitations of BSC technology and its potential impact on 6G networks. Section 3
presents the system model, including the arrangement of BSC tags for optimal performance
and the positioning of the RF antenna. The implementation of the proposed approach
is examined in Section 5, offering a detailed overview of the techniques and methods
utilized. Section 6 discusses the performance of the approach and the effects of varying
parameters. Section 4 explores the potential of harnessing energy lost during localization.
Finally, Section 7 concludes the findings and suggests potential applications for the work.

2. The State of the Art in Backscatter Communication

Backscatter works by reflecting a signal of the device and reading the scattered data
when that signal is received at the reading device. When scattering a signal, the BSC device
will modulate it with a specified string of data [20], which the reader can understand. This
data, combined with information about the transition, such as the Received Signal Strength
Indicator (RSSI) of the returned signal, allows for a huge range of intelligent use cases. Most
modern debit cards use a form of BSC called NFC [21], allowing contactless payments.

The process of modulating data works by changing the load impedance, affecting the
amplitude or phase of the reflected signal [22]. This is the main advantage seen in such
set-ups as the device uses the power already in the transmitted signal (which is very low)
to modulate the data onto it. This means that passive BSC devices require no external
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power source, such as a battery, and the system can expand with more BSC devices without
increasing the total power usage at all, provided the reader can handle that many devices.
Another benefit is cost, as individual BSC tags are very cheap to produce compared to
battery-powered sensors.

Backscatter set-ups come in two main types: dedicated and ambient. Dedicated
backscatter can be either monostatic, where both the transmission and reading are per-
formed by the same device, or bistatic, where there can be one or multiple transmitters to
send the unmodulated signal and a separate reader to receive the modulated signal. Ambi-
ent backscatter has no transmitter but rather uses the RF signals already in the environment;
therefore, it does not need the same power infrastructure as a dedicated backscatter [2,23].
The result of ambient BSC is unmatched power efficiency per byte of data transferred,
effectively transmitting data out of thin air. No matter which form of backscatter is used,
the BSC device reflects back RF signals while changing its reflection coefficient to modulate
the signal [20]. This process uses only the power in the RF signal, which is very low energy.

As 6G networks begin to take shape, backscatter communication is poised to play a
critical role in strengthening the next generation of wireless communication. With its ability
to transmit data using ambient RF signals, backscatter communication can support a wide
range of low-power and low-cost devices, such as IoT sensors, that are expected to be a
major component of 6G networks. Furthermore, backscatter communication can coexist
with existing wireless technologies, making it an ideal solution for dense urban environ-
ments where spectrum availability is a major challenge. The 6G networks are expected
to deliver ultra-high-speed, ultra-low-latency, and ultra-high-reliability communication.
Backscatter communication can help support these requirements by providing a scalable
and efficient communication method with numerous devices. It has been shown by [2] that
a BSC device can be connected to the internet by backscattered Wi-Fi signals; this same idea
can be applied to 6G BSC devices to allow for fast communication between devices and out
to the internet. As a result, backscatter communication is expected to be an integral part of
developing 6G networks.

3. Localisation for Backscatter Communications

By reflecting or modulating ambient RF signals, backscatter-enabled devices can
transmit information about their location, or it can be calculated from the received data,
which can be used to determine their precise position. Furthermore, the high-speed and low-
latency communication capabilities of 6G networks can support the real-time localisation
of devices with high precision. The combination of backscatter communication and 6G
networks can thus enable new use cases and services that were not possible with previous
generations of wireless technology. Backscatter can be used in many ways for localisation.
One proposed method is to triangulate the signal with multiple RF readers [24], and
another method uses the RSSI of the signal when it is received at the reader to determine
the distance, from which it is possible to calculate its exact location [25]. In this paper, the
comparison of RSSI and phase-angle values is made against a known fingerprint of the
location to determine the position of each tag.

System Model: Testbed Environment

In this paper, the concept of backscatter localization, combined with machine learning
algorithms, was employed for tracking the position of chairs. More specifically, this study
concentrated on evaluating the Received Signal Strength Indicator (RSSI) and phase angle
in a controlled, work-like environment. A testbed was constructed, featuring eight chairs
arranged around a desk. Figure 1 depicts these chairs around the desk, each positioned
corresponding to its number (for example, chair 1 is at position 1). The setup included
two ultra-high-frequency (UHF) antennas, with one situated at the desk’s centre and the
other placed to one side. The desk was located in a low-traffic but actively used area
and outfitted with multiple monitors. This location choice facilitated the evaluation of
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the machine learning model in conditions that closely resemble those of a high-traffic
real-world environment.

Figure 1. Layout of the RFID tags and antenna around the testbed desk.

The values obtained from the testbed exhibited a degree of fluctuation; however, a
discernible pattern allowed us to train the ML algorithms, as discussed in Section 5.2. Each
chair was equipped with a single RFID tag on the base of the chair, as shown in Figure 1.
These tags all have a constant identifier followed by the chair number set as their EPC value
so they can be tracked appropriately when looking back on the readings. The chair number
was directly tied to its position around the desk, as depicted in Figure 1. Initially, the idea
of using multiple tags per chair was explored, but this approach negatively affected the
data collection process. It was observed that each tag could display a significantly different
RSSI or phase angle, even when being read simultaneously. The antennas were suspended
above the desks as shown in Figure 1.

4. Energy Harvesting Potential in an RFID Sensing Network
4.1. RF Energy Harvesting Literature

Ambient RF energy harvesting has been demonstrated in several applications using
not just RFID signals [11,26] but also including WiFi [27,28], radio [29,30], digital televi-
sion [31,32], underwater communication [33], and of course, solar energy [34] (Ref. [32],
Shunde, China [35]). Additionally, similar surveys have taken place for indoor office
environments [36,37].

In [38], a comprehensive analysis of RF energy harvesting is carried out to address
the gap in understanding the factors influencing performance. The study delves into the
available power density, emphasising RF energy harvesting potentials, the factors affecting
its performance, and its diverse applications. It also explores various research aspects
essential for RF energy harvesting, encompassing harvesting sources, evaluation metrics,
energy propagation models, rectenna architectures, and MAC protocols. Furthermore, the
authors recommend future research directions, specifically enhancing DC output power
and rectenna sensitivity.

It was found that single ambient frequency levels are not sufficient for this purpose as
they can be below −40 dBm [31,32,39] and sometimes even below −60 dBm at frequency
ranges of 550 MHz to 2.5 GHz [35,36]. However, using multi-band power, the authors
in [40] were able to measure a level of −15 dBm. Even with multi-band power, these levels
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remain at levels less than we could harvest from our RFID testbed, discussed in more detail
in Section 4.2.

Another approach that has been seen in the literature is to make use of mobile trans-
mitters to provide the ambient RF power, either from mobile phones [41] or license-free
sources [42,43]. Studies in this area have reached power levels of 1.88 dBm [41] by keeping
the distance between the transmitter and the RF harvesters very low (18 cm). In [42], the
authors used 3D EM field simulations to estimate the electric and magnetic (E and H)
near-field power received on a wearable wristband receiver transmitted from a two-way
radio. They confirmed their simulations with E- and H-probes on their wrist, from which
they designed an antenna intended to be mounted on a person’s wrist.

The authors in [44] explore RF energy harvesting for IoT sensors using a slotted bow-
tie antenna. They aim to exploit multiple frequency bands to efficiently convert ambient
RF signals into usable DC power, removing the need for traditional power sources. Using
a duel-band receiver allows the energy harvester to collect more power [34]. The authors
in [34] were able to power a device from a 6.3 km distance using UHF digital TV signals.

4.2. Energy Level Analysis

Using a spectrum analyser, we were able to measure the RF energy received by a
simple omnidirectional dipole antenna of approximately two dBi gain and a uni-directional
version of the antenna. The uni-directional antenna was implemented by backing the dipole
antenna with a reflector, creating broadside radiation patterns, which increases the gain by
approximately 3 dB [45] when compared to a free-standing omnidirectional rectenna.

Shown in Figure 2a,b is a heat map of the whole room area, where zones 3 and 4
combine to be the test location for our localisation experiment. Figure 2a shows the energy
levels using an omnidirectional antenna, and Figure 2b shows the unidirectional UHF
antenna. All readings were taken on the desks or the arm of a chair for positions between
desks. The antennas were positioned 218 cm above the desk (one antenna was set at a
height of 208 cm due to the room structure, which would have blocked it at the full height),
and the chairs were positioned a further 20 cm down.

(a) (b)

0 dBm

- 18 dBm

Figure 2. Heat map of the received RF power with (a) omnidirectional and (b) uni-directional antennas.

This observation reveals hot spots near the antenna, particularly in Figure 2 around
position D5, though the entire area exhibits some degree of RF radiation. The available
energy was observed to diminish with increasing distance from the antenna until nearing a
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wall, where an increase in energy level was noticed. This variation in signal strength could
account for certain inaccuracies in localisation since the signal reaching the tag directly and
the one reflecting off the wall will possess distinct values. These variations are known as
the multipath components of the transmitted signal.

In Figure 3, we can see that with the omnidirectional antenna, half of the room is at or
above −10 dBm, which is still very low but could be collected over time. Half of the room
is above −3 dBm for the uni-directional antenna, which is a much more usable power level.
It’s clear from this that the energy required to power a device constantly is not available
throughout the room but is possible in some high-powered regions. However, the energy
is enough to be collected over time to power a device for short bursts without needing a
battery. It also clarifies that using a directional antenna over an omnidirectional one has a
huge benefit.
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Figure 3. Comparative CDF of the received power from the RFID signal for each antenna.

These transmitters radiate over 30 dBm of equivalent isotropic radiated power (EIRP).
In our testing, we were able to harvest this at a consistent 1 V or higher at up to an 85 cm
distance, using the same antenna on a Powercast P210-EVB Powerharvester. Figure 4 shows
the sustainable DC voltage that was able to be harvested compared with the distance be-
tween the transmitting antenna and the harvester receiving antenna; 4.2 V is the maximum
that the Powercast board can output.
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Figure 4. Power harvested from the RFID signal at different distances from the RF reader.

Adding an energy harvester should have a negligible effect on the existing system
power requirements. One possible route to further this research is to use such readings to
train an ML system to build a map of the room energy level. This system could then be
used to predict the efficiency of energy harvesting devices at different locations in the room.
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5. AI-Enabled Localisation Experimentation

This section outlines the methodology employed for identifying the desk location
using radio frequency (RF) signals. The system was developed by utilizing RSSI and
phase-angle parameters along with two algorithms: K-Nearest Neighbours (KNN) and
Random Forest. The testbed setup was utilized to create a fingerprint of the area during
data collection, followed by testing readings with chairs in both their original and mixed-
up positions.

Our process for training is as shown in Algorithm 1.

Algorithm 1: Supervised ML Training
Data: RSSI(n), θ(n) at home position
Result: predicted location of all chairs
for Chair n in each location l do

Store RSSI(n) and θ(n) for position l
end
for Each Model m do

TrainData← 80% stored data randomly
TestData← 20% left over stored data
Train m on TrainData
Test m on TestData

end
Select a model for live testing
while live data is available do

d← data collected over 5 seconds
for each chair n in d do

RSSI← average RSSI for d(n)
θ← average θ for d(n)
location(n)← prediction from RSSI and θ

end
end

5.1. Data Collection

The process began by creating a fingerprint of the area. Each chair was placed in its
designated position, followed by data collection for the system. This fingerprint included
five-second average values for both the RSSI value and phase angle, gathered over a
twenty-minute period. The chair number and position were also recorded during the test.
Subsequently, this procedure was replicated with the chair positioned directly under the
desk, where there would be no line of sight to the antenna. It was then repeated with the
chair pulled out 20 cm from the desk, ensuring a direct line of sight with the reader. The
data collection was conducted in an environment free of humans or obstacles.

5.2. Algorithm Implementation

The machine learning models estimate the chair’s location from the input of RSSI and
phase angle; the predicted output was an integer representing the desk location. RSSI was
stable, although it could jump slightly. The phase angle had a wider range of values but
could also jump unexpectedly at certain points. The RSSI can be calculated as follows:

RSSI = −10n log10(d) + A, (1)

where d is the distance between the transmitter and receiver, n is the path loss exponent, and
A is the RSSI offset. This equation relates the RSSI to the distance between the transmitter
and receiver, where the RSSI decreases as the distance increases due to signal attenuation.
The path loss exponent n and the RSSI offset A are parameters that can be calibrated based
on the specific wireless environment and hardware used.
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In other words, the larger the distance between the antenna and the RFID tag is,
the lower the RSSI value is when the signal returns to the antenna. For localisation, this
relationship between RSSI and physical distance can be utilised. To do so, we compare
the latest RSSI value with the stored fingerprint value, allowing us to know the distance
between the reader and each marked position by saving the RSSI at each location.

The calculation for phase angle changes depends on many factors, such as monostatic
vs. bistatic configurations. The RF reader calculates this value by contrasting the phase of
the local oscillator, which creates the wave that will be modulated by the tag, with the phase
of the field backscattered by the tag. Equation (2), which applies to bistatic configurations,
comes from [46].

Φ(⃗r) = (
2π

λ
RD + φTx−Rx)

− (
2π

λ
[RT (⃗r) + RR (⃗r)] + φTx−tag (⃗r) + φtag−Rx (⃗r)) + ϕ0 (2)

where RD is the direct path transmitter–receiver, RT is the tag, RR is the receiver, r⃗ is the
tag position, and λ is the wavelength of the signal.

We tested two algorithms, KNN and Random Forest, to determine the desk location.
KNN is a simple yet effective machine-learning algorithm for classification and regres-

sion tasks. Given a new input vector, KNN finds the K-closest training examples in the
feature space and predicts the output label as the mode of the K-nearest class labels. The
predicted value for regression is the average of the K-nearest output values. To find the
distance, KNN uses Euclidean distance, which can be expressed as [47]

d(A, B) =
√
(x1 − x2)2 + (y1 − y2)2, (3)

KNN does not make any assumptions about the underlying data distribution. However, it
can be computationally expensive for large datasets.

Alternatively, Random Forest, as defined in [48], is a popular machine-learning algo-
rithm that uses an ensemble of decision trees to make predictions. The algorithm randomly
selects a subset of features for each tree and partitions the data recursively based on the
selected features. The predicted output label is the mode of the class labels predicted by
the individual trees or the average in the regression case. Random Forest is a powerful and
versatile algorithm that can handle large datasets with many features and capture linear
and non-linear relationships between the input features and the output labels. Random
Forest is a powerful ensemble method and works better with large datasets with many
features. At the same time, KNN is more straightforward and interpretable but does not
scale as well as Random Forest. Although we tested with both, we focused mainly on
Random Forest as the performance advantage made working with live data and getting
up-to-date results much more feasible.

5.3. Results
5.4. Data Analysis

The results showed that the 5 s average readings provided the most desirable outcomes
for the use case. We found that using only 3 s averages would not be enough to account
for inconsistencies, with no significant difference between 5 s and 10 s average readings.
However, the two antennas in certain zones did not detect some desks. The addition of
a third antenna significantly improved the accuracy of the system. As seen in Figure 5a,
while accuracy is very high, there were several incorrect predictions during our testing.
Figure 5b shows that the additional antenna completely removed the wrong predictions.
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(a)

(b)

Figure 5. Confusion matrix of the RFID-based localisation using two reader antennas (a) vs. three
reader antennas (b).

The test data showed that the system could accurately determine the location of the
desks in a work-like environment. The results were affected by the presence of people at
the desks or walking around the room. Despite the sometimes erratic nature of the phase
angle, its inclusion in the model improved the system’s overall accuracy.

6. Evaluation of Performance

To evaluate the model, we set up a system to take readings over 5 s, average the
values, and then run this through the model for each chair. This was performed in a live
environment with equipment such as laptops/monitors on the desks, more so than during
training, as well as people around the room and sometimes at the desk area. If the antenna
cannot pick up a tag, it is assumed that the chair is occupied and not included in the output.
Each set of readings given to the model was fed blindly, so there was no chance of the
correct result being wrongly factored into the testing. Only after receiving a prediction was
this checked for accuracy.

When using only 2 antennas, we yielded a result of 82% correct predictions while
using the Random Forest algorithm, which we were able to improve up to 93% correct
when adding in the third antenna. When comparing these results, it is clear that additional
antennas make a notable difference; however, this solution is not feasible for most applica-
tions due to the monetary cost involved. We instead focused on improving accuracy with
fewer antennas.

Figure 6 shows specific results from a small selection of tests while Figure 7 shows the
high levels of accuracy we were able to reach when focusing on honing Random Forest
with two antennas. From this, we can see the accuracy reaches 100% while the chairs are all
in their original position; however, predictions remain precise while chairs are moved, and
most mistakes are only out by one.
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Figure 6. Number of correct predictions for different models.

Figure 7. Validation for Random Forest; R is accuracy.

Figure 7 displays regression plots used for statistical analysis to examine the relation-
ship between the output and target variable. The data points show the actual observations,
while the fitting line represents the predicted values. The R score is the correlation co-
efficient, which indicates the relation between the predicted and target values. On the
Y-axis of each plot, you can find an equation (e.g., Output = 0.987 × Target + 0.08) that
represents the linear regression equation fitted to the data, where the coefficient (0.987) is
the slope and the constant term (e.g., 0.08) is the intercept. This equation is derived from
model training, and the correlation coefficient R is a statistical measure that determines
the strength and direction of a linear relationship between two variables. The R scores of
training, validation, and test are almost identical and close to 1, indicating that the model
does not suffer from overfitting.

7. Conclusions and Future Work

In this paper, we have analysed the current state of backscatter communication and
its potential in future 6G networks, and we have looked at the state of the art of RF
localisation. While many methods for localising objects using RFID tags exist, they have
flaws. Our solution takes known positional readings to create a fingerprint of the area and
then uses Random Forest ML to predict in real-time which of our known locations each
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tag is currently in. Combining our fingerprint method and using defined locations over
exact coordinates allows our algorithm to run in a real-world environment with objects
and people coming and leaving. We Found Random Forest to be more advantageous than
KNN due mainly to its speed benefits, as this allows the system to run more regularly on
low-power hardware. We have shown that RF localisation can provide highly accurate
results in a controlled environment and, with some preparation, can hold up to the chaos
of working environments. Our system provided nearly 100% results, even when people or
devices were present. However, while tuning the model to get to that 100%, we noticed
that possible multipath issues were affecting results close to reflective objects. Furthermore,
we found that such systems leave a lot of energy available in the room and propose using
RF energy harvesting when such systems are in use. Through ML, it would be possible to
predict the best locations in the environment to place energy harvesting devices that would
optimise their power generation. Our future work focuses on developing a method for fully
blind localization, enabling a system that operates without specific training for each new
environment. This innovation could significantly enhance the adaptability and efficiency
of IoT networks in various settings. Additionally, we aim to deepen our investigation
into multipath issues, particularly the effects of environmental changes like the addition
or removal of reflective surfaces. By incorporating a specialized pre-processing step in
our machine-learning algorithm, we plan to detect and effectively counteract multipath
components, thus improving system performance and reliability in diverse scenarios.
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