
Agostini, N. B., Haris, J., Gibson, P. , Jayaweera, M., Rubin, N., Tumeo,
A., Abellán, J. L., Cano Reyes, J. and Kaeli, D. (2024) AXI4MLIR: User-
Driven Automatic Host Code Generation for Custom AXI-Based
Accelerators. In: International Symposium on Code Generation and
Optimization (CGO) 2024, Edinburgh, United Kingdom, 02-06 Mar 2024,
pp. 143-157. ISBN 9798350395099 (doi: 10.1109/
CGO57630.2024.10444801)

This is the author version of the work. There may be differences between
this version and the published version. You are advised to consult the
published version if you wish to cite from it:
https://doi.org/10.1109/CGO57630.2024.10444801

https://eprints.gla.ac.uk/311284/

Deposited on 11 December 2023

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

https://doi.org/10.1016/j.aos.2021.101306
https://eprints.gla.ac.uk/250600/
http://eprints.gla.ac.uk/
https://doi.org/10.1109/CGO57630.2024.10444801
https://doi.org/10.1109/CGO57630.2024.10444801

AXI4MLIR: User-Driven Automatic Host Code
Generation for Custom AXI-Based Accelerators

Abstract—This paper addresses the need for automatic and1

efficient generation of host driver code for arbitrary custom2

AXI-based accelerators targeting linear algebra algorithms, an3

important workload in various applications, including machine4

learning and scientific computing. While existing tools have5

focused on automating accelerator prototyping, little attention6

has been paid to the host-accelerator interaction. This paper7

introduces AXI4MLIR, an extension of the MLIR compiler8

framework designed to facilitate the automated generation of9

host-accelerator driver code. With new MLIR attributes and10

transformations, AXI4MLIR empowers users to specify accel-11

erator features (including their instructions) and communication12

patterns and exploit the host memory hierarchy. We demonstrate13

AXI4MLIR’s versatility across different types of accelerators and14

problems, showcasing significant CPU cache reference reductions15

(up to 56%) and up to a 1.65× speedup compared to manually16

optimized driver code implementations. The open-source project17

link will be included for the camera ready version.18

Index Terms—MLIR, AXI, Compilers, Codegen19

I. INTRODUCTION20

Given the diminishing performance gains provided by21

today’s general-purpose computing [1], there has been re-22

newed interest in exploring custom hardware accelerators.23

Accelerators can support architecture-level optimizations that24

can increase the performance and efficiency of key appli-25

cations [2], [3], [4], [5], [6], [7]. One important class of26

applications that can benefit from accelerators is tensor algebra27

processing, which is widely used in the domains of machine28

learning, scientific computing, and data analytics [8], [9], [10].29

Tensor operations tend to be computationally intensive and30

require high memory bandwidth, making them suitable for31

specialized hardware implementations. Automated tools have32

been proposed [11], [12], [13], [14] to help explore new33

classes of custom domain-specific accelerators targeting tensor34

computations, and are currently the best path available to35

obtain performance gains in scientific workloads and machine36

learning applications.37

However, designing and fully exploiting custom hardware38

accelerators for tensor operations is not a trivial task. When39

co-designing these devices, we need to generate efficient ar-40

chitectures, and we must optimize the communication between41

the host CPU and the accelerator. In particular, the host-42

accelerator interaction involves several aspects, including data43

transfers, synchronization, and the accelerator’s control flow.44

These aspects depend on the characteristics of the host CPU45

microarchitecture, the host-accelerator interface, the accelera-46

tor design, and the application code. Manually rewriting the47

host driver code for each accelerator and application scenario48

can be very tedious and error-prone. Furthermore, most of49

A
cc

el
er

at
or

Host CPU- Memory capacity
- Tile sizes
- Supported

operations
- Opcodes

M
ain M

em
.

DMA
EngineAXI

FIFO/
Buffer

Mem.
Ctrl.

- Memory hierarchy
- Cache sizes

- DMA regions’
sizes and locations

- Protocol

- Operations/algorithms
- Problem dimensions

Application

AXI Interconnect

Fig. 1: Typical host-accelerator system design, highlighting (blue color)
relevant parameters that should be considered for efficient generation of host-
accelerator communication code.

the prior work proposing new accelerators [15], [16], [17], 50

[18], [19] only considers a simple offload model or assumes 51

that the required data is already placed in the accelerator’s 52

internal buffers, falling short in providing insights into how 53

host-to-accelerator transfers should be performed or generated. 54

Additionally, complex accelerators, exemplified by Google’s 55

TPUs and Nvidia’s GPUs, benefit from large teams that can 56

collaboratively engineer dedicated compilers to address some 57

of these issues. However, smaller development teams may lack 58

expertise or available time resources to invest in compilers. 59

Consequently, custom accelerator designers typically imple- 60

ment driver code and instruction streams manually to validate 61

and deploy their designs for a subset of synthetic workloads. 62

To implement or generate efficient host-to-accelerator com- 63

munication, we argue that it is necessary to consider all major 64

features of a System-on-Chip (SoC). Figure 1 highlights a 65

typical system using an AXI [20] interconnection between the 66

CPU and a custom accelerator, which is a common choice 67

in many designs [21]. To drive the accelerator effectively, the 68

host-code implementation should exploit features regarding the 69

CPU, the interconnect, and the accelerator (see Figure 1). 70

To effectively consider each of the key system features 71

described in Figure 1 while also delivering efficient and 72

automated CPU-accelerator driver code generation, we 73

propose AXI4MLIR, an extension to the MLIR compiler 74

framework [22] that enables efficient and automated CPU- 75

accelerator driver code generation for accelerators targeting 76

linear algebra applications. AXI4MLIR takes a high- 77

level application description in the MLIR’s linear algebra 78

(linalg) abstraction [23] as input and introduces custom 79

MLIR attributes to describe the target accelerator capabilities. 80

These attributes provide accelerator-specific information to 81

custom transformation passes that can effectively specialize82

and generate accelerator-aware host driver code. Our83

extensions facilitate hardware-software co-design by allowing84

developers to automatically generate driver code with varying85

configurations, more easily explore their design space, and86

use the designed accelerator in applications that can be87

compiled with the MLIR framework. The contributions of88

this work include the following:89

• New MLIR attributes that provide a standardized and90

extensible approach to represent accelerators that can91

implement a range of linear algebra algorithms supported92

by the MLIR linalg abstraction.93

• Automated generation of efficient driver code for custom94

accelerators leveraging AXI-based interfaces in host-to-95

accelerator communication.96

• The ability to describe and explore accelerator-specific97

tiling and dataflow strategies for the target linear algebra98

operation, which can improve computation efficiency99

within the accelerator and reduce data movement over-100

heads between the accelerator and CPU.101

• An analysis of our compiler optimizations on a suite102

of benchmarks representing key linear algebra applica-103

tions, demonstrating the effectiveness of our approach104

in achieving significant performance gains (up to 1.65×105

speedup and 56% fewer cache references) when com-106

pared to optimized manual driver code implementations.107

While leveraging the new attributes of AXI4MLIR, our108

user-directed host code generation is entirely automated by109

the compiler. This provides a significant advantage in terms110

of productivity and maintainability.111

II. BACKGROUND112

A. MLIR113

MLIR is a compiler infrastructure framework that facilitates114

the creation of domain-specific compilers by providing code115

generators, translators, optimizers, and the infrastructure to116

define subsets of operations that expose well-defined language117

abstractions [22], [24]. Notably, MLIR offers support for118

compilation from various frontends into its infrastructure,119

encompassing frameworks such as TensorFlow, PyTorch, and120

ONNX, as well as languages like Fortran, C, and Mojo.121

In MLIR, a group of operations modeling an abstraction122

is called a dialect. Dialects are self-contained intermediate123

representations (IRs) and follow the language rules of MLIR’s124

meta-IR, enabling the framework to have multiple dialects125

coexisting in the same MLIR file. This approach promotes126

the reuse of already defined abstractions and associated tools,127

enabling intra- and inter-dialect transformations.128

In support of the underlying algorithms and kernels used129

by many machine learning frameworks (e.g., TensorFlow130

and PyTorch), MLIR offers a linear algebra dialect called131

linalg that exposes (named) operations such as convolu-132

tions, matrix multiplications, and others. Operations expressed133

in higher-level dialects can target linalg operations and134

leverage all subsequent transformations supported by linalg135

1 #matmul_trait = {
2 indexing_maps = [
3 affine_map<(m, n, k) -> (m, k)>, // A
4 affine_map<(m, n, k) -> (k, n)>, // B
5 affine_map<(m, n, k) -> (m, n)> // C
6]
7 iterator_types = [
8 "parallel", "parallel", "reduction"],
9 }

10 func.func @matmul_call(...) {
11 linalg.generic #matmul_trait
12 ins (%A, %B : memref<60x80xf32>, memref<80x72xf32>)
13 outs(%C : memref<60x72xf32>) {
14 ˆbb0(%a: f32, %b: f32, %c: f32):
15 %0 = arith.mulf %a, %b : f32
16 %1 = arith.addf %c, %0 : f32
17 linalg.yield %1 : f32 }
18 return }

(a) Linalg Abstraction with generic operation.

1 func.func @matmul_call(...) {
2 // Declare constants %c0 %c1 %c4 %c60 %c72 %c80 ...
3 scf.for %m = %c0 to %c60 step %c4 { // Tiling by 4,4,4
4 scf.for %n = %c0 to %c72 step %c4 {
5 scf.for %k = %c0 to %c80 step %c4 {
6 // Grab handle for the sub-tiles:
7 %sA = memref.subview %A[%m, %k] [4, 4] [1, 1] : ...
8 %sB = memref.subview %B[%k, %n] [4, 4] [1, 1] : ...
9 %sC = memref.subview %C[%m, %n] [4, 4] [1, 1] : ...

10 // Matmul computation of a 4x4x4 tile:
11 scf.for %mm = %c0 to %c4 step %c1 {
12 scf.for %nn = %c0 to %c4 step %c1 {
13 scf.for %kk = %c0 to %c4 step %c1 {
14 %3 = memref.load %sA[%mm, %kk] : !mr4x4_0
15 %4 = memref.load %sB[%kk, %nn] : !mr4x4_1
16 %5 = memref.load %sC[%mm, %nn] : !mr4x4_1
17 %6 = arith.mulf %3, %4 : f32
18 %7 = arith.addf %5, %6 : f32
19 memref.store %7, %sC[%mm, %nn] : !mr4x4_1
20 } } } } } }
21 return }

(b) Structured Control Flow (SCF) Abstraction with tiling.
Fig. 2: MLIR representations of a Matrix-Matrix Multiplication Operation in
different abstractions.1

and lower-level abstractions. Figure 2 presents an MLIR 136

matrix-multiplication (MatMul) implementation in different 137

abstractions.1 The operation is initially represented using 138

a linalg.matmul and subsequently undergoes conversion, 139

transformation, and lowering by the compiler. In Figure 2a- 140

L11 and L17, the linalg.matmul is converted into a 141

linalg.generic. The linalg.generic is a core MLIR 142

operation that can represent most of the linalg named ops, 143

by careful selection of its operation trait2 - indexing_maps 144

(L2), iterator_types (L7) -, and kernel (L24 to L27). 145

Finally, the generic operation can be converted into a tiled 146

(4×4×4) implementation of the MatMul (Figure 2b) using 147

the structured control flow (scf) dialect. When supporting 148

an accelerator that can process a MatMul4x4x4 operation 3, 149

the code in Figure 2b-L11 to L19, has to be replaced by the 150

runtime library calls that drive the accelerator. 151

1) MLIR Memory References: Within MLIR, memory 152

buffers exist as N-dimensional (rank=N) memory references, 153

or memrefs. Our proposed AXI4MLIR DMA runtime library, 154

presented in Section III-A, supports bidirectional data move- 155

ments between memrefs and memory-mapped buffers (raw 156

pointers), while respecting strides, sizes, and dimensions. Ac- 157

1We intentionally omit some MLIR code, such as constant declarations in
the form of %cX=arith.constant X:i32, for the sake of brevity.

2See linalg.generic in https://mlir.llvm.org/docs/Dialects/Linalg
3A 2D MatMul operation is MatMulMxNxK : C(M,N) = A(M,K) x B(K,N)

cessing the elements of an MLIR memref requires accessing158

the values in the equivalent C struct of Figure 3. Specializing159

the code for specific sizes and strides is an important proposed160

optimization to leverage spatial locality and minimize control-161

flow instructions, as we will observe in Section IV.162

1 typedef struct {
2 float *allocated; // For deallocation
3 float *aligned; // Base address
4 size_t offset; // Offset in # of elements
5 size_t size[N]; // One size per dim
6 size_t stride[N]; // One stride per dim
7 }

Fig. 3: The underlying data structure of a rank==N MLIR memref buffer.

B. AXI Interface163

Efficiently using the interconnect between the CPU and164

the accelerator can significantly impact the overall system165

performance. As part of our framework, we consider a widely166

adopted bus interface in digital electronics design deployed167

on SoC and Field-Programmable Gate Array (FPGA) designs,168

namely Advanced eXtensible Interface (AXI) [20]. AXI pro-169

vides a flexible and scalable solution for integrating custom170

accelerators into a system.171

The AXI interface provides a simple mechanism to enable172

data transfers between the CPU cores and other devices. Using173

AXI, the AXI-Stream (AXI-S) interface allows the developer174

to quickly transfer [25] a variable-size burst of data to and175

from the accelerator in a FIFO-like manner, enabling the176

accelerator to consume/store the data as needed, in a streaming177

manner. Within SoCs, the CPU host code controls either a178

single or multiple Direct Memory Access (DMA) engines (see179

Figure 1). These engines are responsible for initiating and180

handling data movement requests between the main memory181

and the accelerator. Additionally, the data regions in the main182

memory need to be accessible to the accelerator via the AXI-S183

interface. Therefore, the host code needs to allocate input184

and output memory buffers using the mmap function, which185

guarantees that only the current process has access to the186

specific regions of memory. The host code is also required187

to prepare/pack the input data into the data format that the ac-188

celerator requires (e.g., row-major, interleaved data elements,189

etc.). Our approach within AXI4MLIR is to use MLIR - the190

compiler - to generate the host code to interface with the191

accelerator, while taking advantage of the full capabilities of192

the target accelerator.193

III. AXI4MLIR194

To support efficient host code generation for AXI-based195

custom accelerators, we extended the MLIR framework with196

the added capabilities presented in Figure 4. After the custom197

accelerator is designed and the host CPU system is selected,198

the user creates a configuration file with the host CPU system199

details (e.g., number and size of the caches), and with a200

high-level description of the accelerator capabilities (i.e., sup-201

ported operations and dimensions), the available opcodes, and202

possible opcode flows 1 . This information is parsed 2 by203

the compiler, and used to find 3 suitable linalg.generic204

Translate App to MLIR Code

Lower to linalg dialect

Convert named ops to linalg.generic

Match and Annotate operations for Runtime Replacement

Parse accelerator and
host CPU description

Perform tiling for CPU and Accelerator

Perform host code transformations and Runtime Replacement

Translate host code to LLVM IR, compile to binary file

Accel. and Host information

DMA Library

HL application (TensorFlow, others)

1

3

6

5

4

2

From MLIR New Features

Legend

Fig. 4: AXI4MLIR Compiler Flow. The numbered elements are the contribu-
tions of this work.

operations with the desired operation traits (algorithm imple- 205

mented, previously shown in Figure 2a-L1 to L9), that can be 206

executed on the accelerator. These operations will require host- 207

accelerator driver code generation. Subsequently, with user- 208

provided information on the total size of the CPU caches, the 209

compiler transforms the code to efficiently exploit the CPU 210

memory hierarchy and the accelerator size 4 , performing the 211

appropriate set of tiling transformations to leverage temporal 212

locality in the CPU caches and to map the problem on the ac- 213

celerator. In the final step, the compiler generates the runtime 214

calls 5 that leverage the accelerator features based on user- 215

directed dataflow description (e.g., avoiding redundant host- 216

accelerator data transfers when the algorithm and accelerator 217

functionality allows). 218

The following sections discuss the class of supported accel- 219

erators and the key features of our AXI4MLIR DMA library. 220

We provide details on how to describe new accelerators, 221

introducing linalg.generic trait extensions, a new MLIR 222

dialect that provides support for runtime call replacement of 223

opcodes and data transfers, and some key optimizations that 224

can be performed (depending on the available features of the 225

host system and the custom accelerator). 226

A. The Custom AXI DMA Library 227

The AXI4MLIR DMA library 6 (Figure 4) exposes low- 228

level DMA calls working at privileged level to enable data 229

movement between the main memory and the accelerator. We 230

designed this library to be lightweight (55 bytes in size for our 231

target ARM SoC), so that it can be deployed on both resource- 232

constrained and non-constrained systems. It can also be exe- 233

cuted by bare-metal systems. During the compilation process, 234

the AXI runtime issues calls to initialize the DMA engine(s) 235

before entering the computation kernel of the workload. First, 236

a library call initializes the DMA engine, mapping memory for 237

the input and output buffers which act as temporary staging 238

buffers between the CPU and the accelerator. 239

After DMA initialization, the accelerator is accessible via240

AXI-based data transfers. Any data that needs to be transferred241

to the accelerator during workload execution is first copied242

to a DMA input buffer. This staging copy acts as a packing243

optimization (similar to [26]), contributing to an increased244

cache-hit ratio during communication. Then, the AXI “send”245

function call requests the DMA engine to start the data transfer246

and waits for it to finish. Note that the data that is sent to the247

accelerator can be either accelerator instructions or raw input248

data that needs to be processed. Similarly, AXI4MLIR gener-249

ates “recv” function calls to wait for computation completion250

and to obtain output data from the DMA output buffer.251

In Section III-C, Figure 9 presents the lowering of dif-252

ferent high-level operations into our DMA library calls.253

copy_to_dma_region(...) implements data movement254

from a memref to the DMA-accessible memory region255

intended for transmission to the accelerator. The offset256

argument allows for efficient batching of different data257

transfers after computing the total length and execut-258

ing a single “send” operation. Appropriate offset values259

prevent overwriting existing data in the DMA region.260

dma_start_send(...) instructs the DMA engine to trans-261

mit a size of X bytes to the connected accelerator, com-262

mencing from a specified offset within the DMA space263

allocated. dma_wait_send_completion(...) instructs the264

CPU to wait for the DMA’s signal informing the transaction’s265

completion. When receiving data from the accelerator, we first266

have to wait for the data to be placed in the DMA-accessible267

memory so it can be copied back into a memref.268

B. Supported Accelerators269

In matrix-multiplication and similar algorithms, the term270

stationary refers to a slice of data that can be reused across271

many iterations of an algorithm’s computation. A stationary272

strategy attempts to maximize data reuse and minimize data273

movement, which can greatly benefit accelerators that require274

efficient memory accesses. We want to enable the programmer275

to easily control accelerators that support stationary flows.276

Next, we discuss the types of accelerators that AXI4MLIR277

can support. Then we propose a standardized approach to278

concisely define the class of supported accelerators in a279

configuration file. Finally, we show how the AXI4MLIR parser280

is able to take user-defined configurations, extract essential281

attributes of the target accelerator, and populate a trait speci-282

fication to guide our MLIR compiler transformations.283

1) Accelerator Designs: The AXI4MLIR compiler trans-284

formations support linear algebra kernels implemented as ac-285

celerators using the AXI interconnect. In addition, the AXI-S286

data transfers within AXI4MLIR facilitate support for accel-287

erators that use a micro-ISA (Instruction Set Architecture)288

with opcodes, which consist of instructions that the host-289

CPU sends to the accelerator. Generally, the following three290

actions are used to categorize the actions within an instruction:291

send, compute, and receive. Any accelerator’s instructions that292

require external communication (i.e., data transfers or activa-293

tion/reset/configuration of accelerator compute modules) can294

be completed by issuing a combination of these three actions. 295

In addition, each action can have additional meta-data (e.g., 296

opcode literal, data, length, dimensions, and indexes), which 297

is used to guide compiler transformations during accelerator 298

host code generation. Further, specific traits of the accelerator 299

- such as internal buffer space (or accelerator tile sizes), and 300

data types - are supported and must be defined within the 301

accelerator configuration file. 302

1 {"cpu" = { "cache-levels": [32K,512K],
2 "cache-types": [data,shared] }
3 "accelerators" = [
4 { "name": ..., "version": x.x, "description": ...,
5 "dma_config" : {...}, "kernel": "linalg.matmul",
6 "accel_size": [4,4,4], "data_type": int32,
7 "dims": ["m", "n", "k"],
8 "data": { "A": [m,k], "B": [k,n], "C": [m,n]},
9 "opcode_map" : "<opcode_map string - see IV-D>",

10 "opcode_flow_map" : { "flowID01" :
11 "<opcode_flow string - see IV-D>", ...},
12 "selected_flow" : "flowID01" }]}

Fig. 5: Accelerator and CPU configuration file.

2) Accelerator Configuration File: Once an AXI-based 303

accelerator is fully designed, the accelerator developer can 304

quickly integrate it with our AXI4MLIR compiler transfor- 305

mations by providing Accelerator and Host information 1 306

(Figure 4) through a configuration file for the new acceler- 307

ator and the target host system. Figure 5 shows a sample 308

configuration file defined in the standard JSON format. For 309

the accelerator, the developer must specify the accelerator’s 310

architectural features, e.g., supported tile sizes, data type, 311

and input and output data with related dimensions. Addi- 312

tionally, the developer should describe any micro-ISA that 313

the accelerator can execute. The developer should define 314

“opcode IDs”, captured by the “opcode map string”, which 315

are comprised of actions to describe the memory operations 316

and related data transfers. Finally the developer should define 317

the possible “opcode flow IDs” and select the desired flow 318

for the particular operation. The configuration file does not 319

capture the internal behavior of the accelerator, which has 320

been the focus of other works [12], [15]; instead, we seek 321

to optimize the communication with the accelerator. Thus the 322

configuration file contains information about the I/O interface 323

for sending data and instructions to the accelerator. Similar to 324

the accelerator information, the CPU information, shown in 325

Figure 5-L1 to L2, needs to contain basic architectural details 326

such as the number and size of caches. 327

3) Configuration Parsing: The parser implemented in 2 328

(Figure 4) is responsible for providing the information from 329

the configuration file to the MLIR IR and the AXI4MLIR 330

transformation passes. To this end, the kernel and cache 331

information, paired with a simple heuristic that identifies the 332

dimensions of the target MLIR operation, are used to schedule 333

tiling transformations (Figure 4 - 4) that leverage the CPU 334

memory hierarchy sizes and increase temporal locality of 335

the memory accesses. Additionally, the parser validates the 336

opcode_map and the user selected opcode_flow, which 337

are then translated into new MLIR attributes to the target 338

1 #matmul_accel_trait = {
2 dma_init_config = { id = 0x0,
3 inputAddress = 0x42, inputBufferSize = 0xFF00,
4 outputAddress = 0xFF42, outputBufferSize = 0xFF00 },
5

6 // Opcodes sent once. Tokens defined in opcode_map.
7 init_opcodes = init_opcodes < (reset) >,
8

9 accel_dim = map<(m, n, k) -> (4, 4, 4)>, // Tiling
10

11 // Permutation and who can be stationary.
12 permutation_map = affine_map<(m, n, k) -> (m, k, n)>,
13

14 opcode_map = opcode_map < // Valid Opcodes
15 sA = [send_literal(0x22), send(0)],
16 sB = [send_literal(0x23), send(1)],
17 cC = [send_literal(0xF0)],
18 rC = [send_literal(0x24), recv(2)],
19 sBcCrC = [send_literal(0x25), send(1), recv(2)],
20 reset = [send_literal(0xFF)] >,
21

22 // Flow to implement. Tokens defined in opcode_map.
23 opcode_flow = opcode_flow < (sA (sBcCrC)) > // As
24 // Example of other < ((sA sB cC) rC) > // Cs
25 // valid flows < (sB sA cC rC) > // Ns
26 }

(a) New Attributes for Accelerator Description.

1 func.func @matmul_call(...) {
2 // Declare constants (loop bounds and literals): %cX, ...
3 accel.dma_init(%c0,%c66,%c65280,%c65346,%c65280) : ...
4 accel.sendLiteral(%c0xFF, %c0) : i32,i32->i32 // reset
5 // Tiling by 4,4,4
6 scf.for %m = %c0 to %c60 step %c4 { // first loop
7 scf.for %k = %c0 to %c80 step %c4 { // second loop
8 %sA = memref.subview %A[%m, %k] [4, 4] [1, 1] : ...
9 %offset0 = accel.sendLiteral(%c0x22,%c0):i32,i32->i32

10 accel.send(%sA, %offset0) : !mr4x4_0, i32 -> i32
11 scf.for %n = %c0 to %c72 step %c4 { // innermost
12 %sB = memref.subview %B[%k, %n] [4, 4] [1, 1] :
13 %sC = memref.subview %C[%m, %n] [4, 4] [1, 1] :
14 %offset1 = accel.sendLiteral(%0x25,%c0): ...
15 %offset2 = accel.send(%sB, %offset1) :
16 !mr4x4_0, i32 -> i32
17 accel.recv {mode="accumulate"}(%sC, %c0) :
18 !mr4x4_0, i32 -> i32
19 } } } } } }
20 return }

(b) IR to drive the MatMul accelerator with an A-stationary flow.
Fig. 6: Information added to the linalg.generic traits to capture accelerator
behavior in MLIR and IR with accel operations.

linalg.generic operation trait. Their syntax and function-339

ality are described in Section III-C.340

4) Supported Systems: Our work is focused on SoCs with341

accelerators connected to ARM CPUs via an AXI-S intercon-342

nect. AXI4MLIR seamlessly integrates with a diverse set of343

Xilinx platforms, though we also anticipate similar applicabil-344

ity to other FPGA-SoC devices. Changing the cross-compiler345

would allow support for other processors. Adapting our DMA346

library implementation to other standards would be required347

to support other types of interconnects. AXI4MLIR currently348

supports AXI-Stream accelerators, which do not communicate349

via direct memory requests. Thus, AXI4MLIR does not require350

support for host-accelerator coherence protocols, since the host351

manages the DMA engine transfers.352

C. MLIR extensions and optimizations353

To implement match and annotate operations for runtime354

replacement 3 (Figure 4), and to offload the computation355

onto the accelerator, we implemented passes to identify the356

target algorithms supported by the accelerator and extended357

the linalg.generic operation trait with additional infor-358

mation, as shown in Figure 6a. In particular, we introduced359

1 opcode_dict ::=
2 `opcode_map` `<` opcode_entry (`,` opcode_entry)* `>`
3 opcode_entry ::= (bare_id | string_literal) `=` opcode_list
4 opcode_list ::= `[` opcode_expr (`,` opcode_expr)* `]`
5 opcode_expr ::= `send` `(` bare_id `)`
6 | `send_literal` `(` integer_literal `)`
7 | `send_dim` `(` bare_id `)`
8 | `send_idx` `(` bare_id `)`
9 | `recv` `(` bare_id `)`

Fig. 7: Opcode Map Syntax. A dictionary for accelerator opcodes and actions.

1 opcode_flow_entry ::= `opcode_flow` `<` flow_expr >
2 flow_expr ::= `(` flow_expr `)` | bare_id (` ` bare_id)*

Fig. 8: Opcode Flow Syntax. The sequence of opcodes to implement a specific
dataflow of host-accelerator communication.

two new types of attributes to MLIR, opcode_map and 360

opcode_flow, which follow the syntax described in Figure 7 361

and Figure 8, respectively. We elaborate more on each attribute 362

in the operation trait below. 363

Extensions to linalg.generic traits: 364

- dma_init_config: defines the parameter values used to 365

configure a DMA engine associated with a specific accelerator. 366

If multiple or different accelerators are present, they would 367

have different values in this field. Figure 6a-L2 to L4 show 368

the available parameters. The code generated for the DMA 369

initialization is executed by the CPU only once per application. 370

- init_opcodes: defines a flow of opcodes that should be 371

sent to initialize or reset the accelerator for a new kernel 372

execution. During application runtime, these opcodes are sent 373

N times, where N is the number of kernels in an application 374

that can be mapped onto the custom accelerator. In Figure 6a- 375

L7, we define that the reset opcode must be included to support 376

the described accelerator. The opcode’s functionality is derived 377

from the opcode_map parameter below. 378

- accel_dim: defines the size of the accelerator for each 379

dimension of the implemented algorithm. Figure 6a-L9 shows 380

an example, specifying that the accelerator supports a tiled 381

MatMul4x4x4 version of the implemented algorithm. 382

- permutation_map: defines the order in which nested loops 383

execute. In Figure 6a-L12, we switch the order of the two 384

innermost loops, potentially enabling the data structure that 385

uses [m,k] indices to be stationary, as the other data structures 386

are streamed in/out of the accelerator. In our MatMul example 387

(Figure 2b), this enables an A stationary dataflow (Figure 6b). 388

- opcode_map: describes accelerator opcodes as key-value 389

pairs. Following the syntax scheme shown in Figure 7, the 390

key, or opcode entry, is an identifier that maps to a list of 391

actions, or opcode list, which represents sequential memory 392

operations that have to be performed to drive the acceler- 393

ator. Each action, or opcode expr (send, send_literal, 394

send_dim, send_idx, recv), implements different types 395

of copies to/from the DMA memory-mapped region. The 396

send and recv actions take an input. The input is a num- 397

ber that is used to represent one of the arguments to the 398

linalg.generic operation, e.g., 0, 1, or 2 would map to 399

A, B, or C, respectively, in the MatMul example (Figure 2a- 400

L12-13). During code generation, this information is used 401

to copy the needed tile to the memory-mapped region. For 402

Fig. 9: Semantics and lowering of accel operations.

example, Figure 6a-L15 shows an opcode with identifier “sA”403

that issues copies to the accelerator for the literal value 0x22404

and then for the data associated with the tile of argument 0.405

Furthermore, send_dim and send_idx can be used to send406

tile dimensions or tile indices, which could be used to drive407

more complex accelerators. Subsequent text will refer to an408

opcode entry, such as “sA”, simply as opcode.409

- opcode_flow: represents valid opcode/data transfer flows410

and respects the syntax scheme shown in Figure 8. Figure 6a-411

L23 shows an example, which defines an input A stationary412

(associated with argument 0) valid flow implemented with413

two opcodes, using the identifiers defined in the opcode_map.414

Additional valid examples for output C stationary and nothing415

stationary flows are shown in lines 24 and 25 of Figure 6a.416

The information in opcode_flow is parsed and the set of417

parentheses is understood as a proxy to specify multiple scopes418

for sequential or nested for loops in the algorithm. Following419

this flow, logic related to “sA” would be transmitted inside of420

the second loop (Figure 6b-L8 to L10), and logic related to421

“sBcCrC” would appear in the innermost loop (Figure 6b-L12422

to L18). Suppose the user decides to forego the opportunity423

to specify input A as stationary, then the opcode flow could424

become “(sA sB cC rC)”, and all communication driver logic425

would be generated in the innermost loop.426

The accel dialect: Before generating function calls for427

runtime replacement to the DMA runtime library (described428

in Section III-A), we perform host code transformations 5429

(Figure 4) by lowering the linalg.generic operation, with430

the proposed trait, to standard MLIR dialects (scf, arith,431

memref) and a new dialect that we call accel. Operations in432

the accel dialect abstract host-accelerator transactions, such433

as initialization, memory transfers, and synchronization. Fig-434

ure 9 presents the core accel operations and their semantics,435

providing examples of how these operations map onto our436

custom AXI DMA library calls. Additionally, Figure 6b shows437

how the accel operations are used in our MatMul example.438

Note that it is easier to perform analysis and transformations439

of operations when they are expressed in our accel dialect, 440

as opposed to using a lower-level abstraction. With lower- 441

level abstractions such as llvm, function calls and additional 442

logic have already been exposed: additional instructions must 443

be present in the IR to implement buffer slicing, size/offset 444

calculations, and function calls to copy data to/from the DMA 445

regions. Performing analysis and transformations in the llvm 446

abstraction is more challenging, as traversal of control flow 447

blocks and LLVM instructions are necessary. Instead, opera- 448

tions in the intermediate accel dialect encode the relevant 449

information, and are easily relocated during transformation 450

passes, respecting dependencies without requiring complex 451

compiler analysis. This approach facilitates implementing 452

communication flows that consider one of the data structures 453

to be stationary by simply hoisting the accel operations 454

up to the right loop nest level, while considering the flow 455

patterns. Finally, the accel dialect provides an intermediate 456

step before runtime call replacement. In this work we target 457

our AXI DMA runtime library described in Section III-A, 458

but further extensions could implement the transformation 459

of accel operations into other runtime libraries such as 460

OpenCL [27] or SYCL [28], which are commonly used to 461

interface with SoC FPGA accelerators. 462

IV. EXPERIMENTS AND RESULTS 463

To evaluate AXI4MLIR, we use a PYNQ-Z2 board that 464

includes a Zynq-7000 SoC with a dual-core ARM Cortex- 465

A9 CPU (650 MHz), and a library of tile-based accelerators 466

derived from SECDA-TFLite [29] implemented with AXI-S 467

interface and opcodes with a micro-ISA. For workloads, we 468

target a suite of kernels covering a range of dimensions, as well 469

as an end-to-end machine learning application. We leverage 470

hand-written baselines, which we discuss in Section IV-A. Sec- 471

tion IV-B evaluates accelerators implementing MatMul, com- 472

paring inference performance against a hand-written baseline, 473

identifying potential bottlenecks, and showcasing the benefits 474

of our optimized dataflows. Section IV-C highlights the value 475

of AXI4MLIR by demonstrating how to handle accelerators 476

with configurable parameters such as tile sizes and dataflows. 477

We showcase how to use AXI4MLIR with a convolution-based 478

accelerator in Section IV-D. Finally, Section IV-E shows how 479

AXI4MLIR can work in the context of a complete application, 480

evaluating the TinyBERT model [30]. 481

A. Hand-written Baselines 482

The next experiments employ hand-written optimized driver 483

code derived from the SECDA-TFLite accelerator toolkit [29] 484

to establish performance baselines. SECDA-TFLite presents 485

a state-of-the-art toolchain and methodology for HW/SW co- 486

design of embedded machine learning accelerators targeting 487

FPGA SoC devices. With host-driver code written in C++, 488

these manual baselines will be labeled as cpp MANUAL. All 489

baselines are implemented with various tiling strategies, with 490

no additional data transfer overheads and with the fewest 491

number of data transfer calls for the selected dataflow. 492

B. Matrix-Multiplication Experiments493

The tile-based accelerators used here resemble vector MAC494

engines [31], [32], [33], [34] implementing MatMul algo-495

rithms. They vary in input/output buffer size and supported496

dataflow. From the CPU-host perspective, some of them can497

support varying degrees of data reuse when the appropri-498

ate opcode stream drives the accelerator. Table I presents499

a short summary of their functionality, where size stands500

for the supported tile size of the accelerator. For example,501

v14 is a MatMul4x4x4 accelerator that does not support502

data reuse and only supports tM, tN, tK == 4, 4, 4 tiles.503

For v14, AXI4MLIR will tile the algorithm’s loops in the504

host code, taking into account the accelerator size of 4 and505

all the data movement will happen in the innermost loop506

- “opcode_flow <(sA sB cCrC)>”. For v28, AXI4MLIR507

will tile the computation by 8 and generate code to maximize508

the reuse of one of the inputs. In v2, a stationary (As) is509

implemented with opcode_flow <(sA (sB cCrC))>.510

Accelerators v3 and v4 can also reuse their output data511

structures. Accelerator v4, marked with flex size, supports512

computations of non-square tiles, i.e., v416 can process a513

MatMul of tM, tN, tK = 32, 16, 64, as long as tM, tN, tK514

are divisible by 16 and fit in the accelerator’s memory. All515

accelerators were implemented using HLS pipelining and516

unrolling to maximize the number of internal processing517

elements instantiated and their arithmetic throughput. The518

last column of Table I reports throughput (OPs/cycle) for519

each accelerator, highlighting that many arithmetic operations520

are executed in parallel at each cycle. Different types of521

accelerators with the same size have the same throughput, and522

accelerators with bigger sizes provide higher throughput. All523

bar graphs presented in this section represent the average of524

5 independent runs with the same configuration.525

Accelerator relevance. In order to evaluate the performance526

of the accelerators defined in Table I, we conducted ex-527

periments to compare the runtime of the CPU execution528

(mlir CPU) against the manual C++ implementation (referred529

to as cpp for short) of the driver code using the accelera-530

tors. The task clock was used as a metric to measure the531

execution time of the benchmarks. We present the results of532

the experiments in Figure 10, which plots the task clock on533

the y-axis (smaller is better) and only includes the “Nothing534

Stationary flow”, which means that the data transfers happen535

in the innermost loop.536

Looking at Figure 10, we can see that the accelerator offload537

only becomes relevant (i.e., executes faster than the CPU) for538

problems with dims ≥ 64, where dims = M = N = K.539

For problems with smaller dimensions, CPU execution will be540

faster than the accelerator. In addition, the results in Figure 10541

suggest that accelerators only become relevant if accel size =542

tM = tN = tK ≥ 8. For smaller accelerator sizes, the CPU543

execution is faster than the accelerator.544

These observations suggest that the performance benefits of545

using the accelerators are limited for ranges of problem sizes546

and accelerator sizes. Therefore, it is important to carefully547

TABLE I: Accelerators used in the experiments. Synthesized with AMD/Xil-
inx Vitis at 200MHz.

Type Possible Reuse Opcode(s) Configurations
v1size Nothing sAsBcCrC (Size, OPs/Cycle)
v2size Inputs sA, sB, cCrC (4, 10)
v3size Ins/Out sA, sB, cC, rC (8, 60)
v4size Ins/Out (flex size) sA, sB, cC, rC (16, 112)

(1
6,

 0
, N

ON
E)

(1
6,

 4
, v

1)
(1

6,
 8

, v
1)

(1
6,

 1
6,

 v
1)

(3
2,

 0
, N

ON
E)

(3
2,

 4
, v

1)
(3

2,
 8

, v
1)

(3
2,

 1
6,

 v
1)

(6
4,

 0
, N

ON
E)

(6
4,

 4
, v

1)
(6

4,
 8

, v
1)

(6
4,

 1
6,

 v
1)

(1
28

, 0
, N

ON
E)

(1
28

, 4
, v

1)
(1

28
, 8

, v
1)

(1
28

, 1
6,

 v
1)

(2
56

, 0
, N

ON
E)

(2
56

, 4
, v

1)
(2

56
, 8

, v
1)

(2
56

, 1
6,

 v
1)

dims,accel_size,accel_version

102

103

ta
sk

-c
lo

ck
 [m

s]

cpp_MANUAL
mlir_CPU

Fig. 10: Runtime characterization CPU vs. Accelerator execution for Matrix
Multiplication problems. Note how an accelerator only becomes relevant for
problems with dims ≥ 64 and accel size ≥ 8.

choose the appropriate accelerator configuration for a given 548

problem to achieve the best performance. Consequently, for 549

the next experiments we will limit our focus to problems with 550

dims ≥ 64 and accelerators with accel size ≥ 8. 551

AXI4MLIR generated vs. Manual implementation. 552

AXI4MLIR provides several benefits. First, our passes au- 553

tomatically tile data mapped to the CPU memory hierarchy, 554

leveraging spatial and temporal locality. The second benefit is 555

the ability to automatically generate specific flows, such as the 556

Nothing Stationary (Ns) flow, which can be tedious and error- 557

prone when done manually. Additionally, AXI4MLIR provides 558

an efficient path to flow strategies that can potentially improve 559

performance, such as input A or B stationary (As, Bs) flows. 560

Figure 11 presents these results. 561

First, we compare the differences in execution time between 562

a manual implementation (see Section IV-A) of an Ns flow 563

strategy and an AXI4MLIR generated Ns flow strategy, repre- 564

sented by the first two bars in each group of bars in Figure 11. 565

The remaining bars in each group of bars show results for 566

automatically generated flow strategies, with As and Bs for v2 567

accelerators and As, Bs, and Cs for v3 accelerators. Looking 568

at Figure 11 we see that some flows, especially Cs, provide 569

improvements. To achieve this, the user simply has to encode 570

the information for Cs (or other flows) during compilation. For 571

example, we can encode Cs using the opcode flow previously 572

presented in Figure 6a-L25 in the the operation’s trait. 573

Next, in Figure 11, we focus on the results with the 574

v3 accelerator. Here, we see that AXI4MLIR generated Cs 575

performs better than the manually generated Ns, although the 576

other flows are not performing as expected. First, we would 577

expect the performance of AXI4MLIR generated Ns to have 578

similar/closer task clock performance than manual Ns. And 579

second, we would also expect As and Bs flows to always 580

outperform Ns due to the degree of reuse, as they copy less 581

(6
4,

 8
, v

2)

(6
4,

 8
, v

3)

(6
4,

 1
6,

 v
2)

(6
4,

 1
6,

 v
3)

(1
28

, 8
, v

2)

(1
28

, 8
, v

3)

(1
28

, 1
6,

 v
2)

(1
28

, 1
6,

 v
3)

(2
56

, 8
, v

2)

(2
56

, 8
, v

3)

(2
56

, 1
6,

 v
2)

(2
56

, 1
6,

 v
3)

dims,accel_size,accel_version

102

103
ta

sk
-c

lo
ck

 [m
s]

cpp_MANUAL, Ns
mlir_AXI4MLIR, Ns
mlir_AXI4MLIR, As
mlir_AXI4MLIR, Bs
mlir_AXI4MLIR, Cs

Fig. 11: Runtime results on Matrix Multiplication kernels. Manual implemen-
tation of Ns flow vs. AXI4MLIR generated driver code for different flow
strategies, Ns, As, Bs, Cs. All bar groups follow similar trends. Ns, As, and
Bs bottlenecks are analysed and addressed in following experiments.

data and can keep the accelerator better utilized. Hence, this582

first implementation has room for improvement and, in the583

following experiment, we identified and fixed the bottlenecks584

by analyzing performance counters and implementing opti-585

mizations that specialize memory copies.586

Identifying bottlenecks & improving AXI4MLIR codegen.587

Next, we identify performance bottlenecks in AXI4MLIR588

generated copies and improve upon them to enhance the589

performance of the workloads when using the custom hard-590

ware accelerators. Specifically, the experiment compares the591

performance of manually implemented host-accelerator driver592

code with AXI4MLIR generated code for Ns, As, Bs, and Cs593

flows in terms of branch-instructions, cache reference counters,594

and the task clock. These metrics were obtained using the595

perf tool [35] to profile the application and retrieve counters596

for CPU perf events over 5 runs.597

Figure 12a shows branch instructions, cache reference coun-598

ters, and the task clock for dims == 128, for the v316599

accelerator that supports input and output stationary flows. The600

trends are similar to other problem and accelerator sizes. Our601

results are normalized to the same counters collected on a602

CPU-only execution of the same problem size. In each group603

we show results for AXI4MLIR automatically generated code604

for Ns, As, Bs, Cs flows, and compare against manual imple-605

mentations (first bar of a group) for copying the necessary data606

through the DMA memory-mapped region. MLIR applications607

have to consider MLIR memory references (presented in608

Section II-A1), but manual implementations use bare C-arrays.609

To support generality, MLIR copies between MemRef and610

the raw array (DMA buffer region) are implemented with a611

recursive call, loading and storing one element at a time. This612

is necessary to support rank = N MemRefs, where strides in613

all dimensions are different from 1.614

In order to address this issue, we implemented an opti-615

mization for when strides[N − 1] == 1 (i.e., elements in616

N − 1 dimension are adjacent to each other in memory) and617

specialized MemRef copies for some known rank sizes, such618

as rank == 2. For this scenario, we leverage the spatial619

branch-instructions cache-references task-clock
metric

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Va

lu
es

Ac
ce

le
ra

to
r v

3 1
6 v

s m
lir

_C
PU

(P
ro

bl
em

 D
im

s =
=

12
8)

cpp_MANUAL, Ns
mlir_AXI4MLIR, Ns
mlir_AXI4MLIR, As
mlir_AXI4MLIR, Bs
mlir_AXI4MLIR, Cs

(a) Without the MemRef-DMA buffer copy optimization. Generated host-
accelerator code has overheads if not specialized.

branch-instructions cache-references task-clock
metric

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Va

lu
es

Ac
ce

le
ra

to
r v

3 1
6 v

s m
lir

_C
PU

(P
ro

bl
em

 D
im

s =
=

12
8)

cpp_MANUAL, Ns
mlir_AXI4MLIR, Ns
mlir_AXI4MLIR, As
mlir_AXI4MLIR, Bs
mlir_AXI4MLIR, Cs

(b) With MemRef-DMA buffer copy optimization. AXI4MLIR improves
accelerator performance over manual Ns implementation.
Fig. 12: Cache, branch, and runtime metrics of different tools and strategies
using v316 accelerator with problem size (dims == 128). Normalized values
against CPU (without accelerator) executions of same problem size.

locality and implement the copy not with individual load and 620

store instructions, but by calling std::memcpy(src, dst, 621

size). When compiling this function for our platform, the 622

compiler will inline the assembly, implementing a vectorized 623

copy that improves the performance of the copy operation. 624

The implications of this optimization are twofold. First, it 625

reduces the number of branch references because there is no 626

need for branching to handle non-unitary strides or to iterate 627

over an arbitrary number of dimensions, resulting in better 628

control flow and branch prediction. Second, the vectorized 629

code reduces the number of cache references because the data 630

is accessed sequentially in memory. Therefore, there will only 631

be two cache reference to fetch the cache line containing the 632

requested data, and subsequent loads within the same cache 633

line will not require additional cache references as they are 634

read from the vector VFP registers [36]. The results for this 635

optimization are presented in Figure 12b. 636

After incorporating this optimization, the AXI4MLIR gen- 637

erated driver code executed faster on all accelerators as 638

compared to their respective manual implementations. In Fig- 639

ure 13, we compare AXI4MLIR against manual implemen- 640

tations for Ns, As, Bs, and Cs, and found that the compiled 641

generated driver code provided by AXI4MLIR is consistently 642

faster (1.18× average speedup and 1.65× max speedup), 643

thanks to its ability to leverage proper tiling for the CPU’s 644

memory hierarchy, resulting in a 10% average and 56% max 645

reduction in cache references. 646

(6
4,

 8
, v

2,
 N

s)
(6

4,
 8

, v
2,

 A
s)

(6
4,

 8
, v

2,
 B

s)
(6

4,
 8

, v
3,

 N
s)

(6
4,

 8
, v

3,
 A

s)
(6

4,
 8

, v
3,

 B
s)

(6
4,

 8
, v

3,
 C

s)
(6

4,
 1

6,
 v

2,
 N

s)
(6

4,
 1

6,
 v

2,
 A

s)
(6

4,
 1

6,
 v

2,
 B

s)
(6

4,
 1

6,
 v

3,
 N

s)
(6

4,
 1

6,
 v

3,
 A

s)
(6

4,
 1

6,
 v

3,
 B

s)
(6

4,
 1

6,
 v

3,
 C

s)
(1

28
, 8

, v
2,

 N
s)

(1
28

, 8
, v

2,
 A

s)
(1

28
, 8

, v
2,

 B
s)

(1
28

, 8
, v

3,
 N

s)
(1

28
, 8

, v
3,

 A
s)

(1
28

, 8
, v

3,
 B

s)
(1

28
, 8

, v
3,

 C
s)

(1
28

, 1
6,

 v
2,

 N
s)

(1
28

, 1
6,

 v
2,

 A
s)

(1
28

, 1
6,

 v
2,

 B
s)

(1
28

, 1
6,

 v
3,

 N
s)

(1
28

, 1
6,

 v
3,

 A
s)

(1
28

, 1
6,

 v
3,

 B
s)

(1
28

, 1
6,

 v
3,

 C
s)

(2
56

, 8
, v

2,
 N

s)
(2

56
, 8

, v
2,

 A
s)

(2
56

, 8
, v

2,
 B

s)
(2

56
, 8

, v
3,

 N
s)

(2
56

, 8
, v

3,
 A

s)
(2

56
, 8

, v
3,

 B
s)

(2
56

, 8
, v

3,
 C

s)
(2

56
, 1

6,
 v

2,
 N

s)
(2

56
, 1

6,
 v

2,
 A

s)
(2

56
, 1

6,
 v

2,
 B

s)
(2

56
, 1

6,
 v

3,
 N

s)
(2

56
, 1

6,
 v

3,
 A

s)
(2

56
, 1

6,
 v

3,
 B

s)
(2

56
, 1

6,
 v

3,
 C

s)

dims,accel_size,accel_version,strategy

101

102

103
ta

sk
-c

lo
ck

 [m
s] cpp_MANUAL

mlir_AXI4MLIR

Fig. 13: Runtime comparison of manual implementation of driver code and AXIMLIR generated. Each set of two bars have a matching Accelerator Type,
Accelerator Size, and Flow Strategy (Ns, As, Bs, Cs). AXI4MLIR is better in all cases.

256_32_512 256_512_32 32_256_512 32_512_256 512_256_32 512_32_256
dims [M_N_K]

0

10

20

30

40

50

60

70

ta
sk

-c
lo

ck
 [m

s]

Cs 128 32 32

As 128 32 32

Cs 32 128 32

Cs 32 128 32

Bs 32 128 32

Cs 128 32 32

As-squareTile Bs-squareTile Cs-squareTile Best

Fig. 14: MatMul problem permutations (v4 accelerator) for different strategies.
For the “Best” strategies we annotate the chosen flow and tiling values.

C. Matrix-Multiplication with flexible sizes647

Runtime configurable accelerators allow for fine-grained648

hardware tuning for specific problems. With AXI4MLIR, we649

can generate host code to configure and optimize flexible650

accelerators for the target problem. To demonstrate this capa-651

bility, we evaluate multiple permutations of a MatMul problem652

on the v4 accelerator. The v4 accelerator supports multiple653

dataflow strategies and adjustable tile sizes for its tM , tN ,654

and tK dimensions. The intuition is that scientific and machine655

learning workloads present problem sizes with different values656

for each dimension, sometimes resulting in tall/skinny matrices657

during execution. Tiling the problem in the accelerator with658

different dimensions for tM , tN , and tK, and selecting the659

appropriate flow strategy can be beneficial for the application.660

When using AXI4MLIR, a developer is not limited to one661

configuration of an accelerator. Based on the user’s knowledge662

of the application, AXI4MLIR can automatically generate663

the driver for accelerators with adjustable dimensions. This664

flexibility allows for a more thorough exploration of the design665

space, enabling the developer to find the best sizes for tM ,666

tN , tK, and the best flow strategy for each problem instance.667

In Figure 14, we compare four different heuristics and668

use them to choose the best tiling and dataflow config-669

uration for a MatMul problem. We evaluate performance670

in terms of execution time. We profile the problem with671

M ,N , and K dimensions permuted from the following values:672

[32, 256, 512]. Hence, the theoretical minimum number of673

multiply-accumulate operations required for all permutations674

is the same. Here, the As-squareTile, Bs-squareTile, and Cs- 675

squareTile heuristics try to find the best configuration to reduce 676

the total memory access count given the constraint of tiling the 677

MatMul with square tiles (i.e., tM = tN = tK = T), with A, 678

B, and C stationary dataflow, respectively. The fourth heuristic, 679

Best, chooses between all dataflows and flexible tiling options, 680

only sharing the choice of the accelerator. In Figure 14 we 681

annotate the “Best” configuration found for each problem. 682

Square tiling. We observe that as we change the problem per- 683

mutation, the best flow between As-squareTile, Bs-squareTile, 684

and Cs-squareTile tiling strategies changes. The best flow 685

depends on the problem shape, the size, and the available 686

accelerator buffer space. T = 32 was selected for all square 687

flows because it is the biggest value, so the tiles fit inside the 688

accelerator’s internal memory. 689

Flexible tiling. The Best heuristic, selected from non-square 690

strategies, outperforms square tiling by leveraging flexible 691

tiling sizes. AXI4MLIR can generate code to utilize larger 692

tile sizes in various dimensions, taking advantage of the 693

v4 accelerator’s unrestricted tiling factors and improving the 694

accelerator’s internal memory utilization. 695

Configurations. Manually implementing all configurations’ 696

driver code for even a simple accelerator such as v4 is very 697

time-consuming. AXI4MLIR can quickly generate hostcode 698

for configurable accelerators easily, enabling the developer to 699

specify an accelerator configuration per problem instance. 700

D. Convolution 701

We show the flexibility of AXI4MLIR by generating driver 702

code for a convolution-based accelerator executing different 703

problems sizes. This accelerator supports varying input chan- 704

nel (iC) and filter (fHW) sizes, computing one output slice 705

(all elements in one output channel - oC) per iteration. To 706

orchestrate the execution, multiple instructions have to be sent 707

to the accelerator. This orchestration is achieved by compiling 708

the driver code derived from the MLIR accel code (Fig- 709

ure 15b). The accel code is generated after a transformation 710

pass takes into account the attributes shown in Figure 15a 711

and MLIR’s linalg.conv_2d_nchw_fchw operations. Note 712

that if the convolution operation has iC, fH, fW dimensions 713

that are smaller than the dimensions in accel_dim, no tiling 714

1 accel_dim = map<(B,H,W, iC,oC,fH,fW) ->
2 (0,0,0,256, 1, 3, 3)>, // Tiling
3 opcode_map<
4 sIcO=[send_literal(70), send(0)], // send 3D input window
5 // and compute
6 sF=[send_literal(1), send(1)], // send 3D filter
7 rO=[send_literal(8), recv(2)], // recv 2D output slice
8 rst=[send_literal(32), send_dim(1,3), // set filter size
9 send_literal(16), send_dim(0,1)]> // set iC size

10 opcode_flow <(sF (sIcO) rO)> // filter+output stationary
11 init_opcodes <(rst)>

(a) Opcode Map and Flow for Conv2D accelerator.

1 func.func @conv_call(...) {
2 // With %I: !mrI_1_256_7_7; %W: !mrW_64_256_3_3
3 // and %O: !mrO_1_64_5_5
4 // Declare constants (loop bounds and literals): %cX, ...
5 accel.dma_init(%c0,%c66,%c65280,%c65346,%c65280) : ...
6 accel.sendLiteral(%c32, %c0) : i32,i32->i32 // send inst
7 accel.sendDim(%W,%c3,%c0) : !mrW,i32,i32->i32 // send %fH
8 accel.sendLiteral(%c16, %c0) : i32,i32->i32 // send inst
9 accel.sendDim(%I,%c1,%c0) : !mrI,i32,i32->i32 // send %iC

10

11 // Tile dims by (B,H,W,iC,oC,fH,fW) -> (-,-,-,256,1,3,3)
12 scf.for %b = %c0 to %c1 step %c1 { // B loop
13 scf.for %oc = %c0 to %c64 step %c1 { // OC loop
14 %sW = memref.subview %W[%oc,0,0,0][1,256,3,3] ...
15 %offset0 = accel.sendLiteral(%c1, %c0) : i32,i32->i32
16 %offset1 = accel.send(%sW, %offset0) :
17 !mrSubWx256x3x3, i32 -> i32
18 scf.for %oh = %c0 to %c5 step %c1 { // OH loop
19 scf.for %ow = %c0 to %c5 step %c1 { // OW loop
20 %xoffset = ... // index calculation
21 %yoffset = ... // index calculation
22 %sI = memref.subview %I[0,0,%xoffset,%yoffset]
23 [1,256,3,3] ...
24 %offset2 = accel.sendLiteral(%c70, %c0) : ...
25 %offset3 = accel.send(%sI, %offset2) :
26 !mrSubIx256x3x3, i32 -> i32
27 // inner product of sW and sI computed in HW
28 } }
29 %sO = memref.subview %O[0,%oc,0,0] [1,1,5,5] ...
30 %offset4 = accel.sendLiteral(%c8, %c0) : ...
31 accel.recv {mode="accumulate"}(%sO, %c0) :
32 !mrSubO_5x5_0, i32 -> i32
33 } } } } return }

(b) IR to drive the Conv2D accelerator with an output-stationary flow.
Fig. 15: Information added to the linalg.generic traits to capture convolution
accelerator behavior in MLIR and IR with accel operations.

will be performed across these dimensions. In the convo-715

lution example (Figure 15), upon accelerator reset, we use716

send_dim(1,3) to send to the accelerator the filter size as717

the dimension ‘3’ of data structure ‘1’ (i.e., the filter), and718

we use send_dim(0,1) to send the input channel size as the719

dimension ‘1’ of the data structure ‘0’ (i.e., the input).720

We evaluate the performance of AXI4MLIR during the721

execution of all convolution layers of ResNet18 [37]. Figure 16722

presents performance metrics normalized to the runtime of723

layer-specific manual C++ driver code. The results observed724

here present similar trends as observed in the MatMul ex-725

periments. Only one layer (56 64 1 128 2) presented a 10%726

slowdown, contrary to previous trends. The slowdown hap-727

pened because fHW (1) and iC (64) were too small, and the728

overhead of dealing with small MemRefs was not overcome729

since we could not leverage the strided copy optimization730

presented in Section IV-B. Smaller AXI4MLIR speedups are731

observed every time that fHW== 1. That said, AXI4MLIR732

achieves better runtime performance on 10 out of 11 ResNet18733

layers, with 1.28× and 1.54× average and max speedup,734

respectively, thanks to the improved CPU cache performance.735

14
_2

56
_1

_5
12

_2

16
_2

56
_3

_2
56

_1

16
_2

56
_3

_5
12

_2

23
0_

3_
7_

64
_2

28
_1

28
_1

_2
56

_2

30
_1

28
_3

_1
28

_1

30
_1

28
_3

_2
56

_2

56
_6

4_
1_

12
8_

2

58
_6

4_
3_

12
8_

2

58
_6

4_
3_

64
_1

9_
51

2_
3_

51
2_

1

dims [iHW, iC, fHW, oC, stride]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pe
rfo

rm
an

ce
 m

et
ric

s
(N

or
m

az
lie

d
to

 c
pp

_M
AN

UA
L)

Branch-Inst
Cache-references

TaskClock

Fig. 16: ResNet18 convolution layers: AXI4MLIR vs. Manual.

E. End-To-End Analysis 736

Finally, we evaluate AXI4MLIR when compiling a natural 737

language processing model to co-execute on both the CPU and 738

the v416 accelerator. We benchmark TinyBERT [30], a com- 739

pact transformer [38] model for Masked Language Modeling 740

and Next Sentence Prediction targeted at mobile and embedded 741

devices. We translate TinyBERT to MLIR IR using Torch- 742

MLIR [39] and compare the inference performance of CPU 743

execution (using -O3 during compilation) against co-execution 744

using the “Ns” offloading approach and the “Best” approach, 745

which employs the heuristics presented in Section IV-C. 746

As we can see in Figure 17, AXI4MLIR achieves a 3.4× 747

speedup in end-to-end execution, with an 18.4× speedup in the 748

accelerated MatMul layers that represent 75% of the original 749

CPU runtime. This experiment showcases how AXI4MLIR 750

can be used during evaluation and optimization of natural 751

language processing models on embedded devices. Our study 752

highlights that developers can easily co-design the accelerators 753

when targeting full workloads, which enables efficient explo- 754

ration and utilization of both CPU and accelerator resources. 755

CPU (MLIR) Ns-SquareTile AXI4MLIR Best
Compilation Approach

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
az

lie
d

to
 C

PU
)

e2e: 3.32x
Matmuls: (14.69x)

e2e: 3.44x
Matmuls: (18.43x)

Other Layers on CPU
Matmuls on CPU
Matmuls on ACC

Fig. 17: Execution time of the TinyBERT model with batch size == 2.
Each bar represents a compilation strategy. Speedups for end-to-end (e2e)
and for accelerated MatMul layers are shown as annotations.

V. RELATED WORK 756

Prior studies [40], [17], [11], [16], [13], [41], [42], [43] have 757

proposed new accelerator designs or presented new method- 758

ologies to generate flexible accelerators for a wide range of 759

algorithms. However, these approaches fall short in provid- 760

ing insights into how host-to-accelerator transfers should be 761

performed. Most of these tools assume that the required data 762

is already placed in the accelerator’s internal buffers. There763

have also been efforts to support hardware/software co-design764

of an accelerator for an application [18], [19], [29]. However,765

these implementations adopt a simple offload model, where766

execution of the kernel code is simply replaced by runtime767

calls that copy the data to-and-from the accelerator, without768

considering the host memory hierarchy or accelerator features,769

which would require manual driver code modifications.770

HeteroFlow [44], an FPGA accelerator programming model,771

decouples algorithm specification from data placement op-772

timization using a new primitive “.to()”. This approach773

exposes data placement specification at various granularities,774

achieving efficient code generation while matching optimized775

manual HLS designs. HeteroFlow does not support arbitrary776

custom accelerators, as it is limited to accelerators co-designed777

with its framework (extended HeteroCL [45]). It also requires778

the new primitive to be used while describing the algorithm779

in Python, imposing manual application modification. Unlike780

HeteroFlow, AXI4MLIR utilizes MLIR to target languages781

employing linalg.generic operations during compilation,782

eliminating the need for manual transformation.783

Several other studies have addressed the challenge of ef-784

ficiently mapping algorithms and their loops onto accelera-785

tors through operation scheduling. Notably, Interstellar [46],786

DMazeRunner [47], and PolySA [48] delve into more versatile787

loop structures by adopting diverse loop representations for788

DNN layers. CoSA [49] and Vaidya et al. [50] tackle the789

generation of execution schedules for DNNs in a time-efficient790

manner, leveraging constrained optimization solvers. Self-791

tuning algorithms have also been employed in addressing the792

scheduling problem. Approaches like ConfuciuX [51], Flex-793

Tensor [52], AutoTVM [53], and Ansor [54] utilize machine794

learning algorithms. Furthermore, Flexer [55] employs an out-795

of-order scheduling technique, unbound by loop order, which796

orchestrates operations based on a comprehensive analysis of797

the data-flow graph of a given layer. Some of these works798

are tailored to a specific type of accelerator or algorithm.799

In addition, these works primarily focus on scheduling as-800

pects, which AXI4MLIR currently lacks as a component.801

Nonetheless, these scheduling techniques could potentially802

complement AXI4MLIR’s attributes and transformations to803

enhance the overall accelerator integration process.804

The Pattern Description Language (PDL) and Transform805

MLIR dialects [56] offer productive ways for expressing IR806

transformations and could be leveraged to implement simi-807

lar functionality as provided by AXI4MLIR. However, PDL808

cannot currently identify patterns in nested MLIR regions.809

Additionally, the transform dialect focuses on scheduling810

linear algebra transformations but requires extensions for811

runtime call generation targeting accelerators and dataflows.812

In contrast, AXI4MLIR’s opcode_map and opcode_flow813

extensions enable flexible automatic driver code generation814

for custom accelerators. Future work may involve integrating815

AXI4MLIR passes as Transform operations and using PDL816

to identify operation sequences for transformation, potentially817

supporting fusing operations for custom accelerator execution.818

Host code generation transforms accel operations into DMA 819

library calls. To facilitate further optimizations leveraging the 820

MLIR infrastructure, users can modify these transformation 821

passes while applying optimizations such as double buffering, 822

building on our infrastructure supporting non-blocking trans- 823

fers and transfer completion checks. Our ongoing work will 824

introduce a new attribute to select inputs/outputs for double 825

buffering. This aligns with MLIR’s capability to modify and 826

add passes to the transformation pipeline. For further effi- 827

ciency, coalescing transfer requests are essential; future work 828

will implement a transformation that consolidates multiple 829

start_send calls into a single call after data preparation, 830

thus reducing the need for multiple wait_send calls, which 831

incur higher CPU accelerator-DMA synchronization costs. 832

VI. CONCLUSION 833

In this paper we presented AXI4MLIR, an extension to the 834

MLIR compiler framework to describe AXI-based accelerators 835

with a range of features including accelerator opcodes. We 836

implemented attribute extensions and compiler transformations 837

to describe and automatically generate host code that can 838

leverage different flows of flexible accelerators, allowing us 839

to break away from simple offload HW/SW co-design models. 840

After implementing data staging and accessing optimizations 841

during communication, our results show that AXI4MLIR is 842

effective in generating host code that efficiently uses CPU 843

resources and accelerator features. This allows for measurable 844

runtime improvements versus manual implementations for all 845

tested accelerators, while providing automation and conve- 846

nience during the co-design cycle. Finally, our user-driven host 847

code generation is entirely automated, providing a significant 848

advantage in terms of productivity and maintainability, spe- 849

cially during the early stages of the co-design process. 850

REFERENCES 851

[1] J. Hennessy and D. Patterson, “A new golden age for computer architec- 852

ture: Domain-specific hardware/software co-design, enhanced security, 853

open instruction sets, and agile chip development,” in 2018 ACM/IEEE 854

45th Annual International Symposium on Computer Architecture (ISCA). 855

Los Angeles, CA, USA: IEEE, 2018, pp. 27–29. 856

[2] H. Shabani, A. Singh, B. Youhana, and X. Guo, “Hirac: A hierarchical 857

accelerator with sorting-based packing for spgemms in dnn applica- 858

tions,” in 2023 IEEE International Symposium on High-Performance 859

Computer Architecture (HPCA). Montreal, QC, Canada: IEEE, 2023, 860

pp. 247–258. 861

[3] B. Kim, S. Li, and H. Li, “Inca: Input-stationary dataflow at outside- 862

the-box thinking about deep learning accelerators,” in 2023 IEEE 863

International Symposium on High-Performance Computer Architecture 864

(HPCA). Montreal, QC, Canada: IEEE, 2023, pp. 29–41. 865

[4] J. Zhao, Y. Yang, Y. Zhang, X. Liao, L. Gu, L. He, B. He, 866

H. Jin, H. Liu, X. Jiang, and H. Yu, “Tdgraph: A topology-driven 867

accelerator for high-performance streaming graph processing,” in 868

Proceedings of the 49th Annual International Symposium on Computer 869

Architecture, ser. ISCA ’22. New York, NY, USA: Association 870

for Computing Machinery, 2022, p. 116–129. [Online]. Available: 871

https://doi.org/10.1145/3470496.3527409 872

[5] S. Hsia, U. Gupta, B. Acun, N. Ardalani, P. Zhong, G.-Y. Wei, 873

D. Brooks, and C.-J. Wu, “Mp-rec: Hardware-software co-design to 874

enable multi-path recommendation,” in Proceedings of the 28th ACM 875

International Conference on Architectural Support for Programming 876

Languages and Operating Systems, Volume 3, ser. ASPLOS 2023. 877

New York, NY, USA: Association for Computing Machinery, 2023, p. 878

449–465. [Online]. Available: https://doi.org/10.1145/3582016.3582068 879

https://doi.org/10.1145/3470496.3527409
https://doi.org/10.1145/3582016.3582068

[6] S. Zheng, R. Chen, A. Wei, Y. Jin, Q. Han, L. Lu, B. Wu, X. Li,880

S. Yan, and Y. Liang, “Amos: Enabling automatic mapping for tensor881

computations on spatial accelerators with hardware abstraction,” in882

Proceedings of the 49th Annual International Symposium on Computer883

Architecture, ser. ISCA ’22. New York, NY, USA: Association884

for Computing Machinery, 2022, p. 874–887. [Online]. Available:885

https://doi.org/10.1145/3470496.3527440886

[7] F. Muñoz Martı́nez, R. Garg, M. Pellauer, J. L. Abellán, M. E.887

Acacio, and T. Krishna, “Flexagon: A multi-dataflow sparse-888

sparse matrix multiplication accelerator for efficient dnn processing,”889

in Proceedings of the 28th ACM International Conference on890

Architectural Support for Programming Languages and Operating891

Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:892

Association for Computing Machinery, 2023, p. 252–265. [Online].893

Available: https://doi.org/10.1145/3582016.3582069894

[8] M. Abolhasani and E. Kumacheva, “The rise of self-driving labs in895

chemical and materials sciences,” Nature Synthesis, vol. 0, no. 0, pp.896

1–10, 2023.897

[9] Q. Rao and J. Frtunikj, “Deep learning for self-driving cars: Chances and898

challenges,” in 2018 IEEE/ACM 1st International Workshop on Software899

Engineering for AI in Autonomous Systems (SEFAIAS), ser. SEFAIS ’18.900

New York, NY, USA: Association for Computing Machinery, 2018, p.901

35–38. [Online]. Available: https://doi.org/10.1145/3194085.3194087902

[10] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,903

K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko et al., “Highly904

accurate protein structure prediction with alphafold,” Nature, vol. 596,905

no. 7873, pp. 583–589, 2021.906

[11] X. Zhang, H. Ye, J. Wang, Y. Lin, J. Xiong, W. Hwu, and D. Chen,907

“DNNExplorer: A Framework for Modeling and Exploring a Novel908

Paradigm of FPGA-based DNN Accelerator,” in ICCAD. New York,909

NY, USA: Association for Computing Machinery, 2020, pp. 1–9.910

[12] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li,911

Z. Guan, D. Chen, and Y. Lin, “Autodnnchip: An automated912

dnn chip predictor and builder for both fpgas and asics,” in913

Proceedings of the 2020 ACM/SIGDA International Symposium on914

Field-Programmable Gate Arrays. New York, NY, USA: Association915

for Computing Machinery, 2020, p. 40–50. [Online]. Available:916

https://doi.org/10.1145/3373087.3375306917

[13] H. Ye, X. Zhang, Z. Huang, G. Chen, and D. Chen, “Hybriddnn: A918

framework for high-performance hybrid DNN accelerator design and919

implementation,” in DAC. San Francisco, CA, USA: IEEE, 2020, pp.920

1–6.921

[14] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and922

A. Parashar, “Maestro: A data-centric approach to understand reuse,923

performance, and hardware cost of dnn mappings,” IEEE Micro, vol. 40,924

no. 3, pp. 20–29, 2020.925

[15] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible926

accelerator for emerging deep neural networks on mobile devices,” IEEE927

Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,928

no. 2, pp. 292–308, 2019.929

[16] TVM Developers, “VTA: Deep learning accelerator stack,” 2020.930

[Online]. Available: docs.tvm.ai/vta931

[17] J. Ngadiuba, V. Loncar, M. Pierini, S. Summers, G. Di Guglielmo,932

J. Duarte, P. Harris, D. Rankin, S. Jindariani, M. Liu et al., “Compressing933

deep neural networks on FPGAs to binary and ternary precision with934

hls4ml,” ML: Science and Technology, vol. 2, no. 1, p. 015001, 2020.935

[18] S. Skalicky, J. Monson, A. Schmidt, and M. French, “Hot & Spicy:936

Improving Productivity with Python and HLS for FPGAs,” in FCCM.937

Boulder, CO, USA: IEEE, 2018, pp. 85–92.938

[19] N. Bohm Agostini, S. Dong, E. Karimi, M. T. Lapuerta, J. Cano,939

J. L. Abellán, and D. Kaeli, “Design space exploration of accelerators940

and end-to-end dnn evaluation with tflite-soc,” in SBAC-PAD. Porto,941

Portugal: IEEE, 2020, pp. 10–19.942

[20] ARM Developers, “AMBA AXI and ACE Protocol Specification,”943

2020. [Online]. Available: https://developer.arm.com/documentation/944

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification945

[21] S. Liu, H. Fan, X. Niu, H.-c. Ng, Y. Chu, and W. LUK, “Optimizing946

cnn-based segmentation with deeply customized convolutional and947

deconvolutional architectures on fpga,” ACM Trans. Reconfigurable948

Technol. Syst., vol. 11, no. 3, dec 2018. [Online]. Available:949

https://doi.org/10.1145/3242900950

[22] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,951

R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scaling952

Compiler Infrastructure for Domain Specific Computation,” in CGO. 953

Seoul, Korea (South): IEEE, 2021, pp. 2–14. 954

[23] M. Developers, “’linalg’ Dialect,” 2020, online accessed on 11-04-2023. 955

[Online]. Available: https://mlir.llvm.org/docs/Dialects/Linalg/ 956

[24] T. D. Le, G.-T. Bercea, T. Chen, A. E. Eichenberger, H. Imai, T. Jin, 957

K. Kawachiya, Y. Negishi, and K. O’Brien, “Compiling ONNX Neural 958

Network Models Using MLIR,” ArXiv, vol. 0, no. 0, pp. 1–8, 2020. 959

[25] Xilinx, “AXI Reference Guide,” 2012. [Online]. Available: https: 960

//docs.xilinx.com/v/u/14.1-English/ug761 axi reference guide 961

[26] C. Salvador Rohwedder, N. Henderson, J. a. P. L. De Carvalho, Y. Chen, 962

and J. N. Amaral, “To pack or not to pack: A generalized packing 963

analysis and transformation,” in Proceedings of the 21st ACM/IEEE In- 964

ternational Symposium on Code Generation and Optimization, ser. CGO 965

2023. New York, NY, USA: Association for Computing Machinery, 966

2023, p. 14–27. 967

[27] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming 968

standard for heterogeneous computing systems,” Computing in Science 969

and Engg., vol. 12, no. 3, p. 66–73, may 2010. 970

[28] R. Reyes, G. Brown, R. Burns, and M. Wong, “Sycl 2020: More 971

than meets the eye,” in Proceedings of the International Workshop on 972

OpenCL, ser. IWOCL ’20. New York, NY, USA: Association for 973

Computing Machinery, 2020. 974

[29] J. Haris, P. Gibson, J. Cano, N. Bohm Agostini, and D. Kaeli, “SECDA- 975

TFLite: A toolkit for efficient development of FPGA-based DNN 976

accelerators for edge inference,” Journal of Parallel and Distributed 977

Computing, vol. 173, pp. 140–151, 2023. 978

[30] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and 979

Q. Liu, “Tinybert: Distilling bert for natural language understanding,” 980

arXiv preprint arXiv:1909.10351, vol. 0, no. 0, pp. 1–12, 2019. 981

[31] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and 982

A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network 983

computing,” ACM SIGARCH Computer Architecture News, vol. 44, 984

no. 3, pp. 1–13, 2016. 985

[32] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and 986

Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in 987

2016 49th Annual IEEE/ACM International Symposium on Microarchi- 988

tecture (MICRO), IEEE. Taipei, Taiwan: IEEE, 2016, pp. 1–12. 989

[33] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, 990

N. Sun et al., “Dadiannao: A machine-learning supercomputer,” in 2014 991

47th Annual IEEE/ACM International Symposium on Microarchitecture, 992

IEEE. Cambridge, UK: IEEE, 2014, pp. 609–622. 993

[34] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing 994

fpga-based accelerator design for deep convolutional neural networks,” 995

in Proceedings of the 2015 ACM/SIGDA international symposium on 996

field-programmable gate arrays. New York, NY, USA: Association for 997

Computing Machinery, 2015, pp. 161–170. 998

[35] The Linux Perf Team, “Perf wiki,” n.d., accessed on April 13, 2023. 999

[Online]. Available: https://perf.wiki.kernel.org/index.php/Main Page 1000

[36] A. Developer, “Neon registers,” 2023. [On- 1001

line]. Available: https://developer.arm.com/documentation/dht0002/a/ 1002

Introducing-NEON/NEON-architecture-overview/NEON-registers 1003

[37] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, 1004

and X. Tang, “Residual attention network for image classification,” in 1005

Proceedings of the IEEE conference on computer vision and pattern 1006

recognition, Honolulu, HI, USA, 2017, pp. 3156–3164. 1007

[38] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, 1008

P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, 1009

P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, 1010

S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers: State- 1011

of-the-art natural language processing,” in Proceedings of the 2020 1012

Conference on Empirical Methods in Natural Language Processing: 1013

System Demonstrations. Online: Association for Computational 1014

Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https: 1015

//aclanthology.org/2020.emnlp-demos.6 1016

[39] Torch-MLIR Developers, “The Torch-MLIR Project,” 2021. [Online]. 1017

Available: https://github.com/llvm/torch-mlir 1018

[40] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio, 1019

“A Unified Backend for Targeting FPGAs from DSLs,” in ASAP. Milan, 1020

Italy: IEEE, 2018, pp. 1–8. 1021

[41] N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya, 1022

M. Minutoli, V. G. Castellana, J. Manzano, D. Brooks, G.-Y. Wei, and 1023

A. Tumeo, “Bridging python to silicon: The soda toolchain,” IEEE 1024

Micro, vol. 42, no. 5, 2022. 1025

https://doi.org/10.1145/3470496.3527440
https://doi.org/10.1145/3582016.3582069
https://doi.org/10.1145/3194085.3194087
https://doi.org/10.1145/3373087.3375306
docs.tvm.ai/vta
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://doi.org/10.1145/3242900
https://mlir.llvm.org/docs/Dialects/Linalg/
https://docs.xilinx.com/v/u/14.1-English/ug761_axi_reference_guide
https://docs.xilinx.com/v/u/14.1-English/ug761_axi_reference_guide
https://docs.xilinx.com/v/u/14.1-English/ug761_axi_reference_guide
https://perf.wiki.kernel.org/index.php/Main_Page
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-registers
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-registers
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-registers
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://github.com/llvm/torch-mlir

[42] N. Bohm Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G.1026

Castellana, J. Manzano, D. Kaeli, and A. Tumeo, “An mlir-based1027

compiler flow for system-level design and hardware acceleration,” in1028

ICCAD. New York, NY, USA: Association for Computing Machinery,1029

2022.1030

[43] A. Stjerngren, P. Gibson, and J. Cano, “Bifrost: End-to-End Evaluation1031

and optimization of Reconfigurable DNN Accelerators,” in 2022 IEEE1032

International Symposium on Performance Analysis of Systems and1033

Software (ISPASS). Singapore: IEEE, May 2022, pp. 288–299.1034

[44] S. Xiang, Y.-H. Lai, Y. Zhou, H. Chen, N. Zhang, D. Pal, and Z. Zhang,1035

“Heteroflow: An accelerator programming model with decoupled data1036

placement for software-defined fpgas,” in Proceedings of the 20221037

ACM/SIGDA International Symposium on Field-Programmable Gate1038

Arrays, ser. FPGA ’22. New York, NY, USA: Association for1039

Computing Machinery, 2022, p. 78–88.1040

[45] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong,1041

and Z. Zhang, “Heterocl: A multi-paradigm programming infrastructure1042

for software-defined reconfigurable computing,” in Proceedings of the1043

2019 ACM/SIGDA International Symposium on Field-Programmable1044

Gate Arrays, ser. FPGA ’19. New York, NY, USA: Association for1045

Computing Machinery, 2019, p. 242–251.1046

[46] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,1047

H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using1048

halide’s scheduling language to analyze dnn accelerators,” in Proceed-1049

ings of the Twenty-Fifth International Conference on Architectural Sup-1050

port for Programming Languages and Operating Systems, ser. ASPLOS1051

’20. New York, NY, USA: Association for Computing Machinery,1052

2020, p. 369–383.1053

[47] S. Dave, Y. Kim, S. Avancha, K. Lee, and A. Shrivastava, “Dmazerunner:1054

Executing perfectly nested loops on dataflow accelerators,” ACM Trans.1055

Embed. Comput. Syst., vol. 18, no. 5s, oct 2019.1056

[48] J. Cong and J. Wang, “Polysa: Polyhedral-based systolic array1057

auto-compilation,” in 2018 IEEE/ACM International Conference on1058

Computer-Aided Design (ICCAD). San Diego, CA, USA: IEEE, 2018,1059

pp. 1–8.1060

[49] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel,1061

J. Wawrzynek, and Y. S. Shao, “Cosa: Scheduling by constrained1062

optimization for spatial accelerators,” in 2021 ACM/IEEE 48th Annual1063

International Symposium on Computer Architecture (ISCA). Valencia,1064

Spain: IEEE, 2021, pp. 554–566.1065

[50] M. Vaidya, A. Sukumaran-Rajam, A. Rountev, and P. Sadayappan,1066

“Comprehensive accelerator-dataflow co-design optimization for convo-1067

lutional neural networks,” in 2022 IEEE/ACM International Symposium1068

on Code Generation and Optimization (CGO). Seoul, South Korea:1069

Association for Computing Machinery, 2022, pp. 325–335.1070

[51] S.-C. Kao, G. Jeong, and T. Krishna, “Confuciux: Autonomous hardware1071

resource assignment for dnn accelerators using reinforcement learning,”1072

in 2020 53rd Annual IEEE/ACM International Symposium on Microar-1073

chitecture (MICRO). Athens, Greece: IEEE, 2020, pp. 622–636.1074

[52] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:1075

An automatic schedule exploration and optimization framework for1076

tensor computation on heterogeneous system,” in Proceedings of the1077

Twenty-Fifth International Conference on Architectural Support for1078

Programming Languages and Operating Systems, ser. ASPLOS ’20.1079

New York, NY, USA: Association for Computing Machinery, 2020, p.1080

859–873.1081

[53] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze,1082

C. Guestrin, and A. Krishnamurthy, “Learning to optimize tensor1083

programs,” in Advances in Neural Information Processing Systems,1084

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-1085

Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates, Inc.,1086

2018. [Online]. Available: https://proceedings.neurips.cc/paper files/1087

paper/2018/file/8b5700012be65c9da25f49408d959ca0-Paper.pdf1088

[54] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,1089

D. Zhuo, K. Sen et al., “Ansor: Generating High-Performance tensor1090

programs for deep learning,” in 14th USENIX symposium on operating1091

systems design and implementation (OSDI 20), 2020, pp. 863–879.1092

[55] H. Min, J. Kwon, and B. Egger, “Flexer: Out-of-order scheduling1093

for multi-npus,” in Proceedings of the 21st ACM/IEEE International1094

Symposium on Code Generation and Optimization, ser. CGO 2023.1095

New York, NY, USA: Association for Computing Machinery, 2023, p.1096

212–223.1097

[56] M. Developers, “Transform Dialect: Fine-grain transformation control1098

dialect,” 2022, online accessed on 11-04-2023. [Online]. Available: 1099

https://mlir.llvm.org/docs/Dialects/Transform/ 1100

https://proceedings.neurips.cc/paper_files/paper/2018/file/8b5700012be65c9da25f49408d959ca0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8b5700012be65c9da25f49408d959ca0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8b5700012be65c9da25f49408d959ca0-Paper.pdf
https://mlir.llvm.org/docs/Dialects/Transform/

	Enlighten Accepted coversheet (3)
	311284

