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Abstract

The impact of the COVID-19 pandemic on University students has been a topic of fiery

debate and of public health research. This study demonstrates the use of a combination of

spatiotemporal epidemiological models to describe the trends in COVID-19 positive cases

on spatial, temporal and spatiotemporal scales. In addition, this study proposes new epide-

miological metrics to describe the connectivity between observed positivity; an analogous

metric to the R number in conventional epidemiology. The proposed indices, Rspatial, Rspatio-

temporal and Rscaling will aim to improve the characterisation of the spread of infectious dis-

ease beyond that of the COVID-19 framework and as a result inform relevant public health

policy. Apart from demonstrating the application of the novel epidemiological indices, the

key findings in this study are: firstly, there were some Intermediate Zones in Edinburgh with

noticeably high levels of COVID-19 positivity, and that the first outbreak during the study

period was observed in Dalry and Fountainbridge. Secondly, the estimation of the distance

over which the COVID-19 counts at the halls of residence are spatially correlated (or related

to each other) was found to be 0.19km (0.13km to 0.27km) and is denoted by the index,

Rspatial. This estimate is useful for public health policy in this setting, especially with contact

tracing. Thirdly, the study indicates that the association between the surrounding community

level of COVID-19 positivity (Intermediate Zones in Edinburgh) and that of the University of

Edinburgh’s halls of residence was not statistically significant. Fourthly, this study reveals

that relatively high levels of COVID-19 positivity were observed for halls for which higher

COVID-19 fines were issued (Spearman’s correlation coefficient = 0.34), and separately, for

halls which were non-ensuite relatively to those which were not (Spearman’s correlation

coefficient = 0.16). Finally, Intermediate Zones with the highest positivity were associated
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with student residences that experienced relatively high COVID-19 positivity (Spearman’s

correlation coefficient = 0.27).

Introduction

The observation of infectious disease incidence in space is frequently accompanied by spatial

correlation. The analyses of count data such as the counts of disease per measurement station

can provide an indication of the central tendency and spread of the observed counts and the

quantiles associated with the data. Choropleths provide an indication of the spatial context by

illustrating the spatial proximity of the observed counts.

In this study we present three novel epidemiological indices, R spatial, R spatiotemporal,

and R scaling. These are all based on hyperparameters in a Log Gaussian Cox process model.

This section includes a discussion of Log Gaussian Cox process models and the importance of

each index. In later sections we will show how the proposed indices can be applied to the con-

text of COVID-19 positivity in University halls of residence.

Literature review

Spatiotemporal analytical approaches. Various approaches to investigating spatiotem-

poral epidemiological trends exist [1–3]. Overall, the approaches highlighted by the aforemen-

tioned authors for spatial modeling include spatial interpolation, spatial statistical modeling

and spatiotemporal statistical modeling. The most common methods are cast in a Bayesian

framework and are namely, spatial interpolation methods and GLMM spatiotemporal models.

Spatial interpolation [4] involves estimating the value of a variable at geographic aggrega-

tions based on observed values. This method employs smoothing techniques to address the

observation of extreme values in some of the geographic aggregations. Cast in a Bayesian con-

text, this method allows for inputting expert, prior information.

The GLMM spatiotemporal models [5] observed were all Poisson based and contained the

facility for the inclusion of random effects.

The BYM models [6], also Poisson based, are commonly used to estimate disease inci-

dence/mortality in conjunction with disease/mortality mapping is an example of the above-

mentioned class of models. These models incorporate random effects as well, but unlike the

Log Gaussian Cox Processes which we propose, these models are only specific to aggregated

spatial data and not point pattern based data.

The proposed models which are Log Gaussian Cox Processes (or models) are already exist-

ing spatiotemporal models. These are commonly used in ecology [7], geography [8], and cli-

mate related research [9]. The uniqueness of our approach is to apply all of the model

parameters to the epidemiological setting. So, in addition to estimating the effect of a given

covariate (the traditional approach) on disease incidence—we take this further and apply the

hyperparameters of the model to the epidemiological context. Typically, in spatial epidemiol-

ogy aggregated data is used and incidence rates are estimated (estimates) using the BYM mod-

els. Our approach is to use both point and aggregate data—hence our marked point patterns as

the data.

Extending the R number. In conventional epidemiology the reproduction number is

described as [10] is: “the expected number of new infections produced by a single (typical/aver-

age) infectious individual, when introduced into a totally susceptible population”. Note that the

basic reproduction number R0, is applicable to situations where there is no immunity [11]. The

importance of the R0 in public health was highlighted during the COVID-19 pandemic. Glob-

ally, governments and public health decision makers used R0 as part of the body of evidence to
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inform COVID-19 public health policy. In particular R0 will help policymakers decide whether

a given community will be impacted by the disease at hand [12] and also which fraction of the

community is estimated to be vaccinated as a protective measure. When R0 is greater than 1,

the implication is that the disease will spread. There are various methods for the estimation of

R0 [10, 13] and these are underpinned by ordinary differential equations [14]. The SIR model-

ing approach for example, is one such method, and involves the division of the population at

hand (N), into three compartments; S (those individuals who are susceptible to the disease), I

(those who are infectious), and R (those who have recovered or have been removed). Various

statistical software, such as the R can facilitate the computation necessary. Our proposed indi-

ces will act as a supplement to the basic reproduction number, R0 because they will provide spa-

tial insights into the spread of the disease at hand. R0 gives an indication of the spread of the

disease between individuals (under the conditions previously discussed), whilst our proposed

indices give an indication of the distance over which cases of infections are correlated. Together

these metrics will help the public health decision maker in terms of assessing the risk of a com-

munity to infections, and assessing the distance over which cases can be linked with each other.

The latter objective might be useful in establishing localized lockdowns. Similar to R0, our new

indices can be affixed with a subscript 0 when the situation is such that there is no immunity in

the community. We propose the use of credible intervals when these new indices are used/pub-

lished. R spatial—an indication of the distance over which cases are correlated with each other

and serve as an estimation of the extent of the spread of the virus within halls of residence (a

spatial R number) R spatiotemporal- indicates the correlation in the spatial distribution of

COVID-19 positivity as the timeline progresses. The positive estimate of this index indicates

that as the months progress from September towards December the COVID19 positivity will

be correlated to the previous month. R scaling—defines the strength and direction of the inter-

action between density of university halls of residence and residence COVID-19 levels. For the

chosen model, R scaling is estimated to have a posterior mean value of 1.91, with 95% CI

between 0.61 and 3.28. This suggests that areas with higher densities of student halls are likely

to have higher COVID-19 levels than areas with lower densities of halls. This index can be use-

ful in comparative studies where the numerical value of R scaling for different universities for

example, can be compared and inform related policy. Overall, this index provides an indication

of the trend (higher vs. lower) of disease cases relative to the density of spatial units (university

halls or residential buildings etc).

Study setting

In terms of COVID-19 incidence at university halls of residence, research so far has indicated

that the influx of first year students might be an important factor in terms of the spread of the

disease, most likely due to living in halls of residences [15]. It should be mentioned however,

that the University community from which this research has its basis is the University of Bris-

tol. In the Bristol study, the use of stochastic transmission models [15] has suggested that first

year university students were the main drivers of the transmission of COVID-19. Additionally,

these researchers suggest that the most effective intervention for reducing transmission is to

limit or reduce face to face teaching. Interestingly, using SEIR models, researchers [16] have

discussed the successful control of COVID-19 transmission in an American university, Boston

University, despite an accelerating in the rate of transmission in the surrounding community,

the City of Boston.

The above-mentioned studies highlight the importance of examining the association of stu-

dent influx on COVID-19 spread. They do not however, infer that there is a link between the

influx of first year students on COVID-19 spread for all or most universities in general. The
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current study will investigate the situation for one University, the University of Edinburgh

where 17184 students were enrolled in the autumn of 2020.

An analysis of the observed counts per measurement station and simultaneously, that of

the unobserved spatial correlation, represented using a Gaussian Random Field, necessi-

tates a modeling approach which incorporates both components. This study seeks to model

the observed counts of COVID-19 positivity in students living in close proximity in Univer-

sity of Edinburgh halls of residence whilst accounting for the spatial correlation of the levels

of positivity per hall and for the spatial correlation of the location of the hall. This approach

is potentially valuable to public health policy and University health and safety policy since

the model provides an estimate of the spatial range at which the levels of positivity per hall

are correlated (or connected) as well as the spatial correlation of the hall locations. This

information can be used to inform decisions on implementing localized lockdowns, for

example.

The models will also investigate whether the spatial correlation of COVID-19 positivity var-

ies by residence category, that is, ensuite or non-ensuite categories. The number of rooms per

hall is used as an offset in the models to account for the density of students. A secondary goal

for this study is to examine the association between the positivity levels at halls of residence

and that of the surrounding community. In the case of Edinburgh University, the surrounding

community would be represented by the Intermediate Zones where each hall/residence is rep-

resented by. Note that Intermediate Zones are stable geographies which fall between Data

Zones and Local Authority geographies.

The proximity of services such as supermarkets, shopping centres, gyms, and restaurants to

halls of residence where students have recently taken up residence may serve as a pathway of

epidemiological interaction (epiaction) between halls of residence and the community. The

extent of the epiaction would depend on the zone of influence [17] of the service, the activity

(social interaction and shared amenities) within the residences and the positivity levels in

neighbouring Intermediate Zones.

Importantly epiaction can be symmetric or asymmetric. The use of multiple analytical

tools in tandem is the ideal approach to deciphering the direction of epiaction in this sce-

nario. The inclusion of temporal variables such as intervention measures would add to the

usefulness of this model. Overall, universities bring together students that come from a vari-

ety of settings locally, nationally and internationally—this makes them a potential vector for

transmission of infection to and from the places of their origin. The dynamics associated

with student teaching, studying and dining arrangements are also potentially important fac-

tors that may facilitate easy transmission of infection. Understanding and risk assessing

these dynamics are important in the control of COVID-19 in these institutions of higher

learning.

Research questions

The study timeframe is September 2020 to December 2020 and the study research questions

are outlined below: (i) Are there any spatial patterns of COVID-19 positivity in the halls of

Edinburgh University and the surrounding communities? (ii) Are there any differences in liv-

ing in ensuite/non-ensuite on student positivity levels (Edinburgh University), and separately,

in halls which had relatively higher/lower fines issued? (iii) What are the temporal positivity

trends (in the presence of interventions such as mandatory face covering use, limitations in

size of gatherings, and closure of hospitality venues) in the surrounding communities? (iv)

What is the relationship between the COVID-19 positivity at halls of Edinburgh University

and the community, and (v) What are the public health implications of the research findings?
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In the news

Thousands of students returned in person to further education in the UK /Scotland in Sep-

tember 2020. In Edinburgh, and the rest of Scotland, COVID-19 testing of student returners

was limited to PCR testing of symptomatic cases only. Other UK universities such as Cam-

bridge University introduced asymptomatic pooled testing of all students from autumn

2020 [18]. In this scenario, individuals tested do not display COVID-19 symptoms. Note

that COVID-19 can be transmitted from infected individuals who are themselves

asymptomatic.

In Scotland, outbreaks at universities were reported soon after their reopening at the start

of the 2020/21 academic year, for example in Glasgow [19], Napier University [20], and in

Edinburgh. In Sept 2020, large COVID-19 outbreaks [21] were reported at the majority of uni-

versities and further education institutions (The BBC, September 2020). These outbreaks were

managed by Incident Management Teams (IMT) set up and chaired by consultants in Public

Health from the local Health Board working jointly with key staff from the local universities.

University COVID-19 outbreaks and policies were, amongst other things, a popular topic

of discussion during the autumn of 2020 [22, 23]. There were also expressions of concern

regarding the level of occupancy of university halls with one newspaper (The Guardian, Octo-

ber 2020) publishing the headline “UK university student halls too full to be safe, experts

warn”. In this report, an individual is quoted as saying “reopening a university is like dumping

a cruise ship in the middle of town and letting passengers off”.

The independent UK Scientific Advisory Group for Emergencies (SAGE) [24] group

advised that the virus was transmitted within residential halls and via face-to-face teaching.

This group recommended online instruction. Issues arose regarding students returning to

their homes for the holidays, with some advising that they should remain at the university

halls to minimise onward transmission into their local communities [25]. In terms of students

needing to isolate, policies were set up to allow students to isolate at their homes [25, 26]. The

government reached an agreement to set up policies (at the end of the academic term) to allow

students who were required to isolate due to a positive test, to return to their local residence

and isolate in their homes instead of remaining in halls of residence. Some universities also

viewed the challenges presented by the pandemic as an opportunity to rethink the future of

higher education including methods for delivery of teaching [27, 28]. In terms of students

returning to universities [29], various modes of testing were used; for example, mass testing in

St. Andrews [30]. At the University of Edinburgh, lateral flow testing of students began in

November 2020. This followed the Scottish Government’s “test before you travel” policy on

November 17th, 2020 (personal communication, University of Edinburgh). In total 28511 tests

were conducted between 30th November 2020 and 30th June 2021.

In terms of seeding of infections in Scotland as a whole, some researchers indicated that

new infections in Scotland during the second wave was linked to a variant discovered in Spain

[31]. The UK’s travel policy in the summer of 2020 was described as being flawed as ‘the virus

moves when people move’ [31]. Studies suggest that traveling outside of the UK led to reseed-

ing of infections [32, 33]. Genomic epidemiology reveals multiple introductions of SARS--

CoV-2 from mainland Europe into Scotland [32].

Finally, some described the possibility of outbreaks at University residences as an “Accident

waiting to happen” due to the report that many Scottish universities did not reduce capacity

[23] of student numbers in their halls of residence in order to increase social distancing.

Key local control measures are outlined in Table 1 in the Appendix.

Tables 2 and 3 show the number of rooms at the University of Edinburgh halls of residence

during the study period, and enrolment per month during the study timeframe respectively.
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Method

The proposed methods include data visualization (choropleths, heatmaps) and point process

models, which are ideal for point pattern data where locations of observed events are provided.

The spatial distribution of residences is modelled using a Log Gaussian Cox Process (LGCP)

model, which is doubly stochastic by nature -comprising of a Poisson point process, and a

Table 1. Key local control measures for outbreaks for halls of residences in Edinburgh.

Control Measures

a. Clear advice was provided on the management and self-isolation of anyone who tests positive for COVID-19,

associated contact tracing of their close contacts, and outbreak response led by Health Protection Teams +/- with

IMTs as needed

b. The majority of teaching of large groups was done online

c. In person teaching was done for only some subjects were done such as medical and nursing students

d. Early identification of cases by PCR testing facilitated by the university

e. Isolation of confirmed cases with support from the university

f. All students were requested to download the Protect Scotland app

g. Identification of close and social contacts with advice to isolate with support from the university

h. Communications on following ‘FACTS’, what to do to limit transmission, what to do if you have symptoms of

COVID-19 and advising on limiting social gatherings to limit spread

i. Advice on social gatherings/parties

j. Advice letters on student behavior issued from universities

k. Universities increased the staff presence to enforce rules and give welfare help and advice and they will ask private

providers of student accommodation to do the same

l. Joint working with local police to discourage large gatherings and parties

m. At Edinburgh universities sanctions were applied to students who persistently refused to follow rules

(unpublished IMT notes from NHS Lothian Health Board)

n. Police Scotland were asked to keep an eye on student behavior off campus (relating to parties and large

gatherings) and a strict “yellow card/red card” system was brought in to deal with breaches that put students and

others at risk

o. The principals of all of Scotland’s universities and the Scottish government agreed on some tough new rules for

studentsThis included limitations on socialization where students were asked to refrain from socializing with

anyone outside their householdThat meant no parties, no visits to the pub, restaurants, or any other hospitality

venues on the aforementioned weekend

p. Advice to students during the last week of September 2020 to avoid socializing in pubs, cafes, and restaurants, and

to socialize instead within their households. This was advised for one weekend

q. Amidst the outbreaks and interventions, many news outlets reflected various sentiments about the control of the

transmission at halls of residences

r. Plans were made for testing students before departure from university and for testing students on return to

university with a staggered arrival

s. In December 2020, Scottish universities set up COVID-19 LFD testing facilities for students returning to their

families for the Christmas holidaysResults were texted to students

t. By January 2021 Post Christmas, students asked not to return to Halls until Feb/March 2021Remote teaching was

done during this time.Note that this is in relation to the Alpha variant

u. Finally, in December 2020, it was decided that students starting clinical/professional placements would be allowed

to return to the University in January 2021, following the Christmas holidays in a staggered fashion over a period of

at least six weeks

https://doi.org/10.1371/journal.pone.0291348.t001

Table 2. Number of rooms at University of Edinburgh halls of residence.

Type of room Number of rooms

Ensuite 5139 with 3675 being cluster flats or studios

Non-ensuite 4702, 3776 of which are in cluster flats

https://doi.org/10.1371/journal.pone.0291348.t002

PLOS ONE Extending R—Spatiotemporal methods to assess correlations of COVID-19 positivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0291348 November 21, 2023 6 / 20

https://doi.org/10.1371/journal.pone.0291348.t001
https://doi.org/10.1371/journal.pone.0291348.t002
https://doi.org/10.1371/journal.pone.0291348


spatial random field [34, 35]. The proposed suite of 8 nested models are marked point process

models, extending the LGCP model to jointly model the locations of residences (the point pat-

tern) alongside the count of COVID-19 positivity (a property measured at the residence loca-

tions, called a ‘mark’) with two dependent likelihoods. Apart from the parameters associated

with the covariates in the models, the parameters of the random fields representing residence

distribution and COVID-19 count distribution are important in that they provide an estimate

of the spatial range over which the observed counts are correlated and the effect of residence

clusters on COVID-19 positivity. We propose to demonstrate how the parameters associated

with the random fields can be useful epidemiological indices. These indices, Rspatial, Rspatiotem-

poral, and Rscaling represent the modeled posterior estimate of the range of the spatial field, tem-

poral correlation and scaling parameter respectively.

Finally, ethics approval was given by the University of Edinburgh’s Ethics Committee (in

Nursing Studies) on 12th November 2021 with an ID: NUST011s.

Data

The data for this study has been provided by the University of Edinburgh’s Accommodation,

and Health and Safety divisions. Data has been provided on the number of students who tested

positive by PCR for COVID-19 positivity per university owned residences over 8 months start-

ing in September 2020. Data for 51 residences was obtained. This study focuses on the months

September to December 2020. Information on the halls of residence (such as ensuite status)

was provided for the residences within halls. The location (latitude and longitude) of each hall

of residence was obtained from Google maps. The data has been provided at an aggregated

level so individuals cannot identify themselves in the analyses. Finally, data on the number of

COVID-19 fines issued per hall of residence during the study period was also provided by the

Univeristy. Note that these fines were issued by the University’s Accommodation, Catering

and Events (ACE) team. For this study, the data is stored on a dedicated laptop and after this

study the data will be destroyed. The intended output of the study includes:

• Visual illustrations of the time series of COVID-19 positivity in the City of Edinburgh and

separately, in Intermediate Zones within the City of Edinburgh,

• Visual illustrations of the spatial trend of COVID-19 positivity in Intermediate Zones within

the City of Edinburgh,

• Visual illustrations of the estimated spatial correlation of COVID-19 positivity in the Uni-

versity of Edinburgh halls of residence,

• Modeled estimates of the spatial range and standard deviation of the spatial random field

underlying the data, and an

• Interpretation of the estimated spatial fields and the implications for public health policy

and University health and safety policy.

Table 3. Student enrolment by month in the study timeframe.

Month Enrolment

September 2020 16788

October 2020 286

November 2020 48

December 2020 62

https://doi.org/10.1371/journal.pone.0291348.t003
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Models

Here, we aim to answer the research questions detailed earlier (in the section on Research

Questions) by fitting a series of 8 nested marked point process models to data on the counts of

COVID-19 positivity by university hall of residence between September 2020 and December

2020. Details of the models are provided in Table 4.

Mark likelihood. Models 1 and 2 are purely spatial models, which follow the form:

yðsÞ � PoissononðmðsÞÞ ð1Þ

Where, y(s) represents the total count of COVID-19 cases observed at a residence at location s
(during the study period).

Models 3–8 incorporate a temporal correlation structure, and model the data in space and
time. Models 3–8 follow the form:

yðs; tÞ � Poissononðmðs; tÞÞ ð2Þ

Where, y(s, t) represents the total count of COVID-19 cases observed at a residence at location

s and time t (during the study period). The structure of all 8 models is outlined in Table 5.

In all 8 models (Table 5), α1 represents an intercept term; ψ is a spatially structured random

field that also appears in the linear predictor for the spatial pattern; and κ is a scaling parame-

ter. In Models 1–2, ω denotes a spatially structured random field that is unique to the counts

of COVID-19 cases per residence (i.e. the ‘marks’ of the point pattern). Both random fields (ψ
and ω) follow a Matérn covariance structure with spatial range parameter ρ and standard devi-

ation σ. In Models 3–8, the ω field is spatiotemporally structured, incorporating an AR1 pro-

cess with correlation parameter ρt.

Table 4. The proposed suite of 8 nested models.

Model Spatial Temporal Community Ensuite Fine Hall Group

Model 1 ✓

Model 2 ✓ ✓

Model 3 ✓ ✓

Model 4 ✓ ✓ ✓

Model 5 ✓ ✓ ✓ ✓

Model 6 ✓ ✓ ✓ ✓

Model 7 ✓ ✓ ✓ ✓

Model 8 ✓ ✓ ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0291348.t004

Table 5. Structure of the mark likelihood for the 2 spatial and 6 spatiotemporal models.

1 logðmðsÞÞ ¼ a1 þ kcðsÞ þ oðsÞ
2 logðmðsÞÞ ¼ a1 þ bixiðsÞ þ kcðsÞ þ oðsÞ
3 logðmðs; tÞÞ ¼ a1 þ kcðsÞ þ oðs; tÞ
4 logðmðs; tÞÞ ¼ a1 þ bixiðs; tÞ þ kcðsÞ þoðs; tÞ
5 logðmðs; tÞÞ ¼ a1 þ bixiðs; tÞ þ bjxjðsÞ þ kcðsÞ þoðs; tÞ

6 logðmðs; tÞÞ ¼ a1 þ bixiðs; tÞ þ blxlðs; tÞ þ kcðsÞ þ oðs; tÞ
7 logðmðs; tÞÞ ¼ a1 þ bixiðs; tÞ þ bmxmðs; tÞ þ kcðsÞ þ oðs; tÞ
8 logðmðs; tÞÞ ¼ a1 þ bixiðs; tÞ þ bjxjðsÞ þ bmxmðs; tÞ þ kcðsÞ þ oðs; tÞ

https://doi.org/10.1371/journal.pone.0291348.t005
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In the section on Novel epidemiological Indices, we introduce 3 novel epidemiological indi-

ces, derived from the parameters of random effects in the models. We refer to the mean poste-

rior estimate of the spatial range (ρ) of the mark field (ω(s) and ω(s, t)) as Rspatial; the mean

posterior estimate of the temporal correlation parameter (ρt) from the AR1 process of the spa-

tiotemporally structured random field (ω(s, t)) as Rspatiotemporal; and the mean posterior esti-

mate of the scaling parameter (κ) as Rscaling.

In Model 2, xi(s) represents the value at location s of the covariate quantifying the number

of COVID-19 cases in the community per Intermediate Zone. A spatiotemporal version of this

covariate is included in Models 4–8.

In Models 5 and 8, xj(s) represents the value at location s of the covariate quantifying the

proportion of total rooms with ensuite facilities per residence.

In Model 6, xl(s, t) represents the value at location s and time t of the covariate quantifying

the number of fines received by each residence for breach of COVID-19 regulations.

In Models 7 and 8, xm(s, t) represents the value at location s and time t of the binomial

covariate indicating whether or not the residence is part of one of the largest halls (unnamed)

on campus.

The regression coefficients (βi, βl, βj, and βm) of covariates are estimated in the models.

Point likelihood. The intensity of the point pattern for all models is modelled as:

lðsÞ ¼ expða0 þ cðsÞÞ ð3Þ

Here α0 is another intercept, and ψ(s) is the same spatially structured Gaussian random field as

found in the model structures above.

Prior specifications

In this study, PC-priors are specified to inform the Matérn covariance structure of the Gauss-

ian Random Fields ψ and ω. PC-priors penalise complexity away from a simpler base model,

so ensure that the effects of complex model components (such as Gaussian Random Fields)

are only included when this is necessitated by the data [36]. In the case of the Matérn field, a

PC-prior is specified on the joint density of the spatial range (ρ) and marginal standard devia-

tion (σ2). The spatial range gives an indication of the spatial span of the covariance structure,

and the standard deviation provides the degree of spatial variability. The hyper-parameters (R
and S) for this prior are set when using inlabru, the R software package used for this analy-

sis [37, 38]. This is done indirectly by specifying the lower tail quantile and probability for the

range, and the upper tail quantile and probability for the standard deviation.

In the R code for the analysis, the user must specify:

prior.range = c(ρ0,pρ)
Where ρ0 corresponds to the lower tail quantile for the range, and pρ corresponds to the

probability that the actual range value (ρ) is less than ρ0. This can be written as:

Pðr < r0Þ ¼ pr ð4Þ

Similarly, for the standard deviation, the user must specify:

prior.sigma = c(σ0,pσ)
Where σ0 corresponds to the upper tail quantile for the standard deviation, and pσ corre-

sponds to the probability that the actual standard deviation (σ) is greater than σ0. This can be

written as:

Pðs > s0Þ ¼ ps ð5Þ
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This means that users are able to inform both the locations of the tails and their certainty

about this. For the models fitted in this paper, the priors on the parameters for both random

fields (ψ and ω) were P(ρ< 0.2) = 0.01 and P(σ> 1) = 0.01, where the lower tail location for

the range parameter is given in units of km.

For the Matérn field, PC-priors penalise complexity away from the base model in which the

random field is spatially constant (ρ =1) and has zero variance (σ = 0). This means the effects

of a field with the user-specified priors on the parameters above are only included if this is sup-

ported by the data.

Results

Temporal trends

Here we provide an indication of the trend of COVID-19 positivity in the City of Edinburgh

between September 1st 2020 to October 31st 2021. This is provided against the backdrop of

the chronology of COVID-19 public health interventions in Scotland (See Figs 1 and 2) with

Intermediate Zones of relatively higher positivity highlighted. From Fig 1 we note that public

health policies in Scotland included a 77-day lockdown (restricting social and spatial interac-

tion of residents) and later the use of face coverings and were mostly, layered interventions

[15]. In addition, university students were encouraged (by email) to avoid socializing in pubs

and restaurants during the weekend of September 26th, 2020. This timeframe is denoted as “+

+” in Fig 2. Note that the university was closed during the spring term.

Fig 1 shows the evolution of COVID-19 positivity in Edinburgh against the backdrop of

public health policy. In the study timeframe, three prominent peaks are observed in the figure.

The first peak in late September 2020 is observed at Dalry and Fountainbridge, whilst the sec-

ond (relatively larger peak) is observed at Marchmont East and Sciennes. The third peak (high-

est) is at Newington and Dalkeith in early October 2020. In addition to observing distinct

peaks, it was observed that the trend for the Intermediate Zone, Old Town, Princes Street and

Leith Street, plateaued for approximately 21 days (longer than the abovementioned peaks)

before declining.

The heatmap in Fig 2 provides an indication of the temporal trend between the study period

with separate rows for each Intermediate Zone. The legend for this heatmap is suppressed to

Fig 1. Time series of positivity (COVID-19) in Edinburgh by Intermediate Zone with key policies indicated. The

policies are indexed as follows: a. Ban on visiting other households; b. Uni students advised to socialise amongst acc.

grp.; c. Police patrols to enforce rules; d. Student guidance issued for visiting parents; e. More student guidance on

visiting parents; f. Bars/restaurnts/pubs close early till Oct 25; g. Restrictions on Glasgow prison; h. Care home rules

relaxed; i. Restrictions on hospitality businesses extended; j. Digital Christmas advised; k. Five tier Scottish COVID-19

system announced; l. Halloween discouraged; m. Face coverings advised for senior pupils and teachers.

https://doi.org/10.1371/journal.pone.0291348.g001
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avoid any statistical disclosures. The highest count range is green, the medium range is yellow,

and the lowest, red. From the heatmap the comparatively higher positivity is observed in 2021,

whilst in 2020, a sustained “spark” is observed in October 2020 with a progression in positivity

towards the end of the year. That spark is represented by the Intermediate Zone, Newington,

and Dalkeith Road. Earlier sparks of shorter duration were observed as well, such as in Dalry

and Fountainbridge and increasing for Marchmont East and Sciennes.

Spatial trends

Figs 3 and 4 depict the spatiotemporal trends of COVID-19 positivity (counts) in 51 University

of Edinburgh owned student residences, and the spatiotemporal trends in COVID-19 positiv-

ity (7-day average) across Intermediate Zones in the City of Edinburgh respectively.

In Figs 3 and 4 it is clear that there were flare-ups in COVID-19 positivity in October 2020

in both the Intermediate Zones in the City of Edinburgh and within the University of Edin-

burgh owned student residences. Importantly we note that the relatively higher positivity levels

are observed to be spatially clustered in similar locations. In particular, the Intermediate Zone

with the highest level of positivity in October 2020 is Newington, and Dalkeith Road—this is

the immediate spatial neighbourhood (community) of the University of Edinburgh student

residences which experienced the highest levels of positivity in the aforementioned month.

Modeling

Model discrimination. We considered a suite of 8 nested marked point process models.

Based on the model diagnostics and principles of parsimony, the model with the lowest Widely

applicable information criterion (WAIC) [39] value is Model 4, indicating that this model pro-

vides the best balance between goodness of fit and model simplicity (Table 6). Model 8 has a

similar WAIC (higher than model 4 by 7 WAIC points). Based on Spiegelhalter’s advice on

DIC [40], the models 4 and 8 can be considered different from each other. Model 4 contains a

Fig 2. Heatmap with date on the x-axis and Intermediate Zones on the y-axis. The symbols NDR, MES, and DF on the y-axis represent the

Intermediate Zones, Newington, and Dalkeith Road, Marchmont East and Sciennes, and Dalry and Fountainbridge. Note that Zones with NA as value

were filtered off.

https://doi.org/10.1371/journal.pone.0291348.g002
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component to account for spatiotemporal correlation structures in the data, and a covariate

for the community COVID-19 level. It is important to note here that the meaning of scores

such as WAIC in this modelling context remains largely unexplored, and that modelling aims

and biological interpretability should also be considered in the model selection process.

Covariates. In all 8 models, all of the 95% credible intervals for the covariate effects

crossed 0, indicating that none of the covariates had a statistically significant effect on the

response (Table 6).

Fig 3. Spatial trends in COVID-19 positivity across University of Edinburgh student residences.

https://doi.org/10.1371/journal.pone.0291348.g003

Fig 4. Spatial trends in COVID-19 positivity across the surrounding communities of university owned student

residences.

https://doi.org/10.1371/journal.pone.0291348.g004
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The community level covariate was hypothesised to be of particular importance due to its

coverage in the media. However, for the 6 spatiotemporal models considered here, the credible

intervals for this covariate effect were very large, meaning that no statistically significant infer-

ences could be made about the effect of this covariate. In the spatial model which included this

covariate (Model 2), the posterior mean regression coefficient is positive, suggesting that as the

COVID-19 positivity increases in the community, there is an expected increase in the

COVID-19 positivity at the university halls of residence. While the 95% credible interval for βi
in Model 2 is smaller than that of the spatiotemporal models, it does cross 0, so this inference

is not supported by statistical significance.

Novel epidemiological indices. We use the terms Rspatial, Rspatiotemporal and Rscaling to rep-

resent the mean posterior estimates of the mark field (ω) spatial range (ρ), the temporal corre-

lation (ρt), and the scaling parameter (κ), respectively. These are the three indices that we

propose in this study to describe epidemiological spread. The posterior estimates of these val-

ues from the selected model (Model 4) are Rspatial = 0.19 [0.13, 0.27], Rspatiotemporal = 0.48 [0.37,

0.59] and Rscaling = 1.91 [0.61, 3.28], respectively (Table 6).

Rspatial is given in the spatial units of the input data (here, km). Thus, we can interpret the

range in connectivity in COVID-19 levels between university halls of residence in Edinburgh

as an average of 0.19km, with 95% CI between 0.13km and 0.27km. The mean nearest

Table 6. Posterior mean and 95% credible intervals for: scaling parameter/Rscaling (κ); spatial range (Rspatial) and SD of the random fields (ω and ψ); temporal correlation/

(Rspatiotemporal) of the AR1 process (ρt); and regression coefficients(βi,βj,βl,βm,) of covariates: number of COVID-19 cases in the community per Intermediate Zone (xi); pro-

portion of total rooms with ensuite facilities per residence (xj); number of fines received by each residence for breach of COVID-19 regulations (xl); and whether or not the

residence is part of one of the largest halls (unnamed) on campus (xm). Model run times (seconds), Watanabe–Akaike information criterion (WAIC) scores, and log condi-

tional predictive ordinate (log-CPO) scores are also given. All values given are rounded to 2 decimal places.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

κ -2.05 -2.3 1.75 1.91 1.89 4.09 1.37 1.34

[-3.53,-0.67] [-3.8,-0.9] [0.44,3.14] [0.61,3.28] [0.59,3.27] [2.91,5.37] [-0.03,2.82] [-0.07,2.81]

ω Range 0.26 0.24 0.18 0.19 0.18 0.49 0.19 0.19

[0.18,0.37] [0.17,0.33] [0.14,0.23] [0.13,0.27] [0.12,0.24] [0.35,0.66] [0.13,0.26] [0.13,0.26]

ω SD 2.28 2.03 2.56 2.53 2.53 1.33 2.64 2.64

[1.71,3.05] [1.49,2.65] [2,3.22] [1.87,3.33] [2.1,3.03] [0.98,1.8] [2.12,3.26] [2.18,3.19]

ψ Range 0.46 0.45 0.46 0.46 0.48 0.42 0.47 0.47

[0.36,0.59] [0.36,0.55] [0.37,0.57] [0.38,0.55] [0.37,0.62] [0.35,0.5] [0.37,0.59] [0.36,0.59]

ψ SD 2.89 2.86 2.9 2.92 2.91 3.08 2.89 2.88

[2.36,3.51] [2.25,3.54] [2.31,3.6] [2.46,3.48] [2.34,3.64] [2.46,3.82] [2.25,3.69] [2.22,3.71]

ρt NA NA 0.49 0.48 0.49 -0.37 0.54 0.55

[0.36,0.6] [0.37,0.59] [0.4,0.58] [-0.59,-0.17] [0.4,0.66] [0.46,0.63]

βi NA 4.59 NA -6.11 -5.97 -13.22 -4.45 -4.4

[-0.58,9.6] [-50.09,37.86] [-49.95,38] [-57.22,30.77] [-48.44,39.53] [-48.38,39.59]

βj NA NA NA NA 0.07 NA NA 0.06

[-0.43,0.57] [-0.43,0.56]

βl NA NA NA NA NA -0.05 NA NA

[-0.09,-0.02]

βm NA NA NA NA NA NA -0.48 -0.43

[-3.2,2.11] [-3.12,2.16]

Run Time 128.8 135.52 1404.75 2347.98 1654.3 4043.06 1410.46 1362.36

WAIC 2448.43 2419.69 1807.76 1777.29 1858.74 1989.32 1828.76 1785.38

log-CPO 2.61067356 2.62142566 2.65690916 2.6629746 2.6570116 2.73924736 2.66556116 2.66792146

https://doi.org/10.1371/journal.pone.0291348.t006
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neighbour distance between the halls of residence considered in this study is 0.23km, with the

distances between halls ranging from 0.003km to 5.061km.

The value for Rspatiotemporal is bounded between -1 and 1, where -1 suggests a strong negative

correlation, 1 suggests a strong positive correlation, and 0 suggests no correlation. The poste-

rior estimate for Rspatiotemporal in the chosen model suggests a positive correlation in COVID-

19 levels in halls of residences over time. This means that the level of COVID-19 in a halls of

residence in a given month is impacted by the COVID-19 level in that spatial area during the

previous month. Because the parameter comes from a spatiotemporal field, space and time are

also ‘tied together’ here, so this should be interpreted as the spatial structure of the field being

correlated across time. So, if there are high levels in one area and low in another in a given

month, the next month is likely to follow a similar spatial structure. Fig 5 demonstrates the

correlation in the spatial structure of the mark random field (ω(s, t)) from Model 4 over time.

The third index, Rscaling, can be interpreted as defining the strength and direction of the

interaction between density of university halls of residence (represented by the point field ψ)

and residence COVID-19 levels. For the chosen model, Rscaling is estimated to have a mean

value of 1.91, with 95% CI between 0.61 and 3.28 (Table 6). This suggests that University halls

of residence in areas with higher densities of University hall of residence are likely to have

higher COVID-19 levels than areas with lower densities of halls.

Exploratory analyses. Our exploratory analyses indicate that residences for which there

were relatively more fines issued also reported higher COVID-19 positivity (Spearman’s corre-

lation coefficient = 0.34). Similarly, residences with non-ensuite-type accommodation

reported higher COVID-19 positivity (Spearman’s correlation coefficient = 0.16). For the com-

munities associated with each residence, it was noted that the Intermediate Zones with the

highest positivity were associated with student residences that experienced relatively high

COVID-19 positivity (Spearman’s correlation coefficient = 0.27).

Prior sensitivity. In order to assess the sensitivity of posterior estimates of the Gaussian

Random Field parameters to prior specifications, a further 8 models were fitted. These were

Fig 5. Estimated mark random field ω(s, t) for October-November 2020 from Model 4. Colour scale is given in low-

high intensity as we are interested in relative differences across space and not absolute values.

https://doi.org/10.1371/journal.pone.0291348.g005
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variations on Model 4 (selected as the most appropriate model using WAIC) in which the pri-

ors for the upper tail of the marginal standard deviation and lower tail of the range of the mark

random field (ω) were altered. Details of the prior specifications used can be found in Table 7

and the outputs, in Table 8.

The prior sensitivity tests indicate that the estimates of the parameters are not affected sig-

nificantly by the additional variances used. If significant changes were observed, this would be

interpreted as sensitivity of the estimates to the prior information/understanding of the vari-

ables at hand.

Discussion

The advantages of the proposed approach are that (i) we interpret the Random fields of a Log

Gaussian Cox Point Process to inform disease spread. Traditionally in epidemiological models,

Table 7. Prior specifications for the standard deviation and range parameters of the mark Gaussian Random Field

(ω) in the 9 variations of Model 4.

Model Prior ω range Prior ω SD

Model 4A P(ρ< 0.2) = 0.01 P(σ> 1) = 0.01

Model 4B P(ρ< 0.2) = 0.01 P(σ> 1.693147) = 0.01

Model 4C P(ρ< 0.2) = 0.01 P(σ> 0.3068529) = 0.01

Model 4D P(ρ< 0.4) = 0.01 P(σ> 1) = 0.01

Model 4E P(ρ< 0.4) = 0.01 P(σ> 1.693147) = 0.01

Model 4F P(ρ< 0.4) = 0.01 P(σ> 0.3068529) = 0.01

Model 4G P(ρ< 0.1) = 0.01 P(σ> 1) = 0.01

Model 4H P(ρ< 0.1) = 0.01 P(σ> 1.693147) = 0.01

Model 4I P(ρ< 0.1) = 0.01 P(σ> 0.3068529) = 0.01

https://doi.org/10.1371/journal.pone.0291348.t007

Table 8. Posterior parameter estimates for prior sensitivity test. Posterior mean and 95% credible intervals for: scaling parameter Rscaling (κ); spatial range (Rspatial) and

SD of the random fields (ω and ψ); temporal correlation (Rspatiotemporal) of the AR1 process (ρt); and regression coefficient (βi) of covariate: number of COVID-19 cases in

the community per Intermediate Zone (xi). Model run times (seconds), Watanabe–Akaike information criterion (WAIC) scores, and log conditional predictive ordinate

(log-CPO) scores are also given. All values given are rounded to 2 decimal places. Model 4F failed to run and so outputs for this model are not included in the table.

Parameter Model 4A Model 4B Model 4C Model 4D Model 4E Model 4G Model 4H Model 4I

κ 1.27 0.66 1.87 -2.65 -2.70 2.54 2.73 4.18

[-0.04,2.61] [-0.79,2.12] [0.91,2.84] [-3.88,-1.44] [-4.11,-1.35] [1.23,3.90] [1.29,4.23] [3.21,5.17]

ω Range 0.18 0.18 0.22 0.43 0.48 0.19 0.17 0.74

[0.15,0.24] [0.11,0.26] [0.16,0.28] [0.33,0.55] [0.35,0.64] [0.11,0.30] [0.12,0.24] [0.55,0.98]

ω SD 2.57 2.80 1.74 2.36 2.58 2.21 2.57 0.92

[2.31,2.89] [2.05,3.78] [1.41,2.09] [1.91,2.91] [2.00,3.40] [1.63,2.96] [2.01,3.31] [0.69,1.20]

ψ Range 0.47 0.46 0.45 0.44 0.45 0.45 0.45 0.42

[0.38,0.59] [0.38,0.55] [0.36,0.57] [0.34,0.55] [0.34,0.58] [0.34,0.59] [0.36,0.56] [0.35,0.51]

ψ SD 2.92 2.88 2.96 2.83 2.84 3.00 2.98 3.11

[2.50,3.47] [2.31,3.60] [2.34,3.76] [2.36,3.31] [2.25,3.47] [2.27,3.96] [2.24,3.94] [2.50,3.86]

ρt 0.50 0.57 0.33 0.64 0.70 0.29 0.37 -0.33

[0.43,0.57] [0.43,0.69] [0.16,0.50] [0.53,0.74] [0.60,0.78] [0.11,0.47] [0.22,0.51] [-0.49,-0.14]

βi -3.41 -1.99 -4.68 5.67 5.86 -6.51 -6.98 10.71

[-47.38,40.56] [-45.98,42.00] [-48.60,39.23] [-38.27,49.62] [-38.12,49.84] [-50.49,37.47] [-50.98,37.02] [-54.65,33.23]

Run Time 1042.48 1099.64 2527.84 1018.11 450.35 342.27 358.54 300.10

WAIC 1768.54 1794.07 1806.49 1733.38 1753.94 1989.86 1989.25 2585.56

log-CPO 2.66345556 2.65835996 2.65451396 2.61027456 2.62954516 2.69376656 2.69296616 2.69092496

https://doi.org/10.1371/journal.pone.0291348.t008
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the estimation of the impact of covariates is of focus. In our study we focus on both the estima-

tion of the impact of covariates, and the estimation of the hyperparameters of the random

field. The hyperparameters of the random field are our proposed indices. As discussed earlier

on, these can be adapted for the situation when there is no immunity, and adapted to facilitate

comparison between spatial settings. (ii) we use both point and aggregate data—hence our

marked point patterns as the data. Typically, in spatial epidemiology (reference) aggregated

data is used and incidence rates are estimated (estimates) using the BYM models for example.

Recall the research questions (i) Are there any spatial patterns of COVID-19 positivity in

the halls of Edinburgh University and the surrounding communities? (ii) Are there any differ-

ences in ensuite/non-ensuite positivity levels (Edinburgh University), and separately, in halls

which had relatively higher/lower fines issued? (iii) What are the temporal positivity trends (in

the presence of interventions such as mandatory face covering use, limitations in size of gath-

erings, and closure of hospitality venues) in the surrounding communities? (iv) What is the

relationship between the COVID-19 positivity at halls of Edinburgh University and the com-

munity, and (v) What are the public health implications of the research findings?

We will address each research question in turn and relate the corresponding findings to

public health implications.

Research question 1

We use the terms Rspatial and Rspatiotemporal to represent the estimate of the mark field (ω) range

and the temporal correlation (ρt) respectively. These are the two of the indices that we propose

in this study to describe epidemiological spread. We will now discuss the practical interpreta-

tion of these estimates in relation to COVID-19 (and in general, infectious disease) spread.

Rspatial. The estimation of the range of the spatial field will give an indication of the dis-

tance over which cases are correlated with each other and serve as an estimation of the extent

of the spread of the virus within halls of residence (a spatial R number). In the case of Model 4,

the posterior parameter estimate is 0.19 [0.13,0.27]. This indicates that the distance over which

the COVID-19 counts are spatially correlated (or related to each other) is 0.19km and the asso-

ciated credible interval is 0.13km to 0.27km.

Rspatiotemporal. In general, this index would give an indication of how correlated the spatial

distribution of the disease under consideration is over time. Positive values for example, indi-

cate positive correlation. The posterior estimate of the spatiotemporal correlation is 0.48

[0.37,0.59]. This indicates the correlation in the spatial distribution of COVID-19 positivity as

the timeline progresses. The positive estimate of this index indicates that as the months prog-

ress from September towards December the COVID-19 positivity will be correlated to the pre-

vious month.

In terms of the spatiotemporal correlation, the practical application is that the model esti-

mate gives us an indication of how correlated the COVID-19 positivity in one month is to that

of another. In this study, we only considered 3 months. This parameter will be more important

where there are more timepoints—such as 12 months where mass student vaccination took

place within this timeframe. We hope to address this in a future study.

Rscaling. This index defines the strength and direction of the interaction between density of

university halls of residence and residence COVID-19 levels. For the chosen model, Rscaling is

estimated to have a posterior mean value of 1.91, with 95% CI between 0.61 and 3.28. This sug-

gests that areas with higher densities of student halls are likely to have higher COVID-19 levels

than areas with lower densities of halls. This index can be useful in comparative studies where

the numerical value of Rscaling for different universities for example, can be compared and

inform related policy.
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Research questions 2 and 4

Exploratory analyses. Our exploratory analyses indicate that residences for which there

were relatively more fines issues also reported higher COVID-19 positivity (Spearman’s corre-

lation coefficient = 0.34). Residences with non-ensuite-type accommodation reported higher

COVID-19 positivity (Spearman’s correlation coefficient = 0.16), and for the communities

associated with each residence, it was noted that the Intermediate Zones with the highest posi-

tivity were associated with student residences that experienced relatively high COVID-19 posi-

tivity (Spearman’s correlation coefficient = 0.27). These are all exploratory and a larger dataset

would be needed to explore these preliminary findings. The practical significance of some of

these observations should not be ignored however. For example, accommodations with shared

facilities (unlike ensuite residences) would be likely to facilitate more interaction between stu-

dents and hence increase the probability of them being exposed to infectious disease such as

COVID-19.

The abovementioned observations are important for policy and highlight the potential

importance of social gatherings and the role of non-ensuite rooms in the dynamics of infec-

tious disease spread.

Covariates. Four covariates were considered in this study: impact of the community, the

number of fines associated with each residence, the type of accommodation (ensuite vs. non-

ensuite), and whether or not the residences were part of one of the largest halls (unnamed) on

campus. A statistically non-significant model estimate was obtained for each covariate. What

does this suggest to policy? The statistically non-significant estimates cannot be relied upon

for informing policy regarding the spread of COVID-19 amongst university halls of residence.

In a future study, we plan to conduct a larger scale study which involves multiple universities

in the City of Edinburgh over a longer time period. The inclusion of more data will allow us to

investigate these relationships and epiaction even further.

Research question 3

On inspection of the temporal trends and heatmaps we note that various Intermediate Zones

exhibit high levels of COVID-19 positivity and in some cases, the timing of the positivity peak

varies between Intermediate Zones. In this study the Dalry and Fountainbridge Intermediate

Zone COVID-19 positivity appears to peak earliest, and this raises questions as to the cause of

this peak. Some researchers suggest this peak is due to an outbreak at one of the universities in

Edinburgh. This outbreak was followed by police enforcement of targeted policy.

Subsequent outbreaks were observed along the timeline. In most cases the outbreaks were

quelled within a relatively short timeframe (in days), however the outbreak for the Intermedi-

ate Zone Old Town, Princes Street and Leith Street, during September 29th 2020 and 20th

October 2020, took a relatively longer period (21 days) to decline before increasing once more.

The abovementioned observations present questions to public health policy with regards to

protecting communities.

The timing of the advice to students to socialize with students from their halls of accommo-

dation coincides with the timeframe where the positivity rates are decreasing for Dalry and

Fountainbridge and increasing for Marchmont East and Sciennes and Newington and Dalk-

eith. It is not possible to decipher the impact of the advice to students though since there are

multiple dynamics at play. We can say however, that as the rates decreased in Dalry and Foun-

tainbridge, they increased in Marchmont East and Sciennes and Newington and Dalkeith dur-

ing the last two weeks of September 2020.

The fact that the effects of COVID-19 interventions are typically observed 2 weeks later sug-

gests that it is plausible that the decreasing trends for various Intermediate Zones in early
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October could be due to the advice to students. The advice was for one weekend though, so it

is likely that the resurgence of positivity increases in those zones could be due to resumption

of mixing. The policy interventions, “a”, “b”, “c”, “d”, and “+” were all concentrated in Septem-

ber 2020, an indication of the dynamic response to the challenge of the rising levels of

positivity.

Overall, we have shown how the use of selected hyperparameters of Log Gaussian Cox Pro-

cess models can be used as epidemiological indices and can help improve the description of

disease spread. In particular, we have shown how the spatial dimension can be incorporated in

epidemiological indices and we have demonstrated this in a case study, alongside other impor-

tant supporting analyses.
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