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Abstract: Conventional facemask detection algorithms face challenges of insufficient accuracy, large
model size, and slow computation speed, limiting their deployment in real-world scenarios, especially
on edge devices. Aiming at addressing these issues, we proposed a DB-YOLO facemask intelligent
detection algorithm, which is a lightweight solution that leverages bidirectional weighted feature
fusion. Our method is built on the YOLOv5 algorithm model, replacing the original YOLOvV5
backbone network with the lightweight ShuffleNetv2 to reduce parameters and computational
requirements. Additionally, we integrated BiFPN as the feature fusion layer, enhancing the model’s
detection capability for objects of various scales. Furthermore, we employed a CARAFE lightweight
upsampling factor to improve the model’s perception of details and small-sized objects and the
EIOU loss function to expedite model convergence. We validated the effectiveness of our proposed
method through experiments conducted on the Pascal VOC2007+2012 and Face_Mask datasets. Our
experimental results demonstrate that the DB-YOLO model boasts a compact size of approximately
1.92 M. It achieves average precision values of 70.1% and 93.5% on the Pascal VOC2007+2012 and
Face_Mask datasets, respectively, showcasing a 2.3% improvement in average precision compared
to the original YOLOv5s. Furthermore, the model’s size is reduced by 85.8%. We also successfully
deployed the model on Android devices using the NCNN framework, achieving a detection speed of
up to 33 frames per second. Compared to lightweight algorithm models like YOLOv5n, YOLOv4-
Tiny, and YOLOv3-Tiny, DB-YOLO not only reduces the model’s size but also effectively improves
detection accuracy, exhibiting excellent practicality and promotional value on edge devices.

Keywords: object detection; YOLOV5; lightweight; BiFPN; edge deployment

1. Introduction

The global impact of the COVID-19 pandemic has been profound, prompting the
widespread use of facemasks as effective tools for the prevention and control of this
epidemic [1]. As the pandemic fluctuates, facemask detection remains crucial in the efforts
to combat its spread. However, traditional manual facemask detection methods suffer
from inefficiency, high costs, and susceptibility to subjectivity. Hence, researchers are
focusing on automated facemask detection methods using computer vision and deep
learning technologies.

Currently, object detection models based on the YOLO (You Only Look Once) series
algorithms have been widely applied [2,3]. However, these models face challenges such
as low accuracy, large model size, and slow computation speed in practical applications,
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limiting their deployment in real-world scenarios, especially on edge devices. To address
these issues, researchers like Fu [4] and Yu [5] have proposed integrating the CBAM [6]
(Convolutional Block Attention Module) attention mechanism and introducing BiFPN [7]
(Bidirectional Feature Pyramid Network) to improve model accuracy. Zhang et al. [8] have
achieved lightweight effects by using MobileNetv3 [9] as the backbone feature extraction
network. Nevertheless, to achieve real-time detection, further model size reduction is
required. However, with the development of the YOLO series algorithms, the commonly
used YOLOV5 not only has achieved significant improvements in detection accuracy but
also has reduced the model size considerably. Moreover, it has been applied to various
scenarios [10-13]. Thus, this paper proposes a lightweight facemask object detection
algorithm based on DB-YOLO, built upon the YOLOVS5 architecture, ensuring high detection
accuracy, speed, and significantly reduced model size. The following sections will provide
a detailed description of the implementation process and present a series of experiments to
validate its effectiveness.
The research achievements of this paper are mainly as follows:

(1) Adoption of ShuffleNetv2 [14] as the YOLOv5 backbone network: ShuffleNetv2 is a
lightweight network structure that significantly reduces the number of parameters
and computational requirements while maintaining high accuracy.

(2) Introduction of BiFPN as the feature fusion layer: To better integrate multi-scale
feature information, we employ BiFPN as the feature fusion layer. Unlike traditional
FPN + PAN [15,16] (Feature Pyramid Network + Path Aggregation Network), BiFPN
utilizes both top-down and bottom-up paths as a single feature network layer and
iteratively repeats the process to achieve higher-level feature fusion. This design
effectively enhances the model’s detection capability for objects of different scales,
improving the precision and robustness of object detection.

(3) Use of CARAFE (Content-Aware Reassembly of Features) [17] as the lightweight
upsampling factor in BiFPN: In the feature fusion process, we introduce CARAFE as
a lightweight upsampling factor. CARAFE effectively increases the resolution of the
feature map, enhancing the model’s perception of details and small-sized objects.

(4) Adoption of EIOU [18] (Efficient Intersection Over Union) as the loss function: To
further improve the model’s performance, we utilize EIOU as the loss function. Com-
pared to the traditional CIOU [19] (Complete Intersection Over Union), the EIOU
loss function considers not only the differences in distance and aspect ratio between
the target and anchor box centers but also the differences in width and height. By
directly minimizing these differences, the EIOU loss function accelerates the model’s
convergence process and improves its accuracy and stability.

Through experimental evaluation, our model has outperformed other lightweight
facemask detection models based on YOLO [20-23] (e.g., YOLOv3/v4-Tiny/v5). The model
size is 1.92 M, and the mAP (mean average precision) value reaches 93.5%. Additionally,
the real-time detection inference speed on Android devices has reached 33 frames per
second, making it suitable for edge computing scenarios, such as real-time facemask
detection. This indicates that the proposed method is practical and valuable for intelligent
facemask detection and other object detection tasks, especially in the field of real-time
object detection [24-26].

2. Introduction of YOLOV5 Algorithm

The YOLOVS5 algorithm represents an advancement over previous versions in the
YOLO series. It adopts a deeper and wider network architecture, incorporating multiple
convolutional layers, pooling layers, and residual connections [27]. This design aims to
better capture object features.

Currently, YOLOVS offers five versions: YOLOv5n, YOLOv5s, YOLOv5m, YOLOVSI,
and YOLOvV5x. These versions vary in terms of network depth and width, allowing users
to select the appropriate one according to their specific needs. Among them, YOLOv5n is
the smallest network structure with the fastest speed.
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256x8x80 T 256x80x80 |
CBS

Ui 255x80x80

H P
| Sample

256x40x40 1
i
1 CBS

'
512 x40|x 40
1

( - = CBS — BotfleNeck — g
3 b+ cBs
CBS p

BottleNeck = CBS — CBS
\

\_

!
1024 x4¢ x 40

255 x40 x 40
CBS

Concat

|

,/‘ CBS

I
1
i
1024 %20 x 20 H H SUP 512x20x20 l !
! ! Sample |
. ! Concat H

1024%20%20 ; SleZdIXZD }Wﬂ

Figure 1. YOLOvV5 network structure.

The YOLOVS network architecture [28] comprises four key components: Input, Back-
bone, Neck, and Head.

(1) The input component includes image data augmentation, image size processing, and
adaptive anchor box calculation:

e Image Data Augmentation [29]: During the training process, data augmentation
techniques are applied, including random operations such as rotation, scaling,
and flipping, to augment the training data and enhance the model’s robustness.

e Image Size Processing: Adjustment of input image sizes to ensure they meet the
model’s input dimension requirements.

e Adaptive Anchor Box Calculation: YOLOvS5 dynamically calculates anchor boxes
suitable for object detection based on the training dataset, adapting to different
sizes and proportions of targets.

(2) Backbone Network:

A moderately deep and wide backbone network, incorporating multiple convolutional
layers, pooling layers, and residual connections employed in YOLOvS. This design aims
to better capture target features, and the backbone network is responsible for extracting
high-level feature representations from input images.

(8) Feature Pyramid [15]:

The feature pyramid is a pyramid structure composed of feature maps at different
levels, facilitating object detection with varying sizes and proportions. By integrating
features from different levels of the backbone network, the model’s perception of targets
is enhanced.

(4) Head component handles box prediction generation and box filtering, as follows:

e  Box Prediction Generation: The output component generates predictions for
target boxes. YOLOVS5 utilizes anchor boxes and convolutional layers to gen-
erate coordinate information, class probabilities, and confidence scores for the
predicted target boxes.

e  Box Filtering: The model filters out target boxes with confidence scores below a
set threshold through a series of filtering and thresholding processes, re-training
target predictions with high confidence.

This comprehensive architecture enables YOLOVS to effectively process input data, extract
relevant features through the backbone and feature pyramid, and generate accurate predictions
through the output component, ultimately enhancing its object detection capabilities.

Compared to YOLOvV4 [30] and YOLOv3 [31], YOLOv5 has undergone significant
improvements in its network architecture. These enhancements have resulted in substantial
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performance gains in terms of speed and accuracy. With its advantages in speed, accu-
racy, and ease of use, YOLOV5 has become one of the leading algorithms in the field of
object detection.

3. Design of DB-YOLO Network Architecture

To efficiently perform object detection tasks in resource-constrained environments, the
DB-YOLO network architecture incorporates a lightweight ShuffleNetv2 as the backbone
network, BiFPN as the feature fusion layer, and EIOU as the loss function. This network
design combines a lightweight model structure, multi-scale feature fusion, and an improved
loss function to provide an effective solution for object detection with smaller computational
and storage requirements.

The design of the DB-YOLO network architecture is illustrated in Figure 2.
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Figure 2. The structure diagram of DB-YOLO network model.

3.1. ShuffleNetv2 Backbone Network

To address the resource limitations of edge devices, we use the lightweight Shuf-
fleNetv2 as the backbone network in the YOLOVS5 architecture. This choice aims to minimize
the model size and the number of parameters while maintaining high detection accuracy.

The ShuffleNetv2 network comprises two types of blocks: the pointwise convolu-
tion block and the depthwise separable convolution block. The pointwise convolution
block handles dimension reduction and expansion using a 1 x 1 convolution, while the
depthwise separable convolution block is responsible for feature extraction and integration.
Furthermore, ShuffleNetv2 introduces a special operation known as Channel Shuffle, which
rearranges the channels in the feature map to enhance feature interaction.

The Channel Shuffle operation proceeds as follows: the input feature map is divided
into several subsets based on channels, and then the channels within each subset are recom-
bined to form a new feature map. This Channel Shuffle operation endows ShuffleNetv2
with highly parallel characteristics, effectively reducing the computational workload.

The basic unit structure of ShuffleNetv2 [14] is illustrated in Figure 3.
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Figure 3. ShuffleNetv2 cell structure.

In summary, ShuffleNetv2 incorporates channel shuffling, a process that divides the
input feature map into subsets and then recombines them through channel reordering
operations. This enhances the interaction between different channels in the feature map,
resulting in excellent feature extraction capabilities and computational efficiency. As a
result, the network achieves high detection accuracy even with limited resources.

3.2. Depthwise Separable Convolution

Depthwise separable convolution [32] is a specific type of convolutional operation.
The depthwise separable convolution block consists of a 3 x 3 depthwise convolution
followed by a 1 x 1 pointwise convolution. Its primary purpose is to reduce the number
of parameters and the computational complexity of the model while preserving effective

feature extraction capabilities.

Depthwise convolution involves performing separate convolutions on each input
channel, with each channel convolved using a dedicated kernel. This enables channel-
wise feature extraction without increasing the model’s parameter count. The number of
convolutional kernels in the depthwise convolution equals the number of input channels.

Pointwise convolution, also known as a 1 x 1 convolution, follows the depthwise
convolution. It employs a 1 x 1 kernel to perform convolution on the feature map obtained
from the depthwise convolution. Pointwise convolution linearly combines the feature
maps, reducing the number of channels to a smaller size. It can be seen as a weighted linear
combination of features from each channel to create a new feature representation.

A comparison between regular convolution and depthwise separable convolution is

depicted in Figure 4.
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We assume that the input feature dimension is Dr X Dp x M, with Dy as the size of
the convolution kernel, M as the number of input channels, N as the number of output
channels, and G as the number of groups.

In a regular convolution, the number of parameters is Dx x Dk x M x N. However,
in the depthwise convolution and pointwise convolution, the number of parameters is
Dk x Dg x 1 xMand1 x 1 x M x N, respectively. Therefore, the number of parameters
in the depthwise separable convolution is Dx X Dx X M + M x N. The parameter ratio
between the depthwise separable convolution and standard convolution is given by:

DKXDKXM+MXN_ 1 4 1
Dg xDgxMxN N D

@

3.3. H-Swish Activation Function

To enhance the neural network’s accuracy while reducing computational costs, we
replace the ReLU activation function with the H-swish activation function [33]. Derived
from the swish function [34], the H-swish function offers improved performance. Compared
with ReLU, the H-swish function maintains accuracy while reducing the computational
load and memory usage, thus boosting the neural network’s efficiency and speed.

The formula for the H-swish activation function is as follows:

_  ReLU6(x +3)

H — swish(x) 5

2

The function image is depicted in Figure 5 below.

swish vs h-swish

| --- swish
— h-swish

o H N W b U O N ®
T T —

Figure 5. H-swish function image.

4. BiFPN Feature Fusion

The feature fusion layer in DB-YOLO employs BiFPN [7], which provides several
advantages over the traditional FPN + PAN [15,16] approach:

(1) Improved Information Exchange: BiFPN incorporates bidirectional connections and
weighted fusion mechanisms, allowing for better information exchange and fusion
across different feature levels. By adaptively learning the importance weights of
features, BiFPN enables mutual influence and complementarity among different
levels, thereby enhancing feature representation and information propagation.

(2) Reduced Information Loss: The traditional FPN + PAN approach may lead to informa-
tion loss or redundancy during the feature fusion process. In contrast, BiFPN, with its
bidirectional connections, preserves more fine-grained feature information, avoiding
information loss and contributing to an improved performance and accuracy of the
detection model.

(3) Higher Accuracy and Stability: BIFPN employs an adaptive weighted fusion mecha-
nism during feature fusion, dynamically adjusting based on the quality and impor-
tance of features. This allows high-quality and important features to have a greater
impact on the results of the final detection, leading to a higher accuracy and stability
of the model.
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The inclusion of BiFPN helps enhance the accuracy and stability of the detection model,
particularly in scenarios with significant variations in target scales or complex scenes.
The structures of FPN, PAN, and BiFPN for feature fusion [7] are illustrated in Figure 6.

P, (}.(f_> Pr O
Ps Q_.?_> Ps O
Ps o—>i>—> Ps OO >
Pa Q_>T_. P O
PO~ @ > O

(a) FPN (b) PAN (c) BiFPN

Ps

Figure 6. Feature Fusion.

4.1. Lightweight Upsampling with CARAFE

Upsampling is a commonly used operation in various network architectures. Here, we
employ a lightweight and versatile upsampling operator called CARAFE [17]. Compared to
traditional upsampling operators like nearest-neighbor and bilinear interpolation, CARAFE
has demonstrated significant improvements in the detection process while introducing
minimal parameters and computational cost.

The CARAFE algorithm consists of two main modules: the upsampling kernel predic-
tion module and the feature reassembly module.

The upsampling kernel prediction module generates an upsampling kernel for each
pixel position. It takes the input feature map as the input and uses a convolutional neural
network structure to output an upsampling kernel of the same size as the output feature
map. The generation of the upsampling kernel is dynamically adjusted based on the content
of the input feature map, with each pixel position having a corresponding upsampling
kernel. These upsampling kernels can be considered as weights that define the relationship
between pixels in the input feature map and pixels in the output feature map.

The feature reassembly module utilizes the upsampling kernels to reassemble the
input feature map. It adopts the concept of spatial transformation networks and performs
transformation and reassembly operations on the input feature map based on the upsam-
pling kernels. The feature reassembly module combines each pixel in the input feature map
with its surrounding pixels based on the weights in the upsampling kernels to generate the
pixel values in the output feature map. The weights in the upsampling kernels determine
the contribution of each input pixel to the output pixel.

The implementation process of CARAFE upsampling is illustrated [17] in Figure 7.
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Figure 7. CARAFE upsampling process.
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One of the advantages of CARAFE is its ability to adaptively adjust the upsampling op-
eration based on the content of the input feature map, avoiding the introduction of artifacts
and blurring effects that may occur in traditional upsampling algorithms. Additionally,
CARAFE introduces minimal parameters and computational costs, ensuring high-quality
upsampling without significantly increasing the model size and computational burden.

4.2. EIOU Loss Function

This study adopts the EIOU [18] loss function, which builds upon the CIOU [19] loss
function and introduces improvements by incorporating separate impact factors for the
width and height calculations of the target and anchor boxes. The EIOU loss function
consists of three components: overlap loss (Ljoyu), center distance loss (Lgjs), and aspect
ratio loss (Lasp).

In the overlap loss and center distance loss components, EIOU follows the method-
ology of CIOU, considering the overlap between the target and anchor boxes and the
distance between their centers, providing a comprehensive evaluation of their similarity
and matching.

In the aspect ratio loss component, EIOU adopts a direct minimization approach for
the differences in width and height between the target and anchor boxes. By considering the
width and height differences as independent loss terms, EIOU achieves a faster convergence
and more efficient optimization of the model’s performance.

The formula for the CIOU loss function is as follows:

o (b, b&)
Lcioy =1—-10U + —a + v 3)
v
- __ 4
*Ta-100)+v @
4 w8t w2
V= (.aurctanmgt — arctanh> (5)

The formula for the EIOU loss function is as follows:

2 t 2 t
p*(b,b® 2 (w, w8t p?(h, h&

Leou = Liou + Lais + Lasp = 1 — 10U + -
h

%

In the EIOU loss function, “b” and “b8"” represent the center points of the predicted
bounding box and the ground truth bounding box, respectively. “p?()” represents the
Euclidean distance, “w, w8 and “h, h&"” represent the width and height of the predicted
bounding box and the ground truth bounding box, respectively, and “c” is the length of the
diagonal of the smallest outer frame covering the predicted bounding box and the ground
truth bounding box.

5. Experimental Results and Analysis
5.1. Experimental Datasets

To validate the effectiveness of the proposed model, we conducted experiments using
two datasets: the Pascal VOC2007+2012 dataset [35] for ablation experiments and the
Face_Mask dataset for comparative experiments. The Face_Mask dataset [36] consists of
7959 images collected from publicly available datasets, such as MAFA [37] and Wilder-
Face [38], as well as 1137 images obtained from the Internet. These images contain both
masked and unmasked faces. Before training the algorithm model with this dataset, we
performed data filtering to remove images that did not correspond to the labels and fea-
tures. After processing, a total of 9096 images were retained. To enhance the robustness
of the designed object detection model to images obtained from different environments,
we subjected the initial dataset to various data augmentation techniques, such as flipping,
shift, rotation, mix-up [39], and mosaic. Subsequently, we used the dataset for training and
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evaluation, randomly splitting it into training and testing sets with an 8:2 ratio. The labels
for Class 1 correspond to “Mask”, while Class 0 corresponds to “NoMask”. The dataset
categories are shown in Table 1.

Table 1. Data categories.

Face_Mask Pascal VOC2007+2012
Train 7277 16,551
Test 1819 4952
Category 2 20

5.2. Experimental Environment

The experiments were conducted on a computer running the Windows 10 operating
system. We used Python 3.8 as the language environment. The model was built using
the PyTorch deep learning framework, and the required libraries were installed according
to the environment requirements. The computer was equipped with an Intel(R) Xeon(R)
CPU E5-2680 v4 @ 2.4 GHz processor with two processors and 64 GB of memory. GPU
acceleration training was performed using an NVIDIA Tesla M40 graphics card with 24 GB
of memory.

5.3. Evaluation Metrics

To assess the model’s performance and accuracy in image detection, we utilized
various evaluation metrics, including mAP, precision, recall, number of parameters, weight
file size, and inference time.

Precision measures the ratio of true positive predictions to the total number of pre-
dicted samples, while recall measures the ratio of true positive predictions to the total
number of actual positive samples.

The formulas for calculating precision and recall are shown in Equations (7) and (8).
The mAP calculates the average precision across all classes and is determined by
Equations (9) and (10).

.. TP
Precision = TP+ TP (7)
TP
Recall = m (8)
1
AP = / P(R)dR )
Jo
1 m
mAP = ai; AP; (10)

Here, TP represents the number of true positive detections, FP represents the number
of false positive predictions, FN represents the number of false negatives, AP represents the
average precision for each class, and mAP represents the mean average precision across all
classes; “mAP50” represents the mAP when the IOU (Intersection Over Union) threshold is
50% and “mAP50:90” represents mAP when the IOU threshold varies from 50% to 90%. In
object detection tasks, IOU thresholds are commonly used to measure the overlap between
the predicted and the real bounding boxes. A threshold of 50% indicates that a predicted
bounding box is considered correct if its overlap with the real bounding box exceeds 50%.

By employing these evaluation metrics, we comprehensively assess the model’s perfor-
mance in image detection tasks. These metrics allow us to better understand and compare
the accuracy, efficiency, and resource consumption of different models, providing valuable
insights for model selection and optimization.
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5.4. Ablation Experiment

To validate the effectiveness and robustness of the proposed algorithm, we conducted
ablation experiments on the Pascal VOC2007+2012 dataset. These experiments involve
removing or replacing key components in the algorithm to observe how these changes
impact algorithm performance and analyze the significance of each component for object
detection. The results of the ablation experiments are presented in Table 2.

Table 2. Results of ablation experiment.

Backbone Neck Loss Function Upsampling  Parameters Size mAP50 Inference Time
ShuffleNetv2  FPN + PAN CIOU Nearest 0.70 M 1.72 MB 66.1% 42 ms
ShuffleNetv2  FPN + PAN EIOU Nearest 0.70M 1.72 MB 66.4% 42 ms
ShuffleNetv2 BiFPN CIOU Nearest 0.74M 1.80 MB 67.8% 4.4 ms
ShuffleNetv2 BiFPN EIOU Nearest 0.74M 1.80 MB 68.3% 4.4 ms
ShuffleNetv2 BiFPN EIOU CARAFE 0.85 M 1.92 MB 70.1% 6.4 ms

Based on the experimental results, the combination of ShuffleNetv2-BiFPN-EIOU-
CARAFE (DB-YOLO) outperforms previous combinations in terms of performance. By
improving feature fusion, the loss function, and the upsampling method, this combination
achieves significant improvements in accuracy, robustness, and object perception capability.
As a result, it can more precisely localize and recognize objects. Although there is a
slight increase in weight size and inference time, this is achieved with minimal resource
sacrifice. Therefore, DB-YOLO maintains high efficiency and practicality while enhancing
overall performance.

Figure 8 displays the P-R (precision—recall) curve of DB-YOLO on the VOC2007+2012
dataset. On the P-R curve, the larger the AUC (area under the curve) for a class, the higher
its mAP50.

Precision-Recall Curve

—— aeroplane 0.793
- bicycle 0.766
—— bird 0.680
—— boat 0.538
—— bottle 0.546
—— bus 0.757
car 0.819
—— cat0.781
chair 0.530
—— cow 0.738
—— diningtable 0.624
—— dog 0.699
—— horse 0.822
—— motorbike 0.790
—— person 0.823
—— pottedplant 0.473
sheep 0.713
—— sofa 0.604
train 0.788
—— tvmonitor 0.727
e 3| classes 0.701 mMAP@0.5

Precision

0.4 0.6
Recall

Figure 8. Precision-recall curve.

As shown in Figure 8, the performance of the DB-YOLO model across 20 categories
in the VOC2007+2012 dataset can be observed. Among them, the “person” category has
the highest mAP50 value of 82.3%, while the “pottedplant” category has the lowest mAP
value of 47.3%. The average mAP50 value across all 20 categories is 70.1%, indicating that
DB-YOLO demonstrates excellent detection performance.
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5.5. Contrast Experiment

To further validate the effectiveness and reliability of our proposed method, we
compared it with several commonly used lightweight object detection models. These
models were trained and tested on the same Face_Mask dataset, and their performance in
terms of detection accuracy, speed, and model size was evaluated. The detection results are
summarized in Table 3.

Table 3. Comparative experimental results.

Name Parameters Size Precision Recall mAP50 mAP50:95 Inference Time
YOLO-Fastest 0.28 M 1.15 MB 78.7% 89.3% 88.8% 57.3% 5.8 ms
YOLOvV3-Tiny 8.27 M 33.1 MB 72.9% 92.4% 92.2% 62.5% 3.5 ms
YOLOvV4-Tiny 5.60 M 22.4 MB 76.2% 92.8% 92.9% 64.5% 4.5 ms

YOLOvV5s 6.69 M 13.6 MB 92.2% 85.9% 91.2% 62.9% 6.4 ms
YOLOvV5n 1.68 M 3.5 MB 92.0% 81.6% 88.5% 59.4% 4.2 ms
Dl?(—)ﬁl{ersI;O 0.85M 1.92 MB 93.8% 89.0% 93.5% 66.4% 6.4 ms

Comparing the experimental results of different algorithms, we observed that the
DB-YOLO method achieves higher precision and recall while reducing the number of
parameters and model size. The mAP value reaches 93.5%, indicating that the model
performs well in object detection tasks. Moreover, the model’s inference time is 6.4 ms,
making it suitable for real-time scenarios in facemask detection applications. These results
demonstrate that DB-YOLO exhibits higher efficiency and accuracy, making it suitable for
widespread use in various application scenarios.

Figure 9 illustrates the training results of DB-YOLO in Face_Mask dataset.
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Figure 9. Training results.

As shown in Figure 9, the DB-YOLO model was trained for 120 epochs and the loss
functions for both the training set and testing set rapidly decrease, stabilize, and eventually
levels off with the increase of training epochs. Precision, recall, mAP50, and mAP50:90
also show a rapid increase, stabilize, and eventually levels off. Its mAP50 value stabilizes
around 93.5%. This indicates that the DB-YOLO model performs well during the training
process and achieves the expected performance.
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6. Android Device Application Deployment
6.1. Deployment Process

To deploy the trained object detection model on an Android [40] device for testing in
edge computing environments, we followed a series of steps as described below.

(1) Export the Trained Model to ONNX (Open Neural Network Exchange) [41]: The
optimized object detection model is exported as an ONNX file to ensure its portability and
cross-platform usability. This process involves saving the model’s weights and structural
information in the ONNX format, making it compatible with edge devices.

(2) Selection of NCNN [42] precision—recall framework: For deployment on Android
devices, we chose the NCNN framework. NCNN is a high-performance neural network
computing framework specifically designed for mobile and embedded devices. We uti-
lized NCNN to load the exported ONNX file onto the Android device and leverage its
capabilities to compile and optimize the model. This approach fully utilizes the device’s
processor architecture and computational power, enhancing the model’s runtime efficiency
and performance.

The deployment process is illustrated in Figure 10, where the exported ONNX model
is loaded and optimized using the NCNN framework on the Android device.

train PyTorch export convert depoly
Dataset ,
e

Figure 10. Deployment flowchart.

Android
Device(*.apk)

6.2. Testing Environment

During the testing phase, we evaluated the model’s performance on a Xiaomi Mi 10 Pro
device. The Mi 10 Pro is equipped with a powerful Qualcomm Snapdragon 865 processor
and runs on Android 13, providing excellent computational capabilities and performance.

6.3. Application Results

We conducted comparative testing experiments using the following three models with
the Android application: YOLOv5s, YOLOv5n, and DB-YOLO. The image input sizes were
set to 320 and 640, and the evaluation metric was solely measured in FPS (frames per
second) to assess the deployment performance on the Android device.

To assess the model’s detection accuracy under various scenarios, we tested it with
images containing various situations, such as no facemask, partially covered facemask,
incorrect facemask wearing, and correct facemask wearing for real-time facemask detection.

The Android test results are as shown in Table 4.

Table 4. Android test results.

Input Name FPS
640 x 640 YOLOv5s 13
640 x 640 YOLOv5n 16
640 x 640 DB-YOLO 18
320 x 320 YOLOv5s 28
320 x 320 YOLOv5n 31
320 x 320 DB-YOLO 33

As shown in the test results from Table 4, the overall deployment performance of
DB-YOLO on Android devices is superior to those of other models. However, if the
detection input size is reduced for higher real-time performance, the detection accuracy
may be compromised.

The Android application detection results for DB-YOLO are presented in Figure 11.
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Figure 11. Real-time detection of Android application.

From the detection result images, it is evident that the DB-YOLO model maintains
a high level of accuracy even in cases of face occlusion or improper facemask wearing.
This demonstrates the robustness and adaptability of the model, enabling it to handle
complex real-world scenarios. Additionally, the model achieves an average frame rate
of approximately 33 FPS during runtime, showcasing its efficient performance on edge
computing devices and providing strong support for practical applications.

7. Conclusions

In response to the challenges faced by traditional object detection models, we propose
a lightweight DB-YOLO intelligent facemask detection algorithm based on bidirectional
weighted feature fusion (DB-YOLO). This method effectively addresses issues related
to accuracy and model size in detection algorithms. By incorporating the lightweight
ShuffleNetv2 as the backbone network, utilizing BiFPN for feature fusion, employing
CARAEFE for lightweight upsampling, and using EIOU as the algorithm'’s loss function to
expedite model convergence, DB-YOLO significantly improves the efficiency and detection
accuracy of the model.

Experimental evaluations on the Pascal VOC2007+2012 and Face_Mask datasets val-
idate the outstanding performance of the DB-YOLO model. The model occupies only
approximately 1.92 M of storage space and achieves average precision values of 70.1%
and 93.5% on the Pascal VOC2007+2012 and Face_Mask datasets, respectively. It has
been successfully deployed on Android devices, achieving a real-time detection speed of
up to 33 frames per second. Compared to other lightweight models, such as YOLOV5s,
YOLOV5n, YOLOv4-tiny, and YOLOv3-tiny, DB-YOLO demonstrates significant reductions
in model size while effectively improving its detection accuracy. Furthermore, it showcases
excellent practicality and wide application potential on edge devices, providing valuable
insights and inspirations for facemask detection and other object detection tasks.
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