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A B S T R A C T   

The uncertainty of wind power as the main obstacle of its integration into the power grid can be addressed by an 
accurate and efficient wind power forecast. Among the various wind power forecasting methods, machine 
learning (ML) algorithms, are recognized as a powerful wind power forecasting tool, however, their performance 
is highly dependent on the proper tuning of their hyperparameters. Common hyperparameter tuning methods 
such as grid search or random search are time-consuming, computationally expensive, and unreliable for com-
plex models such as deep learning neural networks. Therefore, there is an urgent need for automatic methods to 
discover optimal hyperparameters for higher accuracy and efficiency of prediction models. In this study, a novel 
investigation is contributed to the field of wind power forecasting by a comprehensive comparison of three 
advanced techniques – Scikit-opt, Optuna, and Hyperopt – for hyperparameter optimization of Convolutional 
Neural Network (CNN) and Long Short-Term Memory Network (LSTM) models, a facet that, to our knowledge, 
has not been systematically explored in existing literature. The impact of these optimization techniques on the 
accuracy and efficiency of the CNN and LSTM models are assessed by comparing the root mean square error 
(RMSE) of the predictions and the required time to tune the models. The results show that the Optuna algorithm, 
using a Tree-structured Parzen Estimator (TPE) search method and Expected Improvement (EI) acquisition 
function, has the best efficiency for both CNN and LSTM models. In terms of accuracy, it is demonstrated that 
while for the CNN model all the optimization methods achieve similar performances, the LSTM model optimized 
by the Hyperopt algorithm, based on the annealing search method, results in the highest accuracy. In addition, 
for the first time in this research, the impact of the random initialization features on the performance of the 
forecasting models with neural networks is investigated. The proposed structures for deep learning models were 
examined to determine the most robust structure with the minimal sensitivity to the randomness. What we have 
discovered from the comparison of advanced hyperparameter optimization methods can be used by researchers 
to tune the time series-based forecasting models.   

1. Introduction 

Forecasts show that by 2050, due to the growing demand for prod-
ucts and services, electricity generation needs to be increased by a factor 
of 2.5 [1], even considering the improvement in energy efficiency in 
various sectors, (e.g., transportation and heating) demanded by the 
regulations. Currently, the majority (42 %) of electricity generation in 
the UK comes from gas-fired power plants, which causes many envi-
ronmental issues such as global warming and increased greenhouse gas 
(GHG) emissions [1]. To prevent these adverse effects, and take steps 
towards decarbonization, the share of electricity produced from fossil 
fuels needs to be gradually reduced and replaced with renewable 

energies in a way that by the end of 2050 three-quarters of the total 
electricity is supplied from clean sources of energy. Fig. 1 shows the 
trend of electricity production of different power plants until 2050 in the 
UK [2]. 

As demonstrated in Fig. 1, the main renewable energy source 
considered to replace fossil fuels is wind energy, either onshore or 
offshore. Wind energy is the fastest-growing renewable energy with the 
ability to guarantee national security against global threats caused by 
the reduction of fossil fuel reserves and their price increase [1]. 

Building wind power plants has some negative environmental effects 
on communities and wildlife including noise, visual effects, etc [1]. 
However, the main obstacle against the integration of wind power into 
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the power grid comes from its inherent characteristic, variability, and 
unpredictability [3].In the power grid, a balance between the electricity 
consumption and production must be maintained. Failing to do so would 
result in the impossibility to supply electric power in a stable manner. 
The provision of a high share of grid power by non-dispatchable wind 
energy makes this balance more difficult unless an accurate forecast of 
generated power is provided. The inability to provide accurate wind 
power prediction has various consequences. Technically, forecast 
divergence impedes the ability of transmission system operators (TSO) 
to plan the fulfilment of demand based on the available power capacity. 
Furthermore, from an economic point of view, the uncertainty of the 
total wind power forecast leads to the doubt in day-ahead and balancing 
market costs, which will bring financial losses to electricity providers 
[4]. 

The TSO is responsible for balancing the electricity production and 
consumption based on the price-quantity bids of electricity producers. If 
the power delivery of each supplier is not equal to its committed level, 
changes in electricity supply will be made, either through TSO’s own 
facilities or purchases from other producers (through bilateral contracts 
or power pools). The cost of these changes is usually covered by pen-
alties to the electricity producers in breach of their contractual obliga-
tions. Sometimes these penalties are so high that erode a large 
percentage of the production income. 

By increasing the accuracy of forecasting, these penalties can be 
avoided, and production costs can be reduced. For example, in the sole 
island of Ireland, an improvement of 1 % in the accuracy of wind power 
forecast results in 0.27 % saving of the total generation costs which 
equates to €4.1 million [5]. 

Wind power forecasting also provides the possibility of saving costs 
during the maintenance of wind turbines. Postponing the maintenance 
to the times when the lowest amount of energy is produced, would 
greatly increase the profits [3]. 

Over the last decade, various methods have been developed to 
forecast wind power [3]. One of the most common prediction methods 
in this field, are machine learning (ML) algorithms. ML algorithms are 
mathematical functions that represent the relationship between 
different aspects of data. These algorithms, which spend a significant 
amount of time training from data, must be configured before training 
by setting some variables known as parameters and hyperparameters 
[6]. 

Parameters, like the weight at each neuron in a Neural Network 
(NN), are intrinsic to the model equation and can be determined while 
the algorithm is being trained. But the hyperparameters, in contrast, are 
not directly learnt by the learning algorithm. They are specified outside 
of the training procedure and their role is to control the capacity of the 
models and increase their flexibility to fit the data. A correct choice of 
hyper parameter is important to prevent overfitting and improve the 
generalization of the algorithm. 

Hyperparameters have a large impact on the performance of the 
learning algorithms and their values vary depending on the specific 
problem domain where the algorithm is used. As a result, they need to be 
optimized for each dataset [7]. The process of finding the best 

hyperparameters for a given dataset is called hyperparameter optimi-
zation or hyperparameter tuning. Hyperparameter tuning consists of 
defining the hyperparameter space, a method for sampling candidate 
hyperparameters, and a metric that is required to be minimized or 
maximized. As it is not possible to define a formula to find the hyper-
parameters, different combinations of hyperparameters need to be tried 
and the model performance evaluated at each stage. But the critical step 
is to choose how many different hyperparameter combinations are going 
to be tested. Intuitively, the higher the number of hyperparameter 
combinations, the greater the chance to get a better performing model. 
But at the same time, it leads to greater computational cost, because we 
will end up training a large number of models at the same time. It is also 
important to determine which hyperparameters have a greater effect on 
the performance of the ML models [6]. 

The hyperparameters of simple ML models, such as linear models or 
tree-based algorithms, can be estimated manually through iterative trial 
and error. This approach can be very challenging for users who do not 
have enough professional background and practical experience. To 
overcome the disadvantages of manual search, automatic search algo-
rithms such as grid search and random search have been proposed. 

Grid search does an exhaustive search through training the ML model 
with all possible combinations of hyperparameters. Then, after evalu-
ating the performance of the model based on a predefined metric, 
identifies hyperparameters that achieve the best performance [8]. This 
search method is used extensively in the literature. For example in the 
developed wind speed prediction model by Zhou et al. [9], the hyper-
parameters of support vector regression (SVR) were selected by grid 
search. In another research, Kisvari et al. [10] applied the grid search to 
tune the hyperparameters of the Gated Recurrent Unit (GRU) and Long 
Short-Term Memory (LSTM) models. Although this method automati-
cally handles the optimization process, for more complex models such as 
NNs, it quickly loses its efficiency by increasing the number of hyper-
parameters and widening the range of their values [8]. Because in these 
cases the training of the models becomes very costly both in time and 
required computing facilities, trying all combinations of hyper-
parameters is not an option. 

Random search, on the other hand, tries random combinations of a 
range of values to increase the efficiency in a high-dimensional space. 
Bergstra et al. [11] showed that random search, while having the same 
advantages as grid search, has a much higher efficiency, especially in a 
high-dimensional space. Nonetheless, in the random selection of com-
binations, there is the possibility of not considering the best combina-
tion, especially in complex models [12]. In both random and grid search 
methods, all the candidate points are generated upfront and evaluated in 
parallel, and once all evaluations are done, the best hyperparameters 
will be selected. Selecting and evaluating candidates without consid-
ering the past evaluated hyperparameters leads to the inefficiency of 
these methods. Because considerable time is spent evaluating inappro-
priate hyperparameters. As a result, there has always been a high de-
mand for smarter tunning methods that achieve higher accuracy and 
efficiency by considering the results of the previously assessed 
hyperparameters. 

Sequential model-based optimization (SMBO) which is also known as 
Bayesian optimization, is an effective algorithm for solving the optimi-
zation problem of functions with high-dimensional space [6]. In 
sequential search, a few hyperparameters are selected and after evalu-
ation of their quality, where to sample next will be decided. SMBO 
methods have been used in the literature for hyperparameter optimi-
zation of ML models. For example, Masum et al. [7] for detecting 
network intrusion, used Bayesian optimization to find the best hyper-
parameters for deep neural networks. In the field of wind power fore-
casting, Zha et al. [13] utilized Tree-structured Parzen Estimator (TPE) 
algorithm to obtain the best hyperparameters of the temporal convolu-
tion network (TCN), but they did not compare the optimization per-
formance of the applied algorithm with other optimization methods. In 
another study, Hanifi et al. [14] used the TPE search method to optimize 

Fig. 1. UK grid-connected power generation by different power stations [2].  
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the LSTM model for wind power prediction. Although in the comparison 
of the accuracy and efficiency of the proposed method with the con-
ventional grid search method, the authors proved the better optimiza-
tion performance of the TPE, they did not investigate other smart and 
advanced hyperparameter tuning methods. 

In this study, three advanced hyperparameter optimization algo-
rithms including Scikit-opt, Hyperopt, and Optuna are investigated in 
detail and their performance in the hyperparameter optimization of two 
widely used deep learning methods for time series-based predictions, the 
CNN and LSTM models are assessed. As these models can solve various 
prediction issues with short-term and long-term dependencies, it is 
useful to study ways by which their performance can be improved. The 
accuracy and calculation time of CNN and LSTM models are compared 
on power data from a real offshore wind turbine. To the authors’ 
knowledge, this comparison of advanced hyperparameter optimization 
techniques has not been attempted in the literature. 

The application of the advanced optimization methods in this 
research provides the possibility to overcome the most important chal-
lenges and difficulties of hyperparameter optimization of deep learning 
models including the high dimensions of their search space and the 
sensitivity of deep learning models to the selection of hyperparameters. 

Regardless of the hyperparameter optimization issue, most artificial 
neural networks (ANN) rely on randomness in their training process. 
This means that, despite training with the same data, they can have 
different results. To endure the efficient performance of the prediction 
models and achieve consistent results, it is necessary to take this 
randomness into consideration. In this study, for the first time in wind 
power forecasting field, the impact of the random initialization on the 
accuracy of the forecasting models is assessed. For this purpose, different 
structures of deep learning models, proposed by the most efficient 
optimization technique, are examined to determine the most robust 
structure with the minimal sensitivity to the randomness. As the 
contribution of this study, it is empirically demonstrated that the Optuna 
optimization algorithm using the TPE search method and Expected 
Improvement (EI) acquisition function, is the most effective method of 
tuning the CNN and LSTM, two commonly used deep learning methods. 

The key contributions of this research to current knowledge gaps are 
as follows. 

• Going beyond simple grid or random search methods, which eval-
uate all the pre-generated candidate points in parallel, this paper 
explores utilizing the SMBO optimization methods, where hyper-
parameter selection in each stage depends on their quality evaluation 
in the previous stages.  

• Some SMBO methods have been used and compared with grid search 
and random search methods in previous papers; however, a 
comprehensive comparison between various advanced hyper-
parameter optimization methods appears understudied. This com-
parison enables wind power prediction models to be tuned using the 
most appropriate SMBO method. This comparison is introduced and 
applied here.  

• The impact of randomness in the training process of deep learning 
models and its effect on the prediction performance was found to be 
understudied in the literature. This paper investigates this to deter-
mine the most robust structure for both LSTM and CNN models.  

• Finally, this study evaluates a greater number of hyperparameters 
with a wider range than previous studies. Consequently, prediction 
accuracy was enhanced compared to previous attempts. 

2. Methodology 

As previously mentioned, in sequential search methods, several 
hyperparameters are selected and after evaluating their quality, the next 
sampling location is decided. The goal of sequential search is to make 
fewer evaluations of the models with various hyperparameters and 
evaluate only those that have the most promising candidate 

hyperparameter. The trade-off here is between less ML model training 
time and the time to estimate where to sample next. Hence, this model is 
the preferred option when the evaluation procedure (training the model 
and evaluating its performance) takes much longer than the process of 
evaluating where to sample next. 

Sequential models integrate sample information with previous in-
formation about the unknown function to achieve posterior information 
about the function distribution. This posterior information is then used 
to determine the location of the optimal performance. Bayesian opti-
mization is one of the effective sequential models that can solve the 
optimization problem of unknown functions. 

2.1. Bayesian optimization 

Bayesian optimization is a powerful sequential tool for optimization 
of functions that do not presume any functional forms [15]. In Bayesian 
optimization, contrary to the grid or random search, the results of past 
evaluations are employed for building a probabilistic model that maps 
hyperparameters to the probability of a score in the objective function. 
In this way, the optimization process is more efficient as the next set of 
hyperparameters are selected in an informed manner. This efficiency 
comes from considering promising hyperparameters in past results 
which make fewer calls to the objective function. During the optimiza-
tion, the aim is finding the maximum value of an unknown objective 
function f: 

x∗= argmax
x∈χ

f (x) (1)  

where χ is the search space of hyperparameters, x. 
In Bayesian optimization f is treated as a random function and a prior 

is placed over it. The prior captures the behaviour of the objective 
function f. Following the collection of the function evaluations, the prior 
is updated to build the posterior distribution over the objective function. 
The posterior distribution is then used to construct an acquisition 
function to determine the next query point. 

As can be seen in this optimization process two functions are 
required, a function that acts as the prior of the optimization functions, 
and a posterior function which is an acquisition function that determines 
where to sample next. The prior function can be estimated by Gaussian 
processes or other more specific algorithms such as TPE or random 
forests (RF). On the other hand, EI or Upper Confidence Bound (UCB) 
can be used as the acquisition functions. 

Some of these functions and their performance are discussed in the 
following sections. 

2.1.1. Acquisition function 
After finding the posterior distribution of the objective function, the 

next challenge is to know how to search for the next points which der-
ivates the maximum of the function f. In Bayesian optimization, the 
acquisition function u is used to achieve this goal. Assuming that the 
high value of the acquisition function corresponds to the large value for 
the objective function f, maximizing the acquisition function will 
maximize the objective function f. 

The common acquisition functions that are used in Bayesian opti-
mization include the probability of improvement (PI) and EI functions. 

Function PI tries to search around the current optimum sample to 
find points that may exceed the current optimum value. This function 
can be described as follows: 

PI(x)= φ
(

μ(x)− f (x+)
σ(x)

)

(2)  

where φ represents the cumulative distribution function of the standard 
Gaussian distribution. As evident, the main drawback of the PI acqui-
sition function is that it selects samples only from regions close to the 
current optimal solution (exploration). Therefore, the possible better 
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points that are far away from the local optimal points may not be 
investigated [8]. 

To solve the problem of falling into the local optimum solution, the 
EI acquisition function is employed [16]. The EI function while 
exploring the region of the current optimum value, calculates the ex-
pected improvement of the new point. If the improvement value is less 
than the desired value after running the algorithm, it will be assumed 
that the current optimal point is the best solution available in that area, 
and therefore the algorithm searches for the optimal point in other 
points of the domain (exploitation). 

The difference between the function value at the new selected point 
and the current optimal value is called the degree of improvement I. If 
the value of the function at the new point is lower than the current 
optimal value, the improvement function is considered 0: 

I(x)= max{0, ft+1(x)− f (x+)} (3) 

Based on the assumption that the distribution of the function value at 
the new sampling point (ft+1(x)) obeys the normal distribution with 
mean μ(x) and standard deviation σ2(x), the random variable I obeys the 
normal distribution too with the mean μ(x)− f(x+) and standard devia-
tion σ2(x). Equation (4) shows the probability density of I: 

f (I)=
1
̅̅̅̅̅
2π

√
σ(x)

exp

(

−
(μ(x)− f (x+)− I)2

2σ2(x)

)

, I ≥ 0. (4)  

Now, the EI can be defined as: 

E(I)=
∫ ∞

∞
I f (I)dI =

∫ I=∞

I=0
I

1
̅̅̅̅̅
2π

√
σ(x)

exp

(

−
(μ(x)− f (x+)− I)2

2σ2(x)

)

dI = σ(x)[Zφ(Z)+φ(Z)] (5)  

where φ is the probability density function of the standard normal dis-
tribution and: 

Z =
μ(x)− f (x+)

σ(x) (6) 

As can be seen from these equations the EI can be calculated from σ, μ 
and the current optimal point f(x+). In this study, the EI function is used 
as the acquisition function for all hyperparameter optimization tech-
niques because it can address the exploration and exploitation trade-off 
[7]. This function is proven to have a strong theoretical guarantee [17] 
and empirical effectiveness [18]. 

2.1.2. Tree-structured Parzen Estimator (TPE) 
In cases of hyperparameter optimization with higher dimensions and 

a small fitness evaluation budget, an alternative to the Gaussian process 
(GP) approach is required. In GP, the aim was to approximate f(x) or the 
probability of score given the hyperparameter, P(y|x), based on the 
marginals including the probability of each one of the hyperparameters 
and the probability of the hyperparameters given the score, p(x/y): 

P(y|x)=
P(x|y) × P(y)

P(x)
(7)  

where y is the score f(x) and x represent the hyperparameters. 
But in TPE, instead of approximating the left side of equation (7), the 

probability of hyperparameters given the score that is obtained when 
sampling some of the values of the hyperparameters, P(x|y) is attempted 
to be approximated. This conditional probability (P(x|y)) is approxi-
mated utilizing two different functions: function l (x) for the cases 
where the performance is smaller than a certain value of performance, 
and the function g(x) for cases where the performance is bigger than the 
certain value of performance: 

P(x|y)=
{

l (x) if y <y∗
g(x) if y ≥y∗ (8)  

these two densities of l(x) and g(x) will then be used in the EI function, 
and after some derivations will end up at the following equation: 

EIy∗ (x)∝
(

γ +
g(x)
l (x)

(1 − γ)
)− 1

(9) 

This expected improvement can determine where to sample the next 
for hyperparameters. 

2.2. Optimization algorithms 

2.2.1. Scikit optimize (GP-EI) 
Scikit optimize is an open-source Python package that can perform 

various forms of Bayesian optimization. It implements several search 
algorithms including Bayesian optimization with gaussian processes 
(through the gp_minimize function), Bayesian optimization with random 
forest (through the forest_minimize function), and Bayesian optimization 
with Gradient Boosting Trees (through the gbrt_minimize function). 

To perform the optimization, the first step is to define the objective 
function that needs to be minimized. The objective function usually 
takes the ML model and the hyperparameters and outputs a performance 
metric. 

Scikit optimize comes with a built-in module to create hyper-
parameter spaces to sample from. The samples can be integers, reals, and 
categories. In addition, a variety of acquisition functions are available to 
choose from including the EI, PI and Lower Confidence Bound (LCB). 

In this project the Scikit optimize is implemented to use Bayesian 
optimization with Gaussian process as the surrogate. To this end, the 
gp_minimize package is imported and two prediction models (CNN and 
LSTM) were defined as the objective function. Then the hyperparameter 
space is defined as well as the initial number of points at which to 
evaluate the objective function before starting to guide the Bayesian 
optimization search. As mentioned earlier in this study the EI is used due 
to its capability of exploration and exploitation to guide the search in 
Bayesian optimization. 

2.2.2. Optuna (TPE-EI) 
As second tuning method in this study, the Optuna optimization 

package with its define-by-run design is employed. Optuna is a recently 
developed optimization algorithm [19] that has been successfully used 
to tune the hyperparameters of LSTM model for wind power prediction 
[14]. The selection of Optuna as one of the advanced optimiation al-
gorithms in this research is based on its three specific features, 
define-by-run context, efficient sampling, and ease of setup. The 
define-by-run context enables building the search space dynamically. In 
the optimization process, different hyperparameter combinations are 
considered as input to maximize a function and respond a validation 
score as an output. The objective function formulates the search space 
dynamically through interacting with the trial object [20]. Efficient 
sampling of Optuna allows handling of both types of sampling, relational 
sampling to benefit the parameters correlations and independent sam-
pling to consider each sample separately [20]. Another advantage of 
Optuna is its easy setup, which allows it to be used for a variety of tasks, 
from lightweight experiments performed through interactive interfaces 
to heavyweight distributed computing [19]. There are various features 
in Optuna that need to be set up. Sampler as the hyperparameter search 
algorithm can be selected among different options including the basic 
ones such as Grid Search, Random Search and CMA-ES. In this study the 
TPE algorithm is used to consider each hyperparameter independently. 
The next option is the Pruner that stops testing trials that do not offer 
promising performances. The default pruner which is used in this study 
is the Median Pruner, however other pruners such as the Percentile 
Pruner, Successive Halving, Hyperband and Threshold pruner are also 
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available. It is also necessary to set the direction of the tuning process, 
which indicates whether we want to minimize or maximize the objective 
function. As mentioned earlier, the aim of this study is to minimize the 
RMSE value of the wind power forecasting. As a result, the minimize 
direction is selected. Further details of the optimization by this package 
can be found in Ref. [19]. 

2.2.3. Hyperopt (Annealing-EI) 
Hyperopt is a python library that enables implementing Bayesian 

optimization. Hyperopt has already been used for hyperparameter 
optimization of deep neural networks and convolutional neural net-
works [12]. Hyperopt provides three search algorithms: random search 
(rand.suggest), annealing (which is another sequential mode-based 
optimization with the gaussian process alternative in order to be able 
to sample nested hyper parameters), and TPE. In this study, the 
annealing search method is selected to compare its performance with the 
TPE search method used in the Optuna package and the GP search 
method used in the Scikit optimize algorithm. 

2.3. Deep learning neural networks (CNN and LSTM models) 

In this research, to measure the performance of the optimization 
methods, two widely used deep learning models, CNN and LSTM models 
are used. 

2.3.1. Convolutional neural network (CNN) 
CNN is a particular type of NNs that uses a mathematical function 

called convolution instead of general matrix multiplication. The basic 
structure of a CNN model is shown in Fig. 2 This deep learning model 
like any feed-forward neural network (FFNN) consist of three main 
layers including input layer, hidden layers, and output layer. The hidden 
layer is where the convolution function is performed based on a dot 
product of the convolution kernel with the matrix of its input layer. The 
convolution process can be presented as follows: 

hk
ij= f

((
Wk⊗x

)

ij + bk

)
(10)  

where f, x and b represent the activation function, the vector of input 
series and the vector of bias, respectively and Wk denotes the connected 
kernel weights to the kth feature map. In this equation, ⊗ symbol in-
dicates the convolution function, and the common activation function f 
is the Rectified Linear Unit (ReLU). Following the convolution operation 
on the input matrix of each convolution layer, a feature map is created as 
the input of the next layer. 

The convolution layer in a CNN is cascaded by the pooling layer 
which is a shape of non-linear down-sampling. The main purpose of the 

application of the pooling layer is to gradually decrease the size of the 
data representation to control overfitting. 

CNN can effectively extract the hidden non-linear dependencies of 
time series through automatic creation of filters [21]. As a result it has 
been used widely for time series based predictions [17–19]. The CNN 
model in this study consists of two convolutional layers. It also can have 
up to four fully connected dense layers. The channel number of each 
convolution layer and the quantity of the dense layers will be suggested 
by hyperparameter optimization algorithm. 

2.3.2. Long Short-Term Memory (LSTM) 
Recurrent neural network (RNN) is another type of NNs where 

connection between nodes can create cycles. As a result, it has a high 
ability to represent almost all dynamics [22]. However, due to the 
limitations in learning process, in cases that the time interval between 
the input signal and the target signal increases, the backpropagation 
error either vanishes or explodes and its effectiveness decreases [14]. To 
address this drawback, the LSTM model based on a memory cell as the 
core is presented. LSTM, while having the advantages of RNNs, provides 
a suitable solution for the vanishing gradient problem. The description 
and computation of the LSTM components is explained in detail in 
Ref. [14]. LSTM has an excellent ability to learn non-linear short-term 
and long-term dependencies. As a result, it has been used widely for time 
series-based predictions [20,21,23,24]. 

LSTM model has several hyperparameters that are required to be 
optimized. These hyperparameters have a significant impact on the total 
computational cost and determine the ability of the network to gener-
alize well over the unseen data domains. In this study, hyperparameters 
such as the number of neurons, the batch size (the size of provided data 
to network before updating the weights), the epochs number (the 
number of iterations completed during training the model), the activa-
tion function and optimizers were optimized using three different opti-
mization approaches. 

2.4. Prediction performance criteria 

In this study the best hyperparameter combinations found by 
different optimization methods were used to create the deep learning 
wind power forecasting methods. To evaluate the performance of the 
optimization algorithms, the root mean square error (RMSE) which can 
be computed as described in equation (11), is used. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Ŷ i − Yi)

2

√
√
√
√ (11)  

Fig. 2. Basic architecture of a CNN model.  
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where Yi represents the recorded offshore wind power at time step t, Ŷ i 
is the wind power prediction of deep learning forecasting models (for the 
identified time step), and N represents the number of data points. The 
RMSE is the most common evaluation metric used in the field of wind 
power forecasting [3]. 

2.5. Wind power dataset 

The source SCADA data used in this study is provided the Leven 
mouth Demonstration Turbine (LDT) in Scotland. The key parameters 
and configuration of this offshore wind turbine is described in detail in 
Refs. [14,25]. The dataset covers the first four months of 2019, and it 
includes more than 500 different observations including wind speed, 
wind power, nacelle orientation, etc. 

During the pre-processing stage, the negative wind power values 
within the dataset were replaced with zero based on the recommenda-
tions issued in Ref. [26]. In addition to diminishing the negative impact 
of wind turbulence on the correlation between the generated wind 
power and measured wind speed, the time series resolution averaged 10 
min in coordination with the approved average time by the international 
standard for power performance measurements of electricity-producing 
wind turbines (IEC 61400-12-1) [27]. The dataset was then divided into 
two parts, the first 90 % for training and the rest 10 % for testing both 
CNN and LSTM deep learning models, which were optimized by various 
hyperparameter optimization techniques. 

3. Experimental results and discussions 

The hyperparameters and their search spaces for the CNN and LSTM 
models for all three optimization methods are determined according to 
Table 1. In this research, a number of hyperparameters, with significant 
impact on prediction performance in similar studies ([28,29]), as well as 

a number of other parameters that have not been investigated, are 
selected for tuning. Additionally, experiments were conducted to modify 
the ranges of each hyperparameter in order to improve the overall 
prediction accuracy. For example, in the case of activation function for 
LSTM model, the Softmax activation function that leads to an increase in 
prediction error is not considered. Or, a new range of epoch numbers for 
CNN model has been selected compared to our previous research (), 
which increases the accuracy of the prediction. Considering the ranges 
of values shown in Table 1 for the different hyperparameters, there are 
more than 2000 million hyperparameter combinations for CNN models 
and more than 38 million combinations for LSTM models. 

To carry out all the simulations and experiments, the Python pro-
gramming language with Scikit-opt, Optuna, Hyperopt packages, and 
Scikit-learn libraries are employed on a PC with Intel Core™ i7–11850H 
2.5 GHz CPU and 16 GB RAM (without GPU processing). In addition, for 
better investigation of the performance of the various hyper parameter 
optimization and forecasting models, similar parameters were set for all 
selected models; for example, the selected time lag (input layer length) 
was set at 10 in all simulations. 

3.1. Optimization by scikit-optimize algorithm 

As the first optimization method in this research, the Scikit optimize 
is implemented. To utilize optimization in this algorithm, except 
defining the hyperparameter space, it is required to pass the objective 
function, the initial number of points at which to evaluate the objective 
function before starting to guide the Bayesian optimization search, the 
acquisition function, and the number of times that we want to sample 
the hyper parameter space subsequently. The Gaussian process is 
selected as the search method and EI as the acquisition function. The 
RMSE values of the wind power predictions by forecasting models which 
were built with selected hyperparameters are considered as the objec-
tive function. 

The Scikit optimize algorithm for tuning the CNN model, launched 
for 300 tests. The best ten hyperparameter combinations with the least 
RMSE values are obtained according to Table 2 while the whole opti-
mization process took approximately 455 min. As can be seen in this 
table, the minimum RMSE value of 533.74 is obtained for trial number 
204. 

The Scikit optimize optimization method with similar settings is also 
used to tune the LSTM prediction model. In this case, the entire tuning 
process for 300 trials, took approximately 1740 min and a minimum 
RMSE value of 549.07 was obtained for trial number 208. Table 3 shows 
the best ten hyperparameter combinations for the LSTM model that lead 
to the lowest RMSE values. 

As can be seen from Tables 2 and 3, the values of some of the 
hyperparameters such as the activation function, loss function, and 
optimizer are equal for all proposed hyperparameter combinations. This 
shows that the optimization algorithm has quickly reached a level of 
certainty regarding these parameters. On the other hand, for other 
hyperparameters such as the units of convolution layers, small changes 

Table 1 
search space for hyperparameters of the CNN and LSTM models.  

CNN Model LSTM Model 

Hyperparameter Search Space Hyperparameter Search Space 

Units of first conv. 
Layer 

30, 31, …, 
130 

Units (neurons) of first 
LSTM Layer 

10, …, 100 

Units of second conv. 
Layer 

30, 31, …, 
130 

Number of dense layers 1, 2, 3, 4 

Number of dense 
layers 

1, 2, 3, 4 Units (neurons) in 
dense layer 

10, 11, …, 
100 

Units (neurons) in 
dense layer 

10, 11, …, 
100 

Activation function Sigmoid, 
tanh, ReLU 

Activation function Sigmoid, 
tanh, ReLU 

Loss function MAE, MSE 

Loss function MAE, MSE Optimizer ADAM, 
Adadelta 

Optimizer ADAM, 
Adadelta 

Epochs 50, 51, …, 
150 

Epochs 50, 51, …, 
100    

Table 2 
Best hyperparameter combinations of CNN model found by Scikit-Optimize.  

Rate Trial 
number 

Units of first conv. 
Layer 

Units of second conv. 
Layer 

No. of dense 
layers 

No. of dense 
units 

Activation 
function 

Loss 
function 

optimizer Epochs RMSE 

1 204 87 89 4 100 ReLU MAE ADAM 104 553.74 
2 219 128 12 4 100 ReLU MAE ADAM 101 560.29 
3 210 128 12 4 100 ReLU MAE ADAM 104 562.66 
4 257 128 12 1 100 ReLU MAE ADAM 132 566.65 
5 217 128 12 4 100 ReLU MAE ADAM 101 569.20 
6 88 12 12 4 100 ReLU MAE ADAM 87 569.57 
7 230 128 31 2 100 ReLU MAE ADAM 98 572.18 
8 138 12 91 4 100 ReLU MAE ADAM 89 572.47 
9 162 12 104 4 100 ReLU MAE ADAM 88 572.52 
10 78 128 128 4 100 ReLU MAE ADAM 90 572.57  
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can be seen until reaching the optimum value. 

3.2. Optimization by Optuna algorithm 

As the second tuning method in this study, the Optuna optimization 
package with its define-by-run design is employed. There are some 
features in the Optuna optimization package that need to be set up. 
Sampler, as the hyperparameter search algorithm, can be selected 
among different methods including the basic ones such as Grid Search, 
Random Search and CMA-ES. In this study the default search algorithm, 
TPE, is used. The next option is the Pruner that stops testing trials that 
are not offering promising performances. The default pruner which is 
used in this study is the Median Pruner, however other pruners including 
Percentile Pruner, Successive Halving, Hyperband and Threshold pruner 
are also available. The median pruner performs when the trial’s best 
intermediate result is poorer than median of the intermediate results of 
former trials. It is also necessary to set the direction of the tuning pro-
cess, which indicates whether we want to minimize or maximize the 
objective function. As mentioned in the previous section, the aim of this 
study is to minimize the RMSE value of the wind power forecasting. 
More details of the optimization process of this package can be found in 
Ref. [19]. 

The same hyperparameter spaces as what was considered for scikit 

optimize, are used again. For the CNN model, the minimum RMSE value 
of 553.66 is obtained for trial number 269 after about 492 min and 
regarding the LSTM model, the minimum RMSE value of 538.14 is ob-
tained for trial number 91 after about 456 min. Tables 4 and 5 show the 
best ten hyperparameter combinations for CNN and LSTM models, found 
by the Optuna algorithm, respectively. 

As can be seen from Tables 4 and 5, the values of two hyper-
parameters, namely the Activation function and optimizer, are equal for 
all the ten best combinations of CNN and LSTM models. While the best 
loss function selected in the ten most accurate hyperparameter combi-
nations of the LSTM model is the mean square error (MSE), the results of 
experiments show that the value of this hyperparameter in the CNN 
model can be both the MSE and the mean absolute error (MAE). 

3.3. Hyperopt 

Hyperopt is the third advanced hyperparameter optimization algo-
rithm utilized in this research. In the Hyperopt algorithm, first the 
configuration space is defined and then the fmin driver is used to 
determine the direction of the optimization. Hyperopt provides three 
search algorithms including the random search (rand.suggest), anneal-
ing, and the TPE. Annealing is another GP alternative SMBO model with 
the capability of sampling the nested hyper parameters. In this study the 

Table 3 
Best hyperparameter combinations of LSTM model found by Scikit-Optimize.  

Rate Trial number Units of first LSTM layer dense layers Units of dense layer Activation function Loss function optimizer Epochs RMSE 

1 146 61 1 68 ReLU MSE ADAM 150 549.07 
2 177 27 1 10 ReLU MSE ADAM 150 549.37 
3 260 42 1 59 ReLU MSE ADAM 150 549.74 
4 26 12 4 100 ReLU MAE ADAM 149 549.94 
5 298 100 4 10 ReLU MSE ADAM 74 551.75 
6 85 54 1 29 ReLU MSE ADAM 150 551.99 
7 39 100 1 100 ReLU MSE ADAM 150 552.31 
8 279 100 4 100 ReLU MSE ADAM 58 552.48 
9 203 50 1 67 ReLU MSE ADAM 150 553.02 
10 219 75 1 42 ReLU MAE ADAM 50 554.33  

Table 4 
Best hyperparameter combinations of CNN model found by Optuna.  

Rate Trial 
number 

Units of first conv. 
Layer 

Units of second conv. 
Layer 

No. of dense 
layers 

No. of dense 
units 

Activation 
function 

Loss 
function 

optimizer Epochs RMSE 

1 269 108 80 3 45 ReLU MAE ADAM 86 553.66 
2 203 113 82 3 44 ReLU MAE ADAM 84 560.9 
3 97 72 32 3 47 ReLU MSE ADAM 95 561.73 
4 175 119 66 3 43 ReLU MAE ADAM 78 567.36 
5 228 119 78 3 39 ReLU MAE ADAM 84 570.45 
6 205 114 81 3 44 ReLU MAE ADAM 83 572.98 
7 227 119 77 3 40 ReLU MAE ADAM 84 573.19 
8 156 71 69 3 43 ReLU MAE ADAM 77 573.36 
9 77 83 62 3 46 ReLU MAE ADAM 94 574.49 
10 160 81 66 3 38 ReLU MAE ADAM 81 575.24  

Table 5 
Best hyperparameter combinations of LSTM model found by Optuna.  

Rate Trial number Units of LSTM layer No. of dense layers No. of dense units Activation function Loss function optimizer Epochs RMSE 

1 91 45 3 60 ReLU MSE ADAM 128 538.14 
2 123 43 2 61 ReLU MSE ADAM 124 541.04 
3 81 34 2 73 ReLU MSE ADAM 125 542.27 
4 272 46 2 59 ReLU MSE ADAM 120 542.34 
5 255 42 2 59 ReLU MSE ADAM 108 542.39 
6 69 37 1 54 ReLU MSE ADAM 104 543.49 
7 82 37 2 73 ReLU MSE ADAM 127 545.09 
8 248 50 2 63 ReLU MSE ADAM 105 545.44 
9 241 42 2 61 ReLU MSE ADAM 103 546.29 
10 258 52 2 63 ReLU MSE ADAM 123 547.53  
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annealing search method is selected to compare its performance with the 
TPE search method in the Optuna algorithm and the GP search method 
in Scikit optimize. 

The best ten hyperparameter combinations of the CNN and LSTM 
models found by Hyperopt are shown in Tables 6 and 7. For the CNN 
model, the minimum RMSE value of 556.57 was obtained for trial 
number 203 after approximately 368 min. Regarding the LSTM model, 
the minimum RMSE value of 532.59 was obtained for trial number 236 
after approximately 892 min. 

3.4. Comparison of the hyperparameter optimization algorithms 

By comparing the prediction accuracy of prediction models whose 
structures (hyperparameters) are proposed by optimization methods, 
the tuning methods can be compared. The processing speed is another 
factor in determining the performance of these optimization methods. 
Table 8 shows the performance of the prediction models tuned by the 
three optimization techniques, both in processing time and accuracy. 

Considering the calculated RMSE values in Table 8 and Fig. 3(a), the 
first point that can be recognized is that the LSTM model is a better 
choice than the CNN for short term wind power prediction. This is 
believed to be due to the capability of the LSTM model in learning both 
long-term and short-term dependencies. On the other hand, while the 
prediction accuracy of different structures of the CNN model, proposed 
by different optimization methods are very similar, the LSTM model 
optimized by the Hyperopt algorithm based on the annealing search 
method results in the highest accuracy. In terms of prediction accuracy, 
the Optuna optimization method ranks second after the Hyperopt 
algorithm. 

Based on the comparison of the required time for calculations/sim-
ulations in each optimization in Table 8 and Fig. 3(b), it can be 

Table 6 
Best hyperparameter combinations of CNN model found by Hyperopt.  

Rate Trial 
number 

Units of first conv. 
Layer 

Units of second conv. 
Layer 

No. of dense 
layers 

No. of dense 
units 

Activation 
function 

Loss 
function 

optimizer Epochs RMSE 

1 203 105 33 2 21 ReLU MSE ADAM 80 556.57 
2 237 105 33 2 58 ReLU MAE ADAM 80 567.44 
3 270 105 33 2 21 ReLU MSE ADAM 80 567.88 
4 204 105 33 2 58 ReLU MAE ADAM 80 569.32 
5 200 105 33 2 21 ReLU MAE ADAM 80 571.45 
6 257 105 33 2 21 ReLU MAE ADAM 80 571.72 
7 172 105 33 2 21 ReLU MAE ADAM 80 571.85 
8 285 105 34 2 14 ReLU MAE ADAM 80 572.39 
9 220 105 33 2 21 ReLU MAE ADAM 80 573.22 
10 66 105 33 1 21 ReLU MAE ADAM 80 574.06  

Table 7 
Best hyperparameter combinations of LSTM model found by Hyperopt.  

Rate Trial number Units of LSTM layer No. of dense layers No. of dense units Activation function Loss function optimizer Epochs RMSE 

1 236 52 2 60 ReLU MSE ADAM 99 532.59 
2 96 52 2 60 ReLU MSE ADAM 99 541.23 
3 195 52 2 60 ReLU MSE ADAM 99 541.76 
4 237 52 2 97 ReLU MSE ADAM 99 541.83 
5 35 52 2 60 ReLU MSE ADAM 99 542.32 
6 244 52 2 60 ReLU MSE ADAM 99 543.59 
7 266 52 2 60 ReLU MSE ADAM 99 544.18 
8 14 52 2 60 ReLU MSE ADAM 66 546.58 
9 154 66 2 60 ReLU MSE ADAM 99 547.82 
10 213 52 1 60 ReLU MSE ADAM 99 547.92  

Table 8 
The RMSE and processing time of the prediction models tuned in different 
method.  

Optimization methods RMSE (kW) Calculation time (minutes) 

Algorithm Search method CNN LSTM CNN LSTM 

Scikit-Opt GP 553.74 539.64 455 600 
Optuna TPE 553.66 538.14 492 456 
Hyperopt Annealing 556.57 532.59 368 892  

Fig. 3. RMSE (a) and calculation time (b) of the CNN and LSTM tuned by various optimization methods.  
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concluded that the Optuna optimization algorithm using the TPE search 
method and EI acquisition function, has the best efficiency for both CNN 
and LSTM models. Fig. 4 shows the prediction results of three individual 
LSTM prediction models tuned by the optimization methods. As can be 
in this figure, when the wind power generation encounters abrupt 
changes, the LSTM model optimized by Hyperopt and Optuna 

algorithms have better prediction performance than the LSTM model 
optimized by Scikit optimize. 

3.5. Randomness impact on the optimization performance 

As mentioned earlier, most artificial neural networks (ANN) have 
randomness in their training process. Randomness can have different 
reasons, the most important of which is the random initialization of 
weights and biases in NNs. Different initialization of weights causes 
changes in the training results that make the networks unstable and 
unreliable. As a result, to improve the performance of the prediction 
models and achieve consistent results, it is necessary to predict this 
randomness. In ML, for prediction of randomness the seed concept is 
used. Seed allows for the prediction of the randomness and makes the 
results reproducible [29]. Defining a specific seed value before training 
ensures consistent results of ANNs. 

In this study, to investigate the impact of random initialization on the 
accuracy of deep learning models, an experiment is carried out con-
sisting of one hundred trials of CNN model predictions with different 
seeds but constant hyperparameters. As can be seen in Fig. 5 and 
Table 9, the RMSE values of the predictions vary from 570.4 to 631.7 
with an average value of 595.9 and standard deviation of 13.78. It is 
evident that the changes in random initialization, while all other vari-
ables are constant, can have a significant impact on the prediction ac-
curacy of the forecasting models. 

This means that without considering a wider range of random seeds 
it is difficult to trust the performance of a specific deep learning model. 
In other words, various initializations are required to see the robustness 
of the prediction model. In this project to investigate the impact of the 
randomness feature of NNs on the accuracy of the deep learning models 
built by the best hyperparameter combinations, 10 different random 
seeds [123, 951, 375, 435, 599, 54, 602, 325, 691, 36] are used for the 
best found hyperparameter combinations of the CNN and LSTM deep 
leaning models to find the best structure which is less sensitive to the 

Fig. 4. Wind power predictions of LSTM models optimized by three different 
optimization algorithms. 

Fig. 5. Histogram of RMSE values of CNN model with different seeds.  

Table 9 
The statistical description of RMSE prediction results with different seeds.  

RMSEs of the CNN prediction model 

Counts of trials 100 
Average of RMSEs 595.96 
Standard deviation 13.78 
Minimum RMSE 570.45 
Maximum RMSE 631.73  

Table 10 
RMSE values of different hyperparameter combinations of CNN model with different seeds.  

Seeds H.C 1 H.C 2 H.C 3 H.C 4 H.C 5 H.C 6 H.C 7 H.C 8 H.C 9 H.C 10 

R.S 1 123 582.05 592.06 621.04 596.58 587.33 594.24 597.20 623.10 584.03 605.28 
R.S 2 951 581.68 598.74 590.73 596.52 581.34 612.38 612.04 582.82 581.25 599.65 
R.S 3 375 590.17 619.76 594.03 617.20 579.50 582.82 607.01 566.11 588.17 575.05 
R.S 4 435 569.66 596.19 595.14 614.82 586.07 636.65 610.35 585.86 602.05 625.39 
R.S 5 599 597.98 592.18 623.40 590.01 593.39 573.66 596.64 574.51 572.42 620.09 
R.S 6 54 597.95 564.98 682.69 616.43 584.56 582.11 592.07 575.23 588.85 596.86 
R.S 7 602 596.23 613.62 610.71 601.07 607.69 595.51 606.02 591.19 583.16 602.35 
R.S 8 325 587.22 594.58 617.99 621.27 629.48 584.02 604.10 596.17 587.38 584.62 
R.S 9 691 582.61 591.89 636.24 578.85 592.06 595.31 617.61 587.37 581.86 590.43 
R.S 10 36 598.92 592.02 609.06 591.16 592.17 602.31 583.57 604.86 595.76 593.70 
Averages 588.45 595.60 618.10 602.39 593.36 595.90 602.66 588.72 586.49 599.34 
STD 9.60 14.56 26.94 14.26 14.97 18.18 10.25 16.48 8.17 15.19  

Fig. 6. RMSE values of different hyperparameter combinations of CNN model 
with different seeds. 
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randomness. 
Table 10 shows the RMSE values related to the predictions made by 

the CNN models based on the 10 best hyperparameter combinations and 
10 different random seeds. 

For a better analysis of the test results presented in Table 10, the 
RMSE values are plotted in Fig. 6. In addition, the distribution of RMSE 
values for each hyperparameter combination are shown in Fig. 7. 

As can be recognized from Table 10 and Figs. 6 and 7, considering all 
the set seed values, combination number 9 has the best performance, as 
it has the least average and standard deviation values of RMSEs. In 
another word, a CNN model built based on the hyperparameter of 
combination number 9 will be less sensitive to the randomness feature of 
NNs. A similar experiment/simulation was carried out for the LSTM 
prediction model. In a similar manner, Table 11 shows the RMSE values 
related to the predictions made by the LSTM models based on the 11 best 
hyperparameter combinations and 10 different random seeds. 

Fig. 8 shows the RMSE values for different hyperparameter combi-
nations and Fig. 9 demonstrates distribution of RMSE values for each 
hyperparameter combination. 

As noticed from Table 11 and Figs. 8 and 9, considering all the set 
seed values, combination number 3 has the best performance, as it has 
the least average and standard deviation values of RMSEs. In other 
words, an LSTM model based on the hyperparameter of combination 
number 3 will be less sensitive to the randomness feature of NNs. To 
assess the robustness of the LSTM model based on the third hyper-
parameter combinations, an experiment is caried out in which two LSTM 
models base on the hyperparameter combination sets 1 and 3 were 
utilized for wind power prediction. In this experiment, no seeds value is 
set to see the performance of the proposed structures. As can be seen 
from Fig. 10, the forecasting model, which was built with the third 
hyperparameter combination, is more accurate. Better forecasting per-
formance is clearly visible especially in higher wind power values, such 
as for example between hours 15:00 and 18:00 on 26th of April (Fig. 11) 
and during times when the wind power production experiences sudden 

Fig. 7. Average and standard deviations of RMSE values for different hyper-
parameter combination. 

Table 11 
RMSE values of different hyperparameter combinations of LSTM model with different seeds.  

Seeds H.C 1 H.C 2 H.C 3 H.C 4 H.C 5 H.C 6 H.C 7 H.C 8 H.C 9 H.C 10 

R.S 1 123 565.41 670.06 553.7 560.58 580.36 558.4 549.45 577.62 681.99 574.64 
R.S 2 951 565.62 558.31 562.39 591.9 567.04 550.72 567.53 555.90 556.53 573.81 
R.S 3 375 565.64 571.43 565.93 565.04 571.15 590.16 556.83 577.39 556.23 586.87 
R.S 4 435 545.13 562.01 569.52 562.27 566.86 587.41 581.36 572.37 571.77 576.19 
R.S 5 599 575.46 573.69 564.41 569.04 575.63 573.44 578.02 563.22 601.12 700.64 
R.S 6 54 713.16 559.72 547.07 573.1 571.66 563.3 595.56 576.98 560.43 581.04 
R.S 7 602 585.11 582.99 574.58 590.25 583.1 568.11 590.65 558.49 559.33 572.58 
R.S 8 325 560.84 550.14 580.14 563.89 599.04 569.42 558.06 587.30 595.30 589.38 
R.S 9 691 563.77 566.52 565.97 563.51 546.47 568.94 568.75 554.34 573.16 568.38 
R.S 10 36 572.29 574.24 587.55 550.10 562.65 581.54 576.65 576.86 559.29 614.30 
Averages 581.24 581.24 567.13 568.97 572.4 571.14 572.29 570.05 581.52 593.78 
STD 47.49 47.49 11.85 13.07 13.85 12.46 14.95 11.23 38.77 39.78  

Fig. 8. RMSE values of different hyperparameter combinations of CNN model 
with different seeds. 

Fig. 9. Average and standard deviations of RMSE values for different hyper-
parameter combination. 

Fig. 10. wind power prediction of LSTM model built by two different hyper-
parameter combinations. 
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changes. 

4. Conclusions 

Since higher penetration of wind power into the power grid can be 
achieved by increasing wind power forecasting accuracy, the focus of 
this research has been on fine-tuning the hyperparameters of machine 
learning models to increase the accuracy and efficiency of forecasting. 
As opposed to grid search or random search which are time-consuming 
and unreliable, three advanced hyperparameter optimization tech-
niques, Scikit-opt, Hyperopt, and Optuna, are used to tune CNN and 
LSTM prediction models, two widely used and strong deep learning 
models. The results showed that the Optuna optimization technique 
using Tree-structured Parzen estimator (TPE) search algorithm and Ex-
pected Improvement (EI) acquisition function, has the highest efficiency 
for both CNN and LSTM models. Also, regarding the improvement of the 
prediction accuracy, it has been demonstrated that while for the CNN 
model, all the optimization methods perform almost the same, the LSTM 
model optimized by the Hyperopt algorithm based on the annealing 
search method achieves the highest accuracy. In addition, in this 
research, the sensitivity of different structures of CNN and LSTM models 
to seed changes was investigated and the most resistant structure against 
randomness was selected for both models. The proposed models not only 
do not require initial settings of random seeds, but also provide the 
highest level of accuracy, efficiency, and robustness for the utilized 
offshore wind power dataset. This level of performance for short term 
wind power forecast can be used for regulation actions, real-time grid 
operations, market clearing and wind turbine control systems. 
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