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Depth-guided Deep Video Inpainting
Shibo Li, Shuyuan Zhu, Member, IEEE, Yao Ge, Bing Zeng, Fellow, IEEE,

Muhammad Ali Imran, Fellow, IEEE, Qammer H. Abbasi, Senior Member, IEEE, and Jonathan Cooper

AbstractÐVideo inpainting aims to fill in missing regions
of a video after any undesired contents are removed from it.
This technique can be applied to repair the broken video or
edit the video content. In this paper, we propose a depth-
guided deep video inpainting network (DGDVI) and demon-
strate its effectiveness in processing challenging broken areas
crossing multiple depth layers. To achieve our goal, we divide
the inpainting into depth completion, content reconstruction,
and content enhancement. Three corresponding modules are
designed to implement a process-flow. Firstly, we develop a depth
completion module based upon the spatio-temporal Transformer
which is used to obtain the completed depth information for
each video frame. Secondly, we design a content reconstruction
module to generate initially inpainted video. With this module,
the contents of the missing regions are composed via the depth-
guided feature propagation. Thirdly, we construct a content
enhancement module to enhance the temporal coherence and
texture quality for the inpainted video. All of proposed modules
are jointly optimized to guarantee the high inpainting efficiency.
The experimental results demonstrate that our proposed method
provides better inpainting results, both qualitatively and quan-
titatively, compared with the previous state-of-the-art. The code
is available at https://github.com/lishibo888/DGDVI.

Index TermsÐVideo inpainting, depth completion, depth-
guided content reconstruction, content enhancement.

I. INTRODUCTION

V IDEO inpainting is a popular restoration technique that

is used to complete the damaged video or edit the video

with removed contents. It was initially implemented based

upon image inpainting and further developed by introducing

the temporal information of videos to achieve high inpainting

performance, generating visually consistent and coherent video

contents.

Although numerous of video inpainting methods [1]±[5]

have been proposed in the past, there are still challenges in the

design of an effective scheme. Notably, effectively composing

the missing regions crossing different depth layers, such as

foreground and background layers of the content, remains a

significant challenge in video inpainting. Due to the lack of

cues to identify layers, foreground and background reference

information aliasing frequently happens when information is

propagated from reference region to target region for content

construction, resulting in blurred edges and details. This

aliasing also induces spatial and temporal incoherence between

composed frames, generating low-quality inpainted videos.
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Fig. 1. Pipeline of our proposed depth-guided video inpainting approach. Our
approach use the predicted depth map to guide the content reconstruction for
missing regions. Compared with the approaches without depth guidance, our
method can generate more reliable contents for missing regions that cross
foreground and background.

Over the past years, some methods [1], [5], [6] have been

proposed to generate spatial and temporal coherent results by

introducing optical flow as guidance. These methods estimate

optical flow for missing regions and propagate reference in-

formation from frame to frame guided by the flow to construct

contents for missing regions. The flow-based methods can

be implemented in either pixel domain or feature domain,

via content propagation or feature propagation throughout

the video for completion. Accurate optical flow is crucial

for information propagation in these methods. However, the

flow often changes dramatically over a long duration, which

makes accurate flow estimation for all missing regions over

the whole video difficult when the long-range cues are needed.

Meanwhile, estimation error often happens and is propagated

during flow estimation, especially on the regions crossing

foreground and background layers. The existence of this error

will result in information propagation error, thus limiting

inpainting efficiency.

To solve the above problem, we adopt depth rather than

optical flow to guide the information propagation for video

inpainting. Compared with flow, depth is temporal invari-

ant over the whole video, which makes it much easier to

be predicted for missing regions. In addition, using depth

information can effectively distinguish the foreground and

background for the video frame. This indicates that adopting

it to guide information propagation may potentially solve the

reference information aliasing problem.

In a previous study [7], depth is used to implement the

warping of reference region to the target broken region, where

the reference region is offered by an external image sharing

scene contents with the target image. The warped reference

region then offers the scene-consistent information for the

https://github.com/lishibo888/DGDVI
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Fig. 2. Framework of the proposed depth-guided deep video inpainting (DGDVI).

completion of the broken region. Additionally, in [8], the depth

information acquired from Lidar is used to guide the fusion

of multiple source videos, to generate an inpainted clear video

without undesired traffic agents. In contrast to previous work,

we aim to use depth to guide the information prorogation for

the construction of contents for the broken video. We do not

use it to either align video frames or fuse videos to implement

inpainting.

To achieve effective video inpainting, we propose a depth-

guided method in this work and implement it in three stages,

including the depth completion, content reconstruction, and

content enhancement, as illustrated in Fig. 1. We design

three corresponding modules for these stages, to predict the

depth of video, compose content for the missing region, and

enhance the composed content, respectively. These modules

are subsequently used to construct our depth-guided deep

video inpainting network (DGDVI), as illustrated Fig. 2.

Our proposed method aims to achieve high robustness and

performance for the challenging inpainting scenes, especially

for the filling of region crossing different depth layers. Our

contributions are summarized as follows:

• We propose a video inpainting method with the guidance

of depth. The depth information is adopted to guide the

information propagation over the video, composing rea-

sonable and reliable results, especially for the completion

of multi-layered region.

• We construct a depth completion module to predict the

completed depth for the broken video by using both local

and non-local spatio-temporal reference information.

• We design a content reconstruction module to generate

contents for missing regions with the guidance of depth,

solving the content aliasing problem.

• We develop a content enhancement module with our pro-

posed parallel feature enhancement network to enhance

the temporal coherence and texture quality for the video,

guaranteeing to achieve high inpainting quality.

II. RELATED WORK

A. Deep Learning-based Image Inpainting

The deep learning-based image inpainting has demonstrated

impressive performance over the past few years. The con-

volution neural networks (CNN) based methods were firstly

applied to image inpainting. For instance, Pathak et al. [9]

introduced the generative-adversarial network [10] to image

inpainting and achieved good results. In addition, the advanced

modules or learning strategies were proposed to produce

high-quality inpainted images, including the contextual at-

tention [11]±[14], partial convolution [15], gated convolu-

tion [16] and Fourier convolution [17]. In these methods,

Yu et al. [11] introduced a contextual attention module to

implement the coarse-to-fine generative image inpainting. Liu

et al. [15] designed an image inpainting network using the

partial convolutions. Yu et al. [16] constructed an inpainting

network based on the gated convolution to selectively integrate

valid information collected from the surrounding regions to

compose content for the missing region. Recently, Suvorov et

al. [17] built an image inpainting network using the Fourier

convolution to obtain wide receptive field so that the model

can implement the large mask inpainting.

In order to generate more reliable contents, some meth-

ods [18]±[24] introduced intermediate clues to guide the

content reconstruction for missing regions. More specifically,

Nazeri et al. [18] constructed the Edgeconnect network to

predict the edges for the missed contents. The predicted

edges are used to guide the filling of missing regions with a

completion network. Xiong et al. [19] developed a foreground

contour completion network to predict foreground contour

for the missing regions and built a CNN-based image com-

pletion network to generate contents with the guidance of

the predicted foreground contour. Ren et al. [20] proposed a

structure reconstruction CNN model to complete the missing

structure information of image and also designed a texture

generator to yield image details according to the reconstructed

structures. Wu et al. [21] constructed a two-staged generative

model for image inpainting, which firstly accurately predicts

the structural information of the missing region based on local

binary pattern learning and subsequently builds a structure-

guided image inpainting network using spatial attention. Song

et al. [22] developed a segmentation prediction model to

obtain the segmentation information for the missing regions

and then built a segmentation-guided image inpainting network

to generate the semantic consistent contents. Moreover, instead

of one-way semantic guidance, Zhang et al. [23] established a

semantic-guided image inpainting framework in which the se-

mantic segmentation guides image inpainting and also receives

feedback from image inpainting to generate more reliable

inpainting results. Additionally, Sun et al. [24] proposed a deep

network which learns to decompose a complex mask area into

several basic mask types and inpaints the damaged image in

a patch-wise manner to enhance the inpainting robustness.
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Besides the CNN-based methods, the Transformer-based

image inpainting approaches [25]±[27] also achieve remark-

able performance. For instance, Yu et al. [25] proposed a

bidirectional autoregressive Transformer for image inpainting.

Li et al. [26] proposed a mask-aware Transformer to repair

the image with large missing area. Dong et al. [27] designed

a Transformer model to restore the low-resolution structure

for the broken image and also built a Fourier CNN model to

generate textures for the missing regions with the guidance of

the up-sampled structure.

B. Deep Learning-based Video Inpainting

In recent years, the application of deep learning, espe-

cially the CNN-based methods, to video inpainting has also

demonstrated good performance. For instance, Lee et al. [28]

constructed a deep frame alignment network to aggregate cues

collected from reference frames to inpaint target frame. To

obtain both spatial and temporal cues for inpainting, some

methods [29]±[32] employed 3D convolution to construct the

deep video inpainting network. Specifically, Wang et al. [29]

and Kim et al. [30] designed the CNN models for inpainting

by using both 3D and 2D convolutions to collect spatial

and temporal information. Chang et al. [31] built a temporal

PatchGAN model based on the proposed 3D gated convolution

for free-form video inpainting.

Due to the limited spatio-temporal receptive field of the 3D

convolution, using 3D convolution often results in inconsistent

visual artifacts in the inpainted videos. To solve this problem,

some approaches [1], [6], [33]±[35] adopted optical flow as

the guidance to propagate cues from the neighboring frames

to target frame for content construction. For example, Xu et

al. [6] firstly proposed a deep flow completion network (DFC-

Net) to estimate the flow for the missing region, facilitating the

propagation and composition of content in pixel domain. Zou

et al. [33] used DFC-Net to predict the flow and employed the

flow-guided convolution to propagate the reference cues for

content construction in feature domain. To obtain the reliable

flow for the generation of temporally coherent results, Gao

et al. [1] employed Edgeconnect [18] to predict the edges

of missing contents and then used the edge information to

guide the completion of flow. Then, based on the motion

information of object, Zhang et al. [34] introduced inertia prior

to estimate optical flow so as to guarantee using the generated

flow can produce good inpainting results. Recently, Kang et

al. [35] proposed an error compensation method to improve

the prediction accuracy of flow for the implementation of high-

efficiency flow-guided inpainting.

In addition to the CNN-based method, the Transformer-

based video inpainting was also proposed. Based on vision

Transformer [36], Zeng et al. [2] firstly developed a spatial-

temporal Transformer model (STTN) for video inpainting.

To improve STTN, Liu et al. [3] built FuseFormer model

to generate fine-grained contents by using overlapped patch

embeddings. Additionally, Liu et al. [37] constructed a spatial-

temporal attention scheme, implementing the spatial propa-

gation and temporal propagation with two different attention

blocks to compose contents. Masum et al. [38] constructed an

end-to-end network based on axial attention-based style Trans-

former to achieve consistent video inpainting. To introduce

the flow-based guidance into the Transformer-based model,

Li et al. [4] adopted flow-guided convolution for short-term

propagation across neighboring frames and used Transformer

model to implement the long-term spatio-temporal propagation

for the generation of inpainted videos. Additionally, Zhang et

al. [5] designed a flow-guided Transformer model to fuse cues

to produce high-quality results.

III. PROPOSED METHOD

A. Overview

Our proposed DGDVI method is implemented in three

stages, including depth completion, content reconstruction and

content enhancement, to complete broken videos, especially

the one with multi-layered contents. Three corresponding

modules are designed for these stages and are jointly optimized

for the implementation of our proposed model.

In our work, given a broken video that contains N frames

{X1, X2, . . . , XN}, where Xi ∈ R
H×W×3, we firstly divide

the frames into several local frame groups. Each local frame

group, denoted as Xl, composed by Nl frames that are

obtained by performing a temporal window on the video to

select frames. Meanwhile, we construct one non-local frame

group, denoted as Xnl, that consists of Nnl frames obtained

by uniformly sampling the video frames with a given step-size.

With Xl and Xnl, we compose Xin = {Xl,Xnl}.

Then, in the depth completion and content reconstruction

stages, we use Xin to produce a rough inpainting result for

Xl. Note that Xin consists of local and non-local frames. The

employment of non-local frames to produce the inpainted local

frames aims at introducing long-range spatio-temporal context

to achieve high quality. Finally, we just use the frames of Xl

to enhance the local temporal coherence for it and obtain a

refined result in the content enhancement stage.

B. Depth Completion

The structure, shape and contour cues can be clearly indi-

cated in depth, which makes it be potentially used to enhance

the quality of reconstructed contents. In this work, we design

the depth completion module to predict depth for damaged

video. The predicted depth is then used to guide the content

reconstruction. This module is constructed based on the spatio-

temporal Transformer with multi-head self-attention and can

be used to obtain the local and non-local depth dependencies

to generate completed depth.

Given Xin = {Xl,Xnl} ∈ R
(Nl+Nnl)×H×W×3, we

use a pre-trained depth estimation network [39] to obtain

depth information for the available image regions but leave

the other regions of depth empty. Assuming that Din ∈
R

(Nl+Nnl)×H×W is composed of the incomplete depth of Xin,

the proposed depth completion module is designed to generate

complete depth for Xin based on Din.

Inspired by [2], [3], we construct the depth completion

module based on the CNN-Transformer hybrid architecture

that enables the module to generate accurate and temporally

consistent depth information. In addition, the depth completion



4

is implemented in three steps, including feature extraction,

feature propagation and depth construction.

Specifically, the features of Din are firstly extracted by a

CNN-based context encoder and converted into token embed-

dings. Then, the token embeddings are fed into a stack of

spatio-temporal Transformer blocks to complete the feature

propagation via token updating. Finally, the updated tokens

are converted back into features by a token-to-patch module

and a CNN decoder is applied to produce the predicted depth

information Dc ∈ R
(Nl+Nnl)×H×W .

1) Feature Extraction: We firstly concatenate Din with

the corresponding inpainting mask and then feed them into

a CNN-based encoder which consists of five convolutional

layers to obtain the features Edep where the channel number

is Cdep and the size of feature map is H/4 × W/4. Then,

the features Edep are converted into tokens so that they can

be fed into the consequent Transformer blocks. In this work,

the soft split operation (SS) [3] is applied to split Edep into

overlapped patch embeddings to form the tokens Z0
dep as

Z0
dep = SS(Edep). (1)

With the soft split operation, the temporally-correlated features

extracted from depth are converted into overlapped token

embeddings so that we can build up the spatio-temporal

correlation among tokens for the updating of them during

feature propagation.

2) Feature Propagation: We adopt feature propagation [2]±

[4] to propagate the features of depth from available regions

to missing regions in the incomplete depth so that we can

complete depth. The spatio-temporal Transformer blocks are

employed to facilitate this propagation according to the short-

long term dependencies and contextual cues in both feature

and temporal domains.

To guide the feature propagation, the multi-head self-

attention (MSA) [36], [40] is adopted in the spatio-temporal

Transformer block (STTB) [2], [3] to construct the spatio-

temporal dependencies within tokens. To implement the MSA

mechanism, the input tokens are firstly transformed into the

query, key and value vectors, and then are split into multiple

heads to extract more diverse and expressive representations

than only using single head. For each head, its attention

map is obtained by calculating the attention scores between

its query and key vectors, capturing multiple relationships

between multiple tokens. With the obtained attention map, we

can assign appropriate attention weights to relevant values so

as to update the tokens in feature and temporal domains.

Assuming that there are k heads in MSA, the updated value

V̂k for each head is calculated as

V̂k = MSA(Qk,Kk,Vk) =
softmax (QkK

T
k )√

dk
Vk, (2)

where Qk, Kk, and Vk are the query, key and value vectors

for each head, respectively, and dk is the feature dimension

of Qk and adopted as a scaling factor. With the application

of MSA, the module can update the tokens for broken regions

during feature propagation, guaranteeing to generate accurate

depth information.
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Fig. 3. Architecture of spatio-temporal Transformer block (STTB).

Based on MSA, we construct STTB as illustrated in Fig. 3

and it is implemented as

Z′n
dep = MSA(LN(Zn−1

dep )) + Zn−1
dep

Zn
dep = F3N(LN(Z′n

dep)) + Z′n
dep,

(3)

where Zn−1
dep denote the input token embeddings outputted

from the (n − 1)th Transformer block, Zn
dep represent the

output of nth Transformer block, LN denotes the layer nor-

malization [41], and F3N [3] consists of a soft composition

(SC) [3] and a soft split operation. Note that F3N is adopted

in our work to build up the interaction of overlapped token

embeddings for effective feature propagation. We stack P
spatio-temporal Transformer blocks and use them to imple-

ment feature propagation, enabling the module to effectively

combine the cues collected from local and non-local depth to

generate the complete depth.

3) Depth Construction: After feature propagation, the to-

ken embeddings are accordingly updated. In order to obtain

the complete depth, the updated tokens have to be converted

back into features. To achieve this goal, the soft composition is

applied to convert tokens into the overlapped feature patches.

These patches are then used to form the complete features as

Êdep = SC(ZN1

dep), (4)

where ZP
dep denotes the output of the P th Transformer block

and Êdep is the composed complete features of depth. Then,

the features Êdep are decoded by a CNN-based decoder con-

sisting of four convolutional layers to generate the predicted

depth Dc which has the same resolution as the input frame.

C. Content Reconstruction

The content reconstruction module is designed to generate

contents for the broken foreground and background of missing

regions. Note that the depth indicates both the contour and

content layer information for a picture. Given a picture whose

missing content crosses foreground and background, introduc-

ing depth as guidance to reconstruct the missing content may

produce result with clear shape and structure. In this work,

we construct the content reconstruction module based on the

depth-guided spatio-temporal Transformer and the proposed

multi-head mutual-self-attention. With this module, we can

combine the spatial and temporal dependencies of frames

with the guidance of depth to produce reasonable and reliable

content for the target region.

Our proposed content reconstruction module is also devel-

oped based on the CNN-Transformer architecture and consists
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Fig. 4. Architecture of multi-head mutual self-attention mechanism (MMSA).

of feature extraction, depth-guided feature propagation and

content composition. Specifically, given broken frames Xin

and the corresponding complete depth maps Dc, the lower-

resolution features of content and depth are firstly extracted

from the broken video frames and the predicted depth via two

CNN-based encoders, respectively. Then, these features are

converted into tokens and fed into the depth-guided STTB in

which the tokens of content are updated through the depth-

guided feature propagation. The updated tokens are converted

into features and these features are finally used to reconstruct

frames X̂rec via a CNN-based decoder.

1) Feature Extraction: Firstly, a context encoder [9] which

consists of nine convolutional layers takes in the incomplete

frames Xin and produces 1/4 sized feature with Ccn channels.

And the corresponding predicted depth Dc is feed into a CNN-

based encoder with four convolutional layers to obtain 1/4
sized feature maps Edp with Cdep channels. Then, we apply

the soft split to convert Ecn and Edp into overlapped token

embeddings as

Z0
cn = SS(Ecn)

Z0
dp = SS(Edp),

(5)

where Z0
cn and Z0

dp represent the embedded tokens for Ecn

and Edp, respectively.

2) Depth-guided Feature Propagation: Since the depth

tokens contain enough depth information, we use them to

guide the construction of spatio-temporal relationship between

content tokens during feature propagation, which makes the

model learn how to utilize depth index to assign appropriate

attention weights for token updating. To achieve the above

goal, we construct the depth-guided spatio-temporal Trans-

former block (DGSTTB) to facilitate the feature propagation.

In addition, the multi-head mutual self attention (MMSA) is

adopted in DGSTTB to make the content tokens update with

the interaction of depth tokens.

To implement MMSA in DGSTTB, the depth tokens just

participate in the assignment of attention weights but are not

used to determine value vectors. Hence, the module can focus

on the reference regions with similar depth to the target region

and spread these cues to the target region so that it can

effectively update token embeddings for missing regions to

achieve better content reconstruction. Different from MSA,

we use mutual query Qmul and mutual key Kmul to obtain

the attention map as well as the content value Vcn and the

depth value Vdp for value updating in MMSA, as illustrated in

Fig. 4, where Vcn and Vdp are independent. More specifically,

we concatenate Zcn with Zdp together and use a linear

projection layer fkq to convert them into the mutual query

vector Qmul and mutual key vector Kmul, respectively, i.e.,

{Kn
mul,Q

n
mul} = fkq(Concat(Z

n−1
cn ,Zn−1

dp )), (6)

where Zn−1
cn and Zn−1

dep represent the output content and depth

token embeddings of the (n − 1)th DGSTTB and Kn
mul and

Qn
mul are mutual key and query vectors of the nth DGSTTB.

In addition, Zcn and Zdp are independently converted into the

content and depth values

Vn
cn = fvc(Z

n−1
cn )

Vn
dp = fvd(Z

n−1
dp ),

(7)

where fvc and fvd are the linear projection layers used to

generate the content and depth values, respectively. In order

to capture various relationships between tokens, Qmul, Kmul,

Vcn and Vdp are then split into multiple heads. For each head,

we generate its corresponding attention map by using mutual

query and key. Then, we assign the weights for token updating

according to the attention map.

Assuming that there are k heads in MMSA, the updated

content and depth values for each head, denoted as V̂cn,k and

V̂dp,k, are obtained as

{V̂cn,k, V̂dp,k} = MMSA(Qmul,k,Kmul,k,Vcn,k,Vdp,k)

=
softmax (Qmul,kK

T
mul,k)√

dk
{Vcn,k,Vdp,k},

(8)

where Qmul,k, Kmul,k, Vcn,k, Vdp,k are the mutual query,

mutual key, content value and depth value for each head,

respectively, and dk is the feature dimension of Qmul,k.

Based on MMSA, DGSTTB is implemented as

{Z′n
cn,Z

′n
dp} =MMSA({LN(Zn−1

cn ),LN(Zn−1
dp )})

+ {Zn−1
cn ,Zn−1

dp }
Zn

cn =F3N(LN(Z′n
c )) + Z′n

cn

Zn
dp =F3N(LN(Z′n

dp)) + Z′n
dp,

(9)

where Zn−1
dp denotes the output token embeddings of the

(n− 1)th DGSTTB and Zn
dp represents the output of the nth

transformer block. We stack Q DGSTTBs and use them to

facilitate the depth-guided feature propagation, enabling the

model to effectively update the tokens for broken regions to

produce reliable contents for missing regions.

3) Initial Frame Composition: After the feature propaga-

tion, the content tokens are accordingly updated. In order

to reconstruct frames, the overlapped token embeddings for

contents are converted into features by the CNN-based decoder

with the SC operation as
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Êrec = SC(ZN2

cn ), (10)

where ZQ
cn denotes the content tokens obtained from the

Qth DGSTTB and Êrec is the composed features obtained

by using SC. Note that the features Êrec only contain the

features of local frames and the features of non-local frames

are discarded. Then we apply the CNN-based decoder which

consists of four convolutional layers to progressively upsample

Êrec and generate initial results for local frames. After that,

the composed local frames X̂rec and the composed features

of local frames Êrec are fed into the content enhancement

module to generate the final inpainting results.

D. Content Enhancement

After composing the frames for the broken video, we further

improve the video quality by introducing optical flow as the

guidance to enhance the temporal coherence of neighboring

frames. The content enhancement module is accordingly de-

signed to enhance the local temporal consistency and the

texture quality for the video. This module is constructed based

on a parallel feature fusion network with the flow-guided

deformable warping. With this module, we can strengthen the

local temporal coherence of the video to enhance the visual

consistency and improve both structure and texture details for

the final inpainting result.

In this work, we develop a parallel content enhancement

module based on the flow-guided deformable convolution [42]

to facilitate the content enhancement that consists of flow es-

timation, feature enhancement and final frame reconstruction.

Specifically, given the composed local frames X̂rec, we predict

forward and backward flows for them with a flow estimation

network. Then, with the features Êrec obtained from content

reconstruction module, we implement flow-guided deformable

warping to simultaneously warp the features of the neighbor-

ing frames to the target frame and fuse the warped features

for neighboring frames with target feature maps using multi-

layer perception (MLP) to enhance the features of target frame.

After that, we feed the enhanced features into a CNN-based

decoder to generate the final inpainted frames X̄en.

1) Flow Estimation: We adopt a lightweight flow estima-

tion network SpyNet [43] to predict the forward and backward

flows between neighboring frames so as to save the computa-

tion cost. We use Ft−1→t and Ft+1→t to denote the forward

and backward flows, respectively.

2) Feature Enhancement: As illustrated in Fig. 5, we

construct a parallel content enhancement block (PCEB)

that is developed based on flow-guided deformable

warping to strengthen the temporal coherence of the

video. In this work, the proposed PCEB is applied

to enhance a group of local neighboring frames

{..., X̂t−3, X̂t−2, X̂t−1, X̂t+1, X̂t+2, X̂t+3, ...}. We describe

its implementation using two neighboring frames,

{X̂t−1, X̂t+1}, but it can also be extended to work

with four frames, {X̂t−2, X̂t−1, X̂t+1, X̂t+2}, or six

frames, {X̂t−3, X̂t−2, X̂t−1, X̂t+1, X̂t+2, X̂t+3}, in the

implementation of our method. Given the features Êl of the

composed frames X̂l, we stack K PCEBs to produce the

𝒕 − 𝟏𝒕 − 𝟐 𝒕 𝒕 + 𝟏 𝒕 + 𝟐 …frame 

features
… ……

……
……𝑬𝒕ഥ𝑬𝒕+𝟏

ഥ𝑬𝒕−𝟏
MLP

……ഥ𝑬𝒕

flow warping + deformable warping

Fig. 5. Architecture of parallel content enhancement block (PCEB).

enhanced features Ēen and each PCEB is implemented in

four steps.

Firstly, the features Êt−1 and Êt+1 extracted from the

frames X̂t−1 and X̂t+1 are simultaneously warped to the

features Êt of the inpainted frame X̂t as

Ê
′

t−1 = W(Êt−1,Ft−1→t)

Ê
′

t+1 = W(Êt+1,Ft+1→t),
(11)

where W(·) denotes the flow-based warping [42], [44].

Secondly, we predict the offset residuals and modulation

masks with several convolution layers so that we can use them

to implement the deformable warping for feature enhancement.

The offset residuals and modulation masks are obtained as

{Ot−1→t,Ot+1→t,Mt−1→t,Mt+1→t}
= Conv(Concat(Ft−1→t,Ft+1→t, Ê

′

t−1Ê
′

t+1)),
(12)

where Ot−1→t and Ot+1→t are the predicted offset residuals,

Mt−1→t and Mt+1→t are the predicted modulation masks,

and Conv denotes the application of convolutional layers.

Thirdly, with the predicted offset residuals and modulation

masks, we employ the deformable warping to warp features

Ēt−1 and Ēt+1 to guarantee the features of neighboring

frames can be effectively aligned to Êt. The deformable

warping is implemented as

Ēt−1 = DConv(Ê
′

t−1,Ft−1→t +Ot−1→t,Mt−1→t)

Ēt+1 = DConv(Ê
′

t+1,Ft+1→t +Ot+1→t,Mt+1→t),
(13)

where DConv denotes the deformable convolution [45].

Finally, we concatenate Ēt−1, Ēt+1 and Êt to fuse them

with MLP to obtain the enhanced features Ēt as

Ēt = MLP(Concat(Êt, Ēt−1, Ēt+1)), (14)

where Concat is the concatenation operation. The features of

each frame can be simultaneously fused with the features of

its neighboring frames to obtain all the enhanced features Ēen.
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3) Enhanced Frame Reconstruction: After obtaining the

enhanced features Ēen from the Kth PCEB, we feed them

into a CNN-based decoder that consists of four convolutional

layers to progressively increase the resolution of features

and generate the enhanced inpainting frames X̄en. All the

enhanced frames are used to compose the final output video.

E. Loss Function

We construct the loss function Ltotal to train our model and

jointly optimizing all the modules. Ltotal is composed as

Ltotal =λdep · Ldep + λcon · Lcon + λenh · Lenh

+ λgen · Lgen,
(15)

where Ldep is the depth completion loss, Lcon is the content

construction loss, Lenh is the content enhancement loss, Lgen

is the T-PatchGAN loss [31], and λdep, λcon, λenh and λgen

are the corresponding weighting factors for each loss.

In Ltotal, the depth completion loss measures the difference

between the predicted depth information D̂ and the ground-

truth depth information D. It is defined as

Ldep = ∥D̂−D∥1. (16)

The content construction loss Lcon measures the difference

between the reconstructed video X̂ obtained from the content

reconstruction module and the ground-truth video X. It is

formulated as

Lcon = ∥X̂−X∥1. (17)

The content enhancement loss Lenh measures the difference

between the final output video X̄ obtained from the content

enhancement module and the ground-truth video X, i.e.,

Lenh = ∥X̄−X∥1. (18)

The T-PatchGAN loss [31] evaluates the difference between

the final inpainted video X̄ and the ground-truth video X with

a T-PatchGAN discriminator [31] D, where the discriminator

makes the model generate high-quality and realistic contents.

The T-PatchGAN loss is formulated as

Lgen = −E
X̄
[D(X̄)]. (19)

Moreover, the T-PatchGAN discriminator consists of six 3D

convolution layers and is used to learn the difference between

real patches of ground-truth videos and fake patches of in-

painted videos. The loss adopted in Chang’s work [31] is

employed to train the discriminator in this work, making the

discriminator correctly classify real and fake samples with a

clear margin. It is formulated as

LD =Ex∼PX(x)[max(0, 1−D(x))]

+ Ez∼P
X̄
(z)[max(0, 1 +D(z))],

(20)

where D(x) represents the discriminator’s output for a real

video sample x and D(z) represents the output for an inpaint-

ing video sample z.

IV. EXPERIMENTAL RESULTS

A. Settings

1) Datasets: We evaluate the proposed method on two

widely used video object segmentation datasets, YouTube-

VOS [46] and DAVIS [47], to demonstrate its effectiveness.

The YouTube-VOS dataset consists of 3,471, 474, and 508

video clips for training, validation, and testing, respectively,

covering various scenes. The DAVIS dataset contains 60

videos in the training set and 90 videos in the test set.

We train our model using the YouTube-VOS dataset and

evaluate the performance using both the DAVIS and YouTube-

VOS datasets. Specifically, following the initial partitioning

of YouTube-VOS dataset, we use its training set to train our

model. Moreover, to make our proposed method applicable to

different inpainting scenarios, we create both the stationary

irregular masks and the dynamic object-shaped masks as [2]±

[4], [28], [30], [32] did, and apply them to the source videos

to produce broken videos by removing the masked contents.

To evaluate the performance of the method, we conduct

evaluations on the YouTube-VOS test set and 50 video clips

from the test set of DAVIS dataset as the previous work [2]±

[4] did.

2) Implementation Details: During training, the numbers of

local frames Nl and non-local frames Nnl are both set to 4.

During test, the number of local frames Nl is set to 6, while

the step-size to uniformly sample non-local frames Nnl is set

to 6. In the experiment, the model adopt 8 STTBs in the depth

completion module, 8 DGSTTBs in the content reconstruction

module and 4 PCEBs in the content enhancement module,

i.e., P = 8, Q = 8, and K =4. The number of content

feature Ccn is set to 128, while the number of depth feature

Cdep is set to 64 in the depth completion and 32 in the

content reconstruction. The head number k of both MSA and

MMSA are set to 4. We first train the depth completion module

independently using Ldep for 300K iterations. Then with the

depth completion module and the pretrained flow estimation

network, SpyNet, frozen, we train the content reconstruction

and content enhancement modules using Lcon, Lenh and Lgen

for 300K iterations. And we finetune three modules together

using Ltotal for 200K iteration. The weighting factors for

λdep, λcon, λenh and λgen are set to 0.2, 0.2, 1 and 1e−3,

respectively. We adopt Adam optimizer [48] to train our

network. The initial learning rate is 1e−4, which is divided

by 10 after 150K iterations. The resolution of training videos

are resized to 240×432 and the batch size is set to 4. The

training of our network is implemented on Pytorch platform

with two NVIDIA GeForce RTX 3090 GPUs, while the test

experiments are implemented with one NVIDIA GeForce RTX

3090 GPU.

3) Evaluation Metrics: We adopt peak signal-to-noise ra-

tio (PSNR), structural similarity index (SSIM) [49], video

Frechet inception distance (VFID) [50], and flow warping error

(Ewarp) [51] as the quantitative metrics to evaluate the per-

formance of different video inpainting methods. More specif-

ically, PSNR and SSIM are two widely used metrics to assess

reconstructed image and video with original ones. Higher

value suggests higher similarity. VFID is employed to assess
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Masked Frames FGVC [1] FuseFormer [3] FGT [5] E2FGVI [4] DGDVI (Ours)

Fig. 6. Qualitative results for the video completion scenario that crosses foreground and background. From top to bottom: Bmx-bumps, Elephant, Swing,
Flamingo, and Motocross-bumps videos of the DAVIS dataset.

Masked Frames FGVC [1] FuseFormer [3] FGT [5] E2FGVI [4] DGDVI (Ours)

Fig. 7. Qualitative results for the object removal scenario. From top to bottom: Goat, Parkour, and Horsejump-high videos of the DAVIS dataset.

the perceptual similarity of distortion-oriented videos and has

been adopted in recent video inpainting approaches [2]±[4].

Lower value represents better realism and less distortion com-

pared with natural videos. Flow warping error Ewarp measures

the temporal consistency based on optical flow. Lower score

indicates better temporal consistency.

B. Comparisons

1) Qualitative Results: We qualitatively compare our

method with four latest approaches, including flow-edge

guided video completion (FGVC) [1], FuseFormer [3], flow-

guided Transformer for video inpainting (FGT) [5] and end-to-

end framework for flow-guided video inpainting (E2FGVI) [4].

The comparison is conducted on two tasks. The first one

is video completion and the second one is object removal,

where both the tasks are performed on the videos of the DAVIS

dataset. Moreover, we create the stationary irregular mask for

the video completion task as the previous methods [2]±[4],

[38] did. In this task, one static mask is randomly applied to a

video to remove the content. In contrast, we produce dynamic

object-shaped masks for the object removal task, where each

mask covers one moving object over the whole video.

Some video completion results for the challenging scenes

crossing foreground and background are presented in Fig. 6

and some object removal results are presented in Fig. 7. One

can see from Fig. 6 and Fig. 7 that our method generates

more reliable contents and clearer structures than the other

approaches, demonstrating its effectiveness.

2) Quantitative Results: We conduct quantitative compar-

ison on YouTube-VOS and DAVIS for video completion.

The resolution of test videos is 240×432. The proposed

method is compared to deep video inpainting (VINet) [30],

deep flow-guided video inpainting (DFVI) [6], learnable gated

temporal shift module (LGTSM) [32], copy-and-paste net-

works (CAP) [28], spatial-temporal transformations for video

inpainting (STTN) [2], axial attention-based style Transformer
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TABLE I
QUANTITATIVE COMPARISONS ON YOUTUBE-VOS [46] AND DAVIS [47] DATASETS. ↑ INDICATES HIGHER IS BETTER. ↓ INDICATES LOWER IS BETTER.
Ewarp

∗
DENOTES Ewarp × 10

−2 . EACH METHOD IS EVALUATED FOLLOWING THE PROCEDURES IN FUSEFORMER. VINET, DFVI, FGVC, AND FGT
ARE NOT END-TO-END TRAINING METHODS. THEIR FLOPS, THUS, ARE NOT PRESENTED. AAST DID NOT PROVIDE THE SOURCE CODE. AS SUCH ITS

FLOPS AND RUNTIME ARE NOT PROVIDED.

Accuracy Efficiency

YouTube-VOS DAVIS
FLOPs

Runtime

Models PSNR (dB) ↑ SSIM ↑ VFID ↓ Ewarp
∗ ↓ PSNR (dB) ↑ SSIM ↑ VFID ↓ Ewarp

∗ ↓ (s/frame)

VINet [30] 29.20 0.9434 0.072 0.1490 28.96 0.9411 0.199 0.1785 - -

DFVI [6] 29.16 0.9429 0.066 0.1509 28.81 0.9404 0.187 0.1608 - 2.56

LGTSM [32] 29.74 0.9504 0.070 0.1859 28.57 0.9409 0.170 0.1640 1008G 0.23

CAP [28] 31.58 0.9607 0.071 0.1470 30.28 0.9521 0.182 0.1533 861G 0.40

FGVC [1] 29.67 0.9403 0.064 0.1022 30.80 0.9497 0.165 0.1586 - 2.36

STTN [2] 32.34 0.9655 0.053 0.0907 30.67 0.9560 0.149 0.1449 1032G 0.12

FuseFormer [3] 33.29 0.9681 0.053 0.0900 32.54 0.9700 0.138 0.1362 752G 0.20

AAST [38] 33.23 0.9669 0.048 0.1396 32.71 0.9720 0.1360 0.1706 - -

FGT [5] 30.19 0.9536 0.063 0.0968 31.77 0.9639 0.134 0.1483 - 1.89

E2FGVI [4] 33.71 0.9700 0.046 0.0864 33.01 0.9721 0.116 0.1315 682G 0.16

DGDVI (Ours) 34.07 0.9725 0.045 0.0823 33.33 0.9740 0.111 0.1295 860G 0.21

TABLE II
ABLATION STUDY FOR THE PROPOSED MODULES

Model-1 Model-2 Model-3 Model-4

Content reconstruction ✓ ✓ ✓ ✓

+ Depth completion ✗ ✗ ✓ ✓

+ Content enhancement ✗ ✓ ✗ ✓

PSNR (dB) / SSIM 32.54/0.9700 33.04/0.9718 33.08/0.9724 33.33/0.9740

Fig. 8. Ablation study for the proposed modules. From left to right: Masked
frame of Tennis video, portions for ground truth, model-1, model-2, model-3,
and model-4.

(AAST) [38], FGVC [1], FuseFormer [3], FGT [5], and

E2FGVI [4]. The corresponding results are given in Table I.

It is found from Table I that our method significantly outper-

forms all the state-of-the-art methods evaluated by the four

quantitative metrics. These results indicate that our approach

can recover the contents with less distortion (PSNR and

SSIM), more visually faithful content (VFID), and better

spatial and temporal consistency (Ewarp).

3) Complexity: We use floating point operations (FLOPs)

and inference time to evaluate the complexity of the compared

methods by using the DAVIS dataset. The corresponding

results are presented in Table I. The FLOPs of our proposed

approach are comparable to VINet [30], LGTSM [32] and

CAP [28] that are developed based on CNN. Meanwhile, the

proposed method executes about ×10 faster than DFVI [6],

FGVC [1] and FGT [5]. In these methods, the optical flow

is adopted to guide the information propagation throughout

the frames for inpainting, resulting in rather high complex-

ity. Meanwhile, our method achieves comparable speeds to

the Transformer-based approaches, such as STTN [2], Fuse-

Former [3], and E2FGVI [4].

C. Ablation Study

We conduct ablation studies to verify the effectiveness of

the proposed modules, MMSA and flow-guided deformable

TABLE III
ABLATION STUDY FOR MMSA

PSNR (dB) ↑ SSIM ↑ VFID ↓

MSA 32.74 0.9716 0.124

MMSA 33.30 0.9740 0.111

TABLE IV
ABLATION STUDY FOR FLOW-GUIDED DEFORMABLE WARPING

PSNR (dB) ↑ SSIM ↑ VFID ↓

Flow-based 32.75 0.9710 0.121

Deformable 32.61 0.9691 0.125

Flow-guided deformable 33.30 0.9740 0.111

warping used in our model. All the studies are performed on

the DAVIS dataset for the video completion task.

1) Effectiveness of the proposed modules: Our proposed

inpainting model consists of three modules, i.e., the depth

completion, content reconstruction, and content enhancement

modules. To demonstrate the performance gain offered by

them, we conduct an ablation study to verify their effective-

ness. The content reconstruction module is the key module in

our model. Once it is removed, our proposed inpainting model

will not work any longer. Therefore, it is always retained in

our model when the ablation study was carried out.

When we conduct this ablation study, we firstly just use

the content reconstruction module to construct a baseline

model, denoted as Model-1, where the content reconstruction

module is implemented with MSA rather than MMSA (as

depth was not available for guidance). Then, we add the

content enhancement module to Model-1 to compose Model-2

for the verification of effectiveness of this module. Meanwhile,

we compose Model-3 by using the content reconstruction

and depth completion modules, where MMSA is adopted in

content reconstruction because the depth can be offered by the

depth completion module. Finally, we integrate all the modules

to build up our proposed inpainting model (denoted as Model-4

in this experiment). The quantitative and qualitative results for

the ablation study are given in Table II and Fig. 8, respectively.

According to the results presented in Table II and Fig. 8,
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Fig. 9. The intermediate results for DGDVI. The example is selected the same
frame as Fig. 8 from Tennis video. From left to right, top to bottom: Ground-
truth frame, mask, depth estimation result for ground-truth frame, depth
completion result for broken video, visualization of flow estimation result
for ground-truth video, visualization of flow estimation for initial inpainted
video, initial inpainted result, enhanced inpainted result.

TABLE V
QUANTITATIVE RESULTS FOR THE EFFECTIVENESS VERIFICATION OF

ADOPTING NON-LOCAL FRAMES TO IMPLEMENT INPAINTING

PSNR (dB) ↑ SSIM ↑ VFID ↓

Local frames 32.55 0.9687 0.126

Local + non-local frames 33.30 0.9740 0.111

it is found that introducing the depth completion and content

enhancement modules to the baseline model, i.e., Model-1, can

effectively improve the inpainting quality, both quantitatively

and qualitatively, When all the modules are adopted, the best

quality is achieved. These results demonstrate the effectiveness

of the proposed modules.

In addition, we present some visualized results in Fig. 9

to further verify the effectiveness of our proposed modules.

Firstly, it is found from Fig. 9 that the predicted depth for the

broken video is very similar to the depth of the ground-truth

video. This accordingly demonstrates the effectiveness of the

depth completion module. Secondly, guided by the predicted

depth, we obtained the initial inpainted video with acceptable

quality by using the content reconstruction module. Note that

employing this initial result can generate optical flow similar

to the one obtained from the ground-truth video. Finally, with

the obtained flow, we enhance the initial result and get the

final inpainting result with higher quality, which validates the

effectiveness of the content enhancement module.

Fig. 10. Ablation study for flow-guided deformable warping. From left to
right: Masked frame of Car-turn video, portions for ground truth, flow-based
warping, deformable convolution-based warping, and flow-guided deformable
warping.

Fig. 11. Qualitative results for the effectiveness verification of adopting non-
local frames to implement inpainting. From left to right: Masked frame of
Elephant video, portions for ground truth, inpainting just with local frames,
and inpainting with both local and non-local frames.

2) Effectiveness of MMSA for content reconstruction: The

depth-guided feature propagation in the content reconstruction

is developed based on the proposed MMSA mechanism. To

verify the effectiveness of MMSA, we replace it with MSA in

content reconstruction to evaluate the change of inpainting per-

formance. Specifically, the content reconstruction with MSA

first fuses depth and feature, and then feed them into STTBs

for feature propagation. The quantitative results are given in

Table III. According to the results in Table III, it is found

that the model with MMSA achieves better inpainting perfor-

mance than using MSA, which demonstrates the superiority

of MMSA for the content reconstruction.

3) Effectiveness of the flow-guided deformable warping for

content enhancement: The content enhancement module is

developed based on the flow-guided deformable warping. In

order to verify the superiority of this warping approach, we

compare its performance with two warping methods, flow-

based warping and deformable convolution-based warping.

Specifically, instead of using flow-guided deformable warp-

ing in content enhancement, we implement flow-based or

deformable convolution-based warping to align features for

feature enhancement. The corresponding quantitative and qual-

itative results inpainting results are presented in Table IV

and Fig. 10, respectively. It can be found from Table IV and

Fig. 10 that the model with flow-guided deformable warping

generated the best results, demonstrating the effectiveness of

this warping technique.

4) Effectiveness of adopting non-local frames for video

inpainting: To validate the effectiveness of adopting non-local

frames in the inpainting, we firstly conduct an experiment by

just employing the local frames to implement the inpainting

with our proposed model. Then, we compare the inpaint-

ing results with the ones obtained by employing both local

and non-local frames to inpaint videos. The corresponding

quantitative and qualitative results are given in Table V and

Fig. 11, respectively. These results demonstrate the superior

performance of our approach when both local and non-local

frames are adopted.
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V. CONCLUSION

In this paper, we propose a depth-guided deep inpainting

network for videos. Our proposed model is composed of

three integral modules: depth completion, content reconstruc-

tion, and content enhancement, implemented in a sequential

workflow. More specifically, the depth completion module is

developed based on the spatio-temporal Transformer and used

to obtain the completed depth information for video frame.

The content reconstruction module is constructed to obtain the

initially inpaint video with the guidance of depth information.

The content enhancement module is developed to enhance the

quality of the video. These modules are jointly optimized so as

to guarantee the high inpainting efficiency. The experimental

results demonstrate that our proposed method offers better

inpainting results compared with the state-of-the-art methods.
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