What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

Tiffany Vlaar ! Jonathan Frankle’

Abstract

Studying neural network loss landscapes provides
insights into the nature of the underlying optimiza-
tion problems. Unfortunately, loss landscapes
are notoriously difficult to visualize in a human-
comprehensible fashion. One common way to
address this problem is to plot linear slices of the
landscape, for example from the initial state of the
network to the final state after optimization. On
the basis of this analysis, prior work has drawn
broader conclusions about the difficulty of the
optimization problem. In this paper, we put in-
ferences of this kind to the test, systematically
evaluating how linear interpolation and final per-
formance vary when altering the data, choice of
initialization, and other optimizer and architecture
design choices. Further, we use linear interpola-
tion to study the role played by individual layers
and substructures of the network. We find that
certain layers are more sensitive to the choice of
initialization, but that the shape of the linear path
is not indicative of the changes in test accuracy of
the model. Our results cast doubt on the broader
intuition that the presence or absence of barriers
when interpolating necessarily relates to the suc-
cess of optimization.

1. Introduction

Neural network loss landscapes are difficult to visualize
due to their high-dimensionality and the complicated nature
of the actual optimization path. This motivated the use
of the loss along the linear path between the initial and
final parameters of a neural network as a crude yet simple
measure of the loss landscape (Goodfellow et al., 2015). In
this work we revisit this 1D linear interpolation technique
and address whether the shape of the path reflects the test

"Department of Mathematics, University of Edinburgh,
Edinburgh, United Kingdom *MosaicML. Correspondence to:
Tiffany Vlaar <Tiffany.Vlaar@ed.ac.uk>, Jonathan Frankle
<jonathan @mosaicml.com>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

accuracy of the model and can inform training.

Linear interpolation from beginning to end. Goodfellow
et al. (2015) observed that for fully-connected and convo-
lutional networks with maxout (Goodfellow et al., 2013)
trained on MNIST data the loss decays monotonically along
the linear path between their initial and final state. The
absence of obstacles along the linear path led them to con-
clude that “these tasks are relatively easy to optimize.” This
result has been cited widely as an indication of the ease of
training (e.g., Li et al. (2018a); McCandlish et al. (2018);
Fort et al. (2019)) and the linear interpolation technique
itself was used in many papers (Huang et al., 2017; Keskar
et al., 2017; Izmailov et al., 2018; Jastrzgbski et al., 2018;
Hao et al., 2019). In this paper we address empirically how
meaningful the use of this linear path actually is. The exact
definition of training tasks being “easy to optimize” is an
open question and optimization choices directly influence
which linear path we observe. It is also arguable whether
we actually want tasks to be easier to optimize; lowering the
amount of training data or reducing regularization simplifies
training but lowers test accuracy.

The work by Goodfellow et al. (2015) was recently revisited
and extended by Frankle (2020) and Lucas et al. (2021) for
a range of modern neural network models, such as ResNet
and VGG architectures, on image data sets. Frankle (2020)
observed for default parameter settings that the loss often
remained at the level of random chance until close to the
optimum for these models, different than the behavior ob-
served by Goodfellow et al. (2015). In addition to concur-
rently confirming this result, Lucas et al. (2021) found that
the monotonic decay property observed by Goodfellow et al.
(2015) was often maintained when BatchNorm was removed
and non-adaptive optimizers were used. On this basis, they
hypothesized that “large distances moved in weight space
encourage non-monotonic interpolation.”

In our work, we interrogate conjectures stated in prior work
that the shape of loss along the linear path relates to the
“success” of optimization (which we measure in terms of
test accuracy) or other aspects of optimization (e.g., distance
travelled). We systematically study the influence of various
optimizer and architecture design choices on the shape of
the linear path and the test accuracy of the final model, and
examine interpolation for individual layers in addition to

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

the entire network. An overview of our results is shown
in Table 1. Our main finding is that there are situations
that both support and violate the aforementioned intuitions
on the shape of the linear path. As such, we recommend
caution when using this analysis to infer other information
about the nature of the optimization problem.

Our findings:

* Pre-training on ImageNet consistently removes the
presence of barriers for ResNet architectures trained
on CIFAR-10 data, whereas adversarial initialization
on random labels increases barriers. The former typi-
cally increases the final test accuracy, whereas (in the
absence of weight decay) the adversarial initialization
lowers it.

» Layers have different levels of sensitivity to the choice
of initialization. We introduce the concept of partial
pre-training, where we set some layers to a trained (on
CIFAR-10) or pre-trained (on ImageNet) state, while
using random initialization for others. We use this
setting as initialization and train on CIFAR-10. We find
that partial pre-training generally leads to worsened test
accuracy and (uncorrelated) affects the shape of the
linear path.

* The amount of weight decay used during training di-
rectly influences both the shape of the linear interpo-
lation path and the final test accuracy, but there is no
correlation between them.

» The distance between the initial and final parameter
state is not a reliable indicator of non-monotonic be-
haviour along the linear path.

* The shape of the linear path from initial to final param-
eter state is not a reliable indicator of test accuracy.

2. Related Work

Interpolation on the loss landscape. Interpolation be-
tween networks in various forms has been a valuable tool
for gaining insight into the structure of the optimization
landscape. Frankle (2020) found that although the loss did
not increase from initial to final state, barriers did appear
along the linear path from later iterations to the final state.
Other work focused on interpolations between different op-
tima: Draxler et al. (2018) and Garipov et al. (2018) showed
that there exist non-linear paths with (nearly) constant low-
loss that connect a pair of minima trained from different
random initializations. Fort & Jastrzebski (2019) general-
ized this to show that there exist m low-loss connectors
between (m + 1)-tuples of optima, again using non-linear
paths. Neyshabur et al. (2020) used linear interpolation to
study transfer learning. They did not observe barriers along

the linear path between the final states of two ResNet-50
models both trained from pre-trained, while barriers did
occur between two models trained from scratch (even when
trained with the same random initialization). They inter-
preted this as “pre-trained weights guide the optimization to
a flat basin of the loss landscape.” We comment on the role
of pre-training in Section 4.

Loss landscape visualization. To improve upon linear in-
terpolation, 2D or 3D visualizations of the loss landscape
were made by Goodfellow et al. (2015); Im et al. (2016); Li
et al. (2018b); Hao et al. (2019). The reduction of the high-
dimensional loss landscape into 2D or 3D slices requires a
choice of directions. The chosen directions strongly affect
the resulting observed behaviour. Although the linear inter-
polation method also sacrifices information by taking a 1D
slice, it does so with perfect fidelity by considering the path
between initial and final state. Linear interpolation is seen as
“a simple and lightweight method to probe neural network
loss landscapes” (Lucas et al., 2021) and therefore remains
frequently used, e.g. by Keskar et al. (2017); Jastrzebski
et al. (2018); Lucas et al. (2020); Neyshabur et al. (2020).

Role of layers. Zhang et al. (2019) studied the role of
different layers by training a neural network and then re-
setting specific layers to their initial value or a random
value, while keeping the other layers fixed at their final state.
They observed that certain critical layers are much more
sensitive to this perturbation. Chatterji et al. (2020) extended
this analysis by studying linear interpolation for specific
modules. They relate their concept of “module criticality”
with high robustness to noise and valley width. Neyshabur
et al. (2020) studied both the direct and optimization path
from initial to final state for modules of pre-trained models
and found that later layers have tighter valleys.

Our novel contributions. Previous work studied the shape
of the linear path (Frankle, 2020; Lucas et al., 2021), but did
not interrogate the connection with the success of optimiza-
tion. Dating back to Goodfellow et al. (2015) intimating
that an absence of barriers along the linear path means that
“tasks are relatively easy to optimize”, numerous works
have implicitly relied on the presence of such a connection
to make other claims (McCandlish et al., 2018; Li et al.,
2018b; Fort et al., 2019; Hao et al., 2019; Lucas et al., 2020;
Neyshabur et al., 2020). In our work, we study exhaustively
if such a connection exists by systematically altering initial-
ization, data, and other optimizer and architecture design
choices. We also study the hypothesis by Lucas et al. (2021)
that “large distances moved in weight space encourage non-
monotonic interpolation”. Further, we introduce several
novel modes of analysis, such as initializing from the height
of the barrier and using linear interpolation to study the role
played by individual layers and substructures of the net-
work. In particular, we illustrate the sensitivity of different

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

Table 1. The effect of various interventions in training (compared to the baseline provided in Section 3) on (1) the shape of loss over the
linear path between the initial and final state of the network and (2) the final test accuracy of the network. Different shapes of loss over the
linear path are: no barrier (NB), barrier (B), and plateau (P). If the height of layer-wise barriers changes, we denote this as H-LB (higher)
and L-LB (lower layer-wise barriers). The term “often worse/better” [test accuracy] is used for cases where final accuracy depends on
which layers/convolutional blocks the intervention is performed.

Category Intervention Shape of the linear path | Test accuracy
Pre-train full model (Fig. 2A) NB Better
Initialization | Pre-train on random labels (Fig. 2B, no weight decay) H-LB Worse
(Sec. 4) Height of the barrier initialization (Fig. 3) NB Better
Partial (pre-)training (Fig. 4) B/NB/P Often worse
Partial random label pre-training (Fig. 5) B/NB Often Worse
Data Less data (Fig. 6) NB/L-LB Worse
(Sec. 5) No data augmentation (Fig. 6) L-LB Worse
Less weight decay (Fig. 7) NB/B Worse
More weight decay (Fig. 7) P Worse
Optimizer Fixed learning rate h = 0.01 (Fig. 8) P Better
(Sec. 6) Fixed learning rate h # 0.01 (Fig. 8) NB Worse
Smaller initial ~ for conv blocks with barriers (Fig. 9) NB Worse
Depth (Fig. 10) H-LB Better
Model No batch normalization (Appx. F) NB Worse
(Sec. 7) MLPs: overparameterize (Appx. F) NB Often better

layers to the choice of initialization and demonstrate the
adversarial effect of partial pre-training (Section 4).

3. Linear Interpolation from Start to Finish

We use the 1D linear interpolation technique (Goodfellow
et al., 2015) to study the linear path between the initial and
final state of the model. We introduce this technique and
how we study the linear path layer-wise in Section 3.1. In
Section 3.2 we discuss which different shapes of this linear
path we observe and compare our results with the literature
(Goodfellow et al., 2015; Frankle, 2020; Lucas et al., 2021).

3.1. Methodology

Training. We focus on a ResNet-18 (He et al., 2016) archi-
tecture with batch normalization trained for 100 epochs on
CIFAR-10 data (Krizhevsky & Hinton, 2009) using SGD
with momentum (0.9) and weight decay (5e-4) using Py-
Torch (Paszke et al., 2017). We use initial learning rate
h = 0.1 that drops by 10x at epochs 33 and 66. For pre-
trained settings, we use initial learning rate h = 0.001 that
drops by 10x after 30 epochs. Results are averaged over
10 runs unless indicated otherwise. By modifying different
aspects of this training problem, we will study the role of
the initialization, data, optimizer, and model throughout this
paper. We also consider other architectures in the main body
and supplement, including other ResNet architectures, VGG
architectures, and multi-layer perceptrons (MLPs).

Linear interpolation measure for the full model. Con-
sider a L-layer neural network with parameters § =
(0© ... 0F)). We use 6; to refer to the initial state of
these parameters and 0 to refer to the parameters after
training using algorithm 7;(6;, D) on dataset D for ¢ steps.
Following Goodfellow et al. (2015), a linear interpolation
path between ¢; and 6 is created as follows:

0o = (1 —a)b; + aby for a € [0,1]. (1)

To examine the loss landscape along this path, we plot the
loss for a discrete set of values of « from O (initial state)
to 1 (final state). One can extend this technique to evaluate
the linear path between the state of the model at different
steps in training, where ¢; and ¢ are replaced by the model
states at the considered steps. One can also study the path
between 6 and a different random initialization 6, which
is separately sampled from the initialization distribution.
Layer-wise linear interpolation. We also study linear inter-
polation in a layer-wise fashion: we vary a single layer (or
convolutional block) from initial to final state while keeping
all other parameters fixed at their final state. Concretely, for
an L-layer network where we vary layer £:

09 = (1-)" +ab?, 00 =0 k20 @

This technique was first proposed by Chatterji et al. (2020),
who found that certain ResNet layers were more robust to
parameter perturbations. In this work, we use the layer-wise
linear path to study the role played by substructures of the
network. We will vary convolutional blocks as a whole.

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

(8

v

\A} 51 MNIST data Spiral data

EN
EN

Test Loss
N w

=

1

0

_—

00—
Init

Random Inits Init

Final

== Vary all —— Vary B3
CIFAR-10, ResNet18 —— Vary BL Vary B4
8 == Vary all —— Vary B3 1007 —— Vary B2 Vary fc
— Vary Bl —— Vary B4
6 —— Vary B2 Vary fc 80

Test Loss
>

N

0

—— e B - ——

0.5

Test Accuracy (%)

60

40

20

0

0.5 1

Figure 1. (A) Left: MNIST data. Right: spiral data. Test loss over 10 runs for a two hidden layer multi-layer perceptron (MLP) along the
linear path between: 6; and 0 (blue), 05 and 6 (green), 0; and 6; (black). (B) Test loss (left) and test accuracy (right) when interpolating
for convolutional blocks (denoted as B), fully connected layer (fc), or the entire network (blue dashed line) for a ResNet-18 architecture

on CIFAR-10 data, averaged over 10 runs.

3.2. Appearance of Barriers in the Loss Landscape

Defining barriers. We consider the linear path to contain a
barrier if it exhibits a monotonic increase in loss. Goodfel-
low et al. (2015) observed that, for fully-connected networks
on MNIST data, loss decays monotonically along the linear
path between initial and trained model, i.e., there are no bar-
riers. Figure 1A (left) reproduces this behaviour for an MLP
with two hidden layers trained on MNIST (blue) (full details
in Appendix A); moreover, the same monotonic decrease
occurs when interpolating between these final weights and
any random initialization (green). However, this barrier-free
linear interpolation is not a universal phenomenon. As a
counterexample, when using the exact same architecture and
optimizer but a different dataset (the spiral dataset), barriers
do appear along the linear path (Figure 1A, right), in fact
rising above the level of loss at initialization; barriers rise
even higher when interpolating to other initializations.

Barriers in modern neural network architectures. Fran-
kle (2020) and Lucas et al. (2021) updated the results of
Goodfellow et al. (2015) by studying linear interpolation
in modern vision settings. Both observed that, in many
cases, “loss plateaus and error remains at the level of ran-
dom chance...until near the optimum” (Frankle, 2020); that
is, loss remains flat, neither monotonically decreasing or en-
countering barriers. Our results for a ResNet-18 on CIFAR-
10 agree with these findings when interpolating for the entire
network as the dashed blue line in Figure 1B (left) illustrates.

Block-wise interpolation. Individual convolutional blocks
behave differently from the full network. As the solid lines
in Figure 1B (left) show, different blocks take on a vari-
ety of behaviors including barriers and monotonic decay.!
This suggests that it may be valuable to study the connec-
tion between linear interpolation and other properties of the
network at the finer granularity of individual structural com-
ponents rather than at the coarse granularity of the entire
network.

'As shown in Figure 1B trends in test accuracy (right) along
the linear path follow trends in test loss (left). We will focus on
test loss throughout this work.

4. The Role of Initialization

The choice of initialization affects the path that the model
follows and the optimum it finds. It is therefore natural to
believe that it also affects the nature of the loss when linearly
interpolating from start to finish, a relationship we study in
this section. We observe an intuitive relationship between
initialization and barriers: actions that make the task easier
(e.g., pre-training the model or initializing at the barrier)
remove barriers, while those that make the task harder (e.g.,
initializing adversarially) increase the size of barriers. Pre-
training only certain layers can both create barriers and
worsen test accuracy, although not in a correlated fashion.

Pre-training. Training a model from a pre-trained state (on
ImageNet) causes the loss along the linear path to mono-
tonically decay and improves test accuracy (Figure 2A).
This is distinct from the behavior when interpolating to a
new random initialization, which exhibits a plateau. This
result aligns with the intuition that pre-training simplifies
optimization (Hao et al., 2019; Neyshabur et al., 2020).

Adversarial initialization. We perform adversarial initial-
ization by training on 100% random labels until 100% train-
ing accuracy is reached and use this state as initialization
for training. In the absence of weight decay, pre-training a
ResNet-18 on random labels lowers the final test accuracy
(Liu et al., 2020) and increases the barrier height between
initial and final state (Figure 2B). This directly opposes the
effect of pre-training (Figure 2A), suggesting adversarial
initialization complicates optimization.

Height of the barrier initialization. The linear path of
a ResNet-18 trained without weight decay on CIFAR-10
exhibits barriers for some random seeds. For the runs that
exhibit barriers, we save the model state at the height of the
barrier and use this as initialization for training to study if
there exists a barrier between this state and the new optimum.
Although it was initialized at a higher loss than occurs at
random initialization, the resulting network obtains a higher
test accuracy than the network trained from scratch and its

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

T 7 T
‘A 4 Pretrained, test acc 92.6% 6 Pretrained, test acc 77.3% B 8 Adv init no WD, test acc 89.7%
—— Scratch, test acc 92.2% —— Scratch, test acc 70.4% —— Scratch no WD, test acc 90.0%
3 5 6
2 @
S 4 S
72 B4
Q 3 Q
~ -
1 2 2
ResNet-18 11 ResNet-50
CIFAR-10 CIFAR-100
0 0
Init Final Random inits Init Final Random inits 0 0.5 1

a

Figure 2. (A) Test loss between 0; and ¢ of a ResNet-18 architecture for CIFAR-10 data (left) and a ResNet-50 architecture for CIFAR-100
data (middle), when trained from scratch (blue) or pre-trained on ImageNet (orange) over 10 runs. Orange-red lines represent the linear
path between 6 (trained from pre-trained) to 6;. (B) Test loss between 6; and 65 of a ResNet-18 architecture trained with SGD without
weight decay (WD) on CIFAR-10 data either from scratch (blue) or from a network pre-trained on 100% random labels (orange).

=
o
o

4

w
O
v

Test Loss
N

=
©
wv

Training accuracy (%)
O
o

—— Standard
Initialize at barrier

95

O
o

©
o

Test accuracy (%)
[o2}
w

0

[ee]
o

0 0.5 1 0 25
a

Epochs

~
w

50 75 100 0 25 50 75

Epochs

100

Figure 3. ResNet-18 on CIFAR-10 without weight decay. Results are presented over 5 runs. Left: test loss between 6; and ¢, when trained
either from scratch (blue) or from a initialization corresponding to the height of the barrier along each blue line (orange). Initialization at
the height of the barrier removes the presence of a barrier (left), speeds up training (middle), and improves the test accuracy (right).

linear path is barrier free (Figure 3).” This mirrors the pre-
training results (Figure 2A), suggesting initialization at the
height of the barrier aids optimization.

Partial pre-training. Zhang et al. (2019) measured the
change in test accuracy when re-setting specific layers of a
trained neural network to their initial state and found large
differences across layers. To extend this work, one can
study the loss from the initial state of a specific layer to its
final state, while keeping all other layers fixed at their final
state (Chatterji et al., 2020). We found that the shape of this
path greatly varies per convolutional block of a ResNet-18
(Figure 1B). But what these studies do not address is the
effect of different layer-wise (or block-wise) initialization
on training itself. We thus introduce the concept of “partial
(pre-)training”: we first train on CIFAR-10 (or pre-train on
ImageNet) and then re-set a specific convolutional block to
its initial (random) state, while keeping the other parameters
at their (pre-)trained state. We then use this state of the
model as initialization and train as usual on CIFAR-10 data.

We find that while pre-training a ResNet-18 leads to higher
test accuracy (Figure 2A), partial pre-training often leads to
a lower accuracy of the final trained network (Figure 4, left)
compared to training the net from scratch. Further, while
pre-training the full net leads to monotonic decay along
the linear path between initial and final state (Figure 2A),

2Using other states along the linear path, which are far enough
from the original initialization, as initialization often delivers simi-
lar improvements on the final test accuracy (see Appendix C).

partial pre-training often generates barriers (Figure 4). The
sensitivity of the network to partial pre-training varies per
convolutional block and also between the trained and pre-
trained setting (e.g., when re-setting convolutional block 4
(RI-4), using a trained state for the rest of the net (T-All)
strongly affects test accuracy, but using a pre-trained state
(P-All) does not). We conclude that the choice of initial-
ization for different convolutional blocks strongly affects
test accuracy after training and changes the nature of opti-
mization. It is remarkable that using a random initialization
for the full net leads to higher test accuracy than using a
partially pre-trained or partially trained net as initialization.

Block-wise adversarial initialization. To further explore
the effect of using different initializations for individual con-
volutional blocks on the linear path and test accuracy, we
set one convolutional block to a random label adversarial
initialization while using a standard random initialization
for the rest of the net. We then re-train using this initial-
ization. We find that while adversarial initialization for the
first convolutional blocks lowers the test accuracy, using
adversarial initialization for convolutional block 4 slightly
increases the final test accuracy compared to training from
scratch (Figure 5). This is also reflected by the shape of
the linear path: when using an adversarial initialization for
convolutional block 4 the linear path exhibits monotonic
decay while others settings exhibit barriers.

3Similar results are obtained for different levels of weight decay
(see Appendix C).

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

Method Test acc (%) 3.0
T-AIlbut RI-1 | 91.79 £0.23 25
T-AllbutRI-2 | 91.83 £021 , " ~~===___
T-AllbutRI-3 | 92.35+0.20 & '
T-Allbut RI-4 | 90.97 +0.31 §°| ~"7eren
P-Allbut RI-1 | 89.97 £0.13 91 — pretrained, not 82
P-All but RI-2 | 89.91 £0.21 0.5 T Prewained. nots3
P-Allbut RI-3 | 91.78 £022 oo
P-All but RI-4 | 92.78 +£0.22

Pretrained, not B4 ~1

= = From scratch

— Trained, not B1
— Trained, not B2
— Trained, not B3
Trained, not B4

0.5
a

0.5 1
a

Figure 4. We set a ResNet-18 to a pre-trained (P) (middle) or trained (7) (right) state, but re-set a specific convolutional block (B) to a
random initialization (RI). Then we train as usual on CIFAR-10. This often affects the test accuracy of the final model (left). Sometimes
barriers appear along the linear path for the full net between 6; and 8¢ (middle/right), averaged over 10 runs.

—— Adv init B1, test acc 89.84%

51— Adv init B2, test acc 89.5%

—— Adv init B3, test acc 90.0%
- Adv init B4, test acc 90.8%

Test Loss

Figure 5. ResNet-18 on CIFAR-10 without weight decay. Test loss
between 6; and 67 when one conv block (B) was adversarially
initialized using random labels, averaged over 10 runs.

Summary. Whereas the use of pre-training removes the
presence of barriers and increases test accuracy, the use of
adversarial initialization increases barriers and lowers test
accuracy. Initializing neural networks at the height of the
barrier along their initial to converged state leads to mono-
tonic decay along the linear path, speeds up training, and
improves test accuracy. Further, we find that certain convo-
lutional blocks are more sensitive to partial pre-training than
others, but the change in test accuracy is not correlated with
the shape of the linear path. Whereas pre-training of the full
net increases test accuracy and leads to monotonic decay,
partial pre-training typically worsens the test accuracy of
the resulting net and can generate barriers.

5. The Role of the Dataset

As illustrated in Figure 1A, where we used the same archi-
tecture, initialization, and optimizer to train on two different
datasets, the data has a direct influence on the behaviour
when linearly interpolating. In this section, we further in-
vestigate the effect of data on interpolation.

Number of examples. When only a subset of the training
data set is used throughout training, we expect optimization
to be easier and faster, yet the test accuracy of the final
model is typically lowered. We find that using a smaller
amount of CIFAR-10 training data induces monotonic decay
when interpolating and lowers test accuracy (Figure 6, left).

Role of data augmentation. Throughout this work we use

a horizontal flip and random crop as data augmentation for
CIFAR-10. Removing data augmentation lowers the layer-
wise barriers along the linear path (Figure 6, center right).
In Appendix D, we show that increasing data augmentation
increases the height of layer-wise barriers, while removing
data augmentation when using only a subset of the training
data further reduces the presence of layer-wise barriers.

Summary. The shape of the layer-wise linear path is af-
fected by changes to the data, but the shape of the full model
linear path is less representative (blue dashed lines, Figure
6). Reducing the complexity of the task (e.g., reducing
the amount of data or removing augmentation) lowers or
removes layer-wise barriers. The setting with the highest
layer-wise barriers reaches the highest test accuracy, and the
setting without barriers reaches the lowest test accuracy.

6. The Role of the Optimizer

Optimizer hyperparameter settings, such as the learning rate
and weight decay values, strongly affect which optimum
is found and the test accuracy. Further, Lucas et al. (2021)
found that training modern vision networks with Adam (as
opposed to the more typical SGD with momentum) more
frequently leads to non-monotonic decay of the loss when
linearly interpolating. Adam also increases the distance
that the network travels from initialization, leading Lucas
et al. (2021) to posit “large distances moved in weight space
encourage non-monotonic interpolation”. Inspired by this,
we study how using different levels of weight decay or
different fixed learning rates —both of which affect the
distance travelled and final accuracy— affect the shape of
loss when linearly interpolating. We find that the hypothesis
of Lucas et al. (2021) does not hold in general and that the
level of weight decay directly controls the behaviour along
the linear path.

The effect of weight decay on linear interpolation. In
Figure 7, we vary the amount of weight decay (WD) that
is used to train ResNet-18 on CIFAR-10 data. When using
little or no weight decay, the behaviour of the loss varies
over different runs; it sometimes exhibits barriers and some-
times monotonic decay. When using more weight decay, the

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

s 20% training data 50% training data 8 No data aug, test acc 85% Standard, test acc 92%
Test acc 80% Test acc 89% — - Vary all — Vary B3
w6 6 — Vary B1 — Vary B4
§ — Vary B2 Vary fc
g4
[
N —— —
2 ==~
0O 0.5 1

Figure 6. Test loss between 6; and 6 for ResNet-18 on CIFAR-10 when varying the amount of training data and whether data augmentation

(horizontal flips, random crops) is used. Averaged over 10 runs.

No WD WD = 5e-5 WD = le-4 WD = 5e-4 WD = le-3
4 (Test acc = 90.0%) (Test acc = 90.8% | (Test acc = 91.3%) (Test acc = 92.2%) (Test acc = 92.0%)
3 |
9 \
L L
H2
4
'—
1
0
0 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1
a a a a a

— WD= 1le4
—— WD =15e4

Avg Test Acc

WD = 1.5e-4 -
WD = 2e-4 -
WD = 3e-4 -
WD = 4e-4 -

Figure 7. Effect of the amount of weight decay (WD) used for training a ResNet-18 architecture on CIFAR-10 on the linear path and test
accuracy. The highest test accuracy is reached using WD = 5e-4 (blue).

behaviour changes. At le-4 (purple), the loss consistently
monotonically decays. The highest test accuracy is reached
when training with 5e-4 (blue), for which loss consists of
a plateau with a sudden drop close to the final state. When
increasing beyond that, test accuracy decreases, but the loss
still exhibits a plateau. The shape of the linear path is thus
not a reliable indicator of test accuracy of the final model.

How do barriers connect to the distance travelled? Non-
monotonic behaviour occurs when training a model both
with zero and large weight decay values (Figure 7), while we
would expect models without weight decay to travel farther.
To further study this relationship, we trained a ResNet-18 at
different fixed learning rates h (Figure 8). The linear paths
for models trained using higher and lower learning rates
(h = 0.1 and 0.001) exhibit monotonic decay, while training
with an intermediate learning rate (h = 0.01) does not. This
contradicts the hypothesis of Lucas et al. (2021), under
which we would expect the model with the highest learning
rate (which travels the furthest) to have a barrier, not a

model with a lower learning rate.* In addition, these results
also cast doubt on a connection between monotonically
decreasing loss and better accuracy; the middle learning rate
(the one that induces a barrier) reaches higher test accuracy
than either of the other learning rates (which do not).

Layer-wise sensitivity to learning rate. We have observed
that linear interpolation behaviour varies by layer (Figure
1B) and that layers/individual conv blocks have different
levels of sensitivity to the choice of initialization (Figure
4 and Figure 5). This raises the question of how the use
of different optimizer hyperparameter choices for different
layers affects the shape of the linear path and the final test
accuracy of the model. Figure 9 shows the effect of training
layers that exhibit barriers with a different learning rate than
those that do not. Lowering the initial learning rate used for
layers that exhibit barriers removes those barriers, but also
substantially lowers the test accuracy of the final model.’

“The measure of distance is detailed in Appendix E.
5The same holds for a VGG-11 model (Figure A16, Appx. E).

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

v

—— h =0.001, testacc 84.8%
—— h=0.01, testacc87.5%
— h=0.1, test acc 82.5%

IN
o

Test Loss
N w
Test Loss
N »

.

ResNetl8, test acc 92.2%

ResNet18, test acc 90.1%

== Vary all
—— Vary Bl
—— Vary B2
—— Vary B3
—— Vary B4
Vary fc

o ©

IS

Test Loss

"

N

[

0

0 0 0.5 1 0 0.5 1
00 02 04 06 08 10 « a
o Figure 9. Block-wise linear interpolation for ResNet-18 trained on CIFAR-10 using

Figure 8. ResNet-18 trained on CIFAR-10 with
fixed learning rate h. Averaged over 10 runs.

This raises the question whether we can optimize different
layers differently depending on the absence or presence of
barriers. Concretely, Table 2 shows the result of training lay-
ers/conv blocks that exhibit barriers with a different learning
rate or amount of weight decay than those that do not. Low-
ering the initial learning rate used for layers without barriers
or eliminating weight decay has a smaller (ResNet-18) or no
(VGG-11) effect on the test accuracy of the trained model,
whereas doing so for layers with barriers or for all layers
lowers accuracy substantially.

Table 2. We train layers/conv blocks that exhibit barriers (B) with
a different learning rate or amount of weight decay (WD) than
those that do not (NB). Test accuracy on CIFAR-10 over 10 runs is
maintained much better when training only the layers with barriers
at the higher learning rate or with weight decay.

Test accuracy

Initial learning rate by | ResNet-18 VGG-11

0.1 (all) 92.2 £0.2% | 91.9 £0.2%
0.1(B),0.01 (NB) 91.8 £0.2% | 92.0 £0.1%
0.01 (B), 0.1 (VB) 90.1 £0.2% | 90.4 £0.1%
0.01 (all) 90.3 £0.3% | 90.9 £0.1%
Weight decay (all) 92.2 £0.2% | 91.9 £0.2%
WD (B), No WD (NB) | 91.5 £0.2% | 91.8 £0.1%
No WD (B), WD (NB) | 90.1 £0.3% | 90.2 £0.1%
No WD (all) 90.1 £0.4% | 90.4 £0.3%

Summary. The distance between initial and final state is not
a reliable indicator of non-monotonic behaviour. The shape
of the linear path is directly influenced by the amount of
weight decay and is not indicative of test accuracy. Training
layers that exhibit barriers with a smaller initial learning
rate removes the barriers, but also lowers test accuracy.

7. The Role of the Model

Throughout this work we focused on a ResNet-18 architec-
ture with batch normalization. We now discuss the role of
the model architecture on the shape of the linear path.

Architecture depth. Generally, the use of deeper ResNet
architectures on CIFAR-10 data generates or increases the
height of convolutional block-wise barriers (Figure 10).

different initial learning rates ho. Left: ho = 0.1 for all, right: ho = 0.01 for
layers/conv. blocks that exhibit barriers and ho = 0.1 for the rest.

Role of batch normalization. Similar to Lucas et al. (2021),
we find that the use of batch normalization (BN) leads to
non-monotonic behaviour along the linear path for ResNet
and VGG architectures (see Appendix F). However, we find
that for various datasets, MLPs do exhibit barriers in the
absence of BN (see e.g., Figure 1A). We also study the
linear interpolation parameter group-wise and show that the
running mean and variance BN parameters play an important
role in the shape of the linear interpolation path observed
for the full convolutional block (see Appendix F).

Summary of other architectures. In Appendix F, we show
that the behaviour for VGG-11 is similar to that of a ResNet-
18. For MLPs, we find that increasing the number of nodes
in layers with barriers removes the overall presence of bar-
riers. This effect does not transfer to ResNet architectures.
For MLPs, early layers contain barriers, whereas later layers
do not exhibit barriers. Similarly, Zhang et al. (2019) found
that the first layer is most sensitive to re-initialization.

Summary. Batch normalization encourages non-monotonic
behaviour. Meanwhile, in Table 2 we showed that using a
large initial learning rate for layers/conv blocks that contain
barriers is necessary to achieve good test accuracy. These
effects together corroborate the observation by Jastrzebski
et al. (2020) that using a large learning rate in the initial
phase of training is necessary for networks with batch nor-
malization. We also find that the behaviour for MLPs is
distinct from ResNet or VGG architectures.

8. Discussion and Future Work

Throughout this work, we explored the relationship between
the shape of the linear path between the initial and final
model states and the outcome of optimization. We also stud-
ied the linear path in a layer-wise fashion to illustrate that
individual convolutional blocks have different sensitivities
to initialization and optimizer hyperparameter settings.

What influences the shape of loss when linearly inter-
polating? This one-dimensional slice of the landscape is
heavily influenced by both initialization and optimization
choices. We found that the data also directly influences the
linear path (Figure 1A and Section 5). In addition, the nat-

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

ResNet18

oo

= = Vary all — Vary B3
——Vary Bl Vary B4
6 ——Vary B2 Vary fc

EN

Test Loss

N

| |ResNet50

0.5 1 0

Figure 10. Test loss when interpolating for convolutional blocks (denoted as B) and the entire network (blue dashed line) for different
ResNet architectures trained from scratch on CIFAR-10 data. Results are averaged over 10 runs.

ural language processing literature suggests that attention-
based models need adaptive optimizers (e.g. Adam) to train
properly (Devlin et al., 2018; Liu et al., 2019; Zhang et al.,
2020), unlike convolutional models for vision data, which
can be trained well with SGD with momentum (Szegedy
etal.,2014; He et al., 2016; Zagoruyko & Komodakis, 2016).
While we focused on the latter, we think that revisiting this
study for attention-based models is an interesting direction
for future work.

Does the shape of loss when interpolating provide insight
into other aspects of optimization? Linear interpolation is
a one-dimensional view of the high-dimensional optimiza-
tion landscape. The network follows a different, nonlinear
path from initialization to its final weights. As such, lin-
ear interpolation inherently sacrifices information about the
optimization problem; prior work and this paper consider
whether the information it gleans still provides useful in-
sights into optimization.

Despite the intuition provided by Goodfellow et al. (2015)
that the absence or presence of obstacles reflects difficulty of
optimization, we found many cases where higher layer-wise
barriers or the creation of barriers along the linear path of the
full model appear alongside increased test accuracy. This
evidence implies that either a more difficult optimization tra-
jectory can lead to improved generalization, or Goodfellow
et al.’s intuition about the relationship between interpolation
and optimization difficulty does not apply to the networks
we studied. Moreover, we found cases where monotonically
decreasing loss was accompanied by higher test accuracy
(e.g., pre-training). We also found others where the lin-
ear path exhibited both barriers and monotonic decay over
different runs (e.g., weight decay) and where the presence
or absence of barriers was not correlated with increased
or decreased test accuracy. In short, for the settings we
considered, the shape of the linear path between initial and
final state was not a reliable indicator of test accuracy of
the trained model. Our results show that caution is needed
when using linear interpolation to make broader claims on
the shape of the landscape and success of optimization.

Layer-wise interpolation. Interpolating layer-wise makes
it possible to study changes in behaviour that are difficult or

impossible to discern when interpolating using the full net-
work, for example changes in the data (Figure 6) or model
(Figure 10). Further, independent of the shape of the linear
path, we found that partial pre-training of convolutional
blocks can counterintuitively lower test accuracy of the fi-
nal model. Although neural networks learn hierarchichally
(Yosinski et al., 2014; Hao et al., 2019; Neyshabur et al.,
2020), the sensitivity to partial pre-training varies per con-
volutional block and does not follow an obvious pattern.
This result implicates the increasingly popular direction
of training individual layers in different ways (You et al.,
2017; Leimkuhler et al., 2019; You et al., 2020; Murfet et al.,
2020; Vlaar, 2022) and raises questions about the basis upon
which we should make such decisions.

9. Conclusion

We conclude that the shape of the linear path from initial
to final state is not a reliable indicator of test accuracy.
Although focusing on one line of analysis, e.g. on the role
of initialization, seems to suggest that there does exist a
connection, the full picture (Table 1, Figure A11) illustrates
that this is misleading. We believe publishing this negative
result is important due to the widespread use of the linear
interpolation method. Further, we introduce a new line of
inquiry by studying the role played by individual layers and
substructures of the network. We find that certain layers
require larger initial learning rates to maintain the same test
accuracy. We also show the surprising adversarial effect
of partial pre-training. Further exploration of the layer-
wise sensitivity to choice of initialization offers an exciting
direction for future work.

Acknowledgements

We thank the reviewers for their time and comments. Dur-
ing the creation of this paper Tiffany Vlaar was supported
by The Maxwell Institute Graduate School in Analysis and
its Applications, a Centre for Doctoral Training funded by
the UK Engineering and Physical Sciences Research Coun-
cil (grant EP/LL016508/01), the Scottish Funding Council,
Heriot-Watt University and the University of Edinburgh.

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

References

Chatterji, N. S., Neyshabur, B., and Sedghi, H. The intrigu-
ing role of module criticality in the generalization of deep
networks. ICLR, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv:1810.04805, 2018.

Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht,
F. A. Essentially no barriers in neural network energy
landscape. arXiv:1803.00885, 2018.

Fort, S. and Jastrzebski, S. Large scale structure of neural
network loss landscapes. ICML, 2019.

Fort, S., Hu, H., and Lakshminarayanan, B. Deep ensembles:
A loss landscape perspective. Bayesian Deep Learning
workshop, NeurIPS, 2019.

Frankle, J. Revisiting “qualitatively characterizing neu-
ral network optimization problems”. ML Retrospectives
NeurIPS workshop, 2020.

Garipov, T., [zmailov, P., Podoprikhin, D., Vetrov, D. P., and
Wilson, A. G. Loss surfaces, mode connectivity, and fast
ensembling of DNNs. NIPS, 31:8789-8798, 2018.

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A.,
and Bengio, Y. Maxout networks. /ICML, 2013.

Goodfellow, L., Vinyals, O., and Saxe, A. Qualitatively char-
acterizing neural network optimization problems. ICLR,
2015.

Hao, Y., Dong, L., Wei, F., and Xu, K. Visualizing and
understanding the effectiveness of BERT. EMNLP, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J., and
Weinberger, K. Snapshot ensembles: Train 1, get M for
free. ICLR, 2017.

Im, D., M.Tao, and Branson, K. An empirical analysis of
deep network loss surfaces. arXiv:1612.04010, 2016.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and
Wilson, A. G. Averaging weights leads to wider optima
and better generalization. Uncertainty in Artificial Intelli-
gence, 2018.

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer,
A., Bengio, Y., and Storkey, A. Three factors influencing
minima in SGD. ICANN, 2018.

Jastrzgbski, S., Szymczak, M., Fort, S., Arpit, D., Tabor,
J., Cho, K., and Geras, K. The break-even point on
optimization trajectories of deep neural networks. ICLR,
2020.

Keskar, N., Mudigere, D., Nocedal, J., Smelyanskiy, M.,
and Tang, P. On large-batch training for deep learning:
generalization gap and sharp minima. /CLR, 2017.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. 2009.

Leimkuhler, B., Matthews, C., and Vlaar, T. Partitioned
integrators for thermodynamic parameterization of neural
networks. Foundations of Data Science, 1(4):457-489,
2019.

Li, C., Farkhoor, H., Liu, R., and Yosinski, J. Measuring
the intrinsic dimension of objective landscapes. ICLR,
2018a.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
Visualizing the loss landscape of neural nets. NeurIPS,
2018b.

Liu, S., Papailiopoulos, D., and Achlioptas, D. Bad global
minima exist and SGD can reach them. NeurIPS, 2020.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A robustly optimized BERT pretraining ap-
proach. arXiv:1907.11692,2019.

Lucas, J., Bae, J., Zhang, M., Ba, J., Zemel, R., and Grosse,
R. On monotonic linear interpolation of neural network
parameters. OptML NeurIPS workshop, 2020.

Lucas, J., Bae, J., Zhang, M., Fort, S., Zemel, R., and Grosse,
R. Analyzing monotonic linear interpolation in neural
network loss landscapes. ICML, 2021.

McCandlish, S., Kaplan, J., Amodei, D., and Team,
O. D. An empirical model of large-batch training.
arXiv:1812.06162, 2018.

Murfet, D., Wei, S., Gong, M., Li, H., Gell-Redman, J.,
and Quella, T. Deep learning is singular, and that’s good.
arXiv:2010.11560, 2020.

Neyshabur, B., Sedghi, H., and Zhang, C. What is being
transferred in transfer learning? NeurIPS, 2020.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. 2017.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. CoRR, 2014.

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

Vlaar, T. and Leimkuhler, B. Multirate training of neural
networks. ICML, 2022.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? NIPS,
2014.

You, Y., Gitman, I., and Ginsburg, B. Large batch
training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojana-
palli, S., Song, X., Demmel, J., Keutzer, K., and Hsieh,
C. Large batch optimization for deep learning: training
BERT in 76 minutes. ICLR, 2020.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
CoRR, 2016.

Zhang, C., Bengio, S., and Singer, Y. Are all layers created
equal? arXiv:1902.01996, 2019.

Zhang, J., Karimireddy, S., Veit, A., Kim, S., Reddi, S.,
Kumar, S., and Sra, S. Why are adaptive methods good
for attention models? NeurIPS, 2020.

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

A. Implementation Details

Throughout the paper we focus on a ResNet-18 architecture with batch normalization trained on CIFAR-10 data. We set
batchsize to 128, use cross entropy loss, and use as data augmentation: horizontal flip, random crop, and normalization.
We train the network for 100 epochs using SGD with momentum with weight decay set to Se-4 and the momentum
hyperparameter set to 0.9. We use an initial learning rate of h = 0.1 that is dropped by a factor of 10 every 33 epochs. For
pre-trained models we use initial learning rate i = 0.001 that is dropped by a factor of 10 after 30 epochs. We obtain our
pre-trained models from the PyTorch library, which have been trained on ImageNet. We replace the final fully connected
layer to match the number of classes and (when training on CIFAR-10 data) set the first convolutional layer to have 3 input
channels, 64 output channels, and a kernel size of 3 x 3. We perform all our experiments in PyTorch using NVIDIA DGX-1
GPUs and use standard random PyTorch initialization. Our results are all averaged across multiple runs with different
random seeds on initialization and data order.

In this work we vary specific aspects of the training problem, such as the optimizer hyperparameters, data, initialization,
and model, while keeping all other aspects fixed. For example, we consider deeper ResNet architectures (Figure 10), but
use the same optimizer, data, and initialization settings as for our base model. But, as described in the paper, there are a
few experiments where we change multiple aspects of the training problem: we turn off weight decay for both our random
label initialization experiment (Figure 2B) and our height of barrier initialization experiment (Figure 3). For the former, we
wanted to study the effect of adversarial initialization that lowered the test accuracy of the final trained network. A network
trained on 100% random labels as initialization typically does not affect the test accuracy of the final model, when using
SGD with momentum, learning rate decay and weight decay (Liu et al., 2020). But turning off weight decay during training
in combination with pre-training on random labels does lower the test accuracy. For our height of barrier initialization
experiment (Figure 3) we needed a setting for which the linear path exhibited clear barriers. For a ResNet-18 this is found
for some seeds when weight decay is turned off (Figure 7). For the runs that exhibited barriers we saved the state of the
model at the height of this barrier and used this as initialization for our model to produce Figure 3.

Further, to obtain Figure 1A we used a two hidden layer perceptron with 50 nodes in each hidden layer and ReLLU activations.
We used Adam with h = Se-4, without weight decay or any learning rate scheduling. We use batch size 128 for MNIST data
and cross entropy loss. We use binary cross entropy loss for the binary classification spiral data set. The first class of the
spiral data set is generated using

& = 2v/t cos(8v/t) + 0.02N(0, 1),
y = 2Vtsin(8v/tr) + 0.02N(0, 1), 3)

where ¢ is drawn repeatedly from the uniform distribution 2/(0, 1) to generate data points. The other class of this dataset is
obtained by shifting the argument of the trigonometric functions by 7. For our experiments on the spiral data set we used
10000 training data, 5000 test data points and a batch size of 500.

B. Overview of Results

A summary of all our findings can be found in Figure A11.

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

barriers /monotonic decay No barriers Higher layer-wise barrier
Often worse acc \ Better acc Worse acc if no WD
Partial Pre-train Pre-trained on
(pre-)training full model random labels)
Lower layer- No barriers
wise barriers Worse acc
Worse acc 1. -
Initialization /
No batch
No data T normalization
augmentation
Base model: ResNetl18 with BN .
trained on data augmented H1gher
< CIFAR-10 data using SGD layer—wise
with momentum with 1r decay Deeper barriers

and weight decay = 5e-4
Exhibits plateau+drop and
layer-wise barriers

Better acc

Less data Multi-layer perceptrons:
/ Early layers
have barriers

v
Monotonic decay

/ lower layer- Optimizer
wise barrjirs Overparameterization
Worse acc

Weight decay Fixed 1r Small 1r for layers | ° . . .

with barriers
Often
Less/ \’Iore h=0.0/ \h:,é0.0l \ better acc,

monotonic decay Plateau + but varies
/ barriers drop
Worse acc Worse acc

Plateau + No barriers No barriers
drop Worse acc Worse acc
Better acc

Figure Al1. The linear path between 6; and 6 of our base ResNet-18 architecture exhibits a plateau at the level of random chance until
close to the optimum (plateau + drop); it exhibits barriers when evaluating the linear path layer-wise (see Figure 1B). The base model
obtains 92.2% accuracy on CIFAR-10 test data. In this figure we present the change in test accuracy and shape of the linear path between
0; and 0y compared to this base model along four axes: the optimizer, the data, the initialization, and the model.There are several cases
where the presence of barriers coincides with increased test accuracy. But there are also cases where no barriers do. We conclude that the
shape of the linear path is not a reliable indicator of accuracy.

C. Further Studies on the Role of Initialization

Left/right of barrier initialization. In Section 4 we showed the effect of initializing neural networks at the parameter
configuration which corresponds to the height of the barrier along their initial to converged state. We considered a ResNet-18
architecture which was trained without weight decay on CIFAR-10 data. The linear interpolation path in this setting clearly
exhibits barriers for some seeds (Section 6, Figure 7). For the runs that exhibited barriers, we saved the model state at the
the height of the barrier and used this as initialization for our model. Although it was initialized at a higher loss than occurs
at random initialization, the resulting network obtained a higher test accuracy than the network trained from scratch and its
linear path exhibited monotonic decay (Figure 3). In Table A3 and Figure A12 we show that these effects are not restricted
to initialization at the barrier: choosing an initialization along the linear path to the left or the right of the barrier leads to
similar performance improvement (Table A3) and typically monotonic decay along the linear path (Figure A12).

Table A3. ResNet-18 on CIFAR-10 without weight decay. Test loss between 6; and 6 for discrete set of « € [0, 1] in 50 equally spaced
subintervals, when trained either from scratch (blue) or from an initialization corresponding to 6, of the blue line at: the height of the
barrier awarrier, before the barrier at & = awamier — 9, after the barrier at &« = awparrier + 5 (red).

Initialization | Training accuracy (%) | Test accuracy (%)
Random initialization 99.44 +0.12 90.01 £0.39
Before barrier 99.80 +0.04 91.05 £0.21
Height of barrier 99.86 +0.02 91.12 +£0.18
After barrier 99.88 + 0.02 90.85 £+0.17

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

Scratch Before barrier Height of barrier After barrier

41 4 4 41
n 31 31 3 31
0 S N\
3 ” N\
o2 21 \ 2 21
2

11 1 K{ 1 1 N

% 0.5 1 % 0.5 1 % 0.5 1 % 0.5

a a a a

Figure A12. ResNet-18 on CIFAR-10 without weight decay. Test loss between 6; and 6 for discrete set of a € [0, 1] in 50 equally
spaced subintervals, when trained either from scratch (blue) or from an initialization corresponding to 6, of the blue line at: the height of

the barrier awarrier (Orange), just before the barrier at & = aparier — 5 (green), just after the barrier at &« = awarrier + 5 (red).

6 No WD 6 WD = le4 WD = 5e-4
—— Adv init B1, test acc 89.84% —— Adv init B1, test acc 90.7% —— Adv init B1, test acc 91.9%
51 —— Adv init B2, test acc 89.5% 51 —— Adv init B2, test acc 90.9% —— Adv init B2, test acc 91.9%
—— Adv init B3, test acc 90.0% —— Adv init B3, test acc 90.9% —— Adv init B3, test acc 92.1%
4 4 Adv init B4, test acc 90.8% 4 Adv init B4, test acc 91.6% ---- Adv init B4, test acc 92.3%
o
— '
=
E \\ __________________ "W

0 05 1

Figure A13. Test loss between 6; and 6 when one specific conv block (B) was adversarially initialized using random labels. The net was
trained either without weight decay (WD) (left), with WD = le-4 (middle) or with WD = 5e-4 (right). Averaged over 10 runs.

Block-wise adversarial initialization with different levels of weight decay. To further explore the effect of using different
initializations for individual convolutional blocks on the linear path and test accuracy, we set one convolutional block to a
random label adversarial initialization while using a standard random initialization for the rest of the net. We then re-train
using this initialization with different amounts of weight decay (WD). We vary the WD value to study how changes in the
full model linear path (Figure 7) are reflected by the convolutional block-wise linear path. We find that while adversarial
initialization for the first convolutional blocks lowers the test accuracy, using adversarial initialization for convolutional
block 4 slightly increases the final test accuracy compared to training from scratch (compare Figure A13 with Figure 7).
This is also reflected by the shape of the linear path: when using an adversarial initialization for convolutional block 4 the
linear path exhibits monotonic decay while others settings exhibit barriers (no WD) and a barrier while other settings exhibit
a plateau (WD = 5e-4).

D. Further Studies on the Role of Data

Less training data and no data augmentation. Further to our experiments in Section 5, we here show the combined effect
of reducing the number of training data in addition to removing data augmentation (Figure A14, left). We find that although
this further reduces the test accuracy and presence of block-wise barriers, the overall behaviour for the linear interpolation
of the full model (blue dotted line) is maintained (unless the number of training data is further reduced, see Figure 6, left in
main paper).

More data augmentation. In Figure A15 we show that using additional data augmentation causes the height of layer-wise
barriers to slightly increase (for B2 and B3).

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

50% training data 50% training data No data aug, test acc 85% Standard, test acc 92%
81No data aug
Test acc 77%

[oe]

8 8
Test acc 89% ==Vary all — Vary B3

—Vary B1 — Vary B4
—Vary B2 Vary fc

(o))

Test Loss

0 0.5 1

Figure A14. Test loss between 6; and 6 for ResNet-18 on CIFAR-10 when varying the amount of training data and whether data
augmentation (horizontal flips and random crops) is used.

No data aug, test acc 85% 8 Standard, test acc 92% 8 More data aug, test acc 92%
== Vary all — Vary B3
6 — Vary B1 — Vary B4
— Vary B2 Vary fc

0 0.5 1

Figure A15. Test loss between 6; and 6 for ResNet-18 on CIFAR-10 when using either no data augmentation (left), standard data
augmentation (horizontal flips and random crops) (middle), or additional data augmentation (brightness = 0.05) (right).

E. Further Studies on the Role of Optimization

Distance. In our fixed learning rate experiment (Figure 8) we showed that setting i = 0.01 leads to the largest test accuracy
of the trained model and non-monotonic behaviour of the loss along the linear path between initial and final state. Meanwhile
using a larger (h = 0.1) or smaller (h = 0.001) learning rate led to a lower test accuracy and monotonic decay of the loss
along the linear path. We used the same initialization to compare the different settings, but averaged the results presented in
Figure 8 over 10 runs using different random seeds. To measure the distance between initial 6; and final 6 models we use
the following measure (as used in (Liu et al., 2020)):

Or—0;
d(07,0;) = M’ 4)
16:]| 7
where || - || denotes the Frobenius norm. There exist many other ways of measuring the distance, which affect the order

of magnitude. Since we focus only on the relative distances travelled for different learning rate settings the use of Eq. (4)
suffices for this purpose. We find that the average distance travelled when using 2 = 0.1 is 1.03, whereas the average
distance travelled when using A = 0.01 is 0.88 and when using » = 0.001 is 0.22. This confirms our intuition that using a
larger learning rate will increase the distance travelled.

Layer-wise Sensitivity to Learning Rate. We observed that using a smaller initial learning rate for layers or convolutional
blocks which exhibit barriers removes these barriers, but also lowers the test accuracy of the resulting model for a ResNet-18
architecture (Figure 9 or Figure A16A). We observe the same behaviour for a VGG-11 architecture (Figure A16B). We
consider layers (or convolutional blocks) to not exhibit barriers if the loss along their linear path is monotonically decreasing;
the exact layers are specified in the caption of Figure A16.

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

ResNet18, test acc 92.2% ResNet18, test acc 90.1%
8 = = Vary all
—— Vary Bl
—— Vary B2
w6
a —— Vary B3
S Vary B4
04
]
}_
2

0 0.5 1

a
B . [VGG1T, VGG-11, . —
=) B1test acc 91.9% 61test acc 90.4% Vary all —Vary .7

Vary .0 Vary .8
—Vary .2 —Vary .10
—Vary .4 —Vary .11
—Vary .5 Vary fc

IS

Test Loss
Test Loss
w

Figure A16. Layer-wise (or block-wise) linear interpolation for ResNet-18 (A) and VGG-11 (B) trained from scratch on CIFAR-10 data
using different initial learning rates ho. For ResNet-18 (A): left: ho = 0.1 for all, right: ho = 0.01 for conv block 2, 3, and 4.0 and ho =
0.1 for rest. For VGG-11 (B): left: ho = 0.1 for all, right: ho = 0.01 for layers 4-10 and ho = 0.1 for rest. Using smaller learning rates for
layers that exhibit barriers (ResNet-18: conv block 2, 3, and 4.0, VGG-11: layer 4-10) can remove barriers, but lowers the test accuracy of
the resulting model.

F. Further Studies on the Role of the Model

Multi-layer perceptrons. For multi-layer perceptrons (MLPs) we find that the early layers (close to the input) typically
exhibit barriers, whereas later layers exhibit monotonic decay (Figure A17, left). By increasing the number of nodes in
layers that exhibit barriers one can reduce the presence of barriers for the overall model (Figure A17, middle). Meanwhile,
layers that do not exhibit barriers can be narrowed without removing the monotonic decay property (Figure A17, right).

50-node 6HL MLP 500-node 6HL MLP 500-node (L1-4), 25-node (L5-8)
3 3 —==- Vary all 3 —==- Vary all
" " —— Vary layer 1-4 " —— Vary layer 1-4
8| - Vary all g, —— Vary layer 5-8 8, —— Vary layer 5-8
- ‘] — Vary layer 1-4 - -
w w wn
4] —— Vary layer5-8 ___ o 2
Tl Tl Tl A\
0 0 - 0
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0 0.00 0.25 0.50 0.75 1.00
a a a

Figure A17. A 6 hidden layer MLP trained on spiral data (generated using Eq. 3) using different amount of nodes in the hidden layers:
50-node for all layers (left), 500-node for all layers (middle), 500-node for layers that exhibit barriers (layer 1-4) and 25-node for layers
that exhibit monotonic decay (layer 5-8) (right). All approaches obtain 100% test accuracy. Increasing the number of nodes in layers that
exhibit barriers removes the presence of barriers for the overall model (blue dotted line).

Batch normalization. In Figure A18 we show using parametergroup-wise linear interpolation that the running mean and
variance batch normalization parameters appear to govern the behaviour of the full convolutional block. For the linear
path of the full model, we corroborate the findings of (Lucas et al., 2021) that the use of batch normalization often leads
to non-monotonic behaviour (Figure A19). In the absence of batch normalization, ResNet and VGG architectures often
exhibit monotonic decay along their linear path from initial to final state. However, for various datasets we find that MLPs

What Can Linear Interpolation of Neural Network Loss Landscapes Tell Us?

do exhibit barriers in the absence of batch normalization, see e.g., Figure A17.

CIFAR10, ResNet18, Vary conv block 3

— Vary full
Vary conv params

10 —— Vary BN params

—— Vary BN running params

Test Loss
o

0.0 0.2 0.4 0.6 08 1.0
a

Figure A18. We keep all parameters of a ResNet-18 architecture fixed at their final trained position (on CIFAR-10 data), apart from
specific parameter groups in the third convolutional block, which we vary from their initial to final position using the linear interpolation
technique. The blue line is when the full third convolutional block is varied. The batch normalization parameters are split into two groups,
the running mean and variance (red) and the others (green).

VGG-11. In Figure A19 we show the loss along the linear path for a VGG-11 architecture on CIFAR-10 data with (left) and
without (right) batch normalization.

VGG-11 with BN, VGG-11 no BN,
test acc 91.9% test acc 74.7%

(<))

= =Vary all— Vary .7
Vary .0 Vary .8

—Vary .2 — Vary .10

—Vary .4 —Vary .11

w
w

(%] wn
g4 g4 —Vary .5 Vary fc
- -
w3 w3
4 4
e e NN\ N —_

2 2 SN

A
\\
1 1 O~
0 0
0 0.5 1
a a

Figure A19. Test loss between 6; and 6 for VGG-11 on CIFAR-10 when varying whether batch normalization (BN) is used.

Layer width: We find for a VGG-11 architecture with batch normalization on CIFAR-10 data that layers without barriers
can be narrowed without affecting the generalization performance (Table A4). This does not hold for layers that do exhibit
barriers along the linear path between the initial and final state. We found that this effect did not generalize to a ResNet-18
architecture, so recommend caution with using the presence or absence of layer-wise layers as an indication of which layers
can be narrowed.

Table A4. Layer-wise linear interpolation for a VGG-11 architecture with batch normalization trained from scratch on CIFAR-10 data.
This architecture exhibits no barriers in the first two layers, final layer and the fully connected layer, whereas it does exhibit barriers in
the five middle layers (see also Figure A19, left). We find that narrowing all non-barrier layers by half only marginally lowers the test
accuracy (2nd row), whereas narrowing only one barrier layer (3rd row) already has a large impact. Narrowing two (4th row) or all barrier
layers (final row) lowers the test accuracy even further.

Intervention | Test accuracy (%)

Standard 91.93 +£0.19
Narrow no-barrier layers 91.73 £0.19
Narrow 1 barrier layer 91.53 +0.20
Narrow 2 barrier layers 91.25 +£0.12
Narrow all barrier layers 91.15 +£0.13

