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1. Introduction

The approximation property (AP) for locally compact groups, introduced by Haagerup 
and Kraus [30], can be viewed as an analogue of Grothendieck’s approximation property 
for Banach spaces [28]. It belongs to a family of widely studied analytical properties like 
amenability, weak amenability, and the Haagerup property. In fact, AP is a weakening of 
weak amenability and thus a very loose form of amenability. It is known that AP passes 
from locally compact groups to their lattices and vice versa, and that it has better 
permanence properties with respect to standard constructions like extensions and free 
products, in comparison to weak amenability.

It was an open problem for a long time to exhibit examples of exact groups without 
AP. In the remarkable paper [48], Lafforgue and de la Salle proved that SL(3, R) fails 
to have AP, thus confirming a conjecture in [30]. Building on this result, it was shown 
later by Haagerup, Knudby and De Laat that a connected Lie group has AP if and only 
if all simple factors in its Levi decomposition have real rank at most one [31], [32], [29].

The approximation property has a wide range of applications. As shown by Haagerup-
Kraus [30], in the case of discrete groups there is a connection between AP and the slice 
map property (or equivalently, the operator approximation property) of the associated 
crossed products. It was recently proven in the full generality of locally compact groups 
that AP implies exactness [64] (see also [15]), which makes it relevant to a number of 
problems in operator algebras. Let us also mention that AP was shown to be equivalent to 
a non-commutative version of Fejér’s theorem [15], and used to prove results concerning 
convolution operators on Lp(G) [12,21].

Amenability, weak amenability and the Haagerup property have also been studied 
extensively in the broader setting of locally compact quantum groups, see [9] for a survey. 
An interesting new feature in the quantum setting is the interplay between discrete 
quantum groups, their Drinfeld doubles, and the associated C∗-tensor categories [22]. 
In fact, the central versions of amenability, the Haagerup property, weak amenability 
and central property (T) for discrete quantum groups have been recast at the level of 
C∗-tensor categories [57], thus building a natural bridge to the study of subfactors.

In the present paper we undertake a systematic study of the approximation property 
for locally compact quantum groups. Kraus and Ruan introduced a version of the ap-
proximation property for Kac algebras in [42], requiring the existence of a net in the 
Fourier algebra A(G) such that the associated net of completely bounded operators 
on L∞(Ĝ) converges to the identity in the stable point weak∗-topology of CBσ(L∞(Ĝ)). 
Crann studied this property for general locally compact quantum groups, and showed for 
example that in the presence of this property, amenability is equivalent to coamenability 
of the dual quantum group [14, Corollary 7.4].

Our starting point is the original work by Haagerup and Kraus. We say that a locally 
compact quantum group has AP if it admits a net of elements in the Fourier algebra 
A(G) which converges weak∗ to 1 in the space of left CB multipliers Ml

cb(A(G)). We 
show that this definition is in fact equivalent to the definition of AP used in [42], [14], 
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thereby verifying a conjecture in [42]. This result was proved by Haagerup and Kraus 
in the case of locally compact groups ([30, Theorem 1.9]). Our methods are necessarily 
different, as we cannot work with points or compactly supported functions. Along the 
way, we obtain a useful alternative description of the weak∗-topology on the space of 
left CB multipliers (Theorem 3.8). We prove that working with left or right multipliers 
does not change the theory, and that passing from a quantum group to its opposite or 
commutant preserves AP. We also show that if a quantum group G has the AP exhibited 
by a net which is uniformly bounded in the norm of A(G) (resp. Ml

cb(A(G))), then the 
dual is coamenable (resp. the quantum group is weakly amenable).

We then derive a number of permanence properties of AP in analogy to the classical 
setting. In particular, we show that AP passes to closed quantum subgroups of locally 
compact quantum groups, and to duals of double crossed products. This includes the 
passage to direct products of quantum groups as a special case. In the setting of discrete 
quantum groups we verify that AP is inherited by free products and direct limits of 
directed systems of discrete quantum groups with injective connecting maps. We also 
introduce a central version of the approximation property for discrete quantum groups 
and show that it is related to a natural notion of AP for rigid C∗-tensor categories, 
building on work of Arano–De Laat–Wahl [2], [3].

Using our results we can provide a range of examples of quantum groups with and 
without AP. For instance, the Drinfeld double of SL(3, R) does not have AP, and the 

free product SL(3, Z) � ŜUq(2) does not have AP. Examples with AP can be obtained via 

free products as well, for example SL(2, Z) � ŜUq(2). Using infinite products, one may 
find examples of discrete quantum groups with AP which are not weakly amenable. We 
make further remarks at the start of Section 4.

Let us now briefly describe more of our results and explain how the paper is organised. 
In Section 2 we collect some background material on locally compact quantum groups and 
fix our notation. In Section 3 we review several characterisations of the space Ml

cb(A(G))
of left cb-multipliers of the Fourier algebra A(G) and its natural predual Ql(A(G)). By 
definition, Ml

cb(A(G)) is a (in general not closed) subalgebra of L∞(G), but it is also 
isomorphic to L1(Ĝ)CBσ(L∞(Ĝ)), the space of a normal left module maps on L∞(Ĝ). 
Any map in L1(Ĝ)CBσ(L∞(Ĝ)) restricts to C0(Ĝ), and we provide a characterisation 

of the maps on C0(Ĝ) which so arise. This leads to a description of Ql(A(G)) as a 
quotient of the projective tensor product C0(Ĝ)⊗̂L1(Ĝ). We were unable to locate this 
description in the literature, even for classical groups.

In Section 4 we define the Haagerup-Kraus approximation property for locally compact 
quantum groups, and survey some examples and counter-examples, making use of later 
results in the paper. We verify that AP passes to opposite and commutant quantum 
groups. We compare our definition to the version of AP given by Kraus and Ruan, 
showing that they are equivalent. We show that Ml

cb(A(G)) admits an involution linked 
to the antipode of G, and to the fact that elements of 1 ̂ CBσ(L∞(Ĝ)) act boundedly 
L (G)
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on the Hilbert space L2(G). We finish the section by showing that AP is independent of 
the choice of working with left or right multipliers.

In Section 5 we discuss the relation of AP with weak amenability and coamenability.
Section 6 is devoted to the special case of discrete quantum groups. When Γ is dis-

crete, we have the notion of a finitely-supported function leading to the algebra c00(Γ). 
It suffices to work with c00(Γ) when considering AP, and we show further that the 
approximating net can be chosen to satisfy other properties. We introduce the central 
approximation property for discrete quantum groups and prove that central AP is equiv-
alent to AP in the unimodular case. Building on the work of Kraus-Ruan [42] and Crann 
[14], we show that if a locally compact quantum group G has AP then the von Neumann 
algebra L∞(Ĝ) has W∗OAP. We study the relation between AP of Γ and (strong) OAP 
of C(Γ̂) or W∗OAP of L∞(Γ̂). Finally, we introduce strengthenings of these concepts 
which take into account also the algebra �∞(Γ), and show that these are equivalent to 
AP even in the non-unimodular case.

In Section 7 we establish a number of permanence properties. We show that the AP 
is inherited by arbitrary closed quantum subgroups and by the duals of double crossed 
products. In particular, the direct product of two quantum groups with AP also has 
AP. For discrete quantum groups we investigate the passage to free products and direct 
unions, again showing that AP is preserved.

Finally, in Section 8 we define the approximation property for rigid C∗-tensor cate-
gories and verify that the categorical AP is equivalent to the central AP for discrete 
quantum groups. This implies in particular that the central AP is invariant under 
monoidal equivalence. We also relate these properties to the AP of the Drinfeld dou-
ble.

We conclude with some general remarks on notation. If A is a C*-algebra we write 
M(A) for its multiplier algebra. For a map Φ: A → A, the symbol Φ† stands for the 
map A � a �→ Φ(a∗)∗ ∈ A. If ω : A → C is a linear functional we write ω for the linear 
functional given by ω(x) = ω(x∗).

We write � for the algebraic tensor product, ⊗ for the tensor product of Hilbert 
spaces or the minimal tensor product of C∗-algebras, ⊗̌ for the injective tensor product 
of operator spaces and ⊗̄ for the spatial tensor product of von Neumann algebras. We 
denote by χ the flip map for tensor products of algebras, and use the symbol Σ for the 
flip map of Hilbert spaces.

We freely use the basic theory of operator spaces, following [23], see also [54,55] for 
example. When X, Y are operator spaces, CB(X, Y ) denotes the space of completely 
bounded (CB) linear maps X → Y . For dual operator spaces X, Y we write CBσ(X, Y )
for the subset of CB(X, Y ) consisting of all maps which are weak∗-weak∗-continuous. In 
the case X = Y we simply write CB(X) = CB(X, X) and CBσ(X) = CBσ(X, X). If M
is a von Neumann algebra, then CBσ(M) can be equipped with the stable point-weak∗-
topology: Ti −−→

i∈I
T with respect to this topology if and only if (Ti ⊗ id)x −−→

i∈I
(T ⊗ id)x

in the weak∗-topology, for any separable Hilbert space H and x ∈ M ⊗̄B(H), see [30]. 
Whenever we have a left N-module structure on an operator space X, the space of 
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left N-module CB maps is denoted by NCB(X). Similarly, if X is a right module or a 
bimodule, the corresponding spaces are denoted by CBM(X) and NCBM(X), respectively. 
We denote the operator space projective tensor product by ⊗̂, and recall that (X⊗̂Y )∗ =
CB(X, Y ∗) completely isometrically. The canonical pairing between an operator space 
X and its dual X∗ is denoted by 〈ω, x〉X∗,X for ω ∈ X∗, x ∈ X, or simply 〈ω, x〉 if there 
is no risk of confusion.

For a n.s.f. weight θ on a von Neumann algebra M, we denote the GNS Hilbert space 
by Hθ, and we use the notation Nθ = {x ∈ M | θ(x∗x) < +∞}. We write Λθ : Nθ → Hθ

for the GNS map. Typically we then represent M on Hθ and identify M ⊆ B(Hθ).

2. Preliminaries

Throughout the paper we will work in the setting of locally compact quantum groups 
introduced by Kustermans and Vaes [46]. In this section we recall some fundamental 
constructions and results of the theory, more information can be found in [44,47,70]. For 
background on operator algebras and operator spaces we refer to [10,23,65].

By definition, a locally compact quantum group G is given by a von Neumann algebra 
L∞(G) together with a normal unital �-homomorphism ΔG : L∞(G) → L∞(G)⊗̄L∞(G)
called comultiplication, satisfying (ΔG ⊗ id)ΔG = (id ⊗ ΔG)ΔG, and left resp. right
Haar integrals ϕ and ψ. These are normal, semifinite, faithful (n.s.f.) weights on L∞(G)
satisfying certain invariance conditions with respect to ΔG. In general, the von Neumann 
algebra L∞(G) is non-commutative and will not be an algebra of functions on a measure 
space. Following this notational convention, the predual of L∞(G) is denoted by L1(G)
and the GNS Hilbert space of ϕ is denoted by L2(G).

Every locally compact group G can be seen as a locally compact quantum group G
by taking L∞(G) = L∞(G), the algebra of classes of measurable, bounded functions on 
G, and letting ΔG be the pullback of multiplication in G. The weights ϕ, ψ are given by 
integration with respect to left (right) Haar measure in this case.

Out of the axioms, one can construct a number of additional objects associated to 
a locally compact quantum group G. First of all, there is the Kac-Takesaki operator
WG ∈ L∞(G)⊗̄L∞(Ĝ), which is a unitary operator on L2(G) ⊗ L2(G) defined via

((ω ⊗ id)WG∗)Λϕ(x) = Λϕ((ω ⊗ id)ΔG(x)) (ω ∈ L1(G), x ∈ Nϕ). (2.1)

It implements the comultiplication via ΔG(x) = WG∗(1 ⊗ x)WG for x ∈ L∞(G). 
Tomita-Takesaki theory yields two groups of modular automorphisms (σϕ

t )t∈R, (σψ
t )t∈R

and modular conjugations Jϕ, Jψ associated with the weights ϕ, ψ, respectively [65]. The 
left and right Haar integrals are linked by the modular element δG, which is a strictly 
positive, self-adjoint operator affiliated with L∞(G).

In the theory of quantum groups, the role of the inverse operation is played by two 
maps: the antipode SG and the unitary antipode RG. The antipode is in general an 
unbounded (densely defined) map on L∞(G) such that
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(id ⊗ ω)WG ∈ Dom(SG) and SG((id ⊗ ω)WG) = (id ⊗ ω)WG∗ (ω ∈ L1(Ĝ)).

The unitary antipode, on the other hand, is a bounded, normal, �-preserving, antimul-
tiplicative map on L∞(G) satisfying ΔGRG = χ(RG ⊗ RG)ΔG. These maps are linked 
via SG = RGτ

G
−i/2 = τG−i/2RG, where (τGt )t∈R is the group of scaling automorphisms

of L∞(G). There is a self-adjoint, strictly positive (in general unbounded) operator PG

acting on L2(G) which implements scaling automorphisms via τGt (x) = P it
GxP−it

G (x ∈
L∞(G), t ∈ R). Furthermore, PG is self-dual in the sense that PĜ = PG. The left and 
right Haar integrals are unique up to a scalar, and we shall fix normalisations such that 
ϕ = ψ ◦ RG. The scaling constant of G will be denoted by νG > 0. It is characterised 
via for example ϕ ◦ τGt = ν−t

G ϕ for t ∈ R.
With any locally compact quantum group G one can associate the dual locally com-

pact quantum group Ĝ in such a way that the correspondence between G and Ĝ
extends Pontryagin duality. Furthermore, the Hilbert spaces L2(G), L2(Ĝ) can be iden-
tified in a canonical way, and the Kac-Takesaki operators of G and Ĝ are linked via 
WĜ = χ(WG∗). If there is no risk of confusion we will simply write Δ for ΔG, Δ̂ for 
ΔĜ, and similarly R, S, R̂, Ŝ for the (unitary) antipode of G or Ĝ. Using the canonical 
identification of L2(G) and L2(Ĝ) one obtains a number of useful formulae. Let us men-
tion in particular that the right regular representation VG ∈ L∞(Ĝ)′⊗̄L∞(G) is given 
by VG = (Jϕ̂ ⊗ Jϕ̂)χ(WG)∗(Jϕ̂ ⊗ Jϕ̂).

We will also work with the weak∗-dense C∗-subalgebra C0(G) ⊆ L∞(G). It is defined 
as the norm-closure of the space {(id⊗ω)WG | ω ∈ L1(Ĝ)}. After restriction, the comul-
tiplication becomes a non-degenerate �-homomorphism C0(G) → M(C0(G) ⊗ C0(G)). 
Similarly one defines C0(Ĝ), and then WG ∈ M(C0(G) ⊗ C0(Ĝ)). Using the comultipli-
cation of L∞(G), we define a Banach algebra structure on L1(G) via ω � ν = (ω⊗ ν)ΔG

for ω, ν ∈ L1(G). As L∞(G) is the dual of L1(G), we have a canonical L1(G)-bimodule 
structure on L∞(G), which is given by ω�x = (id⊗ω)ΔG(x) and x �ω = (ω⊗ id)ΔG(x). 
Treating L1(G) as the predual of the von Neumann algebra L∞(G) gives, as usual, 
an L∞(G)-bimodule structure on L1(G) defined via xω = ω(· x), ωx = ω(x ·) for 
x ∈ L∞(G), ω ∈ L1(G).

Let us introduce the map λG : L1(G) → C0(Ĝ) by λG(ω) = (ω⊗id)WG, and similarly 
for Ĝ. Using this we define the Fourier algebra of G as A(G) = λĜ(L1(Ĝ)). One can 

check that λĜ is multiplicative, so that A(G) is a dense subalgebra of C0(Ĝ). As λĜ
is also injective, we can define an operator space structure on A(G) by imposing the 
condition that λĜ : L1(Ĝ) → A(G) is completely isometric.

In the text, we will use certain subspaces of L1(G), which consist of functionals having 
nice additional properties. Firstly, let us introduce

L1
� (G) = {ω ∈ L1(G) | ∃θ∈L1(G) λG(ω)∗ = λG(θ)}

= {ω ∈ L1(G) | ∃ 1 ∀ ω(S (x)) = θ(x)}.
(2.2)
θ∈L (G) x∈Dom(SG) G
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For a given ω ∈ L1
� (G), the functional θ is characterised uniquely by any of the properties 

in (2.2), hence we can write θ = ω�. The mapping ω �→ ω�, and the restriction of the 
multiplication from L1(G), turn L1

� (G) into a �-algebra. The second subspace we will 
use is

J = {ω ∈ L1(G) | ∃M>0 ∀x∈Nϕ
|ω(x∗)| ≤ M‖Λϕ(x)‖}. (2.3)

This subspace appears in the construction of the left Haar integral ϕ̂ for Ĝ. Indeed, for 
ω ∈ J we have

λG(ω) ∈ Nϕ̂ and ∀x∈Nϕ
〈Λϕ(x) |Λϕ̂(λG(ω))〉 = ω(x∗).

In a couple of places we will need the following result, which says that there are many 
functionals with desirable properties.

Lemma 2.1. The subspace

J0 = {ω ∈J ∩ L1
� (G) |ω, ω� ∈ J ∩ L1

� (G) and f : R � t �→ (ωδitG) ◦ τGt ∈ L1(G)

extends to an entire function such that ∀z∈C f(z) ∈ J ∩ L1
� (G)}

is dense in L1(G), and λG(J0) forms a σ-sot
* × ‖ · ‖ core for Λϕ̂.

Proof. Our approach is standard, compare for example [39, Lemma 14.5] for a similar 
result. Therefore we only give a sketch of the argument.

According to [47, Proposition 2.6], the space J � = {ω ∈ J ∩ L1
� (G) | ω� ∈ J } is 

dense in L1(G) and λG(J �) is a σ-sot
*×‖ ·‖ core of Λϕ̂. Let us introduce three mollifier 

operations: for n ∈ N let

Mϕ
n : L1(G) � ω �→

√
n
π

∫
R

e−nt2ω ◦ σϕ
t dt ∈ L1(G),

Mτ
n : L1(G) � ω �→

√
n
π

∫
R

e−ns2ω ◦ τGs ds ∈ L1(G),

M δ
n : L1(G) � ω �→

√
n
π

∫
R

e−np2
ωδipG dp ∈ L1(G).

Next, let ωn = Mτ
n ◦Mϕ

n ◦M δ
n(ω) and set J00 = span{ωn | n ∈ N, ω ∈ J �}. It suffices 

to show that J00 is dense in L1(G), that J00 ⊆ J0, and that λG(J00) forms a 
σ-sot

* × ‖ · ‖ core for Λϕ̂.
Choose n ∈ N, ω ∈ J �, x ∈ Nϕ, y ∈ Dom(SG). It is elementary to check that 

ωn ∈ J ∩ L1
� (G) and R � t �→ (ωnδ

it
G) ◦ τGt ∈ L1(G) extends to an entire function with 

the desired property. Since
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|ωn(x∗)| = |ωn(x)| = (nπ )3/2
∣∣∫
R3

e−n(t2+s2+p2)ω(δipGσϕ
t ◦ τGs (x)) dt dsdp

∣∣
= (nπ )3/2

∣∣ω(∫
R3

e−n(t2+s2+p2)δipGσϕ
t ◦ τGs (x) dt dsdp

)∣∣
≤ (nπ )3/2‖Λϕ̂(λG(ω))‖

∥∥Λϕ

(∫
R3

e−n(t2+s2+p2)σϕ
t ◦ τGs (x∗)δ−ip

G dt dsdp
)∥∥

= (nπ )3/2‖Λϕ̂(λG(ω))‖
∥∥Jϕ∇1/2

ϕ Λϕ

(∫
R3

e−n(t2+s2+p2)δipGσϕ
t ◦ τGs (x) dt dsdp

)∥∥
= (nπ )3/2‖Λϕ̂(λG(ω))‖

∥∥Λϕ

(∫
R3

e−n((t+i/2)2+s2+p2)ν
p/2
G δipGσϕ

t ◦ τGs (x) dt dsdp
)∥∥

≤ (nπ )3/2‖Λϕ̂(λG(ω))‖
(∫
R3

|e−n((t+i/2)2+s2+p2)|νp/2−s/2
G dt dsdp

)
‖Λϕ(x)‖,

where νG is the scaling constant of G, we have ωn ∈ J . Here we used σϕ
t (δipG ) = νitpG δip

and ϕ ◦ τs = ν−s
G ϕ. It is automatic that ωn ∈ L1

� (G). Indeed,

ωn(SG(y)) = ωn(SG(y)) =
√

n
π

∫
R

e−ns2Mϕ
n ◦M δ

n(ω)(τGs ◦RG ◦ τG−i/2(y)) ds

=
(√

n
π

∫
R

e−n(s+i/2)2Mϕ
n ◦M δ

n(ω) ◦ τGs ◦RG ds
)
(y).

The above calculation shows also that ωn
� =

√
n
π

∫
R e−n(s+i/2)2Mϕ

n ◦M δ
n(ω) ◦τGs ◦RG ds. 

Moreover we have ωn
� ∈ J , which is a consequence of the following calculation:

|ωn
�(x∗)| = (nπ )3/2

∣∣∫
R3

e−n(t2+(s+i/2)2+p2)ω
(
δipGσϕ

t ◦ τGs ◦RG(x∗)
)
dt dsdp

∣∣
≤ (nπ )3/2‖Λϕ̂(λG(ω))‖

∥∥Λϕ

(∫
R3

e−n(t2+(s−i/2)2+p2)σϕ
t ◦ τGs ◦RG(x)δ−ip

G dt dsdp
)∥∥

= (nπ )3/2‖Λϕ̂(λG(ω))‖
∥∥Λψ

(∫
R3

e−n(t2+(s−i/2)2+(p+i/2)2)σϕ
t ◦ τGs ◦RG(x)δipG dt dsdp

)∥∥
= (nπ )3/2‖Λϕ̂(λG(ω))‖

∥∥Λψ

(∫
R3

e−n(t2+(s−i/2)2+(p+i/2)2)δ−it
G σψ

t ◦ τGs ◦RG(x)

δ
i(t+p)
G dt dsdp

)∥∥
= (nπ )3/2‖Λϕ̂(λG(ω))‖

∥∥Jψ∇1/2
ψ Λψ

(∫
e−n(t2+(s+i/2)2+(p−i/2)2)δ

−i(t+p)
G

R3
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σψ
t ◦ τGs ◦RG(x∗)δitG dt dsdp

)∥∥
= (nπ )3/2‖Λϕ̂(λG(ω))‖

∥∥Λψ

(∫
R3

e−n((t+i/2)2+(s+i/2)2+(p−i/2)2)ν
−p/2
G δ

−i(t+p)
G

σψ
t ◦ τGs ◦RG(x∗)δitG dt dsdp

)∥∥
≤ (nπ )3/2‖Λϕ̂(λG(ω))‖

∫
R3

|e−n((t+i/2)2+(s+i/2)2+(p−i/2)2)|νs/2−t/2−p/2
G

‖Λψ(RG(x∗))‖ dt dsdp

= (nπ )3/2‖Λϕ̂(λG(ω))‖‖Λϕ(x)‖
(∫
R3

|e−n((t+i/2)2+(s+i/2)2+(p−i/2)2)|

ν
s/2−t/2−p/2
G dt dsdp

)
,

where we used Λϕ(z) = Λψ(zδ1/2
G ) for sufficiently good operators z, σψ

t = Ad(δitG) ◦ σϕ
t , 

ψ ◦ τGs = ν−s
G ψ and σψ

t (δipG ) = νitpG δipG . We are left to argue that J00 is dense and that 
λG(J00) is a sot

* × ‖ · ‖ core for Λϕ̂. It follows from

ωn −−−−→
n→∞

ω, Λϕ̂(λG(ωn)) −−−−→
n→∞

Λϕ̂(λG(ω))

for ω ∈ J �. The first claim is standard (see e.g. [43, Proposition 2.25] where a similar 
method is used), the second one can be seen as follows: first, observe that for t, s, p ∈
R we have using (σϕ

t ⊗ id)WG = (id ⊗ τ Ĝ−t)(WG)(1 ⊗ δit
Ĝ

) (see equation (4.5)) and 

(τGs ⊗ τ Ĝs )WG = WG that (τG−t ⊗ σϕ̂
−t)WG = (δitG ⊗ 1)WG and

λG((ωδipG ) ◦ τGs ◦ σϕ
t ) = ((ωδipG ) ◦ τGs ⊗ id)

(
(id ⊗ τ Ĝ−t)(WG)(1⊗ δit

Ĝ
)
)

= (ω ⊗ τ Ĝ−t−s)
(
(δipG ⊗ 1)WG

)
δit
Ĝ

= (ω ◦ τG−p ⊗ τ Ĝ−t−s ◦ σϕ̂
−p)(WG

)
δit
Ĝ

= (ω ⊗ τ Ĝp−t−s ◦ σϕ̂
−p)(WG

)
δit
Ĝ

= τ Ĝp−t−s ◦ σϕ̂
−p(λG(ω))δit

Ĝ
.

Hence

Λϕ̂(λG(ωn)) = (nπ )3/2
∫
R3

e−n(t2+s2+p2)Λϕ̂(λG((ωδipG ) ◦ τGs ◦ σϕ
t )) dt dsdp

= (nπ )3/2
∫
R3

e−n(t2+s2+p2)Λϕ̂

(
τ Ĝp−t−s ◦ σϕ̂

−p(λG(ω))δit
Ĝ

)
dt dsdp

= (nπ )3/2
∫
R3

e−n(t2+s2+p2)ν
s/2−p/2
Ĝ

Jϕ̂δ
−it

Ĝ
Jϕ̂P

i(p−t−s)∇−ip
ϕ̂

Λϕ̂(λG(ω)) dt dsdp,
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where P is the operator implementing the scaling group via P itΛϕ(x) = ν
t/2
G Λϕ(τGt (x)). 

Convergence Λϕ̂(λG(ωn)) −−−−→
n→∞

Λϕ̂(λG(ω)) follows now using a standard argument. �
3. Completely bounded multipliers

Unless stated otherwise, in this section G is an arbitrary locally compact quantum 
group.

3.1. Definitions and fundamental facts

We start by discussing the notions of (left/right) centralisers and multipliers. In the 
main part of the text we will focus on the left version of these objects – this is simply a 
matter of choice, compare Proposition 4.14.

Following [34], we say that a linear map T : L1(Ĝ) → L1(Ĝ) is a left (respectively, 
right) centraliser if

T (ω � ω′) = T (ω) � ω′ (
respectively T (ω � ω′) = ω � T (ω′)

)
(ω, ω′ ∈ L1(Ĝ)).

We denote by Cl
cb(L

1(Ĝ)) the space of completely bounded left centralisers. Together 
with the completely bounded norm and composition as product, Cl

cb(L
1(Ĝ)) becomes a 

Banach algebra. Similarly, Cr
cb(L

1(Ĝ)) stands for the space of completely bounded right 
centralisers, where now it is natural to use the opposite composition as product. We 
equip these spaces with an operator space structure by requiring that the embeddings 
Cl

cb(L
1(Ĝ)), Cr

cb(L
1(Ĝ)) ↪→ CB(L1(Ĝ)) are completely isometric; both then become com-

pletely contractive Banach algebras.
An operator b ∈ L∞(G) is said to be a completely bounded left multiplier if b A(G) ⊆

A(G) and the associated map

Θl(b)∗ : L1(Ĝ) → L1(Ĝ) satisfying bλ̂(ω) = λ̂(Θl(b)∗(ω)) (ω ∈ L1(Ĝ))

is completely bounded. As λ̂ is injective, this definition makes sense. We follow here the 
notation of [13]; sometimes the notation ml

b = Θl(b)∗ is used instead. As λ̂ is multiplica-
tive, for any completely bounded left multiplier b we have that Θl(b)∗ ∈ Cl

cb(L
1(Ĝ)). We 

write Θl(b) = (Θl(b)∗)∗, and denote the space of CB left multipliers by Ml
cb(A(G)). Any 

Fourier algebra element λ̂(ω) ∈ A(G) is a CB left multiplier with Θl(λ̂(ω))∗ ∈ CB(L1(Ĝ))
being the left multiplication by ω and Θl(λ̂(ω)) = (ω ⊗ id)Δ̂. Moreover, it holds that 
Ml

cb(A(G)) ⊆ M(C0(G)), see [17, Theorem 4.2].
Conversely, if T ∈ Cl

cb(L
1(Ĝ)) is a left centraliser, then its Banach space dual T ∗ is 

a normal CB map on L∞(Ĝ) which is a left L1(Ĝ)-module homomorphism, i.e. T ∗ ∈
L1(Ĝ)CBσ(L∞(Ĝ)). Then, by [35, Corollary 4.4], there exists a unique CB left multiplier 
b ∈ Ml

cb(A(G)) satisfying Θl(b) = T ∗, that is, Θl(b)∗ = T . These constructions are 
mutually inverse, and so the map Θl(·)∗ : Ml

cb(A(G)) → Cl
cb(L

1(Ĝ)) is bijective. We 
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define the operator space structure on Ml
cb(A(G)) so that these spaces become completely 

isometric.
The above notions have right counterparts. Recalling that VĜ ∈ L∞(G)′⊗̄L∞(Ĝ) is 

the right Kac-Takesaki operator, let us introduce the map ρ̂ : L1(Ĝ) � ω �→ (id⊗ω)VĜ ∈
L∞(G)′. Its image ρ̂(L1(Ĝ)) should be thought of as a right analogue of the Fourier 
algebra A(G) = λ̂(L1(Ĝ)). An operator b′ ∈ L∞(G)′ is called a completely bounded right 
multiplier if ρ̂(L1(Ĝ))b′ ∈ ρ̂(L1(Ĝ)) and the associated map Θr(b′)∗ : L1(Ĝ) → L1(Ĝ) is 
CB. Similarly as in the left version, we write Θr(b′) ∈ CBσ

L1(Ĝ)(L
∞(Ĝ)) for (Θr(b′)∗)∗

and Mr
cb(ρ̂(L

1(Ĝ))) for the space of CB right multipliers. Any CB right centraliser T ∈
Cr

cb(L
1(Ĝ)) is associated to a unique CB right multiplier b′ ∈ Mr

cb(ρ̂(L
1(Ĝ))) via T =

Θr(b′)∗ and this assignment is bijective. We similarly define an operator space structure 
on Mr

cb(ρ̂(L1(Ĝ))) to make it completely isometric with Cr
cb(L

1(Ĝ)).
We will write e.g. ‖b‖cb = ‖Θl(b)‖cb for b ∈ Ml

cb(A(G)). Observe that bλ̂(ω) =
λ̂(Θl(b)∗(ω)) for each ω ∈ L1(Ĝ) if and only if (1 ⊗ b)WĜ = (Θl(b) ⊗ id)(WĜ), and from 
this, it follows that ‖b‖ ≤ ‖b‖cb. Similarly we have ‖b′‖ ≤ ‖b′‖cb for b′ ∈ Mr

cb(ρ̂(L1(Ĝ))).

As a consequence of the above discussion, we have a commutative diagram

Cl
cb(L

1(Ĝ))
∼= Ml

cb(A(G))

L∞(G)

L1(Ĝ)
∼= A(G)

(3.1)

The two diagonal maps to L∞(G) are the canonical inclusions, as is the map A(G) →
Ml

cb(A(G)), while the vertical map L1(Ĝ) → Cl
cb(L

1(Ĝ)) is given by left multiplication. A 
simple calculation shows that this diagram indeed commutes. We obtain an immediate 
corollary: the map L1(Ĝ) → Cl

cb(L
1(Ĝ)) is injective, equivalently, if ω ∈ L1(Ĝ) with 

ω � ω′ = 0 for all ω′ ∈ L1(Ĝ), then ω = 0.
There is a canonical way of moving between left and right CB multipliers using the 

extension of the unitary antipode R̂ of Ĝ. Recall that it is implemented via R̂ = Jϕ(·)∗Jϕ, 
and let us denote its canonical extension to a bounded linear map on B(L2(G)) by 
R̂∼ = Jϕ(·)∗Jϕ. The following result will be used in Proposition 4.14 to show that it 
does not matter if we use left CB multipliers, or right CB multipliers, when we introduce 
the approximation property (AP), see Definition 4.1 below.

Lemma 3.1. For ω ∈ L1(Ĝ) we have ρ̂(ω) = R̂∼(λ̂(ω ◦ R̂)). Furthermore,
R̂∼(Ml

cb(A(G))) = Mr
cb(ρ̂(L

1(Ĝ))) and for a ∈ Ml
cb(A(G)) we have Θr(R̂∼(a)) =

R̂ ◦ Θl(a) ◦ R̂.
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Proof. Recall that VĜ = (Jϕ⊗Jϕ)χ(WĜ)∗(Jϕ⊗Jϕ), see [47, Proposition 2.15]. It follows 
that

ρ̂(ω) = (id⊗ω)VĜ = R̂∼((id⊗ω◦R̂)(χ(WĜ))
)

= R̂∼((ω◦R̂⊗id)(WĜ)
)

= R̂∼(λ̂(ω◦R̂)).
(3.2)

Next, take a ∈ Ml
cb(A(G)) and ω ∈ L1(Ĝ). We have R̂∼(a) = Jϕa

∗Jϕ ∈ L∞(G)′, so by 
(3.2),

ρ̂(ω)R̂∼(a) = R̂∼(λ̂(ω ◦ R̂))R̂∼(a) = R̂∼(aλ̂(ω ◦ R̂))

= R̂∼(λ̂(Θl(a)∗(ω ◦ R̂))
)

= ρ̂
(
Θl(a)∗(ω ◦ R̂) ◦ R̂

)
.

Hence R̂∼(a) ∈ Mr
cb(a) with Θr(R̂∼(a)) = R̂ ◦ Θl(a) ◦ R̂; this map is indeed CB, com-

pare Lemma 4.8. We have shown that R̂∼(Ml
cb(A(G))) ⊆ Mr

cb(ρ̂(L
1(Ĝ))); the converse 

inclusion is analogous. �
We finish by recording a known result for which we have not found a convenient 

reference.

Lemma 3.2. Let b ∈ Ml
cb(A(G)). There is β ∈ C with Θl(b)(1) = β1.

Proof. It suffices to show that for T ∈ L1(Ĝ)CBσ(L∞(Ĝ)) there is β with T (1) = β1. By 
definition, Δ ◦ T = (T ⊗ id)Δ and so Δ(T (1)) = T (1) ⊗ 1. By [18, Theorem 2.1] (and 
references therein) it follows that T (1) ∈ C1, as required. �
3.2. Predual

Since the inclusion Ml
cb(A(G)) ↪→ L∞(G) is bounded (actually, contractive), we 

can consider the restriction of the Banach space adjoint of this map, giving a map 
αl : L1(G) → Ml

cb(A(G))∗. Let us define the space Ql(A(G)) as the closure of the image 
of αl, so that

Ql(A(G)) = αl(L1(G)) ⊆ Ml
cb(A(G))∗.

According to [34, Theorem 3.4], the space Ql(A(G)) is a predual of Ml
cb(A(G)), i.e. we 

have

Ql(A(G))∗ ∼= Ml
cb(A(G))

completely isometrically. Whenever we speak about the weak∗-topology on Ml
cb(A(G))

we will have in mind this particular choice of predual – to the best of our knowledge, 
uniqueness of predual of Ml

cb(A(G)) is unknown.
Similarly, we can restrict functionals in L1(G′) to Mr

cb(ρ̂(L
1(Ĝ))) via map αr, and 

after taking the closure obtain the predual Qr(ρ̂(L1(Ĝ))) ⊆ Mr
cb(ρ̂(L1(Ĝ)))∗. From now 

on, we will restrict our discussion to the “left” setting.
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Proposition 3.3. Ml
cb(A(G)) is a dual Banach algebra, that is, the multiplication of 

Ml
cb(A(G)) is separately weak∗-continuous.

Proof. We turn Ml
cb(A(G))∗ into a Ml

cb(A(G))-bimodule in the usual way. Let a, b ∈
Ml

cb(A(G)) ⊆ L∞(G) and f ∈ L1(G). Writing 〈·, ·〉 for the pairing between Ml
cb(A(G)

and Ql(A(G)), or between L∞(G) and L1(G), we have

〈ab, αl(f)〉 = 〈ab, f〉 = 〈a, bf〉 = 〈a, αl(bf)〉
= 〈b, fa〉 = 〈b, αl(fa)〉.

This calculation shows that b · αl(f) = αl(bf) and αl(f) · a = αl(fa), so by continuity, 
it follows that Ql(A(G)) is a closed submodule of Ml

cb(A(G))∗. It is now standard, see 
[60, Proposition 1.2] for example, that the product is separately weak∗-continuous in 
Ml

cb(A(G)). �
Our next goal is to obtain a characterisation of functionals in Ql(A(G)). We will do 

this by obtaining an alternative description of the weak∗-topology on Ml
cb(A(G)). In the 

process, we also discuss CB maps on the C∗-algebra C0(Ĝ) which are associated to left 
centralisers.

To start, we observe that the adjoint T ∗ of a CB left centraliser T ∈ Cl
cb(L

1(Ĝ)) re-
stricts to a CB map on C0(Ĝ). Indeed, we can write T ∗ = Θl(a) for some a ∈ Ml

cb(A(G))
and then the claim follows from the equality (1 ⊗ a)WĜ = (T ∗ ⊗ id)WĜ and density of 
A(Ĝ) in C0(Ĝ). We seek a characterisation of which CB maps on C0(Ĝ) occur in this 
way as restrictions of duals to left CB centralisers, in terms of a property similar to the 
characterisation Cl

cb(L
1(Ĝ)) ∼= L1(Ĝ)CBσ(L∞(Ĝ)).

In the following statement, recall that (C0(Ĝ), Δ̂) is bisimplifiable, and so elements of 
the form Δ̂(a)(1 ⊗ b), for a, b ∈ C0(Ĝ), form a linearly dense subset of C0(Ĝ) ⊗ C0(Ĝ). 
Hence the left-hand-side of (3.3) is contained in L∞(Ĝ) ⊗C0(Ĝ) ⊆ L∞(Ĝ)⊗̄L∞(Ĝ), while 
the right-hand-side is in L∞(Ĝ)⊗̄L∞(Ĝ). We also recall that, by Kaplansky density, 
L1(Ĝ) is (completely) isometrically a subspace of C0(Ĝ)∗.

Lemma 3.4. Let L ∈ CB(C0(Ĝ), L∞(Ĝ)) be such that

(L⊗ id)(Δ̂(a)(1⊗ b)) = Δ̂(L(a))(1⊗ b) (a, b ∈ C0(Ĝ)). (3.3)

Embedding L1(Ĝ) into the duals of L∞(Ĝ) and C0(Ĝ) in the usual way, we have that L∗

maps L1(Ĝ) to itself, and the resulting restriction T ∈ CB(L1(Ĝ)) is a left centraliser. 
Furthermore T ∗ ∈ CB(L∞(Ĝ)) restricts to L, so consequently L ∈ CB(C0(Ĝ)).

Proof. As L1(Ĝ) is an essential C0(Ĝ)-module, by Cohen–Hewitt factorisation, given 
ω2 ∈ L1(Ĝ) there are ω3 ∈ L1(Ĝ) and b ∈ C0(Ĝ) with ω2 = bω3. Then, for ω1 ∈ L1(Ĝ)
and a ∈ C0(Ĝ) we have
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〈L∗(ω1 � ω2), a〉C0(Ĝ)∗,C0(Ĝ) = 〈Δ̂(L(a)), ω1 ⊗ ω2〉L∞(Ĝ)⊗̄L∞(Ĝ),L1(Ĝ)⊗̂L1(Ĝ)

= 〈Δ̂(L(a))(1⊗ b), ω1 ⊗ ω3〉L∞(Ĝ)⊗̄L∞(Ĝ),L1(Ĝ)⊗̂L1(Ĝ)

= 〈(L⊗ id)(Δ̂(a)(1⊗ b)), ω1 ⊗ ω3〉L∞(Ĝ)⊗̄L∞(Ĝ),L1(Ĝ)⊗̂L1(Ĝ)

= 〈L∗(ω1) ⊗ ω3, Δ̂(a)(1⊗ b)〉(C0(Ĝ)⊗C0(Ĝ))∗,C0(Ĝ)⊗C0(Ĝ)

= 〈L∗(ω1), (id ⊗ ω3)(Δ̂(a)(1⊗ b))〉C0(Ĝ)∗,C0(Ĝ)

= 〈L∗(ω1), (id ⊗ ω2)Δ̂(a)〉C0(Ĝ)∗,C0(Ĝ)

= 〈L∗(ω1) � ω2, a〉C0(Ĝ)∗,C0(Ĝ).

It follows that L∗(ω1 � ω2) = L∗(ω1) � ω2 in C0(Ĝ)∗. As L1(Ĝ) is an ideal in C0(Ĝ)∗
([46, Proof of Proposition 8.3]), this shows that L∗(ω1 � ω2) ∈ L1(Ĝ), and as products 
have dense linear span in L1(Ĝ) ([13, Section 3]), we conclude that L∗ restricts to a 
map on L1(Ĝ), say T ∈ CB(L1(Ĝ)). Then T (ω1 � ω2) = T (ω1) � ω2 for all ω1, ω2, and so 
T ∈ Cl

cb(L
1(Ĝ)). We finally calculate that, for a ∈ C0(Ĝ), ω ∈ L1(Ĝ),

〈T ∗(a), ω〉L∞(Ĝ),L1(Ĝ) = 〈a, T (ω)〉L∞(Ĝ),L1(Ĝ) = 〈L∗(ω), a〉C0(Ĝ)∗,C0(Ĝ)

= 〈L(a), ω〉L∞(Ĝ),L1(Ĝ),

and so T ∗ restricts to L, as required. �
We can now characterise what it means for an operator in CB(C0(Ĝ)) to be a cen-

traliser. Condition (2) in the following proposition should be thought of as a C0(Ĝ)
variant of what it means to be a left L1(Ĝ)-module homomorphism.

Proposition 3.5. For L ∈ CB(C0(Ĝ)) the following are equivalent:

1. there is T ∈ Cl
cb(L

1(Ĝ)) such that T ∗ restricts to L;
2. (L ⊗ id)(Δ̂(a)(1 ⊗ b)) = Δ̂(L(a))(1 ⊗ b) for each a, b ∈ C0(Ĝ);

Furthermore, the restriction map Cl
cb(L

1(Ĝ)) ∼= L1(Ĝ)CBσ(L∞(Ĝ)) → CB(C0(Ĝ)) is a 

complete isometry; in particular, there is a bijection between Cl
cb(L

1(Ĝ)) and the space 
of all maps L ∈ CB(C0(Ĝ)) satisfying (2).

Proof. If (1) holds then Δ̂T ∗ = (T ∗⊗ id)Δ̂ and so certainly the condition in (2) will hold 
for T ∗ and hence also for L. Conversely, suppose that (2) holds. Then due to Lemma 3.4
we know that L∗ restricts to a map T ∈ Cl

cb(L
1(Ĝ)) such that T ∗ restricts to L, showing 

(1).
The restriction map L1(Ĝ)CBσ(L∞(Ĝ)) → CB(C0(Ĝ)) is clearly a complete con-

traction. With T, L as above, this restriction map is given by T ∗ �→ L, and as T is 
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the restriction of L∗ and L �→ L∗, T �→ T ∗ are completely isometric, it follows that 

L1(Ĝ)CBσ(L∞(Ĝ)) → CB(C0(Ĝ)) is a complete isometry. �
Proposition 3.6. Equip the space CB(C0(Ĝ), L∞(Ĝ)) with the weak∗-topology arising 
from the canonical predual C0(Ĝ)⊗̂L1(Ĝ). The restriction map

Cl
cb(L

1(Ĝ)) ∼= L1(Ĝ)CBσ(L∞(Ĝ)) → CB(C0(Ĝ),L∞(Ĝ))

is a complete isometry which has weak∗-closed image.

Proof. Proposition 3.5 shows that the restriction map L1(Ĝ)CBσ(L∞(Ĝ)) → CB(C0(Ĝ),
L∞(Ĝ)) is a complete isometry. Let (Ti)i∈I be a net in Cl

cb(L
1(Ĝ)) such that the image 

of the net (T ∗
i )i∈I in CB(C0(Ĝ), L∞(Ĝ)) converges weak∗ to L ∈ CB(C0(Ĝ), L∞(Ĝ)). 

Let a, b ∈ C0(Ĝ) and ω1, ω2 ∈ L1(Ĝ), and note that (id⊗ω2)(Δ̂(a)(1 ⊗ b)) ∈ C0(Ĝ). We 
now calculate that

〈Δ̂(L(a))(1⊗ b), ω1 ⊗ ω2〉 = lim
i∈I

〈T ∗
i (a), ω1 � (bω2)〉 = lim

i∈I
〈a, Ti(ω1) � (bω2)〉

= lim
i∈I

〈Δ̂(a)(1⊗ b), Ti(ω1) ⊗ ω2〉 = lim
i∈I

〈T ∗
i

(
(id ⊗ ω2)(Δ̂(a)(1⊗ b))

)
, ω1〉

= 〈L
(
(id ⊗ ω2)(Δ̂(a)(1⊗ b))

)
, ω1〉 = 〈(L⊗ id)(Δ̂(a)(1⊗ b)), ω1 ⊗ ω2〉.

All the above pairings are between a von Neumann algebra and its predual. It follows 
that we have Δ̂(L(a))(1 ⊗b) = (L ⊗ id)(Δ̂(a)(1 ⊗b)) in L∞(Ĝ)⊗̄L∞(Ĝ). By Lemma 3.4, 
L∗ restricts to T ∈ Cl

cb(L
1(Ĝ)) such that T ∗ restricts back to give L. That is, T ∗

i −−→
i∈I

T ∗

weak∗ in CB(C0(Ĝ), L∞(Ĝ)), as required. �
We now wish to show that the resulting weak∗-topology on Cl

cb(L
1(Ĝ)) given by 

Proposition 3.6 agrees with the weak∗-topology on Cl
cb(L

1(Ĝ)) ∼= Ml
cb(A(G)) given by 

the predual Ql(A(G)). In the following, for a Banach space E, we denote by κE : E → E∗∗

the canonical map to the bidual.

Lemma 3.7. Let E, F be Banach spaces, and let α : E∗ → F ∗ be a bounded linear map. 
Let D ⊆ F be a subset with dense linear span. Then α is weak∗-weak∗-continuous if 
and only if α∗κF (D) ⊆ κE(E). In this case, and when further α is a bijection, the 
resulting preadjoint α∗ : F → E is also an isomorphism of Banach spaces and α is a 
weak∗-weak∗-homeomorphism.

Proof. If α is weak∗-continuous, then there is a preadjoint operator α∗ : F → E with 
(α∗)∗ = α, and so α∗κF (D) = (α∗)∗∗κF (D) = κEα∗(D) ⊆ κE(E), as claimed. Con-
versely, if α∗κF (D) ⊆ κE(E) then by norm density of spanD in F , and norm continuity 
of α∗, we have that α∗κF (F ) ⊆ κE(E). We could now directly apply [16, Lemma 10.1], 
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but let us give the argument. There is a linear map T : F → E with α∗κF (x) = κE(T (x))
for each x ∈ F . As κE , κF are isometries, T is bounded with ‖T‖ ≤ ‖α∗‖ = ‖α‖. Then 
for x ∈ F, μ ∈ E∗,

〈T ∗(μ), x〉 = 〈μ, T (x)〉 = 〈κE(T (x)), μ〉 = 〈α∗κF (x), μ〉 = 〈α(μ), x〉.

Hence T ∗ = α and so α is weak∗-continuous, with preadjoint T .
When α is a bijection, by the Open Mapping Theorem, it is an isomorphism. Thus 

also α∗ is an isomorphism, and so as α∗κF = κEα∗ it follows that α∗ is bounded below 
and so has closed image. If μ ∈ (α∗(F ))⊥ then 0 = 〈μ, α∗(x)〉 = 〈α(μ), x〉 for all x, μ and 
so α(μ) = 0 so μ = 0. Hence α∗ is a surjection, and so an isomorphism. �
Theorem 3.8. The weak∗-topology on Cl

cb(L
1(Ĝ)) given by the embedding into CB(C0(Ĝ),

L∞(Ĝ)) agrees with the weak∗-topology on Ml
cb(A(G)) given by Ql(A(G)).

Proof. We use Lemma 3.7. Set E = Ql(A(G)). To avoid confusion, for this proof only, 
we shall write θ : Cl

cb(L
1(Ĝ)) → CB(C0(Ĝ), L∞(Ĝ)) for the complete isometry T �→

T ∗|C0(Ĝ), given by Proposition 3.6. As the image of θ is weak∗-closed, it has canonical 
predual F which is a quotient of C0(Ĝ)⊗̂L1(Ĝ). Let π : C0(Ĝ)⊗̂L1(Ĝ) → F be the 
quotient map. We hence corestrict θ to give an isomorphism θ : Cl

cb(L
1(Ĝ)) → F ∗. Let 

α0 : E∗ = Ml
cb(A(G)) → Cl

cb(L
1(Ĝ)) be the canonical bijection, and set α = θ ◦ α0 :

E∗ → F ∗.
Given a ∈ Ml

cb(A(G)) set T = α0(a), so by definition, aλ̂(ω) = λ̂(T (ω)) for each 
ω ∈ L1(Ĝ). Equivalently, (1 ⊗ a)WĜ = (T ∗ ⊗ id)(WĜ). Given ω ∈ L1(Ĝ), f ∈ L1(G), 
set u = π((id ⊗ f)(WĜ) ⊗ ω) ∈ F , and calculate that

〈κE(λ̂(ω)f), a〉E∗∗,E∗ = 〈a, λ̂(ω)f〉E∗,E = 〈aλ̂(ω), f〉L∞(G),L1(G)

= 〈(T ∗ ⊗ id)(WĜ), ω ⊗ f〉 = 〈T ∗((id ⊗ f)(WĜ)
)
, ω〉L∞(Ĝ),L1(Ĝ)

= 〈θ(T )
(
(id ⊗ f)(WĜ)

)
, ω〉L∞(Ĝ),L1(Ĝ) = 〈α(a), u〉F∗,F .

It follows that α∗(κF (u)) = κE(λ̂(ω)f) ∈ κE(E). As the linear span of such elements u
is dense in F , the conditions of the lemma are verified, and the result follows. �

Using this result we can characterise functionals in the predual space Ql(A(G)). In 
the following, we work with infinite matrices with entries in operator spaces, see [23, 
Chapter 10].

Proposition 3.9. For any Hilbert space H and x ∈ C0(Ĝ) ⊗ K(H), ω ∈ L1(Ĝ)⊗̂B(H)∗, 
the bounded linear functional

Ωx,ω : Ml
cb(A(G)) � a �→ 〈(Θl(a) ⊗ id)x, ω〉 ∈ C.
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belongs to Ql(A(G)). Furthermore, all functionals in Ql(A(G)) are of this form for some 
separable Hilbert space.

This result was recorded without proof in [13, Proposition 3.2]. In the classical context 
of locally compact groups, an analogous result was proved by Haagerup and Kraus in [30, 
Proposition 1.5]. For the convenience of the reader, we give a proof using Theorem 3.8.

Proof. We first show that Ωx,ω is a member of Ql(A(G)). As Ql(A(G)) ⊆ Ml
cb(A(G))∗

is norm closed, by first approximating x, ω by sums of elementary tensors, and then 
collapsing the pairing between K(H) and B(H)∗, we reduce the problem to the case when 
H = C, when x = (id ⊗ θ)WĜ for some θ ∈ L1(G), and when ω ∈ L1(Ĝ). We then 
calculate

〈Θl(a)
(
(id⊗ θ)WĜ

)
, ω〉 = 〈λ̂(ω ◦Θl(a)), θ〉 = 〈aλ̂(ω), θ〉 = 〈a, λ̂(ω)θ〉 (a ∈ Ml

cb(A(G))),

which shows that Ωx,ω = αl(λ̂(ω)θ) ∈ Ql(A(G)), as required.
Now, take any functional in Ql(A(G)), which by Theorem 3.8 is represented by some 

element ρ ∈ L1(Ĝ)⊗̂C0(Ĝ) (note that the projective operator space tensor product is 
symmetric). By [23, Theorem 10.2.1], we can find infinite matrices

α ∈ M1,∞×∞, β ∈ K∞(L1(Ĝ)), γ ∈ K∞(C0(Ĝ)), α′ ∈ M∞×∞,1

such that ρ = α(β ⊗ γ)α′ (for the introduction to infinite matrices with entries in an 
operator space, see [23, Sections 10.1, 10.2]). Writing α = [α1,(i,j)](i,j)∈N2 etc., this means 
that

〈Θl(a), ρ〉 =
∞∑

i,j,k,l=1

α1,(i,j)〈Θl(a)(γj,l), βi,k〉α′
(k,l),1 (a ∈ Ml

cb(A(G))). (3.4)

Let H be an infinite dimensional, separable Hilbert space with orthonormal basis {en}∞n=1
and let ei,j (i, j ∈ N) be the corresponding rank one operators. Write T (H) for the 
operator space of trace class operators, identified in a completely isometric way with 
B(H)∗. For any n ∈ N we have ‖[ej,i]ni,j=1‖Mn(T (H)) = 1. Indeed, the matrix [ej,i]ni,j=1
corresponds to the map En ∈ CB(B(H), Mn) given by En(x) = [Tr(ej,ix)]ni,j=1. If we 
denote by Vn : Cn → H the canonical inclusion associated with the choice of basis, one 
easily sees that En(x) = V ∗

n xVn (x ∈ B(H)) and ‖En‖cb = 1 follows. Consequently 
[ej,i]∞i,j=1 is a well defined matrix in M∞(T (H)). Finally, define

ω = α(β ⊗ [ej,i]∞i,j=1)α′ ∈ L1(Ĝ)⊗̂T (H) = L1(Ĝ)⊗̂B(H)∗.

A choice of basis gives us an isomorphism H ∼= �2 and consequently we can consider γ
as an element of C0(Ĝ) ⊗K(H) ([23, Equation 10.1.2]). Finally, using equation (3.4) we 
can show that the functional associated to ρ is of the form Ωγ,ω. Indeed, we have



18 M. Daws et al. / Advances in Mathematics 438 (2024) 109452
〈a,Ωγ,ω〉 = 〈(Θl(a) ⊗ id)γ, ω〉 =
∞∑

i,j,k,l=1

α1,(i,j)〈(Θl(a) ⊗ id)γ, βi,k ⊗ el,j〉α′
(k,l),1

=
∞∑

i,j,k,l=1

α1,(i,j)〈Θl(a)(γj,l), βi,k〉α′
(k,l),1

for any a ∈ Ml
cb(A(G)). �

3.3. Viewing multipliers as bimodule maps

In this section we provide another way of looking at CB multipliers and the associated 
weak∗-topology which will be useful in later considerations.

Let us first introduce some terminology. As usual, let CBσ(B(L2(G))) be the space 
of normal CB maps on B(L2(G)). Observe CBσ(B(L2(G))) ∼= CB(K(L2(G)), B(L2(G))). 
Indeed, any normal CB map on B(L2(G)) can be restricted to K(L2(G)) without chang-
ing its norm, and conversely, since K(L2(G))∗∗ � B(L2(G)), any CB map K(L2(G)) →
B(L2(G)) uniquely extends to a normal CB map on B(L2(G)). CBσ(B(L2(G))) is 
an operator space which is equipped with the weak∗-topology given by the predual 
K(L2(G))⊗̂B(L2(G))∗. Via left and right multiplication, B(L2(G)) becomes a L∞(G)′-
bimodule, hence we can consider normal CB bimodule maps on B(L2(G)). We can also 
look at those maps which leave L∞(Ĝ) ⊆ B(L2(G)) globally invariant. We will denote 
the set of CB normal L∞(G)′-bimodule maps on B(L2(G)) which leave L∞(Ĝ) globally 

invariant by L∞(G)′CBσ,L∞(Ĝ)
L∞(G)′ (B(L2(G))). One easily checks that this space is weak∗-

closed in CBσ(B(L2(G))), hence it naturally inherits an operator space structure and a 
weak∗-topology.

According to [35, Theorem 4.5] (and [18, Proposition 3.3] for the left version), for any 

a ∈ Ml
cb(A(G)) there exists a unique map Φ(a) ∈ L∞(G)′CBσ,L∞(Ĝ)

L∞(G)′ (B(L2(G))) which 

extends Θl(a) ∈ CBσ(L∞(Ĝ)). This map satisfies

1⊗ Φ(a)(x) = WĜ
(
(Θl(a) ⊗ id)(WĜ∗(1⊗ x)WĜ)

)
WĜ∗ (x ∈ B(L2(G))).

Furthermore, the resulting map

Ml
cb(A(G)) � a �→ Φ(a) ∈ L∞(G)′CBσ,L∞(Ĝ)

L∞(G)′ (B(L2(G))) (3.5)

is a completely isometric isomorphism which is additionally a weak∗-homeomorphism 
([18, Theorem 6.2]).

When a arises from an element of the Fourier algebra, Φ(a) takes a special form.

Lemma 3.10. For ω ∈ L1(Ĝ) let a = λ̂(ω) ∈ A(G), so that Θl(a) = (ω ⊗ id)Δ̂. The 
associated map Φ(a) is

Φ(a) : B(L2(G)) � x �→ (ω ⊗ id)(WĜ∗(1⊗ x)WĜ) ∈ B(L2(G)).
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A similar formula holds for an arbitrary element of the Fourier-Stieltjes algebra, see 
the discussion after Proposition 4.1 in [18].

Proof. As before, the left centraliser associated with a is simply left multiplication by 
ω, and so Θl(a) has the given form. Then for x ∈ B(L2(G)), using that (Δ̂⊗ id)(WĜ) =
WĜ

13WĜ
23,

1⊗ Φ(a)(x) = WĜ
(
((ω ⊗ id)Δ̂ ⊗ id)(WĜ∗(1⊗ x)WĜ)

)
WĜ∗

= WĜ
(
(ω ⊗ id ⊗ id)(WĜ∗

23 WĜ∗
13 (1⊗ 1⊗ x)WĜ

13WĜ
23)

)
WĜ∗

= WĜWĜ∗(ω ⊗ id ⊗ id)(WĜ∗
13 (1⊗ 1⊗ x)WĜ

13)WĜWĜ∗

= 1⊗ (ω ⊗ id)(WĜ∗(1⊗ x)WĜ),

and so Φ(a) has indeed the claimed form. �
4. The approximation property

We define the approximation property for a locally compact quantum group G (ab-
breviated AP) in a way completely analogous to the definition of AP for locally compact 
groups by Haagerup and Kraus in [30]. Recall that we fix the predual Ql(A(G)) of 
Ml

cb(A(G)), and we always refer to the corresponding weak∗-topology on Ml
cb(A(G)).

Definition 4.1. We say that a locally compact quantum group G has the approximation 
property (AP) if there is a net (ai)i∈I in A(G) which converges to 1 in the weak∗-topology 
of Ml

cb(A(G)).

Remark 4.2.

• We could call the above property “left AP” and introduce also a right variant of AP. 
However, in Proposition 4.14 we will show that these properties are equivalent, so 
that there is no need to distinguish between them.

• A variant of AP was considered by Kraus-Ruan [42] (for Kac algebras) and Crann in 
[14]. Their property is a priori stronger, but in Theorem 4.4 we show that this variant 
is in fact equivalent to Definition 4.1. This proves a conjecture by Kraus-Ruan [42, 
Remark 4.2].

Let us list some examples and counter-examples:

• In Section 5 we show weak amenability implies AP, therefore all compact quantum 

groups and the discrete quantum groups Ô+
F , ̂U

+
F have AP ([26,22]). Furthermore, 

the locally compact quantum group SUq(1, 1)ext has AP, see [11].
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• Permanence properties of AP with respect to quantum subgroups (Theorem 7.1), 
direct products (Proposition 7.22), free products (Theorem 7.8) and the Drinfeld 
double construction (Theorem 7.16) allow us to construct examples with and without 
AP. For instance, the Drinfeld double of SL(3, R), or of any classical locally compact 
group without AP, see [48], gives rise to non-classical quantum groups without AP. 
Similarly, SL(3, Z) �ŜUq(2) is a quantum group without AP, as AP passes to quantum 
subgroups.

• Examples of quantum groups with AP similarly arise. As AP passes to free products, 
SL(2, Z) � ŜUq(2) is a quantum group with AP. Similarly, D(SL(2, R))∧, the dual of 
the quantum double of SL(2, R), has AP (Theorem 7.16).

• The paper [24] by Fima, Mukherjee and Patri makes a careful study of compact 
bicrossed products, and in particular, [24, Theorem 6.7] provides estimates on the 
Cowling–Haagerup constant (see Definition 5.1) of the resulting discrete quantum 
groups. Using this, if one starts with a discrete group Γ with AP and with Λcb(Γ) ≥ n

(see for example [10, Theorem 12.3.8] and references therein) then one can construct a 
non-classical discrete quantum group with AP but with Cowling–Haagerup constant 
≥ n. Then by taking infinite products we obtain a discrete quantum group which 
has AP but which is not weakly amenable.

• We leave as a question whether the Drinfeld double of SUq(3) might be an example of 
a locally compact quantum group which does not have AP; for more see Remark 7.15.

4.1. Equivalent characterisations

We check first that the approximation property is preserved under taking the com-
mutant quantum group G′, or the opposite quantum group Gop, for definitions see [47, 
Section 4].

Proposition 4.3. The following conditions are equivalent:

1. G has AP,
2. G′ has AP.
3. Gop has AP,

Proof. Assume that G has AP, i.e. there is a net (ωi)i∈I in L1(Ĝ) such that λĜ(ωi) −−→
i∈I

1

weak∗ in Ml
cb(A(G)).

First we will prove that G′ has AP. Recall that Ĝ′ = Ĝop ([47, Proposition 4.2]). 
Using Proposition 3.9, choose an arbitrary functional Ωy,ν ∈ Ql(A(G′)) where H is a 
separable Hilbert space, y ∈ C0(Ĝ) ⊗ K(H) and ν ∈ L1(Ĝ)⊗̂B(H)∗. Pick some self-
adjoint antiunitary J on H (for example, pick an orthonormal basis and let J be 
coordinate-wise complex conjugation) and define j : K(H) → K(H) by j(x) = J x∗J , 
an �-antihomomorphism with j2 = id. Then R̂ ⊗ j is a well-defined bounded map on 
the spatial tensor product C0(Ĝ) ⊗K(H), and R̂∗ ⊗ j∗ is well-defined on L1(Ĝ)⊗̂B(H)∗. 
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Indeed, R̂ ⊗ j acts via (R̂ ⊗ j)(X) = (Jϕ ⊗ J )X∗(Jϕ ⊗ J ) for X ∈ C0(Ĝ) ⊗ K(H) and 
then we can define R̂∗ ⊗ j∗ as the restriction of (R̂ ⊗ j)∗ to L1(Ĝ)⊗̂B(H)∗: (R̂ ⊗ j)∗
preserves this subspace as (R̂ ⊗ j)∗(ωξ⊗η) = ωJϕξ⊗J η for ξ ∈ L2(G), η ∈ H. Since 
L1(Ĝ)⊗̂K(H)∗ ⊆ (C0(Ĝ) ⊗K(H))∗ is closed, the claim follows. Furthermore, both these 
maps are isometric bijections.

Set x = (R̂⊗ j)(y), ω = (R̂∗ ⊗ j∗)(ν). Then using Lemma 3.10

〈λĜ(ωi),Ωx,ω〉 = 〈((ωi ⊗ id)ΔĜ ⊗ id)(R̂⊗ j)(y), (R̂∗ ⊗ j∗)(ν)〉
= 〈(R̂(ωi ⊗ id)ΔĜR̂⊗ id)(y), ν〉 = 〈((id ⊗ R̂∗(ωi))ΔĜ ⊗ id)(y), ν〉
= 〈((R̂∗(ωi) ⊗ id)ΔĜop ⊗ id)(y), ν〉 = 〈λĜop(R̂∗(ωi)),Ωy,ν〉

and since λĜ(ωi) −−→
i∈I

1 weak∗, we conclude λĜop(R̂∗(ωi)) −−→
i∈I

1 weak∗. This shows 
that G′ has AP.

Next we prove that Gop has AP. By [47, Proposition 4.2] we have Ĝop = Ĝ′. Write R∼

for the extension of the unitary antipode on G, B(L2(G)) � x �→ Jϕ̂x
∗Jϕ̂ ∈ B(L2(G)), 

so that ω̃i = ωi ◦ R∼ ∈ L1(Ĝ′). We claim that the net (λĜ′(ωi ◦ R∼))i∈I converges 
weak∗ to 1 in Ml

cb(A(Gop)). Take z ∈ C0(Ĝ′) ⊗ K(H), θ ∈ L1(Ĝ′)⊗̂B(H)∗. Recall that 
C0(Ĝ′) = Jϕ̂C0(Ĝ)Jϕ̂ and

ΔĜ′ : L∞(Ĝ)′ � x �→(Jϕ̂ ⊗ Jϕ̂)ΔĜ(Jϕ̂xJϕ̂)(Jϕ̂ ⊗ Jϕ̂)

=(R∼ ⊗R∼)ΔĜ(R∼(x)) ∈ L∞(Ĝ)′⊗̄L∞(Ĝ)′.

Using this, we obtain

〈λĜ′(ωi ◦R∼),Ωz,θ〉 = 〈(Θl(λĜ′(ωi ◦R∼)) ⊗ id)z, θ〉 = 〈((ωi ◦R∼ ⊗ id)ΔĜ′ ⊗ id)z, θ〉
= 〈(R∼ ⊗ j)

(
(ωi ⊗ id)ΔĜ ⊗ id

)
(R∼ ⊗ j)z, θ〉 = 〈λĜ(ωi),Ω(R∼⊗j)z,θ◦(R∼⊗j)〉

−−→
i∈I

〈1,Ω(R∼⊗j)z,θ◦(R∼⊗j)〉 = 〈z, θ〉 = 〈1,Ωz,θ〉

and thus Gop has AP. The converse implications follow since (G′)′ = G and (Gop)op =
G. �

The next result shows that the version of the approximation property considered in 
[42] and [14] is equivalent to AP as defined in Definition 4.1. Both [42, Definition 4.1]
and [14, Page 1728] take condition (2) of the following theorem as their definition of AP.

Theorem 4.4. The following conditions are equivalent:

1. G has AP,
2. there is a net (ai)i∈I in the Fourier algebra A(G), such that the correspond-

ing net (Θl(ai))i∈I converges to the identity in the stable point-weak∗-topology of 
CBσ(L∞(Ĝ)).
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In order to prove Theorem 4.4 we need to establish some preliminary results. Recall 
that L∞(G) is a right L1(G)-module via x �ω = (ω⊗ id)Δ(x) for x ∈ L∞(G), ω ∈ L1(G).

Proposition 4.5. Let a ∈ L∞(G) and ω ∈ L1(G).

1. If a ∈ A(G) then a � ω ∈ A(G).
2. If a ∈ Ml

cb(A(G)) then a � ω ∈ Ml
cb(A(G)) with ‖a � ω‖cb ≤ ‖a‖cb‖ω‖ and

Θl(a � ω)(x̂) = (ω ⊗ id)
(
(id ⊗ Θl(a))((1⊗ x̂)WG∗)WG

)
(x̂ ∈ L∞(Ĝ)).

Proof. (1) Write a = λ̂(ω̂) for ω̂ ∈ L1(Ĝ). Then

a � ω = (ω ⊗ id)Δ
(
(ω̂ ⊗ id)WĜ

)
= (ω̂ ⊗ ω ⊗ id)

(
WĜ

13WĜ
12
)

= (ω̂ ⊗ id)
(
WĜ((id ⊗ ω)WĜ ⊗ 1)

)
= λ̂

(
ω̂
(
· (id ⊗ ω)WĜ

))
∈ A(G)

as required.
(2) As WG ∈ L∞(G)⊗̄L∞(Ĝ), there is a well-defined linear map T on L∞(Ĝ) given by

T (x̂) = (ω ⊗ id)
(
(id ⊗ Θl(a))((1⊗ x̂)WG∗)WG

)
(x̂ ∈ L∞(Ĝ)).

Clearly T is completely bounded with ‖T‖cb ≤ ‖a‖cb‖ω‖ and weak∗-continuous. We 
first show that T is the adjoint of a centraliser, equivalently, that Δ̂T = (T ⊗ id)Δ̂. If 
x̂ ∈ L∞(Ĝ) then using Δ̂Θl(a) = (Θl(a) ⊗ id)Δ̂ gives

Δ̂T (x̂) = (ω ⊗ id ⊗ id)
(
(id ⊗ Δ̂Θl(a))((1⊗ x̂)WG∗)WG

13WG
12
)

= (ω ⊗ id ⊗ id)
(
(id ⊗ Θl(a) ⊗ id)

(
(1⊗ Δ̂(x̂))WG∗

12 WG∗
13

)
WG

13WG
12
)

= (ω ⊗ id ⊗ id)
(
(id ⊗ Θl(a) ⊗ id)

(
(1⊗ Δ̂(x̂))WG∗

12
)
WG

12
)

= (T ⊗ id)Δ̂(x̂).

Consequently T is the adjoint of a centraliser, and so there exists b ∈ Ml
cb(A(G)) with 

T = Θl(b). Then bλ̂(ω̂) = λ̂(ω̂ ◦ T ) for each ω̂ ∈ L1(Ĝ), equivalently, (1 ⊗ b)WĜ =
(T ⊗ id)(WĜ). In other words, we have

(b⊗ 1)WG∗ = (id ⊗ T )(WG∗) = (id ⊗ ω ⊗ id)
(
(id ⊗ id ⊗ Θl(a))(WG∗

13 WG∗
23 )WG

23
)
,

or equivalently

b⊗ 1 = (id ⊗ ω ⊗ id)
(
(id ⊗ id ⊗ Θl(a))(WG∗

13 WG∗
23 )WG

23WG
13
)

= (ω ⊗ id ⊗ id)
(
(id ⊗ id ⊗ Θl(a))(WG∗

23 WG∗
13 )WG

13WG
23
)
. (4.1)

Now, (1 ⊗ a)WĜ = (Θl(a) ⊗ id)(WĜ) so a ⊗ 1 = (id ⊗ Θl(a))(WG∗)WG and hence
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a � ω ⊗ 1 = (ω ⊗ id)Δ(a) ⊗ 1 = ((ω ⊗ id)Δ ⊗ id)
(
(id ⊗ Θl(a))(WG∗)WG

)
= (ω ⊗ id ⊗ id)

(
(id ⊗ id ⊗ Θl(a))(WG∗

23 WG∗
13 )WG

13WG
23
)
. (4.2)

As (4.1) and (4.2) agree, we conclude that b = a � ω. Thus a � ω ∈ Ml
cb(A(G)) with 

Θl(a � ω) = T as required. �
Lemma 4.6. For any locally compact quantum group G and x ∈ L∞(G), a ∈ C0(G), ω ∈
L1(G) we have ω � (xa) ∈ C0(G).

Proof. As L1(G) is a closed C0(G)-submodule of C0(G)∗, by [61, Lemma 2.1] we know 
that ω = bω1 for some b ∈ C0(G) and ω1 ∈ L1(G). Then

ω � (xa) = (id ⊗ ω)Δ(xa) = (id ⊗ ω1)
(
Δ(x)Δ(a)(1⊗ b)

)
.

As a, b ∈ C0(G) we know that Δ(a)(1 ⊗ b) ∈ C0(G) ⊗ C0(G), the minimal C∗-algebraic 
tensor product. By continuity, it hence suffices to prove that

(id ⊗ ω1)
(
Δ(x)(c⊗ d)

)
∈ C0(G)

for c, d ∈ C0(G). However, this equals 
(
(id ⊗ dω1)Δ(x)

)
c and by [61, Theorem 2.4] we 

know that (id ⊗ dω1)Δ(x) ∈ M(C0(G)), and so the result follows. �
Next we introduce certain functionals in Ql(A(G)) in analogy to [30, Proposition 1.3]. 

For a Hilbert space H, x ∈ L∞(Ĝ)⊗̄B(H), ω ∈ L1(Ĝ)⊗̂B(H)∗ and f ∈ L1(G) define

Ωx,ω,f : Ml
cb(A(G)) � a �→ 〈(Θl(a � f) ⊗ id)x, ω〉 ∈ C. (4.3)

Note that Ωx,ω,f is well-defined and bounded by Proposition 4.5.

Proposition 4.7. The linear functional Ωx,ω,f is weak∗-continuous, hence is contained in 
Ql(A(G)).

Proof. Clearly Ωx,ω,f is bounded with ‖Ωx,ω,f‖ ≤ ‖x‖‖f‖‖ω‖, so it suffices to prove the 
result when ω is in the algebraic tensor product of L1(Ĝ) with B(H)∗, and hence by 
linearity, we may suppose that ω = ω̂ ⊗ u. Then

Ωx,ω,f (a) = 〈(Θl(a�f)⊗ id)(x), ω̂⊗u〉 = 〈Θl(a�f)((id⊗u)(x)), ω̂〉 (a ∈ Ml
cb(A(G))).

Thus, it suffices to show that for ω̂ ∈ L1(Ĝ) and x̂ ∈ L∞(Ĝ)

μ : Ml
cb(A(G)) � a �→ 〈Θl(a � f)(x̂), ω̂〉 ∈ C

is weak∗-continuous. By Proposition 4.5, given the form of Θl(a � f),
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μ(a) = 〈(id ⊗ Θl(a))((1⊗ x̂)WG∗)WG, f ⊗ ω̂〉 (a ∈ Ml
cb(A(G))).

As WG ∈ L∞(G)⊗̄L∞(Ĝ), also WG(f⊗ω̂) ∈ L1(G)⊗̂L1(Ĝ), so again by approximation, 
it suffices to show that for f ′ ∈ L1(G), ̂ω′ ∈ L1(Ĝ) the map

μ′ : Ml
cb(A(G)) � a �→ 〈(id ⊗ Θl(a))((1⊗ x̂)WG∗), f ′ ⊗ ω̂′〉 = 〈Θl(a)(x̂ŷ

)
, ω̂′〉 ∈ C

is weak∗-continuous, where ŷ = (f ′ ⊗ id)(WG∗) ∈ C0(Ĝ).
By linear density of products, compare Lemma 5.3, it suffices to consider the case 

when ω̂′ = ω̂1 � ω̂2 for ω̂1, ̂ω2 ∈ L1(Ĝ). As Θl(a)∗(ω̂1 � ω̂2) = Θl(a)∗(ω̂1) � ω̂2 by the left 
centraliser property, we see that

μ′(a) = 〈Θl(a)(x̂ŷ), ω̂1 � ω̂2〉 = 〈ω̂2 � (x̂ŷ),Θl(a)∗(ω̂1)〉 (a ∈ Ml
cb(A(G))).

As ŷ ∈ C0(Ĝ), by Lemma 4.6 applied to Ĝ, we know that ω̂2 � (x̂ŷ) ∈ C0(Ĝ). Thus 
μ′ ∈ Ql(A(G)) by Proposition 3.9. �

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. (2) ⇒ (1) follows directly from the characterisation of functionals 
in the predual Ql(A(G)) of Ml

cb(A(G)) in Proposition 3.9.
(1) ⇒ (2) Assume that (ai)i∈I is a net in A(G) which converges weak∗ to 1 in 

Ml
cb(A(G)). Pick a state f ∈ L1(G), and for each i ∈ I set bi = ai �f . By Proposition 4.5

we have bi ∈ A(G). We now show that (Θl(bi))i∈I converges to the identity in the stable 
point-weak∗-topology.

Given a separable Hilbert space H, x ∈ L∞(Ĝ)⊗̄B(H), and ω ∈ L1(Ĝ)⊗̂B(H)∗, using 
Proposition 4.7 we see that

〈(Θl(bi) ⊗ id)x, ω〉 = 〈(Θl(ai � f) ⊗ id)x, ω〉 = 〈ai,Ωx,ω,f 〉
−−→
i∈I

〈1,Ωx,ω,f 〉 = 〈(Θl(1 � f) ⊗ id)(x), ω〉,

Since f is a state, we have 1 � f = (f ⊗ id)Δ(1) = 1, hence Θl(1 � f) = id, and so 
(Θl(bi) ⊗ id)(x) −−→

i∈I
x weak∗ as required. �

4.2. Further general properties

Let us start with an auxiliary technical result. Recall that for a von Neumann algebra 
M and a linear map T : M → M we define T † : M � x �→ T (x∗)∗ ∈ M.

Lemma 4.8. If T ∈ CBσ(M), then T † ∈ CBσ(M) and ‖T †‖cb = ‖T‖cb. If M = L∞(G) for 
a locally compact quantum group G then R ◦ T ◦R ∈ CBσ(L∞(G)) and ‖R ◦ T ◦R‖cb =
‖T‖cb. Both operations T �→ T †, T �→ R ◦ T ◦R are continuous with respect to the stable 
point-weak∗-topology.
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Proof. Let M ⊆ B(H). Using the normal version of Wittstock’s Theorem (compare with 
the start of the proof of [33, Theorem 2.5] for example), we can find a Hilbert space K, 
bounded linear maps V, W : H → K and a normal representation π : M → B(K) such 
that T = W ∗π(·)V and ‖T‖cb = ‖V ‖‖W‖. Now proving the claimed properties of T † is 
elementary.

Assume next that M = L∞(G). If T ∈ CBσ(L∞(G)), then clearly R ◦ T ◦ R is 
normal since the unitary antipode R is normal. Using again Wittstock’s Theorem, write 
T † = W ∗π(·)V and choose an antiunitary J on H which satisfies J ∗ = J . Then, for 
x ∈ L∞(G),

R ◦ T ◦R(x) = Jϕ̂T (Jϕ̂x∗Jϕ̂)∗Jϕ̂ = Jϕ̂T
†(Jϕ̂xJϕ̂)Jϕ̂

= Jϕ̂W
∗π(Jϕ̂xJϕ̂)V Jϕ̂ = (JWJϕ̂)∗J π(Jϕ̂xJϕ̂)J (J V Jϕ̂).

As L∞(G) � x �→ J π(Jϕ̂xJϕ̂)J ∈ B(H) is a �-homomorphism, it follows that R ◦ T ◦R
is CB with ‖R ◦ T ◦ R‖cb ≤ ‖T‖cb. Again, as R ◦ (R ◦ T ◦ R) ◦ R = T , we have in fact 
‖R ◦ T ◦R‖cb = ‖T‖cb.

Let (Ti)i∈I be a net in CBσ(L∞(G)) converging to T in the stable point-weak∗-
topology. Choose a self-adjoint antiunitary J ′ on �2 and define j = J ′(·)∗J ′, a normal 
�-antiautomorphism of B(�2). Then R ⊗ j extends to a well-defined normal bounded 
linear map on L∞(G)⊗̄B(�2). Indeed, in the proof of Proposition 4.3 we argued that 
R∗ ⊗ (j|K(�2))∗ is a bounded linear map on L1(G)⊗̂B(�2)∗, and we just need to take the 
dual map R⊗j = (R∗⊗(j|K(�2))∗)∗. For x ∈ L∞(G)⊗̄B(�2), ω ∈ L1(G)⊗̂B(�2)∗ we have

〈(R ◦ Ti ◦R⊗ id)x, ω〉 = 〈(R ◦ Ti ◦R⊗ j2)x, ω〉 = 〈(Ti ⊗ id)
(
(R⊗ j)(x)

)
, ω ◦ (R⊗ j)〉

−−→
i∈I

〈(T ⊗ id)
(
(R⊗ j)(x)

)
, ω ◦ (R⊗ j)〉 = 〈(R ◦ T ◦R⊗ id)x, ω〉,

which concludes the proof. �
We now show that Ml

cb(A(G)) admits an interesting involution. Recall that S denotes 
the antipode of G.

Proposition 4.9. Let a ∈ Ml
cb(A(G)). Then a∗ ∈ Dom(S) and S(a∗) ∈ Ml

cb(A(G)) with 
Θl(S(a∗)) = Θl(a)†.

Proof. By Lemma 4.8, we know that Θl(a)† ∈ CBσ(L∞(G)). One easily checks that 
Θl(a)† is a left L1(Ĝ)-module map, hence Θl(a)† = Θl(b) for some b ∈ Ml

cb(A(G)). The 
claim follows now from [17, Theorem 5.9].

For the convenience of the reader let us also indicate a direct argument. As Θl(a)† =
Θl(b) we have that

(1⊗ b)WĜ = (Θl(b) ⊗ id)WĜ = (Θl(a)† ⊗ id)WĜ = ((Θl(a) ⊗ id)WĜ∗)∗,
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and hence

WĜ∗(1⊗ b∗) = (Θl(a) ⊗ id)WĜ∗ ⇒ (id ⊗ ω̂)(WG)b∗ = (id ⊗ ω̂ ◦ Θl(a))WG

for each ω̂ ∈ L1(Ĝ). In what follows, we treat S as a densely-defined, closed operator 
on L∞(G) equipped with the weak∗-topology. From [70, Proposition 2.24], compare [46, 
Proposition 8.3], we know that for any ω̂ we get (id⊗ω̂)WG ∈ D(S) and S((id⊗ω̂)WG) =
(id ⊗ ω̂)WG∗. It follows that (id ⊗ ω̂)(WG)b∗ ∈ D(S) with

S
(
(id ⊗ ω̂)(WG)b∗

)
= (id ⊗ ω̂ ◦ Θl(a))WG∗ = (ω̂ ◦ Θl(a) ⊗ id)WĜ = a (ω̂ ⊗ id)(WĜ)

= a (id ⊗ ω̂)WG∗ = aS
(
(id ⊗ ω̂)WG

)
. (4.4)

Let C = {(id⊗ ω̂)WG | ̂ω ∈ L1(Ĝ)} ⊆ D(S). We shall show that C contains a net (ai)i∈I

such that both ai −−→
i∈I

1 and S(ai) −−→
i∈I

1 weak∗ in L∞(G). It follows that aib∗ −−→
i∈I

b∗

and aS(ai) −−→
i∈I

a weak∗, and so as S is weak∗-closed, it follows from (4.4) that b∗ ∈ D(S)
with S(b∗) = a. Hence a∗ = S(b∗)∗ ∈ Dom(S) and S(a∗) = S(S(b∗)∗) = b, as claimed.

We now show the claim about C, using some standard “smearing” techniques, compare 
[43]. For a ∈ C0(G) and r > 0, z ∈ C, define

a(r, z) = r√
π

∫
R

exp(−r2(t− z)2)τt(a) dt.

Then a(r, z) is analytic for the one-parameter automorphism group (τt)t∈R with 
τw(a(r, z)) = a(r, z + w) for w ∈ C. Similarly, for ω̂ ∈ L1(Ĝ), define

ω̂(r, z) = r√
π

∫
R

exp(−r2(t− z)2)ω̂ ◦ τ̂t dt.

Given ω̂, let a = (id ⊗ ω̂)(WG). As (τt ⊗ τ̂t)(WG) = WG, it follows that τt(a) =
(id ⊗ ω̂ ◦ τ̂−t)(WG) and hence a(r, z) = (id ⊗ ω̂(r, −z))(WG). Finally, as S = Rτ−i/2, it 
follows that S(a(r, z)) = R(a(r, z − i/2)) = (id ⊗ (ω̂ ◦ R̂)(r, −z + i/2))(WG).

As C is norm dense in C0(G), we can find a net (ω̂i)i∈I with ai = (id⊗ω̂i)(WG) −−→
i∈I

1

strictly. By [43, Proposition 2.25], the net (ai(r, z))i∈I converges strictly to 1(r, z) = 1, 
for any choice of r, z. By the above discussion, ai(r, z) ∈ C. Then also S(ai(r, z)) =
R(ai(r, z − i/2)) −−→

i∈I
R(1) = 1 strictly. Cohen–Hewitt’s Factorisation Theorem shows 

that strict convergence implies weak∗-convergence in L∞(G), hence we have constructed 
the required net. �
Corollary 4.10. Let a ∈ Ml

cb(A(G)). Then Θl(a) ∈ CBσ(L∞(Ĝ)) preserves the adjoint if 
and only if S(a∗) = a.
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Next we check that Ml
cb(A(G)) is globally invariant under the scaling and modular 

automorphism groups.

Lemma 4.11. Let G be a locally compact quantum group and let a ∈ Ml
cb(A(G)). For any 

t ∈ R,

• τt(a) ∈ Ml
cb(A(G)) with Θl(τt(a)) = τ̂t ◦ Θl(a) ◦ τ̂−t.

• σϕ
t (a) ∈ Ml

cb(A(G)) with Θl(σϕ
t (a)) : x �→ δ̂it τ̂t ◦ Θl(a)

(
δ̂−itτ̂−t(x)

)
.

• σψ
t (a) ∈ Ml

cb(A(G)) with Θl(σψ
t (a)) : x �→ τ̂−t ◦ Θl(a)

(
τ̂t(x)δ̂−it

)
δ̂it.

Proof. Take ω ∈ L1(Ĝ). Using (τ̂t ⊗ τt)WĜ = WĜ (see proof of [46, Proposition 6.10]) 
we obtain

τt(a)λ̂(ω) = τt
(
a τ−t(λ̂(ω))

)
= τt

(
aλ̂(ω ◦ τ̂t)

)
= λ̂

(
Θl(a)∗(ω ◦ τ̂t) ◦ τ̂−t

)
which implies τt(a) ∈ Ml

cb(A(G)) and Θl(τt(a)) = τ̂t ◦Θl(a) ◦ τ̂−t; notice that clearly the 
right-hand-side of this final expression gives a completely bounded map.

We now use the following facts. Firstly, by the definition of WG we have (ρ ⊗
id)(WG∗)Λϕ(x) = Λϕ((ρ ⊗ id)Δ(x)) for ρ ∈ L1(G), x ∈ Nϕ. Secondly, (σϕ

t ⊗ σψ
−t) ◦ Δ =

Δ ◦ τt, see [46, Proposition 6.8]. Thus

(ρ ◦ σϕ
t ⊗ id)(WG∗)Λϕ(x) = Λϕ((ρ ◦ σϕ

t ⊗ id)Δ(x)) = Λϕ

(
(ρ⊗ σψ

t )Δ(τt(x))
)

= ν
t
2∇it

ψΛϕ((ρ⊗ id)Δ(τt(x))) = ∇it
ψ(ρ⊗ id)(WG∗)P itΛϕ(x),

which implies that (σϕ
t ⊗ id)(WG∗) = (1 ⊗∇it

ψ)WG∗(1 ⊗P it); here we have also used [70, 
Definition 5.1, Remark 5.2]. Next, since WĜ = χ(WG∗) and δ̂−it = ∇it

ψP
it ([70, Theorem 

5.17]), and using that τ̂−t(y) = P−ityP it for y ∈ L∞(Ĝ) see [46, Proposition 8.23], we 
arrive at

(id ⊗ σϕ
t )(WĜ) = (∇it

ψ ⊗ 1)WĜ(P it ⊗ 1) = (δ̂−it ⊗ 1)(τ̂−t ⊗ id)(WĜ). (4.5)

Using this formula and τ̂t(δ̂) = δ̂ ([70, Theorem 3.11]) we calculate

σϕ
t (a)λ̂(ω) = σϕ

t

(
aσϕ

−t(λ̂(ω))
)

= σϕ
t

(
a(ω ⊗ id)

(
(δ̂it ⊗ 1)(τ̂t ⊗ id)(WĜ)

))
= σϕ

t

(
aλ̂((ωδ̂it) ◦ τ̂t)

)
= σϕ

t

(
λ̂(Θl(a)∗((ωδ̂it) ◦ τ̂t))

)
= λ̂

(((
Θl(a)∗((ωδ̂it) ◦ τ̂t)

)
δ̂−it

)
◦ τ̂−t

)
.

The above shows that σϕ
t (a) ∈ Ml(A(G)), and for x ∈ L∞(Ĝ) we get

〈Θl(σϕ
t (a))(x), ω〉 = 〈x,Θl(σϕ

t (a))∗(ω)〉 = 〈x,
(
Θl(a)∗((ωδ̂it) ◦ τ̂t)δ̂−it

)
◦ τ̂−t〉

ˆ−it l ît ît l
(ˆ−it

)

= 〈δ τ̂−t(x),Θ (a)∗((ωδ ) ◦ τ̂t)〉 = 〈δ τ̂t ◦ Θ (a) δ τ̂−t(x) , ω〉.
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The final claim is shown in a similar way. We have (σψ
t ⊗ τ−t) ◦ Δ = Δ ◦ σψ

t ([46, 
Proposition 8.23]) and hence for x ∈ Nϕ,

(ρ ◦ σψ
t ⊗ id)(WG∗)Λϕ(x) = Λϕ((ρ ◦ σψ

t ⊗ id)Δ(x)) = Λϕ

(
(ρ⊗ τt)Δ(σψ

t (x))
)

= ν−
t
2P itΛϕ((ρ⊗ id)Δ(σψ

t (x))) = P it(ρ⊗ id)(WG∗)∇it
ψΛϕ(x),

consequently (σψ
t ⊗ id)(WG∗) = (1 ⊗ P it)WG∗(1 ⊗∇it

ψ) and so

(id ⊗ σψ
t )(WĜ) = (P it ⊗ 1)WĜ(∇it

ψ ⊗ 1) = (τ̂t ⊗ id)(WĜ)(δ̂−it ⊗ 1).

Calculating as before,

σψ
t (a)λ̂(ω) = σψ

t

(
a(ω ⊗ id)

(
(τ̂−t ⊗ id)(WĜ)(δ̂it ⊗ 1)

))
= σψ

t

(
aλ̂((δ̂itω) ◦ τ̂−t)

)
= λ̂

(((
δ̂−it Θl(a)∗((δ̂itω) ◦ τ̂−t)

))
◦ τ̂t

)
and so

〈Θl(σψ
t (a))(x), ω〉 = 〈τ̂−t ◦ Θl(a)

(
τ̂t(x)δ̂−it

)
δ̂it, ω〉 (x ∈ L∞(Ĝ))

as desired. �
In the next proposition we show that for any a ∈ Ml

cb(A(G)) the map Θl(a) is bounded 
on the Hilbert space level; the final claim should be compared with Proposition 4.9.

Proposition 4.12. Let a ∈ Ml
cb(A(G)). Then for b ∈ Nϕ̂ we have Θl(a)(b) ∈ Nϕ̂, and the 

densely defined operator

L2(G) ⊇ Λϕ̂(Nϕ̂) � Λϕ̂(b) �→ Λϕ̂(Θl(a)(b)) ∈ L2(G)

is bounded. In fact, we have

Λϕ̂(Θl(a)(b)) = S−1(a)Λϕ̂(b) = S(a∗)∗Λϕ̂(b) (b ∈ Nϕ̂).

Here and in the sequel we use the GNS implementation of map Θl(a) – in the literature 
people have considered also different embeddings of (a subspace of) L∞(G) into L2(G), 
cf. [62, Section 2].

In order to prove Proposition 4.12 we start with a general lemma; recall (2.3) for the 
definition of J .

Lemma 4.13. Let ω ∈ J ⊆ L1(G), let a ∈ L∞(G), and let b ∈ Dom(σϕ
−i/2) ⊆ L∞(G). 

Then aωb ∈ J with Λϕ̂(λ(aωb)) = aJϕσ
ϕ (b)∗JϕΛϕ̂(λ(ω)).
−i/2
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Proof. Take x ∈ Nϕ. We have

〈x∗, aωb〉 = 〈(a∗xb∗)∗, ω〉 = 〈Λϕ(a∗xb∗) |Λϕ̂(λ(ω))〉
= 〈a∗Jϕσϕ

i/2(b
∗)∗JϕΛϕ(x) |Λϕ̂(λ(ω))〉 = 〈Λϕ(x) | aJϕσϕ

i/2(b
∗)JϕΛϕ̂(λ(ω))〉

which proves the claim. �
Proof of Proposition 4.12. Take b = (id ⊗ ω)WĜ for ω ∈ L1(G) such that ω ∈ L1

� (G)
and ω� ∈ J ; that such an ω exists follows from Lemma 2.1, for example. Then, for any 
ω̂ ∈ L1(Ĝ),

〈Θl(a)(b), ω̂〉 = 〈(id ⊗ ω)WĜ,Θl(a)∗(ω̂)〉 = 〈λ̂(Θl(a)∗(ω̂)), ω〉

= 〈aλ̂(ω̂), ω〉 = 〈(ω̂ ⊗ id)WĜ, ωa〉 = 〈(id ⊗ ωa)WĜ, ω̂〉,

which shows that

Θl(a)(b) = (id ⊗ ωa)WĜ.

Observe also that

b = (ω ⊗ id)(WG∗) = ((ω ⊗ id)WG)∗ = (ω� ⊗ id)WG = λ(ω�), (4.6)

in particular b ∈ Nϕ̂. Now, by Proposition 4.9 we have a∗ ∈ D(S), hence for y ∈ Dom(S)
it holds that S(y)∗a∗ ∈ Dom(S) (as S(y)∗ ∈ Dom(S) and Dom(S) is closed under 
multiplication [46, Proposition 5.22]), consequently

〈S(y), ωa〉 = 〈aS(y), ω〉 = 〈S(y)∗a∗, ω〉 = 〈S(y)∗a∗, ω��〉

= 〈S(S(y)∗a∗), ω�〉 = 〈yS(a∗)∗, ω�〉 = 〈yS−1(a), ω�〉 = 〈y, S−1(a)ω�〉

hence ωa ∈ L1
� (G) and ωa� = S−1(a)ω�. Consequently

Θl(a)(b) = (id ⊗ ωa)WĜ = (ωa� ⊗ id)WG = (S−1(a)ω� ⊗ id)WG = λ(S−1(a)ω�).

This calculation, combined with Lemma 4.13, shows that Θl(a)(b) ∈ Nϕ̂ with

Λϕ̂(Θl(a)(b)) = Λϕ̂(λ(S−1(a)ω�)) = S−1(a)Λϕ̂(λ(ω�)) = S−1(a)Λϕ̂(b).

Now let b ∈ Nϕ̂ be arbitrary. By Lemma 2.1 the space

{(id ⊗ ω)WĜ |ω ∈ L1(G) : ω ∈ L1
� (G), ω� ∈ J }

= {λ(ω�) |ω ∈ L1(G) : ω ∈ L1(G), ω� ∈ J }
�
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is a σ-sot × ‖ · ‖ core for Λϕ̂. Hence there is a net (ωi)i∈I of suitable functionals with 
b = σ-sot − limi∈I λ(ωi) and Λϕ̂(b) = limi∈I Λϕ̂(λ(ωi)). By σ-sot-continuity of Θl(a)
and the previous reasoning we obtain

Θl(a)(λ(ωi))
σ-sot−−−→
i∈I

Θl(a)(b)

and

Λϕ̂(Θl(a)(λ(ωi))) = S−1(a)Λϕ̂(λ(ωi)) −−→
i∈I

S−1(a)Λϕ̂(b).

Thus, since Λϕ̂ is σ-sot × ‖ · ‖ closed,

Θl(a)(b) ∈ Dom(Λϕ̂) = Nϕ̂ and Λϕ̂(Θl(a)(b)) = S−1(a)Λϕ̂(b)

as claimed. �
4.3. Left versus right

We have defined AP of a locally compact quantum group G in Definition 4.1 using 
left CB multipliers. Let us verify that we would have obtained the same notion using 
right CB multipliers.

Proposition 4.14. The following conditions are equivalent:

1. G has AP, i.e. there is a net in A(G) which converges to 1 in the weak∗-topology of 
Ml

cb(A(G)),
2. there is a net in ρ̂(L1(Ĝ)) which converges to 1 in the weak∗-topology of

Mr
cb(ρ̂(L

1(Ĝ))).

Proof. Assume that (ai)i∈I is a net in A(G) which converges to 1 in the weak∗-topology 
of Ml

cb(A(G)). Let R̂∼ : B(L2(G)) → B(L2(G)) be the extension of the unitary antipode 
of G given by R̂∼(x) = Jϕx

∗Jϕ (x ∈ B(L2(G))). For each i ∈ I there is ωi ∈ L1(Ĝ)
with ai = λ̂(ωi), and so by Lemma 3.1, if we define b′i = R̂∼(ai) then b′i = ρ̂(ωi ◦ R̂) ∈
ρ̂(L1(Ĝ)) ⊆ Mr

cb(ρ̂(L
1(Ĝ))) with Θr(b′i) = R̂ ◦ Θl(ai) ◦ R̂ ∈ CBσ(L∞(Ĝ)).

Let us now argue that b′i
w∗
−−→
i∈I

1: choose a functional θ ∈ Qr(ρ̂(L1(Ĝ))). We have 

to show that θ ◦ R̂∼ ∈ Ql(A(G)) (this makes sense by Lemma 3.1). We can write 
θ = limj∈J αr(νj) for some νj ∈ L1(G′) (see Section 3.2). Then, as R̂∼ : Ml

cb(L
1(Ĝ)) →

Mr
cb(L

1(Ĝ)) is an isometry (Lemma 4.8) we obtain

‖θ ◦ R̂∼ − αl(νj ◦ R̂∼)‖ = sup
a∈Ml

cb(A(G))1
|〈θ ◦ R̂∼ − αl(νj ◦ R̂∼), a〉|

= sup
l

|〈θ − αr(νj), R̂∼(a)〉| = sup
b′∈Mr (A(G))

|〈θ − αr(νj), b′〉|

a∈Mcb(A(G))1 cb 1
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= ‖θ − αr(νj)‖ −−→
j∈J

0,

so θ ◦ R̂∼ = limj∈J αl(νj ◦ R̂∼) ∈ Ql(A(G)). Now we can calculate

〈1− b′i, θ〉 = 〈1− R̂∼(ai), θ〉 = 〈1− ai, θ ◦ R̂∼〉 −−→
i∈I

0,

which shows that (b′i)i∈I is a net giving us condition (2). The converse implication is 
analogous. �
5. Relation to other approximation properties

In this section we discuss the relation between AP and other approximation properties 
for locally compact quantum groups which have been studied in the literature. Recall 
the following definitions, compare [7, Theorem 3.1], [9, Section 5.2].

Definition 5.1. Let G be a locally compact quantum group.

• Ĝ is coamenable if A(G) has a bounded approximate identity,
• G is weakly amenable if A(G) has a left approximate identity (ei)i∈I which is bounded 

in Ml
cb(A(G)). In this case, the smallest number C for which we can choose net (ei)i∈I

with ‖ei‖cb ≤ C (i ∈ I) is the Cowling–Haagerup constant of G, denoted Λcb(G).

Remark 5.2. If (ei)i∈I is a left approximate identity for A(G) then (R(ei))i∈I is a right 
approximate identity, where R is the unitary antipode on L∞(G). Indeed, let R̂ be the 
unitary antipode on L∞(Ĝ). As Rλ̂ = λ̂R̂∗, each R(ei) is a member of A(G), and as R̂∗
is anti-multiplicative, it follows that (R(ei))i∈I is indeed a right approximate identity. 
Thus it does not matter if we work in Ml

cb(A(G)) or in Mr
cb(A(G)), see also Lemma 4.8.

We shall show that if G has the AP, and the approximating net can be chosen in an 
appropriately bounded way, then G will enjoy one of the stronger properties in Defini-
tion 5.1.

Let us first record some general results. For a proof of the following fact see for example 
[13, Section 3].

Lemma 5.3. For any locally compact quantum group G, the linear span of {ab | a, b ∈
A(G)} is dense in A(G).

Next we recall a standard result in Banach algebra theory which follows from the 
Hahn–Banach Theorem and the fact that convex sets have the same norm and weak 
closures; see for example [53, Theorem 5.1.2(e)].

Proposition 5.4. Let A be a Banach algebra which has a weak bounded left approximate 
identity, meaning that there is a bounded net (ei)i∈I in A such that μ(eia − a) −−→ 0
i∈I
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for each a ∈ A, μ ∈ A∗. Then A has a bounded left approximate identity (of the same 
bound).

Proposition 5.4 does not say that the weak blai (bounded left approximate identity) 
is itself a blai, but rather that having a weak blai implies there is a possibly different net 
forming a blai.

Let us denote by Al
cb(G) the closure of A(G) inside Ml

cb(A(G)) and use Proposition 5.4
to obtain the following result, compare [25, Proposition 1].

Lemma 5.5. The inclusion map A(G) → Al
cb(G) is an injective contraction. The locally 

compact quantum group G is weakly amenable with Cowling–Haagerup constant at most 
K if and only if Al

cb(G) has a bounded left approximate identity of bound at most K.

Proof. Let ω ∈ L1(Ĝ) be an element of norm one. Then the map

L1(Ĝ) → L1(Ĝ)⊗̂L1(Ĝ) : ν �→ ω ⊗ ν

is a complete isometry, and so applying Δ̂∗ shows that L1(Ĝ) → L1(Ĝ) : ν �→ ω � ν is 
a complete contraction. Thus ‖λ̂(ω)‖cb ≤ ‖λ̂(ω)‖, here and below writing ‖ · ‖cb for the 
norm on Al

cb(G) and ‖ · ‖ for the norm on A(G). The diagram (3.1) shows in particular 
that A(G) → Ml

cb(A(G)) is injective, and hence A(G) → Al
cb(G) is injective.

Now suppose that G is weakly amenable and that (ei)i∈I is a left approximate identity 
for A(G) with ‖ei‖cb ≤ K for each i. Then (ei)i∈I is a bounded net in Al

cb(G). For 
x ∈ Al

cb(G) and ε > 0 there is a ∈ A(G) with ‖x − a‖cb < ε, and there is i0 so that 
‖eia − a‖ < ε when i ≥ i0. Thus

‖eix− x‖cb ≤ ‖eix− eia‖cb + ‖eia− a‖cb + ‖a− x‖cb < Kε + ε + ε (i ≥ i0).

It follows that eix −−→
i∈I

x in Al
cb(G). Consequently (ei)i∈I is a blai for Al

cb(G) of bound 

≤ K.
Conversely, suppose that Al

cb(G) has a bounded left approximate identity of bound K, 
say (fi)i∈I . For (i, n) ∈ I×N pick ei,n ∈ A(G) with ‖ei,n‖cb = ‖fi‖cb and ‖ei,n−fi‖cb <
1
n . For x ∈ Al

cb(G) and ε > 0 there is i0 so that ‖fix − x‖cb < ε for i ≥ i0. With n > 1
ε ,

‖ei,nx− x‖cb ≤ ‖ei,nx− fix‖cb + ‖fix− x‖cb < ε‖x‖cb + ε,

and so ei,nx −−−−−−−→
(i,n)∈I×N

x. We conclude that we may assume that (fi)i∈I was actually 

a net in A(G) and ‖fi‖cb ≤ K for each i. It remains to show that (fi)i∈I is a left 
approximate identity for A(G). Given a ∈ A(G) and ε > 0, by Lemma 5.3, we can find 
elements ak, bk ∈ A(G) for k = 1, . . . , n for some n such that a0 =

∑n
k=1 akbk ∈ A(G) is 

within ε distance of a. Then
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‖fia− a‖ ≤ ‖fia− fia0‖ + ‖fia0 − a0‖ + ‖a0 − a‖

≤ K‖a− a0‖ +
n∑

k=1

‖fiakbk − akbk‖ + ‖a0 − a‖

≤ (K + 1)ε +
n∑

k=1

‖fiak − ak‖cb‖bk‖.

Here we used that for x ∈ Al
cb(G) and y ∈ A(G) we have ‖xy‖ ≤ ‖x‖cb‖y‖. As (fi)i∈I is 

a left approximate identity in Al
cb(G), if i is sufficiently large then ‖fiak−ak‖cb‖bk‖ < ε

n

for each k, and so ‖fia − a‖ ≤ (K + 2)ε. Hence (fi)i∈I is a left approximate identity for 
A(G). �

The following is an improvement on [30, Theorem 1.13] in the classical situation; 
Haagerup and Kraus only consider the case where each element of the approximating 
net comes from a state.

Proposition 5.6. Let G be a locally compact quantum group. The following are equivalent:

1. G has the approximation property, and we can choose the approximating net (ei)i∈I

in A(G) to be bounded;
2. Ĝ is coamenable.

Proof. Suppose that G has the approximation property with approximating net (ei)i∈I

which is bounded in A(G). By definition, ei −−→
i∈I

1 weak∗ in Ml
cb(A(G)). By Proposi-

tion 4.7, we consider elements of the form Ωx̂,ω̂,f ∈ Ql(A(G)). Here we will just consider 
x̂ ∈ L∞(Ĝ) and ω̂ ∈ L1(Ĝ), with f ∈ L1(G) a state. According to equation (4.3), we get

lim
i∈I

〈Θl(ei � f)(x̂), ω̂〉 = lim
i∈I

〈ei,Ωx̂,ω̂,f 〉 = 〈1,Ωx̂,ω̂,f 〉 = 〈Θl(1 � f)(x̂), ω̂〉 = 〈x̂, ω̂〉,

using 1 � f = 1 and Θl(1) = id in the last step. For each i ∈ I let ei be associated to 
ω̂i ∈ L1(Ĝ), so that ei = λ̂(ω̂i). Then

ei � f = (f ⊗ id)Δ(ei) = (f ⊗ id)Δ((id ⊗ ω̂i)(WG∗)) = (f ⊗ id ⊗ ω̂i)(WG∗
23 WG∗

13 )

= (id ⊗ ω̂i)
(
WG∗(1⊗ (f ⊗ id)(WG∗))

)
= λ̂(ω̂′

i),

where ω̂′
i = (f ⊗ id)(WG∗)ω̂i ∈ L1(Ĝ). Notice that ‖ω̂′

i‖ ≤ ‖f‖‖ω̂i‖ = ‖ω̂i‖.
As computed in Lemma 3.10, it follows that Θl(ei � f)(x̂) = (ω̂′

i ⊗ id)Δ̂(x̂), so we see 
that

lim〈x̂, ω̂′
i � ω̂〉 = lim〈(ω̂′

i ⊗ id)Δ̂(x̂), ω̂〉 = 〈x̂, ω̂〉 (x̂ ∈ L∞(Ĝ), ω̂ ∈ L1(Ĝ)).

i∈I i∈I
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Thus (ω̂′
i)i∈I is a weak bounded left approximate identity for L1(Ĝ). By Proposition 5.4, 

we obtain that L1(Ĝ) has a bounded left approximate identity. This already implies that 
Ĝ is coamenable, see [7, Theorem 3.1].

Conversely, suppose that Ĝ is coamenable, so that in particular, A(G) has a bounded 
left approximate identity (ei)i∈I . For each i, let ω̂i ∈ L1(Ĝ) with λ̂(ω̂i) = ei, so (ω̂i)i∈I

is a bounded net, and ω̂i � ω̂ −−→
i∈I

ω̂ in norm, for each ω̂ ∈ L1(Ĝ). Thus, given x ∈ C0(Ĝ)

and ω̂ ∈ L1(Ĝ), we find that

〈Θl(ei)(x), ω̂〉 = 〈x, ω̂i � ω̂〉 −−→
i∈I

〈x, ω̂〉.

Let H be a separable Hilbert space. As the net (Θl(ei))i∈I is bounded, given x ∈ C0(Ĝ) ⊗
K(H) and ω ∈ L1(Ĝ)⊗̂B(H)∗, we find that

lim
i∈I

Ωx,ω(ei) = lim
i∈I

〈(Θl(ei) ⊗ id)x, ω〉 = 〈x, ω〉 = Ωx,ω(1).

By Proposition 3.9, it follows that ai −−→
i∈I

1 weak∗ in Ml
cb(A(G)) as required. �

The following is [30, Theorem 1.12] in the classical situation.

Proposition 5.7. Let G be a locally compact quantum group. The following are equivalent:

1. G has the approximation property, and we can choose the approximating net (ei)i∈I

in A(G) to be bounded with respect to ‖ · ‖cb;
2. G is weakly amenable.

Furthermore, in this case, the Cowling–Haagerup constant is at most the bound of (ei)∈I , 
while when G is weakly amenable, we can choose each ei with ‖ei‖cb ≤ Λcb(G).

Proof. We proceed as in the previous proof, starting with a net (ei)i∈I in A(G), but now 
only with ‖ei‖cb ≤ K for each i. We set ei = λ̂(ω̂i) and ω̂′

i = (f ⊗ id)(WG∗)ω̂i, where 
f is some fixed state and we are considering the natural (left) L∞(Ĝ)-module structure 
on L1(Ĝ). Then (ω̂′

i)i∈I is a weak left approximate identity for L1(Ĝ). Furthermore, 
‖λ̂(ω̂′

i)‖cb = ‖ei � f‖cb ≤ ‖ei‖cb‖f‖ ≤ K by Proposition 4.5.
For each i let fi = λ̂(ω̂′

i) ∈ A(G). Let θ : A(G) → Al
cb(G) be the inclusion map, and 

consider the adjoint, θ∗ : Al
cb(G)∗ → A(G)∗. For μ ∈ Al

cb(G)∗ and a ∈ A(G) we see that

lim
i∈I

〈μ, θ(fi)θ(a)〉 = lim
i∈I

〈θ∗(μ), fia〉 = 〈θ∗(μ), a〉 = 〈μ, θ(a)〉.

As θ has dense range, and (θ(fi))i∈I is bounded in Al
cb(G), it follows that (θ(fi))i∈I is 

a weak bounded left approximate identity. By Proposition 5.4, Al
cb(G) has a bounded 
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left approximate identity, and so Lemma 5.5 shows that G is weakly amenable, with 
Cowling–Haagerup constant at most K.

Conversely, when G is weakly amenable, we can choose a left approximate identity 
(ei)i∈I for A(G) with ‖ei‖cb ≤ Λcb(G) for each i. The argument in the proof of Propo-
sition 5.6 still works in this situation, because (Θl(ei))i∈I is a net bounded with respect 
to the CB norm. �
6. Discrete quantum groups and operator algebraic approximation properties

If the quantum group being studied is discrete, we can obtain better results. In Propo-
sition 6.5 we will show that the net exhibiting AP can be chosen to have additional 
properties. We also relate AP to approximation properties of the associated operator 
algebras, in both the locally compact case, Proposition 6.10, and the discrete case, Propo-
sition 6.12.

For the rest of this section Γ stands for an arbitrary discrete quantum group. Then 
Γ̂ is a compact quantum group, and we freely use the additional theory available in 
the compact case. We follow [51] as well as [49,66], being aware that we use the “left” 
convention for multiplicative unitaries and representations.

Every irreducible unitary representation of Γ̂ is finite-dimensional, and we denote 
by Irr(Γ̂) the collection of equivalence classes of irreducibles. We write α for the con-
jugate of α ∈ Irr(Γ̂). For each α ∈ Irr(Γ̂) let Uα ∈ C(Γ̂) ⊗ B(Hα) be a unitary 
representation in the class of α. With respect to an orthonormal basis of Hα we re-
gard Uα as a matrix [Uα

i,j ]1≤i,j≤dim(α). The matrix coefficients Uα
i,j span a dense Hopf 

�-algebra Pol(Γ̂) ⊆ C(Γ̂). We denote by h the Haar integral on C(Γ̂) and L∞(Γ̂), and 
let Λh : C(Γ̂) → L2(Γ̂) be the GNS map for h. As L∞(Γ̂) is in standard position on 
L2(Γ̂), the set {ωΛh(a),Λh(b) | a, b ∈ Pol(Γ̂)} is dense in L1(Γ̂). As each member of Pol(Γ̂)
is analytic for the modular automorphism group of h, this agrees in fact with the set 
{ωΛh(a),Λh(1) | a ∈ Pol(Γ̂)}. Notice that ωΛh(a),Λh(1) is the functional h(a∗·).

For each α ∈ Irr(Γ̂) there is a positive invertible operator ρα related to the possible 
non-traciality of the Haar integral h, see [51, Section 1.7]. We choose and fix a basis of 
Hα such that ρα is diagonal. We define the Woronowicz characters {fz | z ∈ C} by the 
relation (fz ⊗ id)(Uα) = ρzα, valid for each α. The modular automorphism group is then 
implemented as

σh
z (a) = fiz � a � fiz (a ∈ Pol(Γ̂), z ∈ C),

or equivalently, (σh
z ⊗ id)(Uα) = (1 ⊗ ρizα )Uα(1 ⊗ ρizα ). Similarly, the scaling group is 

implemented as

τz(a) = f−iz � a � fiz (a ∈ Pol(Γ̂), z ∈ C),

or equivalently, (τz⊗ id)(Uα) = (1 ⊗ρizα )Uα(1 ⊗ρ−iz
α ). As we assume that ρα is diagonal, 

say with entries ρα,i (1 ≤ i ≤ dim(α)), we get
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τz(Uα
i,j) = (ρα,i)iz(ρα,j)−izUα

i,j . (6.1)

The algebra c0(Γ) is isomorphic to the direct sum of full matrix algebras Mdim(α)
indexed by α ∈ Irr(Γ̂), and �∞(Γ) is isomorphic to the direct product of these matrix 
algebras. Given a ∈ �∞(Γ) we write a = (aα)α∈Irr(Γ̂) where aα ∈ Mdim(α), and similarly 
for c0(Γ). With respect to this isomorphism,

WΓ̂ =
⊕

α∈Irr(Γ̂)

dim(α)∑
i,j=1

Uα
i,j ⊗ eαi,j ∈ M

(
C(Γ̂) ⊗ c0(Γ)

)
, (6.2)

where {eαi,j}
dim(α)
i,j=1 are the matrix units of the matrix algebra Mdim(α) ⊆ c0(Γ).

We start with a result expressing the action of Θl(a) ∈ CBσ(L∞(Γ̂)), for a ∈
Ml

cb(A(Γ)), on matrix elements.

Lemma 6.1. For any a = (aα)α∈Irr(Γ̂) ∈ Ml
cb(A(Γ)) ⊆ �∞(Γ) with aα = [aαi,j ]

dim(α)
i,j=1 we 

have

Θl(a)(Uα
i,j) =

dim(α)∑
k=1

aαi,kU
α
k,j (α ∈ Irr(Γ̂), 1 ≤ i, j ≤ dim(α)).

Proof. Let x ∈ Pol(Γ̂) and set ω = h(x·) ∈ L1(Γ̂). Recall that aλ̂(ω) = λ̂(Θl(a)∗(ω)), 
equivalently, a(ω ⊗ id)(WΓ̂) = (Θl(a)∗(ω) ⊗ id)(WΓ̂). Using the expression for WΓ̂ from 
(6.2), it follows that

∑
α∈Irr(Γ̂)

dim(α)∑
i,j,k=1

〈Uα
k,j , ω〉aαi,keαi,j =

∑
α∈Irr(Γ̂)

dim(α)∑
k,j=1

〈Uα
k,j , ω〉aeαk,j

= a(ω ⊗ id)(WΓ̂) = (Θl(a)∗(ω) ⊗ id)(WΓ̂)

=
∑

α∈Irr(Γ̂)

dim(α)∑
i,j=1

〈Θl(a)(Uα
i,j), ω〉eαi,j .

By density, this holds for all ω, and so we conclude Θl(a)(Uα
i,j) =

∑dim(α)
k=1 aαi,kU

α
k,j , as 

claimed. �
Remark 6.2. Later, see Proposition 6.5, we shall consider a ∈ Ml

cb(A(Γ)) with Θl(a) unit 
preserving. Let e denote the trivial representation of Γ̂, so dim(e) = 1 and Ue = 1 ⊗ 1. 
From Lemma 6.1, for such an a, we see that 1 = Θl(a)(1) = ae1,11 and so ae1,1 = 1. 
Further, as the Haar integral h annihilates all coefficients of all irreducible representations 
except e, and as Pol(Γ̂) is dense in C(Γ̂), it follows that h ◦ Θl(a) = h.
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For discrete quantum groups we will also look at a central variation of AP. We denote 
by c00(Γ) ⊆ c0(Γ) the dense subspace of elements x = (xα)α∈Irr(Γ̂) such that xα = 0
for all but finitely many α. From the description of WΓ̂ in (6.2) it is clear that we have 
c00(Γ) ⊆ A(Γ). Notice that the centre of �∞(Γ), denoted Z(�∞(Γ)), consists of families 
of matrices x = (xα)α∈Irr(Γ̂) such that each xα ∈ Mdim(α) is a scalar multiple of the 
identity.

Definition 6.3. We say that a discrete quantum group Γ has the central approximation 
property (central AP) if there is a net (ai)i∈I in c00(Γ) ∩Z(�∞(Γ)) which converges to 1
in the weak∗-topology of Ml

cb(A(Γ)).

It is clear from the definitions that central AP implies AP. At first sight, it might seem 
more natural to use A(Γ) instead of c00(Γ) in Definition 6.3, and indeed, this alternative 
definition (for other approximation properties) is taken in [9, Definition 7.1]. However, 
in terms of applications, and also from the point of view of representation categories, 
working with c00(Γ) is in fact the most appropriate choice. We do not know if these two 
properties are equivalent (a naive approximation typically produces an element which 
is not central). Let us point out that the examples considered in [9] actually do end 
up working with c00(Γ). We will discuss the relation of central AP to properties of the 
representation category Rep(Γ̂) in Section 8.

Remark 6.4. We shall say that a ∈ Ml
cb(A(Γ)) is finitely supported if a ∈ c00(Γ). Of 

course, we have c00(Γ) ⊆ A(Γ) ⊆ Ml
cb(A(Γ)). For a ∈ c00(Γ), it follows from Lemma 6.1

that Θl(a)(Uα
i,j) = 0 for all but finitely many α. Hence Θl(a) restricted to Pol(Γ̂) is a 

finite-rank map, and so by continuity, Θl(a) restricted to C(Γ̂) is finite-rank, and hence 
by normality, Θl(a) is also finite-rank.

In the next result we show that whenever a discrete quantum group has AP, then this 
is implemented by a net of elements with convenient properties.

Proposition 6.5. Assume that Γ is a discrete quantum group with AP. Then there is a 
net (ai)i∈I of elements in c00(Γ) such that

• ai −−→
i∈I

1 in (Ml
cb(A(Γ)), w∗),

• every ai is invariant under the scaling group of Γ and modular automorphism groups 
of the left/right Haar integrals,

• every Θl(ai) is star and unit preserving.

If Γ has central AP then we can additionally assume that ai ∈ c00(Γ) ∩ Z(�∞(Γ)).

For the proof of Proposition 6.5 we shall need two lemmas. For any operator space X, 
we denote by κ : X∗⊗̂X → C the canonical completely contractive map ω⊗ x �→ 〈ω, x〉.
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Lemma 6.6. Let H be a Hilbert space, let M, N be von Neumann algebras, and let

v ∈
(
M ⊗̄L∞(Γ̂)⊗̄N ⊗̄B(H)

)
⊗̂
(
M∗ ⊗̂L1(Γ̂)⊗̂N∗ ⊗̂B(H)∗

)
.

The bounded linear functional

Ωv : Ml
cb(A(Γ)) � a �→ κ

(
((id ⊗ Θl(a) ⊗ id⊗2) ⊗ id⊗4)v

)
∈ C

belongs to Ql(A(Γ)), and we have ‖Ωv‖ ≤ ‖v‖.

Proof. Since Ql(A(Γ)) is closed in Ml
cb(A(Γ))∗, it is enough to consider v = x ⊗ (ω1 ⊗

ω2 ⊗ω3 ⊗ω4) for x ∈ M ⊗̄L∞(Γ̂)⊗̄N ⊗̄B(H), ω1 ∈ M∗, ω2 ∈ L1(Γ̂), ω3 ∈ N∗, ω4 ∈ B(H)∗. 
Let ε ∈ �1(Γ) be the counit of �∞(Γ). Define y = (ω1 ⊗ id ⊗ ω3 ⊗ id)x ∈ L∞(Γ̂)⊗̄B(H). 
For a ∈ Ml

cb(A(Γ)) we have

〈Ωv, a〉 = κ
(
(id ⊗ Θl(a) ⊗ id⊗2)x⊗ (ω1 ⊗ ω2 ⊗ ω3 ⊗ ω4)

)
= 〈(id ⊗ Θl(a) ⊗ id⊗2)x, ω1 ⊗ ω2 ⊗ ω3 ⊗ ω4〉 = 〈(Θl(a) ⊗ id)y, ω2 ⊗ ω4〉
= 〈(Θl(a � ε) ⊗ id)y, ω2 ⊗ ω4〉 = 〈a,Ωy,ω2⊗ω4,ε〉

by the definition of Ωy,ω2⊗ω4,ε (see (4.3)) hence Ωv = Ωy,ω2⊗ω4,ε and the claim follows 
from Proposition 4.7. �

In the following, recall that a mean on R is a state mR on L∞(R) which is invariant 
under the translation action of R. Such a state exists as the group R is abelian and hence 
amenable.

Lemma 6.7. Let mR be a mean on R, let H be a Hilbert space, and let x ∈ C(Γ̂) ⊗K(H), ρ ∈
L1(Γ̂)⊗̂B(H)∗. Then

Ωτ
x,ρ : Ml

cb(A(Γ)) � a �→ mR

(
t �→ 〈(Θl(a) ⊗ id)(τ̂−t ⊗ id)(x), ρ ◦ (τ̂t ⊗ id)〉

)
∈ C

defines a bounded functional on Ml
cb(A(Γ)). Furthermore, Ωτ

x,ρ ∈ Ql(A(Γ)) and ‖Ωτ
x,ρ‖ ≤

‖x‖‖ρ‖.

Proof. As t �→ ρ ◦ (τ̂t⊗ id) is norm continuous, it follows that the function t �→ 〈(Θl(a) ⊗
id)(τ̂−t ⊗ id)(x), ρ ◦ (τ̂t ⊗ id)〉 is continuous, and bounded, and so we can indeed apply 
mR to it. The only nontrivial claim is that Ωτ

x,ρ is a normal functional.
In order to verify this take t ∈ R. Using the canonical complete contraction κ we can 

write

〈(Θl(a) ⊗ id)(τ̂−t ⊗ id)(x), ρ ◦ (τ̂t ⊗ id)〉
l

( )

= κ(Θ (a) ⊗ id ⊗ id ⊗ id) (τ̂−t ⊗ id)(x) ⊗ ρ ◦ (τ̂t ⊗ id) .
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Let x = Uα
i,j ∈ Pol(Γ̂), y = Uβ

k,l ∈ Pol(Γ̂) and set ρ = h(y·) ∈ L1(Γ̂). As h is (τ̂t)t∈R
invariant, it follows that (ρ ◦ τ̂t)(z) = h(yτ̂t(z)) = h(τ̂t(τ̂−t(y)z)) = h(τ̂−t(y)z) for each 
z ∈ C(Γ̂), and so ρ ◦ τ̂t = h(τ̂−t(y)·). From (6.1) we hence see that

τ̂−t(x) ⊗ ρ ◦ τ̂t = (ρα,i)−it(ρα,j)it(ρβ,k)−it(ρβ,l)itx⊗ ρ.

In particular, function R � t �→ τ̂−t(x) ⊗ ρ ◦ τ̂t takes values in a finite dimensional 
subspace of Pol(Γ̂) �L1(Γ̂). For such a function we can define its mean mR

(
t �→ τ̂−t(x) ⊗

ρ ◦ τ̂t
)
∈ Pol(Γ̂) �L1(Γ̂) by choosing a basis in the image, and taking mean of t-dependent 

coefficients (it will not depend on the choice of basis). By linearity, we obtain mR

(
t �→

τ̂−t(x) ⊗ ρ ◦ τ̂t
)
∈ Pol(Γ̂) � L1(Γ̂) for any x, y ∈ Pol(Γ̂). By linearity again, given x ∈

Pol(Γ̂) �K(H) and ρ ∈ h(Pol(Γ̂) · ) � B(H)∗, it follows that

v = mR

(
t �→ (τ̂−t ⊗ id)(x) ⊗ ρ ◦ (τ̂t ⊗ id)

)
∈
(
C(Γ̂) �K(H)

)
�

(
L1(Γ̂) � B(H)∗

)
and we have

Ωτ
x,ρ(a) = κ

(
(Θl(a) ⊗ id ⊗ id ⊗ id)v

)
= Ωv(a).

Consequently we have Ωτ
x,ρ ∈ Ql(A(Γ)) by Lemma 6.6. Furthermore,

‖Ωτ
x,ρ‖ ≤ ‖v‖ ≤ ‖x‖‖ρ‖.

General elements x ∈ C(Γ̂) ⊗K(H), ρ ∈ L1(Γ̂)⊗̂B(H)∗ can be approximated in norm by 
x, ρ as above, hence Ωτ

x,ρ is a normal functional, using again that Ql(A(Γ)) ⊆ Ml
cb(A(Γ))∗

is a closed subspace. �
Proof of Proposition 6.5. By assumption, there is a net (ai)i∈I in A(Γ) which converges 
to 1 in the weak∗-topology of Ml

cb(A(Γ)). For each i ∈ I there is ωi ∈ L1(Γ̂) with 
ai = λ̂(ωi), and there are ξi, ηi ∈ L2(Γ̂) with ωi = ωξi,ηi

. Given n ∈ N we may choose 
ξi,n, ηi,n ∈ Λh(Pol(Γ̂)) with ‖ξi − ξi,n‖ ≤ ε1 and ‖ηi − ηi,n‖ ≤ ε2, where

ε1 = 1
1+2n‖ηi‖ , ε2 = 1

2n(ε1+‖ξi‖) .

Set ai,n = λ̂(ωξi,n,ηi,n
), so that ai,n ∈ c00(Γ), and

‖ai − ai,n‖A(Γ) = ‖ωi − ωξi,n,ηi,n
‖ ≤ ‖ωξi,ηi

− ωξi,n,ηi
‖ + ‖ωξi,n,ηi

− ωξi,n,ηi,n
‖

≤ ε1‖ηi‖ + ε2‖ξi,n‖ ≤ ε1‖ηi‖ + ε2
(
ε1 + ‖ξi‖

)
≤ 1

n .

Equipping I × N with the product order, it follows that ai,n −−−−−−−→
(i,n)∈I×N

1 in 

(Ml
cb(A(Γ)), w∗).
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Fix (i, n) ∈ I × N and choose mR ∈ L∞(R)∗, a mean on R. Let bi,n be the unique 
element of �∞(Γ) with

〈bi,n, ω〉 = mR(t �→ 〈τt(ai,n), ω〉) (ω ∈ �1(Γ)).

As each τt leaves each matrix block Mdim(α) ⊆ �∞(Γ) invariant, it follows that bi,n ∈
c00(Γ), because ai,n ∈ c00(Γ). Next, we set

ci,n = 1
2 (bi,n + R(bi,n)∗) ∈ c00(Γ).

Clearly each bi,n, and consequently each ci,n, is invariant under (τt)t∈R. Thus ci,n is 
analytic for (τt)t∈R, and so ci,n ∈ D(S−1) and S−1(ci,n) = R(ci,n). Then as ∇it

ϕ = ∇−it
ψ =

P it, see [41, Lemma 6.2], each ci,n is also invariant under the modular automorphism 
group. Since

c∗i,n = 1
2 (b∗i,n + R(bi,n)) = R(ci,n) = S−1(ci,n),

the operator Θl(ci,n) is star preserving by Corollary 4.10.
We now show that (ci,n)(i,n)∈I×N converges to 1 weak∗ in Ml

cb(A(Γ)). We will show 

this first for (bi,n)(i,n)∈I×N . Choose ρ ∈ �1(Γ), ω ∈ L1(Γ̂) and set y = (id ⊗ ρ)WΓ̂. We 
have

〈Θl(bi,n)(y), ω〉 = 〈(id ⊗ ρ)(WΓ̂),Θl(bi,n)∗(ω)〉 = 〈bi,n(ω ⊗ id)(WΓ̂), ρ〉
= mR

(
t �→ 〈τt(ai,n)(ω ⊗ id)(WΓ̂), ρ〉

)
= mR

(
t �→ 〈Θl(τt(ai,n))y, ω〉

)
.

(6.3)

By continuity, the above equation holds for each y ∈ C(Γ̂).
Let H be a separable Hilbert space, and consider x ∈ C(Γ̂) � K(H) and ρ ∈ L1(Γ̂) �

B(H)∗. Then using linearity and (6.3), it follows that

〈bi,n,Ωx,ρ〉 = 〈(Θl(bi,n) ⊗ id)x, ρ〉 = mR

(
t �→ 〈(Θl(τt(ai,n)) ⊗ id)x, ρ〉

)
.

Lemmas 4.11 and 6.7 imply

〈bi,n,Ωx,ρ〉 = mR

(
t �→ 〈(Θl(ai,n) ⊗ id)(τ̂−t ⊗ id)(x), ρ ◦ (τ̂t ⊗ id)〉

)
= 〈ai,n,Ωτ

x,ρ〉.

Both sides of the above equation are continuous with respect to x, ρ, hence it holds also 
for x ∈ C(Γ̂) ⊗K(H) and ρ ∈ L1(Γ̂)⊗̂B(H)∗. Since Ωτ

x,ρ is a normal functional, it follows 
that

lim
(i,n)∈I×N

〈bi,n,Ωx,ρ〉 = lim
(i,n)∈I×N

〈ai,n,Ωτ
x,ρ〉 = 〈1,Ωτ

x,ρ〉

= mR

(
t �→ 〈(τ̂−t ⊗ id)(x), ρ ◦ (τ̂t ⊗ id)〉

)
= 〈x, ρ〉 = 〈1,Ωx,ρ〉
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and so bi,n
w∗

−−−−−−−→
(i,n)∈I×N

1, as the functionals Ωx,ρ give all of Ql(A(Γ)), by Proposition 3.9. 

Then using Proposition 4.9,

〈R(bi,n)∗,Ωx,ρ〉 = 〈S(b∗i,n),Ωx,ρ〉 = 〈(Θl(bi,n)† ⊗ id)x, ρ〉
= 〈(Θl(bi,n) ⊗ id)(x∗)∗, ρ〉 = 〈(Θl(bi,n) ⊗ id)(x∗), ρ〉

which converges to 〈x∗, ρ〉 = 〈x, ρ〉 = 〈1, Ωx,ρ〉. We can conclude that ci,n = 1
2 (bi,n +

R(bi,n)∗) also converges weak∗ to 1.
We have now shown all the properties required of the net (ci,n)(i,n)∈I×N except that 

each Θl(ci,n) is unit preserving. By Lemma 3.2, we know that there is a family of scalars 
(αi,n)(i,n)∈I×N with Θl(ci,n)(1) = αi,n1 for each (i, n). As Θl(ci,n) is star-preserving, 
each αi,n ∈ R. As ci,n −−−−−−−→

(i,n)∈I×N
1 weak∗, Θl(ci,n)(1) = αi,n1 −−−−−−−→

(i,n)∈I×N
1 weak∗ and 

so αi,n −−−−−−−→
(i,n)∈I×N

1. We may hence replace ci,n by α−1
i,nci,n.

Finally, when Γ has central AP, then we can skip the first step (as ai ∈ c00(Γ) ∩
Z(�∞(Γ)) by assumption), and proceed as above to form bi. It follows from (6.1) that 
τ̂t(Uα

i,i) = Uα
i,i, and the equality (τ̂t⊗τt)WΓ̂ = WΓ̂, together with (6.2), shows τt(ai) = ai

for each t, i. Thus actually bi = ai, and the final step of forming ci, and rescaling, will 
also give central elements. �

In the unimodular case there is no difference between AP and central AP.

Proposition 6.8. Let G be a unimodular discrete quantum group. Then G has AP if and 
only if it has central AP.

Proof. Since the Haar integral h ∈ L1(Ĝ) is a trace there exists a unique state-
preserving normal faithful conditional expectation E : L∞(Ĝ)⊗̄L∞(Ĝ) → Δ̂(L∞(Ĝ)) ⊆
L∞(Ĝ)⊗̄L∞(Ĝ). Explicitly, we have

E(Uα
i,j ⊗ Uβ

k,l) = δαβδjk
dim(α)Δ̂(Uα

i,l),

compare [9, Section 6.3.2]. Set Δ̂� = Δ̂−1E : L∞(Ĝ)⊗̄L∞(Ĝ) → L∞(Ĝ). Given a ∈
Ml

cb(A(G)) define

Ψ(a) = Δ̂�(id ⊗ Θl(a))Δ̂ ∈ CBσ(L∞(Ĝ)).

That Ψ(a) is normal and completely bounded is clear, and note that we have ‖Ψ(a)‖cb ≤
‖a‖cb. Moreover, if a is finitely supported then Ψ(a) has finite-rank, see Remark 6.4.

Define also A : �∞(G) → Z�∞(G) by

A(f) =
∑

̂
Trα(f)
dim(α)pα,
α∈Irr(G)
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where pα ∈ �∞(G) is the central projection corresponding to B(Hα) ⊆ �∞(G) and 
Trα ∈ �1(G) is the projection onto B(Hα) composed with the (non-normalised) trace on 
B(Hα). Then A is a contractive linear map. Given a ∈ Ml

cb(A(G)) and ω ∈ h(Pol(Ĝ)·), 
we compute

λĜ(Ψ(a)∗(ω)) =
∑

α∈Irr(Ĝ)

dim(α)∑
i,j=1

〈Ψ(a)(Uα
i,j), ω〉eαi,j

=
∑

α∈Irr(Ĝ)

dim(α)∑
i,j,k=1

〈Δ̂�(Uα
i,k ⊗ Θl(a)(Uα

k,j)), ω〉eαi,j

=
∑

α∈Irr(Ĝ)

dim(α)∑
i,j,k,l=1

aαk,l〈Δ̂�(Uα
i,k ⊗ Uα

l,j), ω〉eαi,j =
∑

α∈Irr(Ĝ)

dim(α)∑
i,j,k=1

aα
k,k

dim(α) 〈U
α
i,j , ω〉eαi,j

=
∑

α∈Irr(Ĝ)

dim(α)∑
i,j=1

〈Uα
i,j , ω〉

Trα(a)
dim(α)e

α
i,j = A(a)λĜ(ω).

Here we used Lemma 6.1 to compute the action of Θl(a), and notice that by the choice 
of ω, all the sums involved are finite. As such ω are dense in L1(Γ̂), it follows that A(a)
is a left CB multiplier and Θl(A(a)) = Ψ(a). In particular, A(a) ∈ Z Ml

cb(A(G)) and 
‖A(a)‖cb ≤ ‖a‖cb.

Now assume that G has AP. Using Proposition 6.5 we find a net let (fi)i∈I in c00(G)
which converges weak∗ to 1 in Ml

cb(A(G)). In order to prove that G has central AP, 
we shall show that A(fi) −−→

i∈I
1 weak∗ in Ml

cb(A(G)). Take x ∈ C(Ĝ) ⊗ K(H), ω ∈

L1(Ĝ)⊗̂B(H)∗ for a separable Hilbert space H. Then we have

〈A(fi),Ωx,ω〉 = 〈(Ψ(fi) ⊗ id)x, ω〉

= 〈(Δ̂� ⊗ id)(id ⊗ Θl(fi) ⊗ id)(Δ̂ ⊗ id)x, ω〉

= 〈(id ⊗ Θl(fi) ⊗ id)(Δ̂ ⊗ id)x, ω ◦ (Δ̂� ⊗ id)〉.

By applying Lemma 6.6, with M = L∞(Γ̂), N = C, it follows that

lim
i∈I

〈A(fi),Ωx,ω〉 = 〈(id ⊗ id ⊗ id)(Δ̂ ⊗ id)x, ω ◦ (Δ̂� ⊗ id)〉 = 〈x, ω〉 = 〈1,Ωx,ω〉,

hence showing that A(fi) −−→
i∈I

1 weak∗, as required. �
In the remainder of this section we relate AP to approximation properties of associated 

operator algebras. Let us start by recalling the appropriate von Neumann algebraic 
approximation property, see [30, Section 2].
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Definition 6.9. Let M be a von Neumann algebra. Then M has the weak∗ operator 
approximation property (W∗OAP) if there exists a net (Θi)i∈I of finite rank normal 
CB maps on M which converges to the identity in the stable point-weak∗-topology, 
i.e. (Θi ⊗ id)x w∗

−−→
i∈I

x for all separable Hilbert spaces H and x ∈ M ⊗̄B(H).

The following result was established by Kraus and Ruan for Kac algebras, [42, The-
orem 4.15], using the formally stronger definition of AP (which by Theorem 4.4 is 
equivalent to the definition taken in this paper). A result of this type was also obtained 
in [13, Proposition 4.7], again with a formally stronger definition of AP, and under the 
assumption that G is strongly inner amenable. We record a proof for the convenience of 
a reader.

Proposition 6.10. Let G be a locally compact quantum group. If G has AP, then L∞(Ĝ)
has W∗OAP.

Proof. Assume that G has AP. By Theorem 4.4 there is a net (λ̂(ωi))i∈I in A(G) such 
that Θl(λ̂(ωi)) −−→

i∈I
id in the stable point-weak∗-topology of CBσ(L∞(Ĝ)). Extend ωi ∈

L1(Ĝ) to ω̃i ∈ B(L2(G))∗ with the same norm and define

Ψi : B(L2(G)) � T �→(ω̃i ⊗ id)
(
VĜ(T ⊗ 1)VĜ∗) ∈ B(L2(G)).

Clearly Ψi is a normal CB map on B(L2(G)), and as VĜ ∈ L∞(G)′⊗̄L∞(Ĝ) the image 
of Ψi lies in L∞(Ĝ). Note that if x ∈ L∞(Ĝ) then

Ψi(x) = (ω̃i ⊗ id)
(
VĜ(x⊗ 1)VĜ∗) = (ω̃i ⊗ id)Δ̂(x) = Θl(λ̂(ωi))(x).

Thus Ψi is an extension of Θl(λ̂(ωi)) to all of B(L2(G)). As B(L2(G)) has W∗CPAP, 
see [10, Propositions 2.1.4, 2.2.7], there is a net (Υλ)λ∈Λ of finite rank normal unital CP 
maps on B(L2(G)) which converges to the identity in the point-weak∗-topology. Consider 
now the maps

Ψi,λ = Ψi ◦ Υλ|L∞(Ĝ) : L∞(Ĝ) → L∞(Ĝ).

These are normal and CB, and, because Υλ has finite rank, also each Ψi,λ is finite-rank. 
Fix a separable Hilbert space H and finite sets F ⊆ L∞(Ĝ)⊗̄B(H), G ⊆ L1(Ĝ)⊗̂B(H)∗
and 0 < ε < 1. Given x ∈ F, ρ ∈ G, we have

〈(Ψi ⊗ id)x, ρ〉 = 〈(Θl(λ̂(ωi)) ⊗ id)x, ρ〉 −−→
i∈I

〈x, ρ〉.

Thus there is i(F, G, ε) ∈ I such that

|〈(Ψi(F,G,ε) ⊗ id)x− x, ρ〉| ≤ ε (x ∈ F, ρ ∈ G).
2
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Next, since Ψi(F,G,ε) is normal, we have

|〈(Ψi(F,G,ε) ◦ Υλ ⊗ id)x− (Ψi(F,G,ε) ⊗ id)x, ρ〉| −−−→
λ∈Λ

0 (x ∈ F, ρ ∈ G),

hence there is λ(F, G, ε) ∈ Λ so that

|〈(Ψi(F,G,ε) ◦ Υλ(F,G,ε) ⊗ id)x− (Ψi(F,G,ε) ⊗ id)x, ρ〉| ≤ ε
2 (x ∈ F, ρ ∈ G),

and by triangle inequality

|〈(Ψi(F,G,ε) ◦ Υλ(F,G,ε) ⊗ id)x− x, ρ〉| ≤ ε (x ∈ F, ρ ∈ G).

Consequently, the net (Ψi(F,G,ε),λ(F,G,ε))(F,G,ε) (indexed by finite subsets of L∞(Ĝ)⊗̄
B(H), L1(Ĝ)⊗̂B(H)∗ and ]0, 1[) shows that L∞(Ĝ) has the W∗OAP. �
Remark 6.11. An analogous argument shows that if Ĝ is coamenable then L∞(Ĝ) has 
W∗CPAP. In fact, a formally stronger result holds: W∗CPAP of L∞(Ĝ) follows from 
amenability of G by [7, Theorem 3.3].

When the quantum group Γ is discrete and has AP, we obtain approximation prop-
erties also for the associated C∗-algebra. If Γ is furthermore unimodular, the converse 
implications hold. These results are already known (see e.g. [42, Theorem 5.13]), hence 
we skip the proof. For the definition of OAP and strong OAP, see [23, Page 204] or [10, 
Section 12.4], for example.

Proposition 6.12. Let Γ be a discrete quantum group. Consider the following conditions:

(1) Γ has AP,
(2) C(Γ̂) has strong OAP,
(3) C(Γ̂) has OAP,
(4) L∞(Γ̂) has W∗OAP.

Then (1) ⇒ (2) ⇒ (3) and (1) ⇒ (4). If Γ is unimodular then all the above conditions 
are equivalent.

Remark 6.13. Combining Proposition 6.12 and Proposition 6.8, we see that when Γ is 
unimodular and L∞(Γ̂) has W∗OAP, then Γ has the central AP.

Following [68, Definition 1.27], we say that a discrete quantum group Γ is exact when 
the reduced crossed product functor Γ �r −, preserves short exact sequences.

Corollary 6.14. Let Γ be a discrete quantum group. If Γ has AP then it is exact.
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Proof. By Proposition 6.12, the C∗-algebra C(Γ̂) has strong OAP. It is then exact by a 
combination of [23, Corollary 11.3.2] and [37, Theorem 1.1]. The result now follows from 
[68, Proposition 1.28]. �

We end this section with a result which shows that for a discrete quantum group Γ, 
AP is equivalent to a strengthening of W∗OAP of L∞(Γ̂) which takes into consideration 
�∞(Γ). Let us introduce this strengthening in a general setting, compare [40, Definition 
6.9].

Definition 6.15. Let (M, θ) be a von Neumann algebra with a n.s.f. weight.

• Let Φ ∈ CBσ(M) be a normal CB map satisfying Φ(Nθ) ⊆ Nθ. We say that Φ has an 
L2-implementation if there is T ∈ B(Hθ) such that Λθ(Φ(x)) = TΛθ(x) for x ∈ Nθ.

• Let N ⊆ B(Hθ) be a von Neumann algebra. We say that (M, θ) has W∗OAP relative 
to N if there is a net (Φi)i∈I such that:
– each Φi is a normal, CB, finite rank map on M,
– each Φi satisfies Φi(Nθ) ⊆ Nθ and has an L2-implementation Ti ∈ N,
– the net (Φi)i∈I converges to the identity in the stable point-weak∗-topology.

Note that an L2-implementation is unique. If it is clear from the context which weight 
on M we choose, we will simply say that M has W∗OAP relative to N.

Theorem 6.16. Let Γ be a discrete quantum group. Consider the following conditions:

(1) Γ has AP.
(2) L∞(Γ̂) has W∗OAP relative to �∞(Γ).
(3) L∞(Γ̂) has W∗OAP relative to �∞(Γ)′.
(4) Γ has central AP.
(5) L∞(Γ̂) has W∗OAP relative to Z(�∞(Γ)).

Then (1) ⇔ (2) ⇔ (3) ⇐ (4) ⇔ (5).

Remark 6.17. This result is an analogue of Theorem 6.11 in [40], for (co)amenability 
and relative W∗CPAP. Furthermore, it is similar in spirit to [63, Theorem 3] which is 
concerned with amenability and injectivity.

We start with an auxiliary result (compare [40, Proposition 6.12] and [62, Proposition 
2.12]). Recall that for a normal CB map Φ on a von Neumann algebra, we denote by Φ†

the normal CB map given by x �→ Φ(x∗)∗.

Proposition 6.18. Let G be a locally compact quantum group with left Haar integral ϕ
and let Φ ∈ CBσ(L∞(Ĝ)) be a normal CB map. Assume that Φ† satisfies Φ†(Nϕ̂) ⊆ Nϕ̂

and has an L2-implementation T : L2(G) → L2(G). We have:
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(1) T ∈ L∞(G) if and only if Φ∗(ω � ν) = Φ∗(ω) � ν for all ω, ν ∈ L1(Ĝ),
(2) T ∈ L∞(G)′ if and only if Φ∗(ω � ν) = ω � Φ∗(ν) for all ω, ν ∈ L1(Ĝ),
(3) T ∈ Z(L∞(G)) if and only if Φ∗(ω�ν) = Φ∗(ω) �ν = ω�Φ∗(ν) for all ω, ν ∈ L1(Ĝ).

Proof. Using the biduality G = ̂̂
G and [70, Definition 4.6] (see also Section 2), we deduce 

that the subspace

N = {λ̂(ω) |ω ∈ L1(Ĝ) : ∃ξ∈L2(G)∀x∈Nϕ̂
〈Λϕ̂(x) | ξ〉 = ω(x∗)} ⊆ L∞(G)

is a core for Λϕ, and that for λ̂(ω) ∈ N we have Λϕ(λ̂(ω)) = ξ. Before we proceed with 
the main proof, let us establish some preliminary results:

• For λ̂(ω) ∈ N we have λ̂(Φ∗(ω)) ∈ N and

T ∗Λϕ(λ̂(ω)) = Λϕ(λ̂(Φ∗(ω))). (6.4)

Indeed, for x ∈ Nϕ̂,

〈Λϕ̂(x) |T ∗Λϕ(λ̂(ω))〉 = 〈TΛϕ̂(x) |Λϕ(λ̂(ω))〉 = 〈Λϕ̂(Φ†(x)) |Λϕ(λ̂(ω))〉
= ω(Φ†(x)∗) = ω(Φ(x∗)) = Φ∗(ω)(x∗),

which proves that λ̂(Φ∗(ω)) ∈ N and that equation (6.4) holds.

• For ω ∈ L1(Ĝ), ̂λ(ν) ∈ N we have λ̂(ω � ν) ∈ N and

Λϕ(λ̂(ω � ν)) = λ̂(ω)Λϕ(λ̂(ν)). (6.5)

Indeed, take x ∈ Nϕ̂. Using the definition of WĜ (equation (2.1)) we obtain

(ω � ν)(x∗) = ν((ω ⊗ id)Δ(x∗)) = ν((ω ⊗ id)Δ(x)∗) = 〈Λϕ̂((ω ⊗ id)Δ(x)) |Λϕ(λ̂(ν))〉

= 〈(ω ⊗ id)(WĜ∗)Λϕ̂(x) |Λϕ(λ̂(ν))〉 = 〈Λϕ̂(x) | λ̂(ω)Λϕ(λ̂(ν))〉,

which proves the claim.
Let us now prove 1. If T ∈ L∞(G) then (6.4) implies that Λϕ(λ̂(Φ∗(ω))) =

T ∗Λϕ(λ̂(ω)) = Λϕ(T ∗λ̂(ω)) and so T ∗λ̂(ω) = λ̂(Φ∗(ω)), for each ω ∈ L1(Ĝ) such 
that λ̂(ω) ∈ N , and by density of such ω (see Lemma 2.1) this equation holds for 
all ω ∈ L1(Ĝ). Consequently

λ̂(Φ∗(ω � ν)) = T ∗λ̂(ω � ν) = T ∗λ̂(ω)λ̂(ν) = λ̂(Φ∗(ω))λ̂(ν) = λ̂(Φ∗(ω) � ν),

and so Φ∗(ω � ν) = Φ∗(ω) � ν for all ω, ν ∈ L1(Ĝ).
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For the converse, assume that Φ∗(ω � ν) = Φ∗(ω) � ν for all ω, ν ∈ L1(Ĝ). Let us take 
λ̂(ω), ̂λ(ν) ∈ N and assume that the map R � t �→ (ωδ̂−it) ◦ τ̂−t ∈ L1(Ĝ) extends to an 
entire map, and denoting by ρ the value of this map at t = − i

2 , we have furthermore 

λ̂(ρ) ∈ N . We now use WĜ = χ(WG)∗, together with (σϕ
t ⊗id)(WG) = (τt⊗id)(WG)(1 ⊗

δ̂it), see [70, Proposition 5.15], and (τt ⊗ τ̂t)(WG) = WG, see [46, Proposition 8.23]. It 
follows that for each t ∈ R,

σϕ
t (λ̂(ω)) = (ω ⊗ id)((id ⊗ σϕ

t )WĜ) = (id ⊗ ω)((σϕ
t ⊗ id)(WG))∗

= (id ⊗ ω)((τt ⊗ id)(WG)(1⊗ δ̂it))∗ = (id ⊗ ω)((id ⊗ τ̂−t)(WG)(1⊗ δ̂it))∗

= (id ⊗ ω)((1⊗ δ̂−it)(id ⊗ τ̂−t)(WG)∗) = (ω ⊗ id)((δ̂−it ⊗ 1)(τ̂−t ⊗ id)(WĜ))

= λ̂((ωδ̂−it) ◦ τ̂−t).

Consequently we obtain λ̂(ω) ∈ Dom(σϕ
−i/2) and σϕ

−i/2(λ̂(ω)) = λ̂(ρ). From (6.5), we 

know that λ̂(ν � ρ), ̂λ(Φ∗(ν) � ρ) ∈ N . By assumption, Φ∗(ν � ρ) = Φ∗(ν) � ρ hence for 
x ∈ Nϕ̂ we have

〈Λϕ̂(x) |T ∗Jϕλ̂(ω)∗JϕΛϕ(λ̂(ν))〉 = 〈TΛϕ̂(x) |Λϕ(λ̂(ν)σϕ
−i/2(λ̂(ω)))〉

= 〈Λϕ̂(Φ†(x)) |Λϕ(λ̂(ν � ρ))〉 = (ν � ρ)(Φ†(x)∗) = Φ∗(ν � ρ)(x∗) = (Φ∗(ν) � ρ)(x∗)

= 〈Λϕ̂(x) |Λϕ(λ̂(Φ∗(ν) � ρ))〉 = 〈Λϕ̂(x) |Λϕ

(
λ̂(Φ∗(ν))σϕ

−i/2(λ̂(ω))
)
〉

= 〈Λϕ̂(x) | Jϕλ̂(ω)∗JϕT ∗Λϕ(λ̂(ν))〉.

By Lemma 2.1 we know that the collection of functionals ω with λ̂(ω) ∈ N is dense 
in L1(Ĝ), hence the corresponding collection of operators Jϕλ̂(ω)∗Jϕ is weak∗-dense in 
L∞(G)′. Thus T ∗ ∈ L∞(G)′′ = L∞(G), as required.

Next we consider 2. Suppose that T ∈ L∞(G)′. By equations (6.4) and (6.5), given 
λ̂(ω), ̂λ(ν) ∈ N , we have

Λϕ(λ̂(Φ∗(ω � ν))) = T ∗Λϕ(λ̂(ω � ν)) = T ∗λ̂(ω)Λϕ(λ̂(ν)) = λ̂(ω)T ∗Λϕ(λ̂(ν))

= Λϕ(λ̂(ω � Φ∗(ν))),

hence Φ∗(ω�ν) = ω�Φ∗(ν). As the set of functionals ω with λ̂(ω) ∈ N is dense in L1(G)
by Lemma 2.1, the claim follows.

Conversely, suppose that Φ∗(ω�ν) = ω�Φ∗(ν) for all ω, ν ∈ L1(Ĝ). For λ̂(ω), ̂λ(ν) ∈ N
we then have

λ̂(ω)T ∗Λϕ(λ̂(ν)) = Λϕ(λ̂(ω � Φ∗(ν))) = Λϕ(λ̂(Φ∗(ω � ν))) = T ∗λ̂(ω)Λϕ(λ̂(ν)).

Again by density, it follows that T ∗ ∈ L∞(G)′, as required.
Finally, 3 follows by combining 1 and 2. �
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Proof of Theorem 6.16. If Γ has AP then by Proposition 6.5 we have a net (ai)i∈I in 
c00(Γ) which converges in (Ml

cb(A(Γ)), w∗) to 1, and the associated maps Θl(ai) satisfy 
Θl(ai)† = Θl(ai). Proposition 4.12 shows that each Θl(ai) has an L2-implementation 
equal to S−1(ai) ∈ �∞(Γ). Proposition 4.7, for f = ε ∈ �1(Γ) being the counit of 
Γ, shows that (Θl(ai))i∈I converges to the identity in the stable point-weak∗-topology. 
Indeed, for any Hilbert space H and x ∈ L∞(Γ̂)⊗̄B(H), ω ∈ L1(Γ̂)⊗̂B(H)∗ we have

〈(Θl(ai) ⊗ id)x, ω〉 = 〈(Θl(ai � ε) ⊗ id)x, ω〉 = 〈ai,Ωx,ω,ε〉 −−→
i∈I

〈1,Ωx,ω,ε〉 = 〈x, ω〉.

We conclude that L∞(Γ̂) has W∗OAP relative to �∞(Γ). This shows 1 ⇒ 2.
If Γ has central AP then additionally S−1(ai) ∈ Z(�∞(Γ)) and so L∞(Γ̂) has W∗OAP 

relative to Z(�∞(Γ̂)). Thus 4 ⇒ 5.
Let us now show the equivalence of 2 and 3. Assume 2 and let (Φi)i∈I be a net giving 

W∗OAP of L∞(Γ̂) relative to �∞(Γ). Define a net (Ψi)i∈I by Ψi = R̂◦Φ†
i ◦ R̂. Lemma 4.8

shows that each Ψi is a normal, finite rank CB map on L∞(Γ̂) and Ψi −−→
i∈I

id in the 

stable point-weak∗-topology. Let Ti ∈ �∞(Γ) be the L2-implementation of Φi. By [47, 
Proposition 2.11] we know that JϕΛh(x) = Λh(R̂(x)∗) for each x ∈ L∞(Γ̂), and so

Λh(Ψi(x)) = Λh

(
R̂
(
Φ†

i (R̂(x))
))

= JϕΛh(Φ†
i (R̂(x))∗)

= JϕΛh(Φi(R̂(x)∗)) = JϕTiΛh(R̂(x)∗) = JϕTiJϕΛh(x).

Hence Ψi has L2-implementation JϕTiJϕ ∈ �∞(Γ)′, showing 3. The converse is analogous.
Now assume 2, i.e. that L∞(Γ̂) has W∗OAP relative to �∞(Γ). As before, let (Φi)i∈I

be the corresponding net of normal, finite rank CB maps with L2-implementations Ti ∈
�∞(Γ). For i ∈ I, let Ψ = Φ†

i , so that Ψ is a normal CB map such that Ψ† = Φi has 
an L2-implementation Ti ∈ �∞(Γ). By Proposition 6.181, Ψ∗ is a left centraliser. Hence 
also Φi,∗ is a left centraliser, compare with the proof of Proposition 4.9, and so there 
is ai ∈ Ml

cb(A(Γ)) with Θl(ai) = Φi. By Lemma 6.1, as Φi is finite-rank, it must be 
that ai ∈ c00(Γ). By definition, (Φi)i∈I = (Θl(ai))i∈I converges to the identity in the 
stable point-weak∗-topology, and so by Proposition 3.9, ai −−→

i∈I
1 in (Ml

cb(A(Γ)), w∗)
and consequently Γ has AP. Therefore 1 and 2 are equivalent.

Finally, suppose that L∞(Γ̂) has W∗OAP relative to Z(�∞(Γ)), and proceed as above. 
By definition, we have that TiΛh(x) = Λh(Φi(x)) = Λh(Θl(ai)(x)) for each x ∈ C(Γ̂). 
By Proposition 4.12, it follows that Ti = S(a∗i )∗. As Ti ∈ Z(�∞(Γ)), it follows that 
ai ∈ Z(�∞(Γ)) ∩ c00(Γ), which shows that Γ has central AP. This establishes that 4 and 
5 are equivalent. The implication 4 ⇒ 1 is trivial. �
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7. Permanence properties

7.1. Quantum subgroups

For classical locally compact groups, AP passes to closed subgroups, see [30, Propo-
sition 1.14]. We shall show that an analogous property holds also in the quantum case.

Let us start by recalling the notion of a closed quantum subgroup of a locally compact 
quantum group, see [20]. In what follows we will use the universal C∗-algebra Cu

0 (G) and 
the reducing map ΛG : Cu

0 (G) → C0(G), see [44], along with the semi-universal and 
universal multiplicative unitaries, compare [20, Section 1.2]. We will also use the notion 
of a quantum homomorphism as explored in [50], see also [19, Section 2.1].

Let H, G be locally compact quantum groups. Assume that there is a homomorphism 
H → G exhibited by a strong quantum homomorphism in the sense of [20, Section 1.3], 
i.e. a non-degenerate �-homomorphism π : Cu

0 (G) → M(Cu
0 (H)) such that Δu

H ◦π = (π⊗
π) ◦ Δu

G. Then there is a dual strong quantum homomorphism π̂ : Cu
0 (Ĥ) → M(Cu

0 (Ĝ))
which is related to π via (π⊗id)V VG = (id⊗π̂)V VH, see [20, Section 1.3]. In this situation 
we say that H is a closed quantum subgroup of G in the sense of Vaes if there is a normal 
unital injective �-homomorphism γ : L∞(Ĥ) → L∞(Ĝ) such that γ(ΛĤ(x)) = ΛĜ(π̂(x))
for all x ∈ Cu

0 (Ĥ), see [67, Definition 2.5], [20, Definition 3.1]. Notice that this condition 
implies that ΔĜ ◦ γ = (γ ⊗ γ) ◦ ΔĤ.

Theorem 7.1. Let H, G be locally compact quantum groups and assume that H is a closed 
quantum subgroup of G in the sense of Vaes. If G has AP then so does H.

Proof. Since H is a closed quantum subgroup of G we obtain maps π, ̂π, γ as discussed 
above. If G has AP, then according to Theorem 4.4 we can choose a net (ai)i∈I in 
A(G) ⊆ C0(G) such that (Θl(ai))i∈I converges to the identity in the stable point-weak∗-
topology of CBσ(L∞(Ĝ)). For each i ∈ I let ωi ∈ L1(Ĝ) be such that ai = λĜ(ωi), and 

define bi = λĤ(γ∗(ωi)). As γ∗(ωi) ∈ L1(Ĥ), we see that bi ∈ A(H). Let H be a separable 

Hilbert space and take x ∈ C0(Ĥ) ⊗K(H), ω ∈ L1(Ĥ)⊗̂B(H)∗. We have

〈bi,Ωx,ω〉 = 〈(Θl(bi) ⊗ id)x, ω〉 = 〈
(
(γ∗(ωi) ⊗ id)ΔĤ ⊗ id

)
x, ω〉.

Since γ is a complete isometry, γ∗ is a complete quotient map ([23, Corollary 4.1.9]). 
By [23, Proposition 7.1.7], γ∗ ⊗ id : L1(Ĝ)⊗̂B(H)∗ → L1(Ĥ)⊗̂B(H)∗ is also a complete 
quotient map, hence we can find ω′ ∈ L1(Ĝ)⊗̂B(H)∗ such that ω = (γ∗ ⊗ id)ω′.

Since γ intertwines the coproducts,

〈bi,Ωx,ω〉 = 〈(ωi ⊗ id ⊗ id)
(
(γ ⊗ γ)ΔĤ ⊗ id

)
x, ω′〉

= 〈((ωi ⊗ id)ΔĜ ⊗ id)(γ ⊗ id)x, ω′〉 = 〈(Θl(ai) ⊗ id)(γ ⊗ id)x, ω′〉.

Using stable point-weak∗-convergence we obtain
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〈bi,Ωx,ω〉 −−→
i∈I

〈(γ ⊗ id)x, ω′〉 = 〈x, ω〉 = 〈1,Ωx,ω〉.

Hence bi
w∗
−−→
i∈I

1 showing that (bi)i∈I witnesses that H has the AP. �
This argument also yields the analogous claim for weak amenability, which we record 

for completeness.

Proposition 7.2. Let H, G be locally compact quantum groups and assume that H is a 
closed quantum subgroup of G in the sense of Vaes. If G is weakly amenable, then so is 
H, and Λcb(H) ≤ Λcb(G).

Proof. We follow the same proof strategy, using also Proposition 5.7. So, let (ai)i∈I be 
a net in A(G) with ‖ai‖cb ≤ Λcb(G) for each i, such that (Θl(ai))i∈I converges to the 
identity in the stable point-weak∗-topology of CBσ(L∞(Ĝ)). Again let ai = λĜ(ωi), and 
define bi = λĤ(γ∗(ωi)). By the previous proof, and using Proposition 5.7, it suffices to 
show that ‖bi‖cb ≤ Λcb(G) for each i ∈ I.

Let H be a Hilbert space, and let x ∈ L∞(Ĥ)⊗̄B(H) and ω ∈ L1(Ĥ)⊗̂B(H)∗. Given 
ε > 0, we can find ω′ ∈ L1(Ĝ)⊗̂B(H)∗ with ω = (γ∗ ⊗ id)ω′ and with ‖ω′‖ ≤ ‖ω‖ + ε. 
Then, as before,

〈(Θl(bi) ⊗ id)x, ω〉 = 〈((γ∗(ωi) ⊗ id)ΔĤ ⊗ id)x, ω〉 = 〈((ωi ⊗ id)ΔĜ ⊗ id)(γ ⊗ id)x, ω′〉
= 〈(Θl(ai) ⊗ id)(γ ⊗ id)x, ω′〉.

It follows that ∣∣〈(Θl(bi) ⊗ id)x, ω〉
∣∣ ≤ ‖ai‖cb‖x‖‖ω′‖.

As ε > 0 was arbitrary, and taking the supremum over functionals ω with ‖ω‖ = 1, 
we obtain that ‖(Θl(bi) ⊗ id)x‖ ≤ ‖ai‖cb‖x‖. As x, H were arbitrary, this shows that 
‖bi‖cb ≤ ‖ai‖cb ≤ Λcb(G), as required. �
7.2. Direct limits

In this section we show that AP is preserved by taking direct limits of discrete quantum 
groups obtained from directed systems with injective connecting maps. The correspond-
ing fact for classical groups is certainly known, but we were not able to locate a reference.

Let us first recall some facts about quantum subgroups of discrete quantum groups, 
using the notation and terminology from Section 6. In the discrete setting there is no 
difference between closed quantum subgroups in the sense of Vaes, closed quantum sub-
groups in the sense of Woronowicz [20, Theorem 6.2], and open quantum subgroups 
in the sense of [36]. We will therefore simply speak of quantum subgroups of discrete 
quantum groups in the sequel.
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Let Γ, Λ be discrete quantum groups and assume that Λ is a quantum subgroup of Γ. 
Then one can identify Irr(Λ̂) with a subset of Irr(Γ̂), and one obtains a corresponding 
identification of L2(Λ̂) with a subspace of L2(Γ̂). Let p ∈ �∞(Γ) ⊆ B(L2(Γ̂)) be the 
projection onto L2(Λ̂). Then p is a group-like projection (i.e. p is a central projection in 
�∞(L) satisfying ΔΓ(p)(1 ⊗ p) = p ⊗ p, see [36, Definition 4.1]) and the strong quantum 
homomorphism π : c0(Γ) → c0(Λ) associated with the inclusion of Λ into Γ is given by 
π(f) = fp. Dually, we have an injective, normal, unital �-homomorphism ι : L∞(Λ̂) →
L∞(Γ̂) which respects the coproducts. The map ι restricts to injective �-homomorphisms 
C(Λ̂) → C(Γ̂) and Pol(Λ̂) → Pol(Γ̂).

The following fact is well-known, compare for instance [71, Section 2]. Using ι we can 
view L∞(Λ̂) as a subalgebra of L∞(Γ̂), and so in the following, make sense of E being a 
conditional expectation in the usual sense of a contractive projection onto a subalgebra.

Lemma 7.3. The formula L∞(Γ̂) � x �→ pxp ∈ B(p L2(Γ̂)) = B(L2(Λ̂)) defines a normal 
conditional expectation E : L∞(Γ̂) → L∞(Λ̂) satisfying E(Uα

i,j) = 0 for α ∈ Irr(Γ̂) \
Irr(Λ̂), 1 ≤ i, j ≤ dim(α). Furthermore, E restricts to a conditional expectation C(Γ̂) →
C(Λ̂).

We shall be interested in directed systems of discrete quantum groups in the following 
sense.

Definition 7.4. Let I be a directed set. A directed system of discrete quantum groups with 
injective connecting maps is a family of discrete quantum groups (Γi)i∈I together with 
injective unital normal �-homomorphisms

ιj,i : L∞(Γ̂i) → L∞(Γ̂j) (i, j ∈ I : i ≤ j),

compatible with coproducts, such that

• ιi,i = id for i ∈ I,
• ιk,jιj,i = ιk,i for all i, j, k ∈ I satisfying i ≤ j ≤ k.

If (Γi)i∈I is a directed system of discrete quantum groups with injective connecting 
maps then Γi is a quantum subgroup of Γj for i ≤ j, and we have injective maps 
Pol(Γ̂i) → Pol(Γ̂j). The algebraic direct limit lim−−→i∈I

Pol(Γ̂i) becomes naturally a unital 
Hopf ∗-algebra, equipped with an invariant faithful state induced by the Haar integrals 
of Γ̂i. We therefore have lim−−→i∈I

Pol(Γ̂i) = Pol(Γ̂) for a uniquely determined discrete 
quantum group Γ, see for example [38, Chapter 11, Theorem 27]. We denote Γ = lim−−→i∈I

Γi

and call this the direct limit of the directed system (Γi)i∈I .

Proposition 7.5. Let (Γi)i∈I be a directed system of discrete quantum groups with injective 
connecting maps and let Γ be its associated direct limit. If Γi has (central) AP for all 
i ∈ I, then Γ has (central) AP.
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Proof. By construction each Γi is a quantum subgroup of Γ. Consequently we obtain 
injective normal �-homomorphisms ιi : L∞(Γ̂i) → L∞(Γ̂), and normal conditional ex-
pectations Ei : L∞(Γ̂) → L∞(Γ̂i) for all i ∈ I.

Identifying Irr(Γ̂i) with a subset of Irr(Γ̂) gives us the extension by zero ∗-
homomorphism map ρi : �∞(Γi) → �∞(Γ). For ω ∈ L1(Γ̂) we have ω ◦ ιi ∈ L1(Γ̂i) and 
so λΓ̂i

(ω ◦ ιi) ∈ �∞(Γi). We see that ρiλΓ̂i
(ω ◦ ιi) agrees with λΓ̂(ω) ∈ �∞(Γ) restricted 

to �∞(Γi) and set to zero in the remaining matrix blocks. Similarly, for ω ∈ L1(Γ̂i), by 
normality, ω ◦Ei ∈ L1(Γ̂), and as Ei(Uα

i,j) = 0 for α /∈ Irr(Γ̂i), see Lemma 7.3, it follows 
that λΓ̂(ω ◦ Ei) = ρiλΓ̂i

(ω).
We claim that ρi restricts to a contraction Ml

cb(A(Γi)) → Ml
cb(A(Γ)). Indeed, take 

a ∈ Ml
cb(A(Γi)) and ω ∈ L1(Γ̂). Using the observations from the previous paragraph,

ρi(a)λΓ̂(ω) = ρi
(
aλΓ̂i

(ω ◦ ιi)
)

= ρi
(
λΓ̂i

(Θl(a)∗(ω ◦ ιi))
)

= ρi
(
λΓ̂i

(ω ◦ ιi ◦ Θl(a))
)

= λΓ̂

(
ω ◦ ιi ◦ Θl(a) ◦ Ei

)
.

It follows that ρi(a) ∈ Ml
cb(A(Γ)) and

Θl(ρi(a)) = ιi ◦ Θl(a) ◦ Ei ∈ CBσ(L∞(Γ̂)),

which yields the claim. By the definition of ρi it is clear that ρ∗i (�1(Γ)) ⊆ �1(Γi) ⊆
Ql(A(Γi)), which shows that the induced map ρi : Ml

cb(A(Γi)) → Ml
cb(A(Γ)) is weak∗-

weak∗-continuous.
If Γi has AP then the identity element 1 ∈ Ml

cb(A(Γi)) is in the weak∗-closure of 
c00(Γi) inside Ml

cb(A(Γi)). As ρi is weak∗-weak∗-continuous, it follows that ρi(1) is 
contained in the weak∗-closure of ρi(c00(Γi)) ⊆ c00(Γ). So pi = ρi(1), the projection 
corresponding to Irr(Γ̂i) ⊆ Irr(Γ̂), is contained in the weak∗-closure of c00(Γ) inside 
Ml

cb(A(Γ)). Clearly we have 〈pi, ω〉 −−→
i∈I

〈1, ω〉 for all ω ∈ �1(Γ). Moreover we have 

‖pi‖cb = 1 since pi ∈ Ml
cb(A(Γ)) with Θl(pi) = ιi ◦ Ei. Hence if all Γi have AP we see 

that 1 ∈ Ml
cb(A(Γ)) is contained in the weak∗-closure of c00(Γ). This means that Γ has 

AP.
If all Γi have central AP then we additionally know that 1 ∈ Ml

cb(A(Γi)) is in the 
weak∗-closure of Z(�∞(Γi)) ∩c00(Γi), hence each pi is in the weak∗-closure of Z(�∞(Γ)) ∩
c00(Γ). It follows that Γ has central AP. �
7.3. Free products

In this section we show that AP is preserved by the free product construction for 
discrete quantum groups. For classical groups this fact is probably known to experts, 
but we could not find a proof in the literature. Our proof is based on results of Ricard 
and Xu from [58] which we recall first.
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7.3.1. Ricard-Xu results
Let (Ai, φi)i∈I be a family of unital C*-algebras with faithful states indexed by some 

set I. Denote by Hi the GNS Hilbert space for φi, and by Hop
i the Hilbert space obtained 

from Ai by completion with respect to the norm given by a �→ φi(aa∗)1/2. Then a �→ a∗

extends to an antilinear isometry Hi → Hop
i .

We write A = �i∈I(Ai, φi) for the reduced unital free product of the family (Ai, φi)i∈I , 
and A ⊆ A for its canonical dense unital �-subalgebra (the algebraic unital free product), 
compare [5]. Next, for d ≥ 0, denote by Σd ⊆ A the subspace of length-d elements. That 
is, we have Σ0 = C1, and if Åi denotes the set of all a ∈ Ai with φi(a) = 0, then Σd for 
d ≥ 1 is the subspace of A spanned by all elements of the form a1 · · · ad where aj ∈ Åij

for each j, and with ij �= ij+1 for 1 ≤ j < d. Moreover we let Ad ⊆ A be the norm 
closure of Σd.

In the sequel we shall use two results from [58], the first one being the following.

Lemma 7.6. [58, Corollary 3.3] For d ≥ 0, the natural projection A → Σd onto length-d
elements extends to a CB map Pd : A → Ad with ‖Pd‖cb ≤ max(4d, 1).

The second fact which we need is a minor extension of [58, Lemma 4.10].

Lemma 7.7. Fix d ≥ 1. For i ∈ I and 1 ≤ k ≤ d, let Ti,k ∈ CB(Ai) be linear maps which 
satisfy φi ◦ Ti,k = λi,kφi for some λi,k ∈ C, and which extend to bounded maps Hi → Hi

and Hop
i → Hop

i . If

K = (2d + 1)
d∏

k=1

sup
i

max
(
‖Ti,k‖cb, ‖Ti,k‖B(Hi), ‖Ti,k‖B(Hop

i )
)
< ∞

then the natural map ΠkTi,k : Σd → Σd given by

a1 · · · ad �→ Ti1,1(a1) · · ·Tid,d(ad) (aj ∈ Åij , ij �= ij+1)

extends to a CB map Ad → Ad with CB norm bounded above by K.

Proof. The only difference between this claim and [58, Lemma 4.10] is that [58, Lemma 
4.10] has the stronger hypothesis that φi ◦Ti,k = φi for each i, k. A close examination of 
the proof of [58, Lemma 4.10] shows that this hypothesis is only used to ensure that the 
map ΠkTi,k is well-defined, because each Ti,k maps Åi to itself. This condition remains 
true under our weaker hypothesis, and the rest of the proof of [58, Lemma 4.10] carries 
over without change. �
7.3.2. AP for free products

Let Γ1, Γ2 be discrete quantum groups and let Γ = Γ1 � Γ2 be their free product. 
Recall from [73] that this means in particular that A = C(Γ̂) is the unital reduced free 
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product C(Γ̂1) � C(Γ̂2) with respect to Haar integrals, and hΓ̂ is the free product state 
hΓ̂1

� hΓ̂2
. Moreover Pol(Γ̂) is the algebraic unital free product of Pol(Γ̂1) and Pol(Γ̂2). 

The irreducible representations of Γ̂ are given as follows, see [73, Theorem 3.10]. Each 
α ∈ Irr(Γ̂) has a well-defined length len(α) ∈ Z+. The trivial representation is the only 
representation of length 0, and for n ≥ 1 we have

{α ∈ Irr(Γ̂) | len(α) = n} = {αi1�· · ·�αin | ∀1≤j≤n αij ∈ Irr(Γ̂ij )\{e}, ∀1≤j<n ij �= ij+1}.

Again, here we denote by e the trivial representation of a compact quantum group. More 
explicitly, given α ∈ Irr(Γ̂k) associated to the representation matrix Uα = [Uα

i,j ]
dim(α)
i,j=1 ∈

Mdim(α)(C(Γ̂k)), by regarding C(Γ̂k) as a subalgebra of C(Γ̂), we may regard Uα as a 
representation of (C(Γ̂), ΔΓ̂). Then � is just the usual tensor product of representations.

To ease notation, we will write h = hΓ̂ in the sequel.

Theorem 7.8. Let Γ1, Γ2 be discrete quantum groups and let Γ = Γ1 � Γ2 be their free 
product. If Γ1, Γ2 have (central) AP, then Γ has (central) AP.

Before we can prove Theorem 7.8 we need to establish some auxiliary results. For 
d ∈ N let us define the (non-linear) map

Ψ̃d :
d⊕

k=1

�∞(Γ1) ⊕∞ �∞(Γ2) → �∞(Γ) (7.1)

(here ⊕ is the �∞-direct sum) via

Ψ̃d((g1,k, g2,k)dk=1) =
(
Ψ̃d((g1,k, g2,k)dk=1)α

)
α∈Irr(Γ̂), where

Ψ̃d((g1,k, g2,k)dk=1)α =
{

0, len(α) �= d,

gi1,1,α1 ⊗ · · · ⊗ gid,d,αd
, α = α1 � · · · � αd : αj ∈ Irr(Γ̂ij ).

We consider

V =
d⊕

k=1

Ml
cb(A(Γ1)) ⊕∞ Ml

cb(A(Γ2)),

and write Ψd for the restriction of Ψ̃d to V. Recall that Pd : A → Ad is induced by the 
projection onto elements of length d.

Lemma 7.9. The image of Ψd is a subset of Ml
cb(A(Γ)), that is, we can regard Ψd as a 

map V → Ml
cb(A(Γ)). Furthermore, Pd extends to a weak∗-weak∗-continuous CB map 

L∞(Γ̂) → Ad
w∗

.
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Proof. Fix (g1,k, g2,k)dk=1 ∈ V. Proposition 4.12 shows that each Θl(gi,k) extends to a 
bounded linear map on L2(Γ̂i) with norm ‖S−1

Γi
(gi,k)‖. Next, using Proposition 4.9 and 

Proposition 4.12, for x ∈ L∞(Γ̂), we have

‖Θl(gi,k)(x)‖L2(Γ̂i)op = ‖Θl(gi,k)(x)∗‖2 = ‖Θl(gi,k)†(x∗)‖2 = ‖Θl(SΓi
(g∗i,k))(x∗)‖2

≤ ‖S−1
Γi

(SΓi
(g∗i,k))‖‖x∗‖2 = ‖g∗i,k‖ ‖x‖L2(Γ̂i)op = ‖gi,k‖ ‖x‖L2(Γ̂i)op .

Hence Θl(gi,k) extends to a bounded linear map on L2(Γ̂i)op with norm bounded by 
‖gi,k‖.

Let us consider Ti,k = Θl(gi,k) ∈ CB(C(Γ̂i)) for 1 ≤ k ≤ d. We have hΓ̂i
◦ Ti,k =

gi,k,ehΓ̂i
. Then, according to Lemma 7.6 and Lemma 7.7, we obtain a CB map Υ on 

C(Γ̂) acting by 0 on elements of length d′ �= d, and on elements of length d by

a1 · · · ad �→ Θl(gi1,1)(a1) · · ·Θl(gid,d)(ad),

where aj ∈ C(Γ̂ij ), and the CB norm of Υ is bounded above by

4d(2d + 1)
d∏

k=1

max
i∈{1,2}

max(‖gi,k‖cb, ‖S−1
Γi

(gi,k)‖, ‖gi,k‖).

Since ‖ · ‖ ≤ ‖ · ‖cb on Ml
cb(A(Γi)) we have, using Lemma 4.8 and Proposition 4.9,

‖S−1
Γi

(gi,k)‖ = ‖S−1
Γi

(gi,k)∗‖ ≤ ‖S−1
Γi

(gi,k)∗‖cb = ‖gi,k‖cb,

and hence we get in fact

‖Υ‖cb ≤ 4d(2d + 1)
d∏

k=1

max
i∈{1,2}

‖gi,k‖cb. (7.2)

We claim that Υ extends to a normal map on L∞(Γ̂). For this it suffices to show 
that Υ∗ preserves L1(Γ̂) ⊆ C(Γ̂)∗. Indeed, if this is the case, then the extension may be 
defined as (Υ∗|L1(Γ̂))

∗ ∈ CBσ(L∞(Γ̂)).
Thus take ρ ∈ L1(Γ̂). Since Υ is bounded and L1(Γ̂) ⊆ C(Γ̂)∗ is norm-closed, it is 

enough to consider ρ = h(a·) for a ∈ L∞(Γ̂). Take b ∈ L∞(Γ̂) and denote by Υ2 the 
extension of Υ to a bounded linear map on L2(Γ̂). Note that this extension exists since 
the GNS Hilbert space for h is

L2(Γ̂) = CΩ ⊕
∞⊕
d=1

⊕
i1 �=···�=id

L2(Γ̂i1)◦ ⊗ · · · ⊗ L2(Γ̂id)◦,

where L2(Γ̂i)◦ is the subspace of L2(Γ̂i) orthogonal to Λhi
(1) (see [5, Section 2]), and 

Θl(gi,k) has bounded extension to L2(Γ̂i) by Proposition 4.12. We have
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Υ∗(ρ)(b) = h(aΥ(b)) = 〈Λh(a∗) |Λh(Υ(b))〉 = 〈Λh(a∗) |Υ2Λh(b)〉 = 〈Υ∗
2Λh(a∗) |Λh(b)〉.

Hence Υ∗(ρ) = ωΥ∗
2Λh(a∗),Λh(1) ∈ L1(Γ̂). Let us denote the resulting normal extension of 

Υ to L∞(Γ̂) with the same symbol.
In particular, taking gi,k = 1 for all 1 ≤ k ≤ d in the above discussion shows that the 

projection Pd : C(Γ̂) → Ad extends to a normal CB map L∞(Γ̂) → Ad
w∗

.
We finally identify Υ with the adjoint of a centraliser, namely we claim that 

Ψd((g1,k, g2,k)dk=1) ∈ Ml
cb(A(Γ)) and Υ = Θl(Ψd((g1,k, g2,k)dk=1)). For α = α1�· · ·�αd ∈

Irr(Γ̂) let us write ij ∈ {1, 2} for indices such that αj ∈ Irr(Γ̂ij ) \ {e}, ij �= ij+1. Fur-
thermore, write each matrix block as gi,k,α = [gi,k,α,m,n]dim(α)

m,n=1 =
∑dim(α)

m,n=1 gi,k,α,m,ne
α
m,n, 

where {eαm,n}
dim(α)
m,n=1 are the matrix units in B(Hα). Choose arbitrary ω ∈ h(Pol(Γ̂)·) ⊆

L1(Γ̂). We can calculate Ψd((g1,k, g2,k)dk=1)λΓ̂(ω) as follows:

Ψd((g1,k, g2,k)dk=1)λΓ̂(ω)

=
∞∑

d′=0

∑
α=α1�···�αd′

dim(α1)∑
m1,n1=1

· · ·
dim(αd′ )∑
md′ ,nd′=1

〈Uα
(m1,...,md′ ),(n1,...,nd′ ), ω〉

Ψd((g1,k, g2,k)dk=1)(eα1
m1,n1

⊗ · · · ⊗ eαd′
md′ ,nd′

)

=
∑

α=α1�···�αd

dim(α1)∑
m1,n1=1

· · ·
dim(αd)∑
md,nd=1

〈Uα
(m1,...,md),(n1,...,nd), ω〉

(gi1,1,α1e
α1
m1,n1

⊗ · · · ⊗ gid,d,αd
eαd
md,nd

)

=
∑

α=α1�···�αd

dim(α1)∑
m1,k1,n1=1

· · ·
dim(αd)∑

md,kd,nd=1

〈Uα1
m1,n1

· · ·Uαd
md,nd

, ω〉

(gi1,1,α1,k1,m1e
α1
k1,n1

⊗ · · · ⊗ gid,d,αd,kd,md
eαd

kd,nd
),

note that as ω ∈ h(Pol(Γ̂)·), the sums above are finite. On the other hand, using 
Lemma 6.1, we have

λΓ̂(Υ∗(ω))

=
∞∑

d′=0

∑
α=α1�···�αd′

dim(α1)∑
m1,n1=1

· · ·
dim(αd′ )∑
md′ ,nd′=1

〈Uα
(m1,...,md′ ),(n1,...,nd′ ),Υ∗(ω)〉

(eα1
m1,n1

⊗ · · · ⊗ eαd′
md′ ,nd′

)

=
∑

α=α1�···�αd

dim(α1)∑
m1,n1=1

· · ·
dim(αd)∑
md,nd=1

〈Θl(gi1,1)(Uα1
m1,n1

) · · ·Θl(gid,d)(Uαd
md,nd

), ω〉

(eα1
m ,n ⊗ · · · ⊗ eαd

m ,n )

1 1 d d
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=
∑

α=α1�···�αd

dim(α1)∑
m1,k1,n1=1

· · ·
dim(αd)∑

md,kd,nd=1

〈(gi1,1,m1,k1U
α1
k1,n1

) · · · (gid,d,md,kd
Uαd

kd,nd
), ω〉

(eα1
m1,n1

⊗ · · · ⊗ eαd
md,nd

)

These two computations show that Ψd((g1,k, g2,k)dk=1)λΓ̂(ω) = λΓ̂(Υ∗(ω)). As the space 
of functionals h(Pol(Γ̂)·) is dense in L1(Γ̂), this proves the claim. �

Define

V0 = Ml
cb(A(Γ1)) ⊕∞ Ml

cb(A(Γ2))

so that V =
⊕d

k=1 V0.
Note that V =

⊕d
k=1 Ml

cb(A(Γ1)) ⊕∞Ml
cb(A(Γ2)) is a dual Banach space with predual 

given by the �1-direct sum 
⊕d

k=1 Q
l(A(Γ1)) ⊕1Q

l(A(Γ2)). Similarly, V0 is a dual Banach 
space with predual Ql(A(Γ1)) ⊕1 Q

l(A(Γ2)).

Lemma 7.10. Map Ψd is separately weak∗-weak∗-continuous, i.e. for any 1 ≤ k ≤ d and 
fixed elements (g1,k′ , g2,k′) ∈ V0 for 1 ≤ k′ ≤ d and k′ �= k, the map

V0 � (g1,k, g2,k) �→ Ψd((g1,k′ , g2,k′)dk′=1) ∈ Ml
cb(A(Γ))

is weak∗-weak∗-continuous.

Proof. Fix 1 ≤ k ≤ d and (g1,k′ , g2,k′) ∈ V0 for 1 ≤ k′ ≤ d and k′ �= k. Assume that

(gλ1,k, gλ2,k)
w∗

−−−→
λ∈Λ

(g1,k, g2,k) in V0 = Ml
cb(A(Γ1)) ⊕∞ Ml

cb(A(Γ2)),

in particular

(gλ1,k, gλ2,k)
w∗

−−−→
λ∈Λ

(g1,k, g2,k) in �∞(Γ1) ⊕∞ �∞(Γ2).

Take Ω ∈ Ql(A(Γ)). Since Ql(A(Γ)) is the norm closure of �1(Γ) in Ml
cb(A(Γ))∗, we can 

find a sequence (Ωn)n∈N in �1(Γ) ⊆ Ql(A(Γ)) which converges in norm to Ω. By the 
description (7.1) of Ψ̃d, we see that the map

�∞(Γ1) ⊕∞ �∞(Γ2) �(g′1,k, g′2,k) �→
Ψ̃d

(
(g1,k′ , g2,k′)k−1

k′=1, (g
′
1,k, g

′
2,k), (g1,k′ , g2,k′)dk′=k+1

)
∈ �∞(Γ)

is weak∗-weak∗-continuous, hence the linear functional

Ωn ◦ Ψ̃d

(
(g1,k′ , g2,k′)k−1

k′=1, · , (g1,k′ , g2,k′)dk′=k+1
)
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is contained in �1(Γ1) ⊕1 �
1(Γ2) for each n ∈ N. Consider the difference

Ωn ◦ Ψd

(
(g1,k′ , g2,k′)k−1

k′=1, · , (g1,k′ , g2,k′)dk′=k+1
)

−Ω ◦ Ψd

(
(g1,k′ , g2,k′)k−1

k′=1, · , (g1,k′ , g2,k′)dk′=k+1
)
,

living in Ml
cb(A(Γ1))∗ ⊕1 Ml

cb(A(Γ2))∗. Because of the bound (7.2) we can estimate∥∥(Ω − Ωn) ◦ Ψd

(
(g1,k′ , g2,k′)k−1

k′=1, · , (g1,k′ , g2,k′)dk′=k+1
)∥∥

= sup
(g′

1,k,g
′
2,k)∈(Ml

cb(A(Γ1))⊕∞Ml
cb(A(Γ2)))1∣∣(Ω − Ωn) ◦ Ψd

(
(g1,k′ , g2,k′)k−1

k′=1, (g
′
1,k, g

′
2,k), (g1,k′ , g2,k′)dk′=k+1

)∣∣
≤ ‖Ω − Ωn‖ 4d(2d + 1)

d∏
k′=1,k′ �=k

max
i∈{1,2}

‖gi,k′‖cb −−−−→
n→∞

0.

This shows

Ω ◦ Ψd

(
(g1,k′ , g2,k′)k−1

k′=1, · , (g1,k′ , g2,k′)dk′=k+1
)
∈ Ql(A(Γ1)) ⊕1 Q

l(A(Γ2)),

and hence

Ω ◦ Ψd

(
(g1,k′ , g2,k′)k−1

k′=1, (g
λ
1,k, g

λ
2,k), (g1,k′ , g2,k′)dk′=k+1

)
−−−→
λ∈Λ

Ω ◦ Ψd

(
(g1,k′ , g2,k′)dk′=1

)
as desired. This proves that Ψd is separately weak∗-weak∗-continuous. �

For d ≥ 1 consider pd ∈ �∞(Γ) defined via pd = (pd,α)α∈Irr(Γ̂) where

pd,α =
{

0, length of α �= d,

1, length of α = d.

Lemma 7.11. Projection pd belongs to Ml
cb(A(Γ)) and Θl(pd) = Pd.

Proof. We already know that Pd is a weak∗-continuous map on L∞(Γ̂). Take a linear 
functional ω ∈ h(Pol(Γ̂) ·) ⊆ L1(Γ̂). Then we get

(ω ⊗ id)
(
(1⊗ pd)WΓ̂

)
=

∞∑
d′=1

∑
α∈Irr(Γ̂): len(α)=d′

dim(α)∑
i,j=1

(ω ⊗ id)
(
Uα
i,j ⊗ pd e

α
i,j

)

=
∑
̂

dim(α)∑
i,j=1

(ω ⊗ id)
(
Uα
i,j ⊗ eαi,j

)

α∈Irr(Γ): len(α)=d
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=
∞∑

d′=1

∑
α∈Irr(Γ̂): len(α)=d′

dim(α)∑
i,j=1

(ω ⊗ id)
(
Pd(Uα

i,j) ⊗ eαi,j
)

= (ω ◦ Pd ⊗ id)WΓ̂,

noting that all sums in this calculation are finite, because of the form of ω. As such ω
are dense, this yields (1 ⊗ pd)WΓ̂ = (Pd ⊗ id)WΓ̂ as required. �

Finally, we are ready to prove that AP is preserved by taking free products of discrete 
quantum groups.

Proof of Theorem 7.8. Assume that Γ1, Γ2 have AP and for i ∈ {1, 2} choose families 
(fi,λ)λ∈Λi

in c00(Γi) converging to 1 in (Ml
cb(A(Γi)), w∗). Due to Proposition 6.5 we may 

assume without loss of generality that each Θl(fi,λ) is unit preserving. As in Remark 6.2, 
it then follows that Θl(fi,λ) preserves the Haar integral on Γ̂i, and that fi,λ,e = 1 for all 
i ∈ {1, 2}, λ ∈ Λi.

Fix d ∈ N. We shall first show that pd ∈ c00(Γ)
w∗

⊆ Ml
cb(A(Γ)). To do this, we will 

consider a net of the form

(f1,λ1,k , f2,λ2,k)dk=1 ∈ V.

where each λi,k ∈ Λi for i ∈ {1, 2} and 1 ≤ k ≤ d. Lemma 7.10 gives us

Ψd

(
(f1,λ1,k , f2,λ2,k)dk=1

)
∈ Ml

cb(A(Γ)).

In fact, using the definition of Ψ̃d, we see that these multipliers are in c00(Γ) since all of 
the fi,λ are finitely supported.

We first consider the case when we keep λi,k fixed, for k ≥ 2. Since Ψd is separately 
weak∗-weak∗-continuous, by Lemma 7.10, we have

Ψd

(
(f1,λ1,1 , f2,λ2,1), (f1,λ1,k , f2,λ2,k)dk=2

) w∗
−−−−−−−−−−−−→
(λ1,1,λ2,1)∈Λ1×Λ2

Ψd

(
(1,1), (f1,λ1,k , f2,λ2,k)dk=2

)
.

We now repeat this argument in the second variable, and so forth, and using that 
(c00(Γ)

w∗

)−w∗ = c00(Γ)
w∗

, we obtain

pd = Ψd((1,1)dk=1) ∈ c00(Γ)
w∗

⊆ Ml
cb(A(Γ)).

Clearly we also have p0 = (δα,e1)α∈Irr(Γ̂) ∈ c00(Γ) ⊆ c00(Γ)
w∗

.

We now show that 1 ∈ c00(Γ)
w∗

. Consider

Tn =
n∑

(1 − 1√
n
)dpd ∈ c00(Γ)

w∗

⊆ Ml
cb(A(Γ)) (n ∈ N).
d=0
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According to [58, Proposition 3.5], limn→∞ ‖Tn‖cb = 1 and (Θl(Tn))n∈N converges point-
wise to the identity on C(Γ̂). Take x ∈ C(Γ̂) �K(H), ω ∈ L1(Γ̂) � B(H)∗ for a separable 
Hilbert space H. Then we obtain

〈Tn − 1,Ωx,ω〉 = 〈
(
(Θl(Tn) − id) ⊗ id

)
x, ω〉 −−−−→

n→∞
0,

and since (Tn)n∈N is uniformly bounded in CB norm, the same holds for general x ∈
C(Γ̂) ⊗K(H), ω ∈ L1(Γ̂)⊗̂B(H)∗. By Proposition 3.9, this shows that Tn −−−−→

n→∞
1 weak∗

in Ml
cb(A(Γ)). As each pd is in the weak∗-closure of c00(Γ), the same is true of each Tn, 

and hence we conclude that 1 is in the weak∗-closure of c00(Γ), showing that Γ has AP.
If fi,λ ∈ Z(�∞(Γi)) ∩ c00(Γi) for each i, λ, then Ψd((f1,λ1,k , f2,λ2,k)dk=1) is also central. 

Consequently, if Γ1, Γ2 have central AP then so does Γ = Γ1 � Γ2. �
Corollary 7.12. Let (Γi)i∈I be a family of discrete quantum groups with (central) AP. 
Then the free product Γ = �i∈IΓi has (central) AP.

Proof. If I is finite the claim follows from Theorem 7.8 by induction. In the general case, 
for any finite (nonempty) set F ⊆ I, the free product �i∈FΓi is a quantum subgroup 
of �i∈IΓi in a natural way. Moreover (�i∈FΓi)F⊆I forms a directed system of discrete 
quantum groups with injective connecting maps over the directed set of finite subsets of 
I, compare Definition 7.4, and �i∈IΓi = lim−−→F⊆I

�i∈FΓi. Since �i∈FΓi has (central) AP, 
the claim follows from Proposition 7.5. �
7.4. Double crossed products

In this section we study how the approximation property behaves with respect to 
the double crossed product construction. This contains the Drinfeld double of a locally 
compact quantum group as a special case.

7.4.1. Preliminaries
We start by recalling some definitions, following the conventions in [6].
A matching between two locally compact quantum groups G1, G2 is a faithful normal 

�-homomorphism m: L∞(G1)⊗̄L∞(G2) → L∞(G1)⊗̄L∞(G2) satisfying

(Δ1 ⊗ id) m = m23 m13(Δ1 ⊗ id) and (id ⊗ Δ2) m = m13 m12(id ⊗ Δ2).

Given this data one defines the double crossed product Gm of G1, G2 as follows. The 
Hilbert space of square integrable functions on Gm, the von Neumann algebra of functions 
on Gm and its comultiplication are given by

L2(Gm) = L2(G1) ⊗ L2(G2), L∞(Gm) = L∞(G1)⊗̄L∞(G2),

Δm = (id ⊗ χm⊗id)(Δop
1 ⊗ Δ2).
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To ease notation, we will decorate objects related to G1 (resp. G2, Gm) with 1 (resp. 
2, m) in the sequel, e.g. W1 = WG1 . We will also denote the unit in B(L2(Gm)) by 1m.

Let J (resp. Ĵ) be the modular conjugation of the left Haar integral on the bicrossed 
product of G1, G2 (resp. its dual), see [6, Section 2.4]. Define a unitary

Z = JĴ(Ĵ1J1 ⊗ Ĵ2J2).

It implements m in the sense that m(z) = ZzZ∗ for all z ∈ L∞(G1)⊗̄L∞(G2). The 
Kac-Takesaki operator of Gm is given by

Wm = (ΣV∗
1Σ)13Z∗

34W2,24Z34.

One can describe structure of Gm and its dual, see in particular [6, Theorem 5.3]. For 
example, we have

L∞(Ĝm) =
(
(L∞(Ĝ1)′ ⊗ 1) ∪ Z∗(1⊗ L∞(Ĝ2))Z

)′′
,

L∞(Ĝm)′ =
(
Z∗(L∞(Ĝ1) ⊗ 1)Z ∪ (1⊗ L∞(Ĝ2)′)

)′′
.

A special case of this construction is the (generalised) Drinfeld double. Let G1, G2 be 
locally compact quantum groups and assume that Z ∈ L∞(G1)⊗̄L∞(G2) is a bicharac-
ter. That is, Z is a unitary satisfying

(Δ1 ⊗ id)Z = Z23Z13 and (id ⊗ Δ2)Z = Z13Z12.

Then one obtains an inner �-automorphism

m: L∞(G1)⊗̄L∞(G2) � x �→ ZxZ∗ ∈ L∞(G1)⊗̄L∞(G2),

and it is easy to check that this defines a matching between G1 and G2. Consequently, 
one can form the double crossed product Gm, and this is called the generalised Drinfeld 
double of G1, G2 with respect to Z.

In particular, if H is a locally compact quantum group then we can consider G1 =
Hop, G2 = Ĥ together with the bicharacter Z = WH. The corresponding double crossed 
product Gm is called the Drinfeld double of H.

7.4.2. Gop
1 , G2 are quantum subgroups of Gm

Let us return to the general situation of locally compact quantum groups G1, G2 with 
a matching m. It is stated in [6, Theorem 5.3], see also the introduction to [6, Section 6], 
that Gop

1 and G2 are closed quantum subgroups of Gm. We give a quick argument for 
the convenience of the reader.

Lemma 7.13. Gop
1 and G2 are closed quantum subgroups of Gm in the sense of Vaes.
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�

Proof. Note first that Ĝop
1 = Ĝ1

′
, compare [47, Proposition 5.4]. We have natural normal, 

injective �-homomorphisms

γ1 : L∞(Ĝ1)′ → L∞(Ĝm) : x̂′ �→ x̂′ ⊗ 1,

γ2 : L∞(Ĝ2) → L∞(Ĝm) : x̂ �→ Z∗(1⊗ x̂)Z,

hence by [20, Theorem 3.3] it is enough to show that both maps respect coproducts.
First, take x̂′ ∈ L∞(Ĝ1)′. Then x̂′ ⊗ 1 ∈ L∞(Ĝm) and

Δ̂m(x̂′ ⊗ 1) = ΣWm((x̂′ ⊗ 1) ⊗ 1m)W∗
mΣ = Σ(ΣV∗

1Σ)13(x̂′ ⊗ 1⊗ 1⊗ 1)(ΣV1Σ)13Σ,

noting that all the other parts of Wm cancel out. By slight abuse of notation, we write 
here Σ both for the swap map on L2(Gm) ⊗ L2(Gm), which is identified with Σ13Σ24, 
and for the swap map on L2(G1) ⊗ L2(G1). From the proof of [47, Proposition 4.2] we 
find that the coproduct on L∞(Ĝ1)′ is given by Δ

Ĝ1
′(x̂′) = V∗

1(1 ⊗ x̂′)V1, and so

Δ̂m(x̂′ ⊗ 1) = Σ(ΣV∗
1(1⊗ x̂′)V1Σ)13Σ = Σ24ΔĜ1

′(x̂′)13Σ24 = Δ
Ĝ1

′(x̂′)13.

Since the inclusion L∞(Ĝ1)′⊗̄L∞(Ĝ1)′ → L∞(Ĝm)⊗̄L∞(Ĝm) is given by a �→ a13, this 
concludes the proof that Gop

1 is a closed quantum subgroup of Gm.
Take now x̂ ∈ L∞(Ĝ2) so that Z∗(1 ⊗ x̂)Z ∈ L∞(Ĝm). Then, following exactly the 

proof of [6, Proposition 3.5],

Δ̂m(Z∗(1⊗ x̂)Z) = ΣWm(Z∗(1⊗ x̂)Z ⊗ 1m)W∗
mΣ = (Z∗ ⊗ Z∗)Δ̂2(x̂)24(Z ⊗ Z),

which is exactly the embedding of Δ
Ĝ2

(x̂) ∈ L∞(Ĝ2)⊗̄L∞(Ĝ2) into L∞(Ĝm)⊗̄L∞(Ĝm).

As a consequence of Theorem 7.1 and Proposition 4.3 we therefore obtain the following 
fact.

Corollary 7.14. Suppose that Gm has AP. Then both G1 and G2 have AP.

Remark 7.15. In view of the close analogy between Drinfeld doubles of q-deformations of 
compact semisimple Lie groups and the corresponding complex Lie groups [1], [72], it is 
natural to speculate that the converse to Corollary 7.14 does not hold, see also Remark 
7.4 in [2]. Specifically, the Drinfeld double of SUq(3) might be an example of a locally 
compact quantum group which does not have AP.

7.4.3. AP for Ĝm
We now aim to prove the following result.

Theorem 7.16. Let G1, G2 be locally compact quantum groups with a matching m.
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• If Ĝ1 and Ĝ2 have AP then so does Ĝm.
• If Ĝ1 and Ĝ2 are weakly amenable with Cowling–Haagerup constants Λcb(Ĝ1),

Λcb(Ĝ2) then Ĝm is weakly amenable with Λcb(Ĝm) ≤ Λcb(Ĝ1) Λcb(Ĝ2).
• If G1, G2 are coamenable then so is Gm.

An analogous result for the Haagerup property was obtained in [59], but we note 
that the terminology used in [59] is different. We also note that for generalised Drinfeld 
doubles the statement on coamenability in Theorem 7.16 can be shown quite easily using 
standard properties of bicharacters, as discussed in a preprint version of [59].

Before we prove Theorem 7.16 we need to establish a number of auxiliary results. 
Recall from Section 3.3 the construction of a normal CB map Θl(a) on L∞(Ĥ) and 
its extension Φ(a) ∈ CBσ(B(L2(H))) for any locally compact quantum group H and 
a ∈ Ml

cb(A(H)). Moreover, in the proof of Lemma 7.13 we introduced injective, normal 
�-homomorphisms γ1 : L∞(Ĝ1)′ → L∞(Ĝm) and γ2 : L∞(Ĝ2) → L∞(Ĝm). We will now 

use these maps to transport elements of the Fourier algebras A(Ĝop
1 ), A(Ĝ2) to left CB 

multipliers of A(Ĝm).

Lemma 7.17. For ω ∈ L1(G1) we have γ1(λop
1 (ω)) ∈ Ml

cb(A(Ĝm)). The maps associated 
with a = γ1(λop

1 (ω)) are

Θl(a) = Θl(λop
1 (ω)) ⊗ id ∈ CBσ(L∞(Gm)) = CBσ(L∞(G1)⊗̄L∞(G2))

and

Φ(a) = Φ(λop
1 (ω)) ⊗ id ∈ CBσ(B(L2(Gm))) = CBσ(B(L2(G1))⊗̄B(L2(G2))).

Proof. Take ω1 ⊗ ω2 ∈ L1(Gop
1 )⊗̂L1(G2) = L1(Gm). Using Wop

1 = ΣV∗
1Σ, see [47, 

Section 4], we get

λm(ω1 ⊗ ω2) = (ω1 ⊗ ω2 ⊗ id ⊗ id)
(
(ΣV∗

1Σ)13Z∗
34W2,24Z34

)
=

(
(ω1 ⊗ id)(ΣV∗

1Σ) ⊗ 1
)
Z∗(1⊗ (ω2 ⊗ id)(W2)

)
Z

= γ1(λop
1 (ω1))γ2(λ2(ω2)),

(7.3)

and consequently, writing � for the product on L1(Gop
1 ),

aλm(ω1 ⊗ ω2) = γ1(λop
1 (ω))λm(ω1 ⊗ ω2) = γ1

(
λop

1 (ω)λop
1 (ω1)

)
γ2(λ2(ω2))

= γ1
(
λop

1 (ω � ω1)
)
γ2(λ2(ω2)) = λm

(
(ω � ω1) ⊗ ω2

)
.

By linearity and continuity, a maps A(Ĝm) into itself, and Θl(a) has the given form.
The second assertion is verified using a direct calculation. Indeed, if x ∈ B(L2(Gm)) =

B(L2(G1))⊗̄B(L2(G2)) then
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1m ⊗ Φ(a)(x) = Wm
(
(((ω ⊗ id)Δop

1 ⊗ id) ⊗ id)(W∗
m(1m ⊗ x)Wm)

)
W∗

m

= Wm
(
((ω ⊗ id)Δop

1 ⊗ id⊗3)(Z∗
34W∗

2,24Z34Wop ∗
1,13x34Wop

1,13Z
∗
34W2,24Z34)

)
W∗

m

= WmZ∗
34W∗

2,24Z34
(
((ω ⊗ id)Δop

1 ⊗ id⊗3)Wop ∗
1,13x34Wop

1,13
)
Z∗

34W2,24Z34W∗
m

= WmZ∗
34W∗

2,24Z34
(
(ω ⊗ id⊗4)(Wop ∗

1,24 Wop ∗
1,14x45Wop

1,14W
op
1,24)

)
Z∗

34W2,24Z34W∗
m

= WmZ∗
34W∗

2,24Z34Wop ∗
1,13

(
(ω ⊗ id ⊗ id)(Wop ∗

1,12x23Wop
1,12)

)
34W

op
1,13Z

∗
34W2,24Z34W∗

m

= 1m ⊗ (ω ⊗ id ⊗ id)(Wop ∗
1,12x23Wop

1,12).

Here we use that (Δop
1 ⊗ id)Wop

1 = Wop
1,13W

op
1,23. The claim follows from Lemma 3.10. �

Lemma 7.18. For ω ∈ L1(G2) we have γ2(λ2(ω)) ∈ Ml
cb(A(Ĝm)). The associated maps 

with b = γ2(λ2(ω)) are

Θl(b) = m−1(id ⊗ Θl(λ2(ω))) m

and

Φ(b) : B(L2(Gm)) � x �→ Z∗(id ⊗ Φ(λ2(ω)))(ZxZ∗)Z ∈ B(L2(Gm)).

Proof. Using equation (7.3), we get for ω0 ∈ L1(G2) and ω1 ⊗ ω2 ∈ L1(Gop
1 )⊗̂L1(G2) =

L1(Gm) the relation

λm(ω1 ⊗ ω2)γ2(λ2(ω0)) = γ1(λop
1 (ω1))γ2(λ2(ω2))γ2(λ2(ω0))

= γ1(λop
1 (ω1))γ2(λ2(ω2 � ω0)) = λm(ω1 ⊗ (ω2 � ω0)),

here with � the product on L1(G2). Thus, if T0 : L∞(Gm) → L∞(Gm) is the map given 
by T0 = id ⊗ (id ⊗ ω0)Δ2, then T0 is normal, and the pre-adjoint (T0)∗ satisfies

λm(ω1 ⊗ ω2)γ2(λ2(ω0)) = λm((T0)∗(ω1 ⊗ ω2)).

As γ2 intertwines the coproducts, it automatically intertwines the unitary antipodes ([50, 
Proposition 3.10]). The same is true for λm and λ2, and hence we get

λm
(
(Rm◦T0 ◦Rm)∗(Rm ∗(ω1 ⊗ ω2))

)
= λm((T0 ◦Rm)∗(ω1 ⊗ ω2))

= R̂m(λm((T0)∗(ω1 ⊗ ω2))) = R̂m
(
γ2(λ2(ω0))

)
R̂m(λm(ω1 ⊗ ω2))

= γ2(λ2(R2∗(ω0)))λm(Rm ∗(ω1 ⊗ ω2)).

Now set ω0 = ω◦R2 for our given ω. As the set of functionals of the form Rm ∗(ω1⊗ ω2) is 
linearly dense in L1(Gm), we obtain from Lemma 4.8 that b = γ2(λ2(ω)) ∈ Ml

cb(A(Ĝm))
and Θl(b) = Rm ◦ T0 ◦ Rm. By [6, Theorem 5.3] we know that Rm = m−1(R1 ⊗ R2) =
(R1 ⊗R2) m. Therefore
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Rm ◦ T0 ◦Rm = m−1(R1 ⊗R2)(id ⊗ (id ⊗ ω ◦R2)Δ2)(R1 ⊗R2) m

= m−1(id ⊗R2 ◦ (id ⊗ ω ◦R2)Δ2 ◦R2) m

= m−1(id ⊗ (id ⊗ ω)Δop
2 ) m

= m−1(id ⊗ (ω ⊗ id)Δ2) m,

and this yields the stated formula for Θl(b).
In order to verify the formula for Φ(b), recall that the unitary operator Z implements 

m by m(·) = Z · Z∗, and hence m−1(·) = Z∗ · Z. Moreover, from [6, Proposition 3.5]
we know that (m⊗id)(Wm) = Z∗

34W2,24Z34Wop
1,13. For x ∈ B(L2(Gm)), by applying the 

expression for Θl(b) just obtained, we get

(Θl(b) ⊗ id)(W∗
m(1m ⊗ x)Wm)

= (m−1 ⊗id ⊗ id)(id ⊗ (ω ⊗ id)Δ2 ⊗ id ⊗ id)(
Wop ∗

1,13Z
∗
34W∗

2,24Z34(1⊗ 1⊗ x)Z∗
34W2,24Z34Wop

1,13
)
.

Now using (Δ2 ⊗ id)W2 = W2,13W2,23, this expression becomes

(Θl(b) ⊗ id)(W∗
m(1m ⊗ x)Wm)

= (m−1 ⊗id ⊗ id)
(
Wop ∗

1,13Z
∗
34(id ⊗ ω ⊗ id⊗3)(W∗

2,35W∗
2,25(ZxZ∗)45W2,25W2,35)Z34Wop

1,13
)

= (m−1 ⊗id ⊗ id)
(
Wop ∗

1,13Z
∗
34W∗

2,24(ω ⊗ id ⊗ id)(W∗
2,13(ZxZ∗)23W2,13)34W2,24Z34Wop

1,13
)
.

Finally, we use the form of Φ(λ2(ω)) ∈ CBσ(B(L2(G2))), as in Lemma 3.10 to get

(Θl(b) ⊗ id)(W∗
m(1m ⊗ x)Wm)

= (m−1 ⊗id ⊗ id)
(
Wop ∗

1,13Z
∗
34W∗

2,24(id ⊗ Φ(λ2(ω)))(ZxZ∗)34W2,24Z34Wop
1,13

)
.

Using again (m⊗id)(Wm) = Z∗
34W2,24Z34Wop

1,13, we continue the calculation as

(Θl(b) ⊗ id)(W∗
m(1m ⊗ x)Wm)

= (m−1 ⊗id ⊗ id)
(
(m⊗id)(W∗

m)Z∗
34(id ⊗ Φ(λ2(ω)))(ZxZ∗)34Z34(m⊗id)(Wm)

)
= W∗

m(m−1 ⊗id ⊗ id)(Z∗
34(id ⊗ Φ(λ2(ω)))(ZxZ∗)34Z34)Wm

= W∗
mZ∗

12Z
∗
34(id ⊗ Φ(λ2(ω)))(ZxZ∗)34Z34Z12Wm,

where at the end we used that m−1(·) = Z∗ · Z. It follows that

1m ⊗ Φ(b)(x) = Wm(Θl(b) ⊗ id)(W∗
m(1m ⊗ x)Wm)W∗

m

= Wm
(
W∗

mZ∗
12Z

∗
34(id ⊗ Φ(λ2(ω)))(ZxZ∗)34Z34Z12Wm

)
W∗

m

= (Z ⊗ Z)∗(1m ⊗ (id ⊗ Φ(λ2(ω)))(ZxZ∗))(Z ⊗ Z),

and hence Φ(b)(x) = Z∗(id ⊗ Φ(λ2(ω)))(ZxZ∗)Z as claimed. �
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In the next step, we shall establish continuity properties of the maps A(Ĝop
1 ) →

Ml
cb(A(Ĝm)) and A(Ĝ2) → Ml

cb(A(Ĝm)) described in Lemmas 7.17, 7.18. For this we 
need the following general fact.

Lemma 7.19.

• Let E, F be operator spaces. The map (E⊗̌F )⊗̂F ∗ → E given on simple tensors by 
(x ⊗ y) ⊗ f �→ 〈f, y〉x is completely contractive.

• Let A, B be C∗-algebras. The map (A ⊗ B)⊗̂(A∗⊗̂B∗) → A⊗̂A∗ given on simple 
tensors by (a ⊗ b) ⊗ (μ ⊗ ω) �→ 〈ω, b〉a ⊗ μ is completely contractive.

Proof. Due to [23, Theorem 8.1.10] the “tensor interchange” map F ∗⊗̂(F ⊗̌E) →
(F ∗⊗̂F )⊗̌E, which is the formal identity on simple tensors, is a complete contraction. 
Since (F ∗⊗̂F )∗ ∼= CB(F ∗), the identity map idF∗ induces the (completely) contractive 
linear functional F ∗⊗̂F → C : f ⊗ y �→ 〈f, y〉. Composing these complete contractions 
shows that F ∗⊗̂(F ⊗̌E) → E : f ⊗ (y ⊗ x) �→ 〈f, y〉x is a complete contraction. By 
commutativity of the projective and the injective tensor products of operators spaces, 
respectively, the first claim follows.

For the second part recall that the injective operator space tensor product agrees with 
the spatial tensor product on C∗-algebras. Using the re-bracketing isomorphism

(A⊗B)⊗̂(A∗⊗̂B∗) ∼= (((A⊗B)⊗̂B∗)⊗̂A∗,

the assertion hence follows by applying the first part to E = A, F = B and tensoring 
with A∗. �
Lemma 7.20. Let (ωi)i∈I be a net in L1(Gop

1 ) such that λop
1 (ωi) −−→

i∈I
1 weak∗ in 

Ml
cb(A(Ĝop

1 )). Consider γ1(λop
1 (ωi)) ∈ Ml

cb(A(Ĝm)) and Φ(γ1(λop
1 (ωi))) ∈

CBσ(B(L2(Gm))). Then Φ(γ1(λop
1 (ωi))) −−→

i∈I
id weak∗, and thus γ1(λop

1 (ωi)) −−→
i∈I

1m

weak∗ in Ml
cb(A(Ĝm)).

Proof. By Lemma 7.17 we have Φ(γ1(λop
1 (ωi))) = Φ(λop

1 (ωi)) ⊗id for each i ∈ I. Applying 
Lemma 7.19 with A = K(L2(G1)) and B = K(L2(G2)) we obtain a completely contractive 
map

T :
(
K(L2(G1)) ⊗K(L2(G2))

)
⊗̂
(
B(L2(G1))∗⊗̂B(L2(G2))∗

)
→ K(L2(G1))⊗̂B(L2(G1))∗

given by T ((a ⊗ b) ⊗ (ω1 ⊗ ω2)) = 〈ω2, b〉a ⊗ ω1 on simple tensors. Recall that for any 
Hilbert space H, the space of normal CB maps CBσ(B(H)) has predual K(H)⊗̂B(H)∗
(see Section 3.3). Using this identification

〈Φ(γ1(λop
1 (ωi))), (a⊗ b) ⊗ (ω1 ⊗ ω2)〉 = 〈Φ(λop

1 (ωi))(a), ω1〉〈b, ω2〉
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= 〈Φ(λop
1 (ωi)), T ((a⊗ b) ⊗ (ω1 ⊗ ω2))〉,

and hence Φ(γ1(λop
1 (ωi))) = T ∗(Φ(λop

1 (ωi))). As λop
1 (ωi) −−→

i∈I
1 weak∗, we know that 

Φ(λop
1 (ωi)) −−→

i∈I
id weak∗, and so Φ(γ1(λop

1 (ωi))) −−→
i∈I

T ∗(id) = id weak∗, as required. �

Lemma 7.21. Let (ωi)i∈I be a net in L1(G2) with λ2(ωi) −−→
i∈I

1 weak∗ in Ml
cb(A(Ĝ2)). 

Then Φ(γ2(λ2(ωi))) −−→
i∈I

id weak∗ in CBσ(B(L2(Gm))), and consequently γ2(λ2(ωi)) −−→
i∈I

1m weak∗ in Ml
cb(A(Ĝm)).

Proof. According to Lemma 7.18 we have Φ(γ2(λ2(ωi)))(x) = Z∗(id ⊗
Φ(λ2(ωi)))(ZxZ∗)Z. We can now argue exactly as in the proof of Lemma 7.20. Ex-
plicitly, for x ⊗u in K(L2(Gm))⊗̂B(L2(Gm))∗, the predual of CBσ(B(L2(Gm))), consider

〈Φ(γ2(λ2(ωi))), x⊗ u〉 = 〈Z∗(id ⊗ Φ(λ2(ωi)))(ZxZ∗)Z, u〉

= 〈(id ⊗ Φ(λ2(ωi)))(ZxZ∗), ZuZ∗〉 = 〈(id ⊗ Φ(λ2(ωi))), ZxZ∗ ⊗ ZuZ∗〉.

Since x �→ ZxZ∗ is a complete isometry on K(L2(Gm)) and u �→ ZuZ∗ is a complete 
isometry on B(L2(Gm))∗, we obtain a complete isometry T on K(L2(Gm))⊗̂B(L2(Gm))∗
given on simple tensors by T (x ⊗ u) = ZxZ∗ ⊗ ZuZ∗. Thus

Φ(γ2(λ2(ωi))) = T ∗(id ⊗ Φ(λ2(ωi))) −−→
i∈I

T ∗(id) = id

weak∗, as required. �
Proof of Theorem 7.16. Assume that Ĝ1 and Ĝ2 have AP. Due to Proposition 4.3
it follows that (Gop

1 )∧ = (Ĝ1)′ also has AP. Choose nets (ω(1)
i )i∈I in L1(G1) with 

ai = λop
1 (ω(1)

i ) −−→
i∈I

1 weak∗ in Ml
cb(A(Ĝop

1 )), and similarly (ω(2)
j )j∈J in L1(G2) with 

bj = λ2(ω(2)
j ) −−→

j∈J
1 weak∗ in Ml

cb(A(Ĝ2)). Then, by Lemmas 7.17, 7.18, we have 

γ1(ai), γ2(bj) ∈ Ml
cb(A(Ĝm)), and (7.3) gives

ci,j = γ1(ai)γ2(bj) = λm(ω(1)
i ⊗ ω

(2)
j ) ∈ A(Ĝm).

Since Ml
cb(A(Ĝm)) is a dual Banach algebra, see Proposition 3.3, it follows from 

Lemma 7.20 that limi∈I ci,j = γ2(bj) weak∗ for each j ∈ J . Hence γ2(bj) is contained in 
the weak∗-closure of A(Ĝm) in Ml

cb(A(Ĝm). Taking the limit in j and using Lemma 7.21
we see that 1m is contained in the weak∗-closure of A(Ĝm) in Ml

cb(A(Ĝm)), as required.
The remaining statements regarding weak amenability and coamenability are veri-

fied in a similar way: if Ĝ1, Ĝ2 are weakly amenable with Cowling-Haagerup constants 
Λcb(Ĝ1), Λcb(Ĝ2) then we additionally know that
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‖ai‖cb = ‖Φ(ai)‖cb ≤ Λcb(Ĝ1), ‖bj‖cb = ‖Φ(bj)‖cb ≤ Λcb(Ĝ2),

and consequently ‖ci,j‖cb ≤ Λcb(Ĝ1) Λcb(Ĝ2). The result then follows from Proposi-
tion 5.7.

If G1, G2 are coamenable then we can choose ai, bj such that supi∈I,j∈J ‖ci,j‖A(Ĝm) =
supi∈I,j∈J ‖ωi ⊗ ωj‖ < +∞. The result then follows from Proposition 5.6. �
7.5. Direct products

The double crossed product construction contains as a special case the direct product 
of locally compact quantum groups. More precisely, assume that H1, H2 are locally 
compact quantum groups and let m = id be the trivial matching between G1 = Hop

1 and 
G2 = H2. In this case we write Gm = H1 × H2 and call this the direct product of H1
and H2. Note that this definition agrees with the usual one since

L∞(H1 ×H2) = L∞(Gop
1 )⊗̄L∞(G2) = L∞(H1)⊗̄L∞(H2),

ΔH1×H2 = (id ⊗ χ⊗ id)(ΔGop
1

⊗ ΔG2) = (id ⊗ χ⊗ id)(ΔH1 ⊗ ΔH2),

and we have ̂H1 ×H2 = Ĥ1 × Ĥ2. Consequently, Corollary 7.14 and Theorem 7.16
immediately give the following result.

Proposition 7.22. The direct product H1 × H2 of two locally compact quantum groups 
H1, H2 has AP if and only if H1 and H2 have AP.

8. Categorical AP

In this section we discuss the approximation property in the setting of rigid C∗-tensor 
categories, building on [2], [3], [4], [57]. As an application we show in particular that the 
central approximation property for discrete quantum groups is invariant under monoidal 
equivalence.

Let us first fix some notation and terminology regarding C∗-tensor categories, referring 
to [51] for more details and background. If T is a C∗-category and X, Y ∈ T are objects 
we write T(X, Y ) for the space of morphisms from X to Y . We denote by idX or id the 
identity morphism in T(X, X). By definition, a C∗-tensor category is a C∗-category T
together with a bilinear ∗-functor ⊗ : T × T → T, a distinguished object 1 1 ∈ T and 
unitary natural isomorphisms

11 ⊗X ∼= X ∼= X ⊗ 11, (X ⊗ Y ) ⊗ Z ∼= X ⊗ (Y ⊗ Z)

satisfying certain compatibility conditions. For simplicity we shall always assume that 
T is strict, which means that these unitary natural isomorphisms are identities, and we 
also assume that the tensor unit 1 1 is simple.
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A C∗-tensor category T is called rigid if all objects of T are dualisable. This means 
that for every object X ∈ T there exists an object X∨ ∈ T and morphisms sX ∈
T(X ⊗ X∨, 1 1), tX ∈ T(X∨ ⊗ X, 1 1) which form a standard solution of the conjugate 
equations. That is, we have

(tX ⊗ idX∨)(idX∨ ⊗ s∗X) = idX∨ , (sX ⊗ idX)(idX ⊗ t∗X) = idX ,

and sX(f ⊗ id)s∗X = tX(id ⊗ f)t∗X for all f ∈ T(X, X). The quantum trace Trq :
T(X, X) → C of X is defined by Trq(f) = sX(f ⊗ id)s∗X = tX(id ⊗ f)t∗X , and the 
quantum dimension of X is dimq(X) = Trq(idX). Every rigid C∗-tensor category T is 
semisimple, that is, every object of T is isomorphic to a finite direct sum of simple ob-
jects. We write Irr(T) for the set of isomorphism classes of simple objects in T, and 
choose representatives Xi ∈ T for elements i = [Xi] ∈ Irr(T), with the convention that 
we also write i = 0 for the class [1 1].

The fusion algebra C[T] is the vector space with basis Irr(T) equipped with the fusion 
product

[Xi] · [Xj ] =
∑

k∈Irr(T)

Nk
ij [Xk],

where Nk
ij = dim(T(Xi⊗Xj , Xk)), and the ∗-structure determined by [Xi]∗ = [X∨

i ]. We 
will follow the usual abuse of notation and identify X ∈ Irr(T) with its class [X]. The 
regular representation λ : C[T] → B(�2(Irr(T))) is defined by λ(X)(Y ) = X · Y . The 
tube algebra Tub(T) is

Tub(T) =
⊕

i,j,k∈Irr(T)

T(Xk ⊗Xi, Xj ⊗Xk) (8.1)

equipped with a suitable multiplication and �-structure, see [27, Definition 3.3]. Let us 
only note that Tub(T) is a non-unital �-algebra with local units, which are given by the 
projections pi = id ∈ T(1 1 ⊗Xi, Xi⊗1 1) = T(Xi, Xi) ⊆ Tub(T) for i ∈ Irr(T). Moreover, 
the corner p0 Tub(T)p0 corresponding to [1 1] ∈ Irr(T) is canonically isomorphic to the 
fusion algebra C[T], see [27, Proposition 3.1].

There is a natural faithful positive trace Tr: Tub(T) → C which vanishes on T(Xk⊗
Xi, Xj⊗Xk) for i �= j or Xk �= 1 1, and is given by the quantum trace Trq on T(1 1 ⊗Xi, Xi⊗
1 1) for all i ∈ Irr(T). We write L2(Tub(T)) for the associated GNS-Hilbert space. This 
yields the regular representation λ : Tub(T) → B(L2(Tub(T))) of Tub(T). The reduced 
C∗-algebra C∗

red(Tub(T)) and the von Neumann algebra L(Tub(T)) are defined as the 
closure of λ(Tub(T)) in the operator norm and the weak operator topology, respectively. 
The map Tr extends to a n.s.f. trace on L(Tub(T)) by [56, Proposition 3.10].

Let us next recall the definition of multipliers on rigid C∗-tensor categories from the 
work of Popa-Vaes [57, Section 3].
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Definition 8.1. Let T be a rigid C∗-tensor category. A multiplier on T is a family θ =
(θX,Y ) of linear maps θX,Y : T(X ⊗ Y, X ⊗ Y ) → T(X ⊗ Y, X ⊗ Y ) for X, Y ∈ T such 
that

θX2,Y2(gfh∗) = gθX1,Y1(f)h∗,

θX2⊗X1,Y1⊗Y2(idX2 ⊗ f ⊗ idY2) = idX2 ⊗ θX1,Y1(f) ⊗ idY2 ,

for all Xi, Yi ∈ T, f ∈ T(X1 ⊗ Y1, X1 ⊗ Y1) and g, h ∈ T(X1, X2) ⊗ T(Y1, Y2) ⊆
T(X1 ⊗ Y1, X2 ⊗ Y2).
A multiplier θ = (θX,Y ) on T is said to be completely positive (or a CP multiplier) if 
all the maps θX,Y are completely positive. A multiplier θ = (θX,Y ) on T is said to be 
completely bounded (or a CB multiplier) if all the maps θX,Y are completely bounded 
and ‖θ‖cb = supX,Y ∈T ‖θX,Y ‖cb < ∞.

It is shown in [57, Proposition 3.6] that multipliers on T are in canonical bijection with 
functions Irr(T) → C. We will often identify a multiplier θ = (θX,Y ) with its associated 
function θ = (θ(k))k∈Irr(T). Note that we have ‖(θ(k))k∈Irr(T)‖∞ ≤ ‖θ‖cb.

Let us write Mcb(T) for the space of CB multipliers on T. Via composition of maps and 
the CB norm this becomes naturally a Banach algebra. From the definition of the corre-
spondence between functions on Irr(T) and multipliers, compare [57, Formula (3.5)], it 
follows that the product on Mcb(T) corresponds to pointwise multiplication of functions. 
It is shown in [2, Corollary 5.3] that Mcb(T) is a dual Banach algebra, whose predual 
Q(T) can be constructed using the tube algebra of T. More specifically, if θ ∈ Mcb(T)
is a CB multiplier, define Mθ : Tub(T) → Tub(T) by

Mθ(f) = θ(k)f, f ∈ T(Xk ⊗Xi, Xj ⊗Xk) ⊆ Tub(T).

Due to [4, Proposition 5.1] the map M gives an isometric embedding of Mcb(T) into 
the space CBσ(L(Tub(T))) of normal CB maps on L(Tub(T)), and also an isometric 
embedding with weak∗-closed image Mcb(T) → CB(C∗

red(Tub(T)), L(Tub(T))). Then 
the predual Q(T) of Mcb(T) obtained in [2] is constructed as the resulting quotient 
of the predual C∗

red(Tub(T))⊗̂L(Tub(T))∗ of CB(C∗
red(Tub(T)), L(Tub(T))) – compare 

Theorem 3.8.
We can approximate elements of Q(T) by taking tensor products of elements in 

Tub(T) and vector functionals associated to vectors from L2(Tub(T)). Noting that 
Tub(T) is dense in L2(Tub(T)), a linearly dense collection of functionals in L(Tub(T))∗
is given by L(Tub(T)) � T �→ 〈f | Tg〉 = Tr(f∗Tg) = Tr(Tgf∗) for f, g ∈ Tub(T). 
As Tub(T) has local units, we have {gf∗ | f, g ∈ Tub(T)} = Tub(T) and it suffices to 
look at functionals of the form T �→ Tr(Tf) for f ∈ Tub(T). Under this identification, 
the canonical pairing of f ⊗ g ∈ Tub(T) � Tub(T) ⊆ C∗

red(Tub(T))⊗̂L(Tub(T))∗ with 
θ ∈ Mcb(T) becomes

〈θ, f ⊗ g〉 = Tr(gMθ(f)). (8.2)
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Let us define a weighted �1-norm on c00(Irr(T)) by

‖f‖1 =
∑

k∈Irr(T)

dimq(Xk)|f(k)|,

and denote by �1(Irr(T)) the corresponding completion, compare [57, Remark 10.4]. The 
weighting by quantum dimensions ensures that admissible ∗-representations of C[T] in 
the sense of [57, Definition 4.1] extend to contractive ∗-representations of �1(Irr(T)). 
Note that there is a contractive embedding ι : �1(Irr(T)) → Mcb(T)∗ given by

ι(ω)(θ) =
∑

k∈Irr(T)

dimq(Xk)ω(k)θ(k) (ω ∈ �1(Irr(T)), θ ∈ Mcb(T)).

Lemma 8.2. Let T be a rigid C∗-tensor category. Then the Banach space Q(T) can be 
identified with the closure of �1(Irr(T)) in Mcb(T)∗ under the embedding ι.

Proof. It follows from the explicit formulas that the image of the subspace Tub(T) �
Tub(T) ⊆ C∗

red(Tub(T))⊗̂L(Tub(T))∗ in Mcb(T)∗ agrees with the image of c00(Irr(T))
under the map ι. Indeed, that we obtain all of c00(Irr(T)) in this way can be seen by 
considering f, g ∈ p0 Tub(T)p0 ∼= C[T] in (8.2). The claim therefore follows from density 
of the former space inside Q(T). �

Remembering that the weak∗-topology on Mcb(T) means the one induced by the 
predual Q(T), we shall now give the following definition.

Definition 8.3. Let T be a rigid C∗-tensor category. We say that T has the approximation 
property (AP) if there exists a net of finitely supported CB multipliers of T converging 
to 1 in the weak∗-topology of Mcb(T).

Comparing with [57, Definition 5.1] we see that every weakly amenable rigid C∗-tensor 
category has AP. Indeed, a uniformly bounded net of finitely supported CB multipliers 
converging pointwise to 1 converges also in the weak∗-topology since c00(Irr(T)) is dense 
in Q(T) by Lemma 8.2.

Next recall the notion of central approximation property for discrete quantum groups 
from Definition 6.3. We aim to show that the central approximation property for a 
discrete quantum group Γ is equivalent to the approximation property for the rigid 
C∗-tensor category Corep(Γ) of finite dimensional unitary corepresentations of Γ (i.e. rep-
resentations of Γ̂). To make the notation more coherent, we will write in this section 
C[Γ] = Pol(Γ̂) and C∗

red(Γ) = C(Γ̂), L(Γ) = L∞(Γ̂), and use the same conventions for the 
Drinfeld double D(Γ).

We shall first discuss the relation between categorical AP for Corep(Γ) and AP for 
the Drinfeld double D(Γ) of Γ. Recall from Section 7.4.1 that L∞(D(Γ)) = �∞(Γ)⊗̄L(Γ)
with the coproduct
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ΔD(Γ) = (id ⊗ χ⊗ id)(id ⊗ ad(W) ⊗ id)(Δ ⊗ Δ̂),

where W ∈ �∞(Γ)⊗̄L(Γ) is the Kac-Takesaki operator of Γ. Note also that we have 
a canonical identification of the centre Z�∞(Γ) of �∞(Γ) with �∞(Irr(Corep(Γ))) =
�∞(Irr(Γ̂)). In particular, every multiplier θ ∈ Mcb(Corep(Γ)) can be viewed as a (central) 
element of �∞(Γ).

In what follows we will use the notion of an algebraic quantum group, see [69], [72, 
Section 3.2]. By definition, an algebraic quantum group is described via a multiplier 
Hopf �-algebra for which there exists a positive left invariant functional and a positive 
right invariant functional. For example, if Γ is a discrete quantum group then c00(Γ) and 
C[Γ] equipped with their respective comultiplications and Haar integrals are examples 
of algebraic quantum groups. Every algebraic quantum group gives rise to a locally 
compact quantum group in the sense of Kustermans-Vaes via an appropriate completion 
procedure, see [45]. Moreover, one finds that all elements of the underlying multiplier 
Hopf �-algebra are contained in the Fourier algebra of the locally compact quantum 
group, see e.g. the end of Section 1 in [45].

The Drinfeld double D(Γ) of a discrete quantum group Γ and its dual D̂(Γ) are also 
algebraic quantum groups. The corresponding multiplier Hopf ∗-algebras are c00(Γ) �
C[Γ] ⊆ L∞(D(Γ)) and

D(D(Γ)) = C[Γ] �� c00(Γ) = span{γ1(x̂)γ2(x) | x̂ ∈ C[Γ], x ∈ c00(Γ)} ⊆ L(D(Γ)),

where

γ1 : L(Γ) → L(D(Γ)) : x̂ �→ x̂⊗ 1,
γ2 : �∞(Γ) → L(D(Γ)) : x �→ Z∗(1⊗ x)Z

are the maps introduced in Lemma 7.13. We will write γ1(x̂)γ2(x) = x̂ �� x for x̂ ∈
C[Γ], x ∈ c00(Γ).

Lemma 8.4. Let Γ be a discrete quantum group and let D(Γ) be its Drinfeld double. There 
is an isometric embedding

N : Mcb(Corep(Γ)) → CBσ(L(D(Γ))) : θ �→ Nθ

given by

Nθ(Uα
i,j �� xβ) = θ(α)Uα

i,j �� xβ

for Uα
i,j ∈ C[Γ], xβ ∈ B(Hβ) ⊆ c00(Γ). If θ ∈ Mcb(Corep(Γ)) then θ ⊗ 1 ∈ Ml

cb(A(D(Γ)))
⊆ L∞(D(Γ)) and Nθ = Θl(θ ⊗ 1).
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Proof. We wish to apply the results of [52, Section 3]. For this we need to work with the 
annular algebra

Tub(Γ) =
⊕

α,β∈Irr(Γ̂)

( ⊕
γ∈Irr(Γ̂)

Mor(γ ⊗ α, β ⊗ γ)
)
⊗ B(Hα,Hβ),

which is equipped with the multiplication given by the product from Tub(Corep(Γ)) in 
(8.1) and the composition of operators between the Hilbert spaces Hγ . We refer to [27, 
Section 3] for the general definition of annular algebras associated with full weight sets.

We again obtain a trace on Tub(Γ) and so can perform the GNS construction, and 
construct the associated von Neumann algebra L(Tub(Γ)). Furthermore, [4, Proposition 
5.1] applies, and we obtain a map M̃ : Mcb(Corep(Γ)) → CBσ(L(Tub(Γ))) given by 
M̃θ(f) = θ(γ)f for f = f ′ ⊗ T ∈ Mor(γ⊗α, β⊗ γ) ⊗B(Hα, Hβ) ⊆ Tub(Γ) ⊆ L(Tub(Γ)), 
which is a well-defined isometric embedding.

It is shown in [52, Theorem 3.5] that there is a �-isomorphism between Tub(Γ) and 
the algebraic convolution algebra D(D(Γ)) = C[Γ] �� c00(Γ) of the Drinfeld double of 
Γ. Under this isomorphism, the trace Tr on Tub(Γ) does not correspond to the left 
invariant functional on D(D(Γ)) on the nose, but both functionals can be obtained 
from one another by multiplication with a positive invertible element in the algebraic 
multiplier algebra of Tub(Γ) ∼= D(D(Γ)). It follows that the regular representations of 
Tub(Γ) ∼= D(D(Γ))) on L2(Tub(Γ)) and L2(D(Γ)) are unitarily equivalent, which means 
that the isomorphism in [52, Theorem 3.5] induces a normal �-isomorphism L(Tub(Γ)) ∼=
L(D(Γ)), which restricts to a �-isomorphism C∗

red(Tub(T)) ∼= C∗
red(D(Γ)).

Inspecting the formulas in [52] one checks that M̃θ : Tub(Γ) → Tub(Γ) identifies 
under the isomorphism Tub(Γ) ∼= D(D(Γ))) with the map Nθ : D(D(Γ)) → D(D(Γ)) in 
the statement of the lemma. Consequently, we see that Nθ extends to a normal CB map 
on L(D(Γ)).

An explicit formula for the multiplication in D(D(Γ)) is given in [72, page 219], 
though be aware that [72] uses a different convention to us, with the factors C[Γ]
and c00(Γ) swapped around; in what follows, we make the necessarily changes to fol-
low our conventions. It follows that, for x ∈ c00(Γ), we have that γ2(x)γ1(Uα

i,j) ∈
span{γ1(Uα

k,l)γ2(y) | 1 ≤ k, l ≤ dim(α), y ∈ c00(Γ)} and so Nθ(γ2(x)γ1(Uα
i,j)) =

θ(α)γ2(x)γ1(Uα
i,j).

From Section 7.4.1, we find that

WD(Γ)∗ = Z∗
34Ŵ∗

24Z34W∗
13 = (id ⊗ γ2)(Ŵ∗)234(id ⊗ γ1)(W∗)134,

where W = WΓ. Given α, i, j, there is ω ∈ �1(Γ) with (ω ⊗ id)(W∗) = Uα
i,j , because 

W∗ = χ(Ŵ) and Ŵ is given by (6.2). Then for ω̂ ∈ L1(Γ̂),

(ω ⊗ ω̂ ⊗Nθ)(WD(Γ)∗) = Nθ

(
γ2((ω̂ ⊗ id)(Ŵ∗))γ1(Uα

i,j))
)

= θ(α)γ2((ω̂ ⊗ id)(Ŵ∗))γ1(Uα
i,j))
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using the previous observation. Given xβ ∈ B(Hβ) ⊆ c00(Γ), notice that θxβ = θ(β)xβ , 
and so ωθ = θ(α)ω, as ω ∈ B(Hα)∗. Thus

(ω⊗ ω̂⊗Nθ)(WD(Γ)∗) = θ(α)(ω⊗ ω̂⊗ id)(WD(Γ)∗) = (ω⊗ ω̂⊗ id)(((θ⊗1)⊗1)WD(Γ)∗).

As such ω are linearly dense, it follows that (id ⊗Nθ)(WD(Γ)∗) = ((θ ⊗ 1) ⊗ 1)WD(Γ)∗

or equivalently, (Nθ ⊗ id)(W ̂D(Γ)) = (1 ⊗ (θ ⊗ 1))W ̂D(Γ).
We conclude that θ ⊗ 1 ∈ L∞(D(Γ)) = �∞(Γ)⊗̄L(Γ) satisfies θ ⊗ 1 ∈ Ml

cb(D(Γ)) and 
Θl(θ ⊗ 1) = Nθ as claimed. �

Similar to Proposition 3.6, we can restrict Nθ to a map in CB
(
C∗

red(D(Γ)), L(D(Γ))
)
. 

As C∗
red(D(Γ)) is weak∗-dense in L(D(Γ)), Kaplansky density shows that this restriction 

map is a (complete) isometry.

Lemma 8.5. Let Γ be a discrete quantum group. The map

N : Mcb(Corep(Γ)) → CB
(
C∗

red(D(Γ)),L(D(Γ))
)

of Lemma 8.4 is weak∗-weak∗-continuous.

Proof. As in the proof of Lemma 8.4, we identify C∗
red(D(Γ)) with C∗

red(Tub(Γ)) and 
L(D(Γ)) with L(Tub(Γ)). Then N identifies with

M̃ : Mcb(Corep(Γ)) → CB(C∗
red(Tub(Γ)),L(Tub(Γ))),

and we note that M̃ is again isometric.
It hence suffices to show that M̃ is weak∗-weak∗-continuous, for which we shall apply 

Lemma 3.7 with α = M̃, E = Q(Corep(Γ)) and F = C∗
red(Tub(Γ))⊗̂L(Tub(Γ))∗. From 

the definition of Tub(Γ) in the proof of Lemma 8.4, we see that the elements of the form 
ω = (f ⊗ T ) ⊗ Tr(·(g ⊗ S)) with f ⊗ T ∈ Mor(γ ⊗ α, β ⊗ γ) ⊗ B(Hα, Hβ) ⊆ Tub(Γ) and 
g ⊗ S ∈ Mor(γ′ ⊗ α′, β′ ⊗ γ′) ⊗ B(Hα′ , Hβ′) form a linearly dense subset D ⊆ F .

For such an ω, given θ ∈ Mcb(Corep(Γ)) we calculate that

〈M̃θ, ω〉 = 〈M̃θ, (f ⊗ T ) ⊗ Tr(·(g ⊗ S))〉 = Tr
(
M̃θ(f ⊗ T )(g ⊗ S)

)
= θ(γ) Tr(fg ⊗ TS).

Hence the function θ �→ 〈M̃θ, ω〉 lies in the image of c00(Irr(Γ̂)) inside Mcb(Corep(Γ))∗ – 
in particular in Q(Corep(Γ)) by Lemma 8.2. This verifies the condition of Lemma 3.7, 
and the claim follows. �

Write Z Ml
cb(A(Γ)) for the centre of the Banach algebra Ml

cb(A(Γ)) and note that 
Z Ml

cb(A(Γ)) = Ml
cb(A(Γ)) ∩ Z�∞(Γ). Furthermore, observe that Z Ml

cb(A(Γ)) ⊆
Ml

cb(A(Γ)) is weak∗-closed, hence Z Ml
cb(A(Γ)) is a dual space, with distinguished pred-

ual being a quotient of Ql(A(Γ)).
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Lemma 8.6. Let Γ be a discrete quantum group. Then there is a canonical isometric 
isomorphism Mcb(Corep(Γ)) ∼= Z Ml

cb(A(Γ)), and this isomorphism is a weak∗-weak∗-
homeomorphism.

Proof. Let θ : Irr(Γ̂) → C be a bounded function, identified with a central element of 
�∞(Γ). We shall first verify that θ is contained in Mcb(Corep(Γ)) if and only if it is 
contained in Ml

cb(A(Γ)), and that the corresponding CB norms agree.
Firstly, let θ ∈ Z Ml

cb(A(Γ)), considered as a map Irr(Γ̂) → C. In [57, Section 6], the 
associated centraliser is denoted by Ψθ, see [57, Equation (6.1)], and then [57, Proposition 
6.1] shows that if Ψθ is completely bounded, which under our assumption it is, then the 
multiplier on Corep(Γ) given by θ is also completely bounded, with ‖θ‖Mcb(Corep(Γ)) ≤
‖θ‖Ml

cb(A(Γ)).
Conversely, when θ ∈ Mcb(Corep(Γ)), then by Lemma 8.4, we know that θ ⊗ 1 ∈

Ml
cb(A(D(Γ))). We again use the normal injective �-homomorphism γ1 : L(Γ) → L(D(Γ))

which identifies Γ as a closed quantum subgroup of D(Γ), see Lemma 7.13. As γ1(x̂) =
x̂⊗ 1, it follows from Lemma 8.4 that Θl(θ ⊗ 1) = Nθ leaves the image of γ1 invariant, 
and so we obtain a map Lθ ∈ CBσ(L(Γ)) with γ1Lθ = Nθγ1 and ‖Lθ‖cb ≤ ‖Nθ‖cb =
‖θ‖cb. In particular, Lθ(Uα

i,j) = θ(α)Uα
i,j for each α, i, j. Thus θ ∈ Ml

cb(A(Γ)), with 
‖θ‖Mcb(Corep(Γ)) ≥ ‖θ‖Ml

cb(A(Γ)).
As these identifications are mutual inverses, we have shown that Mcb(Corep(Γ)) ∼=

Z Ml
cb(A(Γ)) isometrically. Let γ : Mcb(Corep(Γ)) → Z Ml

cb(A(Γ)) be the result-
ing isometric isomorphism, which we claim is weak∗-weak∗-continuous. We again use 
Lemma 3.7, with E = Q(Corep(Γ)) and F the predual of Z Ml

cb(A(Γ)), with D ⊆ F

to be constructed. As the predual of Z Ml
cb(A(Γ)) is a quotient of Ql(A(Γ)), it suffices 

to take D to be the image under the quotient map of a linearly dense subset D′ of 
Ql(A(Γ)). We take D′ ⊆ �1(Γ) ⊆ Ql(A(Γ)) to consist of all linear functionals ω con-
structed by choosing x ∈ c00(Γ) and defining 〈y, ω〉 =

∑
α∈Irr(Γ̂) dimq(α) Trα(yαxα) for 

y ∈ �∞(Γ). Given θ ∈ Mcb(Corep(Γ)) and ω ∈ D induced by x ∈ c00(Γ), we see that

〈γ(θ), ω〉 =
∑

α∈Irr(Γ̂)

dimq(α)θ(α) Trα(xα),

where the sum is finite. Hence if we set z = (Trα(xα))α∈Irr(Γ̂) ∈ c00(Irr(Γ̂)) then 

〈γ(θ), ω〉 = 〈θ, ι(z)〉, where ι is the embedding of �1(Irr(Γ̂)) into Q(Corep(Γ)) as in 
Lemma 8.2. It follows that ω ◦ γ ∈ Q(Corep(Γ)), and hence γ∗κF (D) ⊆ κE(E). Now 
Lemma 3.7 yields the claim. �

Let us now compare the categorical approximation property of Corep(Γ) with the 
central approximation property of Γ.

Proposition 8.7. A discrete quantum group Γ has central AP if and only if Corep(Γ) has 
AP.
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Proof. The claim follows from Lemma 8.6, as the isomorphism Mcb(Corep(Γ)) �
Z Ml

cb(A(Γ)) is a unital weak∗-weak∗-homeomorphism which restricts to c00(Irr(Γ̂)) �
Zc00(Γ). �

As a consequence of Proposition 8.7 we see that central AP is invariant under monoidal 
equivalence.

Corollary 8.8. Let Γ and Λ be discrete quantum groups such that Γ̂ and Λ̂ are monoidally 
equivalent. Then Γ has central AP if and only if Λ has central AP.

Proof. According to the definition of monoidal equivalence [8], the C∗-tensor categories 
Corep(Γ) and Corep(Λ) are unitarily monoidally equivalent. This means that Corep(Γ)
has AP if and only if Corep(Λ) has AP. Due to Proposition 8.7 this yields the claim. �

Finally, let us relate AP of Corep(Γ) and D(Γ).

Proposition 8.9. Let Γ be a discrete quantum group such that Corep(Γ) has AP. Then the 
Drinfeld double D(Γ) has AP. If Γ is unimodular, then the converse also holds: AP of 
D(Γ) implies AP of Corep(Γ).

Proof. Due to Lemma 8.4 we have an isometric embedding Mcb(Corep(Γ)) →
Ml

cb(A(D(Γ))) given by θ �→ θ ⊗ 1. As Corep(Γ) has AP, there is a net (θi)i∈I of 
finitely supported elements in Mcb(Corep(Γ)) with θi −−→

i∈I
1 in the weak∗-topology. By 

Lemma 8.5, it follows that the net (Nθi)i∈I converges weak∗ to the inclusion map in 
CB

(
C∗

red(D(Γ)), L(D(Γ))
)
. As Nθi = Θl(θi ⊗ 1) for each i, by Theorem 3.8 this means 

that θi ⊗ 1 −−→
i∈I

1 ⊗ 1 weak∗ in Ml
cb(A(D(Γ))). Since the elements θi ⊗ 1 belong to 

the multiplier Hopf �-algebra, they also belong to the Fourier algebra A(D(Γ)) and we 
conclude that D(Γ) has AP.

If D(Γ) has AP then by Theorem 7.1 the same is true for Γ since Γ is a closed quantum 
subgroup of D(Γ). If Γ is in addition unimodular, then AP of Γ implies central AP of Γ
by Proposition 6.8, and consequently AP of Corep(Γ) due to Proposition 8.7. �
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