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I. INTRODUCTION
Teleoperation has recently gained prominence in robotics,

finding applications in diverse industrial and commercial
fields. While automated systems struggle with complex and
unpredictable tasks, teleoperation capitalizes on human in-
telligence to enhance robotic capabilities in scenarios, such
as surgery [1], [2], aerospace [3], and search & rescue
[4]. Whilst it requires understanding human intention, the
systems should operate in real-time to interact with the
working environment effectively.

In teleoperation, human operator inputs can be categorized
into four types: keyboard and joystick [5], [6], [7], [8],
[9]; motion capture devices including virtual reality suites,
haptic touch systems, customized motion input systems,
etc [10], [11], [12], [13]; wearable sensor systems, such
as EEG/EMG, IMU, and motion capture suits [14], [15],
[16]; and depth or RGB camera system [17], [18], [19],
[20]. Moving from the first to the last method, controlling
input mechanisms becomes increasingly intuitive for the
operator. Joystick and keyboard input is cost-effective and
avoids complex data analysis, though it requires operators
to undergo control mastery training. Motion capture devices
provide a relatively natural way to record human movement
within a limited workspace. Wearable sensors and camera-
based systems offer a more intuitive and comfortable user
interface. Despite the lack of haptic feedback, camera-based
systems capture the richest data while minimizing operator
burden. However, they necessitate intricate data processing to
extract understandings from the captured frames. Recently,
hand pointnet [21], which builds on pointnet++ [22], [23],
has become one of the fundamental approaches to estimating
depth from hand frames and has inspired the robotics field
[20]. It converts the hand depth frames into point clouds
and estimates twenty-one 3-dimensional hand joint locations.
These locations could be used to analyze the SE(3) hand
transformation matrix and finger configuration.

In addition to human input methods, adequate computa-
tional time to compute the controlling parameters and low-
latency wireless communication between the human oper-
ator and robot to transfer these parameters from the user
to the robot ends are also crucial factors in teleoperation
performance. Since operators would work in varied contexts,
some might use mobile platforms with limited computational
capacity, while others might operate the robot from long
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distances. In such cases, teleoperation systems may offload
large computations to edge servers to expedite data process-
ing [24], [25]. In particular, multi-access edge computing
(MEC) moves the server from the centralized cloud to the
edge of the network, which is closer to the robot, thereby
reducing communication time. The 5G wireless communica-
tion offers ultra-reliable and low-latency transmission to link
edge servers and devices, resulting in near-zero packet loss
and high data transfer efficiency [26], [27].

To tackle the outlined challenges and offer a comprehen-
sive solution, we developed and tested a gesture-based semi-
autonomous teleoperation system (SATS) that incorporates
computer vision, posture optimization, edge computing, and
5G wireless communication. The developed teleoperation
system is presented in Fig. 1. At the operator end, a novel
PointNet-based hand joint estimator uses an Intel RealSense
D455 depth camera and an Nvidia RTX 3000 GPU for initial
data collection and pre-processing. The extensive computa-
tion is offloaded to an MEC server equipped with Nvidia
RTX 6000 GPUs. Lastly, an Nvidia Xavier NX handles the
differential kinematic calculations at the robot end and runs
the control software for a Franka Emika robotic arm.

Fig. 1. An overview of the proposed teleoperation system.

II. METHODOLOGY

The first stage, shown in Fig. 2, collects RGB and Depth
frame pairs from the Intel RealSense RGB-D camera. A hand
detector generates a bounding box on RGB frames, and a
frustum space is generated based on the bounding box in
depth frame space. After filtering out the background and
foreground, the hand depth frame is converted into a point
cloud and uniformly downsampled to 1023 points. The Hand-
VoteNet contains a standard PointNet module and a refining
module. The PointNet module follows the pre-processing and



Fig. 2. Hand joint detection and estimation.

architecture of Hand PointNet [21] to get the first estimation.
The refining module comprises 21 Pointnet++ modules, each
dedicated to processing the subset of points in the vicinity
of one of the piror estimated joints obtained. The second
estimation will be the weighted voting result of all the points
within each subset. The subsets could be either collected
from multiple radii with a multi-scale grouping model, or
from a single radius with a single-scale grouping model [23].
Finally, the refined hand joint locations are the weighted sum
of these two estimations. After having the joint location, the
SE(3) transformation could be calculated from a singular
value decomposition (SVD) based optimization [28]. The
following objective function is used to minimize the least-
square error between the origin hand posture H

′
and current

hand posture Hi:

argmin
R,T

J

∑
i=1

∥ Hi − (RH
′
i +T ) ∥2

.
We applied the offloading strategies to the hand joint esti-

mation, reducing computational time. In order to streamline
the search for the optimal strategy, we divided the code
into distinct segments and conducted a sequential search to
identify the configuration with the shortest execution time.
Through experimentation, the optimum distribution of the
tasks was found by running the RGB-D frame capturing,
bounding box proposing, and point cloud converting on
the operator end and the HandVoteNet posture optimisation
executing on the MEC server. This strategy reduces the need
to transmit large data volumes over wireless communication
channels and simultaneously alleviates the burden of inten-
sive GPU computations on the operator’s device.

After receiving the transformation matrix, the desired
robot joint values are calculated at the robot end by solving
the differential kinematics model to find a local solution.
Compared to the global inverse kinematics solution, the
Jacobian-based method is more suitable for tracking a target
in cartesian space. Therefore, the desired joint value is
applied to the robotic arm by an impedance controller, while
the human finger movements are analyzed for controlling the
gripper.

III. EXPERIMENT AND RESULTS

The HandVoteNet was evaluated on the MSRA dataset.
In the ablation experiment, we compared the basic pointnet
model with the MSG and SSG models. The experiments were
run on an edge server containing Nvidia Quadro RTX 6000
GPUs, with PyTorch framework and Open3D geometry tools,

which achieved a 7.8mm mean average error, as opposed
to the baseline error of 8.5mm. The individual results and
their comparison are presented in Fig.3. The estimation has
been improved significantly by the MSG refining model,
especially for fingertips. The MEC offloading and 5G wire-
less communication provide high-quality data transmission
from the user to the robot end with a total 79.4ms latency,
measured by a round trip time experiment.

Fig. 3. Result from the MSRA experiments.

To evaluate the working of the proposed teleoperation
system, shown in Fig. 4, three operators tested the developed
system for four tasks completion: 1) Pick and Place, 2)
Human handover, 3) Candy Pouring, and 4) Cube stacking,
achieving 77.27%, 86.67%, 67.86% and 89.47% success rate
respectively and a total success rate of 80.87%.

Fig. 4. From top to bottom are four tasks to evaluate the teleoperation
system: The boxes picking and placing task, the cube stacking task, the
various angles human handover task, and the candy pouring task.
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K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0:
A cloud-based network of 3d objects for robust grasp planning using
a multi-armed bandit model with correlated rewards,” in 2016 IEEE
international conference on robotics and automation (ICRA). IEEE,
2016, pp. 1957–1964.

[26] F. Hu, Y. Deng, H. Zhou, T. H. Jung, C.-B. Chae, and A. H. Aghvami,
“A vision of an xr-aided teleoperation system toward 5g/b5g,” IEEE
Communications Magazine, vol. 59, no. 1, pp. 34–40, 2021.

[27] H. Zhu, M. Sharma, K. Pfeiffer, M. Mezzavilla, J. Shen, S. Rangan,
and L. Righetti, “Enabling remote whole-body control with 5g edge
computing,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 3553–3560.

[28] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting
of two 3-d point sets,” IEEE Transactions on Pattern Analysis and
Machine Intelligence(TPAMI), vol. PAMI-9, pp. 698–700, 1987.


	Enlighten Accepted coversheet
	310165

