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I. ANALYTICAL MODEL OF THE FL-HOM APPROACH

Inspired by Refs. [20, 21] of the main text, the Gaussian reference signal Eref(t) and the signal EFP(t) of the
fluorescent pulse can be written respectively as

Eref(t) = Gσ(t)e
−iω0t ≡ G0e

− t2

2σ2 e−iω0t, (1a)

EFP(t) = Sµ(t)e
−iω0teiΦ(t) ≡ S0e

− t
2µ θ(t)e−iω0teiΦ(t), (1b)

where G0 and S0 are the magnitudes and ω0 the frequency of the signal and of the reference (both supposed mono-
chromatic), and θ(t) is the Heaviside step function. Here Φ(t) represents a random relative phase with a Lorentzian
distribution such that

〈
e−iΦ(t+τ)eiΦ(t)

〉
= exp(−|τ |/tc), whose coherence time tc we will assume is of the order of µ

(the fluorescence lifetime), and
〈
eiΦ(t+τ)eiΦ(t)

〉
= 0. In Eq. (1) we also assumed that the excitation pulse is much

shorter than the lifetime µ of the fluorescence, so that it is well approximated with a delta function in the convolution
operation in Eq.(1) in the main text. As such, we want to emphasise that what follows is only valid when σexc ≪ µ
(where σexc is the excitation pulse duration), as is the case in the experiment.

Once we introduce a relative delay τ between the interferometer arms, the fields Ei(t), with i = 1, 2, at the i-th
detector, will be given by(
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where R and T are the reflectance and transmittance of the final beamsplitter of the interferometer respectively. We
can thus evaluate from Eqs. (1)-(2) the second-order normalised correlation function associated with detections at
times t1 and t2 = t1 + t′ at the two detectors

g(2)(t1, t
′; τ) =

⟨E1(t1)E2(t1 + t′)E∗
2 (t1 + t′)E∗

1 (t1)⟩
⟨E1(t1)E∗

1 (t1)⟩⟨E2(t1 + t′)E∗
2 (t1 + t′)⟩

=
⟨I1(t1)I2(t1 + t′)⟩
⟨I1(t1)⟩⟨I2(t1 + t′)⟩

, (3)

where ⟨·⟩ denotes the average over the statistical ensemble consisting of multiple fluorescence events, and Ii(ti) =

Ei(ti)E
∗
i (ti) ≡ |Ei(ti)|2. We easily obtain

I1(t1) = TGσ(t1 − τ)2 +RSµ(t1)
2 − i

√
RTGσ(t1 − τ)Sµ(t1)e

−iω0τe−iΦ(t1) + i
√
RTGσ(t1 − τ)Sµ(t1)e

iω0τeiΦ(t1), (4a)

I2(t2) = RGσ(t2 − τ)2 + TSµ(t2)
2 + i

√
RTGσ(t2 − τ)Sµ(t2)e

−iω0τe−iΦ(t2) − i
√
RTGσ(t2 − τ)Sµ(t2)e

iω0τeiΦ(t2),
(4b)

and thus, since ⟨eiΦ(t)⟩ = 0, averaging yields

⟨I1(t1)⟩ = TGσ(t1 − τ)2 +RSµ(t1)
2, (5a)

⟨I2(t1 + t′)⟩ = RGσ(t1 + t′ − τ)2 + TSµ(t1 + t′)2. (5b)

The numerator of the second-order correlation function in Eq. (3) can be separated as the sum of two contributions,
where we have neglected terms containing only one instance of the random phase (since ⟨eiΦ(t)⟩ = 0):

⟨I1(t1)I2(t1 + t′)⟩ = B(t1, t
′) +K(t1, t

′), (6)
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with

B(t1, t
′) = (TGσ(t1 − τ)2 +RSµ(t1)

2)(RGσ(t1 + t′ − τ)2 + TSµ(t1 + t′)2) ≡ ⟨I1(t1)⟩⟨I2(t1 + t′)⟩, (7a)

K(t1, t
′) =

〈(
−i

√
RTGσ(t1 − τ)Sµ(t1)e

−iω0τe−iΦ(t1) + i
√
RTGσ(t1 − τ)Sµ(t1)e

iω0τeiΦ(t1)
)
× (7b)

×
(
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√
RTGσ(t1 + t′ − τ)Sµ(t1 + t′)e−iω0τe−iΦ(t1+t′) − i

√
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)〉
.

Once again, we can simplify Eq. (7b) by recalling that
〈
e±iΦ(t1+t′)e±iΦ(t1)

〉
= 0 and

〈
e±iΦ(t1)e±iΦ(t1)

〉
= 0, whereas〈

e∓iΦ(t1+t′)e±iΦ(t1)
〉
= exp(−|t′|/tc). We thus obtain

K(t1, t
′) = −RTGσ(t1 − τ)Gσ(t1 + t′ − τ)Sµ(t1)Sµ(t1 + t′)

〈
e−iΦ(t1)eiΦ(t1+t′)

〉
+ c.c.

= −2RTGσ(t1 − τ)Gσ(t1 + t′ − τ)Sµ(t1)Sµ(t1 + t′)e−|t′|/tc , (8)

Substituting Eqs. (5)-(8) into Eq. (3), we finally obtain

g(2)(t1, t
′; τ) = 1− 2

RTGσ(t1 − τ)Gσ(t1 + t′ − τ)Sµ(t1)Sµ(t1 + t′)e−|t′|/tc

(TGσ(t1 − τ)2 +RSµ(t1)2)(RGσ(t1 + t′ − τ)2 + TSµ(t1 + t′)2)
(9)

Whilst infinitely temporally precise detectors would measure g(2) as seen in Eq. (9), realistic detectors acquire for
some time Tacquisition and have some finite resolution time within which a coincidence is measured Tresolution. As such,
the coincidence signal takes the form

Csignal(τ) =

∫ Tacquisition/2

−Tacquisition/2

dt1

∫ Tresolution/2

−Tresolution/2

dt′ ⟨I1(t1)I2(t1 + t′)⟩ . (10)

Typically, and as is the case here, both Tacquisition and Tresolution are larger than any other physical timescale, and we
can therefore proceed in the calculations by setting these to infinity. Furthermore, for simplicity, we will normalise
this with respect to τ → ∞ such that C(τ) = Csignal(τ)/Csignal(∞), to reflect what is typically done in experiments.
This yields

C(τ) = 1− e−τ/µ

4πRTG2
0S

2
0σ

2 exp
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σ2

(
1
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t2c

)]
[erf (τ/σ + σ/tc − σ/2µ)− erf (σ/tc)]

RT (πσ2G4
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0) + e−σ2/4µ2√πµσG2
0S

2
0 (R

2 + T 2)

 θ(τ − σ2/2µ), (11)

= 1− 4C0(σ)e
−τ/µ, (12)

the last line of which coincides with Eq. (3) in the main text and uses the assumption that σ ≪ µ. Within the
calculation we have made the approximation of erf(x/σ) ≃ sign(x/σ) for small σ. This introduces some error,
negligible when τ ≫ σ which is the regime in which we are interested. Note that Eq. (11) is still within a few percent
accurate when τ ∼ 2σ, as confirmed by numeric integration. This is in line with the approximation of the same kind
at the start of this calculation. Finally, we can expand to first order in σ (with respect to the other timescales where
we recall that tc ∼ µ) when τ > 0, yielding the simplified form

C(τ) ∼ 1− e−τ/µ

(
4σ2πG2

0

µ2S2
0

)
= 1− 4Capprox

0 e−τ/µ. (13)

To ensure that the visibility is accurate in Fig. 4 (b) of the main text, we instead numerically integrate part of the
calculation, circumventing the approximation of erf(x/σ) ≃ sign(x/σ). This ensures that the visibility is accurately
calculated also when σ ≫ µ.

II. STATISTICAL UNCERTAINTY FOR COINCIDENT MEASUREMENTS

Here, we evaluate how the statistical fluctuations of the photon count measurements affects the uncertainty of the
measured number of coincident events. First, we begin with the assumption that the photon arrival statistics at each
of the two detectors are Poissonian distributed and act independently i.e. the rate of correlated events between the
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two detectors can also be modelled using Poissonian statistics (in contrast to quantum light sources such as using
SPDC). In this case the average number of coincident events per second, C, will be given by:

C =
I1I2
R.R.

, (14)

where I1,2 are the mean count rates for detector 1 and 2, and R.R. is the repetition rate of the laser. The variance
of coincidence counts, Var(C), can then be calculated by taking [1]

Var(C) = Var(I1I2) =
(
σ2
1 + I21

) (
σ2
2 + I22

)
− I21I

2
2 , (15)

where σ1,2 are the standard deviations of the count rates at the two detectors. Assuming that both detectors register
approximately the same number of photon counts N and we set the standard deviation to be

√
N following Poissonian

statistics, it follows that

Var(C) =
(
N +N2

) (
N +N2

)
−N2N2

= N4 + 2N3 +N2 −N4

= N2 + 2N3. (16)

From this we can take the standard deviation of the coincidences

σC = N
√
1 + 2N (17)

and the Signal to Noise Ratio (SNR), which we define as the mean divided by the standard deviation

SNRC =
N√

1 + 2N
. (18)

This then informs how the noise in the coincidence counts scales as the measurement time is increased, equivalent to
increasing N . For very small N , the SNR will increase approximately linearly but will tend towards the

√
N scaling

for larger N . We verify this by tuning the optical delay of our interferometer to a region where we do not expect to
observe interference, take many example measurements of short exposure time which can then be summed together
to model longer exposure times (see below). We then fit Eq. 18 with an added proportionality term to account for
any potential additional measurement factors, Fig. 1. We note that for N > 1, SNRC ∼

√
N/

√
2, i.e. the SNR scales

as a standard intensity measurement albeit with a reduction of
√
2.

FIG. 1. SNR of the coincidence counts as a function of the average number of photons detected or, equivalently, the
measurement duration. Blue shows experimental data whilst red shows a fit to Eq. 18.
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III. EFFECTS OF SAMPLE TEMPERATURE ON THE LIFETIME

FIG. 2. Lifetime variation as a function of temperature for the 4-DASPI sample in water. Error bars not visible due to relatively
small size.

Here, we show our approach’s potential as a temperature probing technique using the fluorescence lifetime. The
4-DASPI sample is used and the cuvette holding the solution is heated from room temperature to 63◦C using a
resistive heating strip. Lifetimes in a range of approximately 8.25 - 5 ps were observed, shown in Figure 2.

IV. SAMPLE DATA WITH DIFFERENT ACQUISITION TIMES

Below, in Figure 3, we show example normalised g(2) curves obtained for different acquisition times along with the
fits to our model to obtain the lifetime as described in the main paper. Data was obtained in short acquisitions of 50
ms for each optical delay with and summed together to produce longer exposures. For longer acquisition times the
short exposure measurements were added together in different combinations to produce more statistical samples. The
optical delay sampling (range and number of steps) for each acquisition time was kept constant.

V. AVERAGE PARTICLE INTERACTION

We note that the concentration of fluorescent dyes used in this study (or order mM) are relatively high and it is
thus important to discern whether or not interaction between fluorescent molecules occur which can potentially affect
the lifetime. Firstly, we estimate the average distance between fluorescent molecules as

x =
0.55

n − 1/3
(19)

following [2] where n is the concentration in particles per unit volume. For our highest concentration sample at ∼
5 mM, this yields x ≈ 3.8 nm. Next, we evaluate the average distance a fluorescent molecule moves whilst in the
excited state, which we define using the lifetime. Assuming Brownian motion, this can be calculated as

δx =
√

2Dµ (20)

with D as the translational diffusion coefficient.

D =
kBT

6πηr
(21)

where kB is the Boltzmann constant, T the absolute temperature, η the viscosity, and r the average particle radius
[2]. Taking T = 293 K, η = 1 mPa·s (corresponding to water), and r = 0.5 nm, we find that D = 430 nm2/µs. This
results in a δx of 0.1 nm. As this is significantly smaller than the average distance between particles, it is reasonable
to conclude that there is no interaction between excited fluorophores and neighbouring molecules.
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FIG. 3. Experimental data and associated fits for a range of acquisition times. Blue shows experimental data points and red
shows the result of the MCMC-based fitting procedure discussed in the main paper.
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VI. VISCOSITY MEASUREMENTS OF 4-DASPI ON LOG SCALE

Below we plot the same data as shown in Fig. 5 of the main paper on a log-log scale, often used as calibration for
molecular rotor probes for viscosity. The red line shows a linear fit to this data, yielding a gradient of 1.377. Typical
values found in literature for this gradient are around 0.67 which is in line with predictions from the Förster-Hofmann
relation [3]. It is known however that this relation only holds for intermediate viscosities and not at the low viscosity
range explored here [4, 5].

FIG. 4. Measured lifetime vs viscosity of the 4-DASPI probe on a log-log scale. Red shows a linear fit with a gradient of 1.377.

VII. LIFETIME MEASUREMENT OF 4-DASPI IN ETHANOL

In order to compare the FL-HOM approach against lifetime values found through other methods we measured the
fluorescence signal of the 4-DASPI dye in ethanol. Fig.5 shows the normalised number of coincidence events as a
function of the optical delay, τ , where the negative of the coincidences are plotted on a log scale in much the same
manner as Fig.3 of the main paper. The red line shows a tail fit to a single exponential yielding a lifetime of 65.2 ±
1.2 ps. This is in close agreement with the work of Sibbett et al. [6].
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