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A B S T R A C T   

Rotating synthetic aperture (RSA) technology offers a promising solution for achieving large-aperture and 
lightweight designs in optical remote-sensing systems. It employs a rectangular primary mirror, resulting in 
noncircular spatial symmetry in the point-spread function, which changes over time as the mirror rotates. 
Consequently, it is crucial to employ an appropriate image-fusion method to merge high-resolution information 
intermittently captured from different directions in the image sequence owing to the rotation of the mirror. 
However, existing image-fusion methods have struggled to address the unique imaging mechanism of this system 
and the characteristics of the geostationary orbit in which the system operates. To address this challenge, we 
model the imaging process of a noncircular rotating pupil and analyse its on-orbit imaging characteristics. Based 
on this analysis, we propose an image-fusion network based on a vision transformer. This network incorporates 
inter-frame mutual attention and intra-frame self-attention mechanisms, facilitating more effective extraction of 
temporal and spatial information from the image sequence. Specifically, mutual attention was used to model the 
correlation between pixels that were close to each other in the spatial and temporal dimensions, whereas long- 
range spatial dependencies were captured using intra-frame self-attention in the rotated variable-size attention 
block. We subsequently enhanced the fusion of spatiotemporal information using video swin transformer blocks. 
Extensive digital simulations and semi-physical imaging experiments on remote-sensing images obtained from 
the WorldView-3 satellite demonstrated that our method outperformed both image-fusion methods designed for 
the RSA system and state-of-the-art general deep learning-based methods.1   

1. Introduction 

Geostationary remote-sensing satellites offer optical remote sensing 
with both high spatial and temporal resolutions, making them essential 
components of space-based observation technology [1–4]. Owing to 
their high orbital altitude, geostationary satellites require larger aper-
tures to ensure imaging quality. Currently, breakthroughs in aperture 
limitations are primarily achieved through technologies such as 
segmented mirror [5–7], membrane diffraction imaging [8–11], optical 
synthetic aperture [12–14], and rotating synthetic aperture (RSA) 
technology. Among these, the RSA system, which originated from the 
rotating slit-aperture telescope concept, stands out as a superior alter-
native [15]. It uses a rotatable primary mirror with a large aspect ratio, 
as shown in Fig. 1. During the imaging process, rotation of the primary 

mirror generates a sequence of images containing high-resolution in-
formation in different directions [16]. Using image-fusion methods, RSA 
systems can achieve an imaging quality nearly identical to or even 
higher than that of equivalent circular-aperture systems [17]. 

Previous studies proposed several image-fusion techniques specif-
ically designed for RSA systems. Zackay et al. [18–20] were the first to 
introduce a system-specific nonblind restoration method using matched 
filters. However, fusion results obtained using these approaches remain 
unclear. Zhou et al. [21] treated the image fusion of an RSA system as an 
image deblurring problem and proposed a method using multiframe 
deconvolution. Similarly, Lv et al. [22] introduced an image-fusion 
method that restores the Fourier spectrum. Although these methods 
demonstrate good fusion effects for sequence images with significant 
noise, they do not fully consider the effects of satellite-platform 
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vibration during on-orbit applications of the RSA system. Registration is 
a typical approach for addressing inter-frame displacement. Zhi et al. 
[23] proposed a registration method tailored to the imaging mechanism 
of an RSA system. The registration accuracy of this method depends on 
the directional gradient prior of the image. Inaccurate motion estima-
tion can have a significant impact on the quality of fusion results [24]. 
Another limitation of the aforementioned methods is that they do not 
belong to the category of deep learning-based approaches. Using train-
able feature extractors, deep learning methods can mine semantic fea-
tures and perform better than traditional methods [25–30]. 
Consequently, deep neural networks have been successfully applied to 
computer vision, particularly in the field of image fusion [31–37]. 

More precisely, image fusion in the RSA system aims to merge 
temporal information from multiple adjacent frames. These sequential 
frames include inter-frame displacement caused by vibrations in the 
satellite platform, which often results in misalignment. Therefore, the 

main challenge lies in correctly handling the inter-frame displacement 
and fully utilising the additional temporal information. The dynamic 
imaging method of rotating the pupil causes frames within an image 
sequence to possess varying resolutions in the same direction, creating 
difficulties in accurately estimating the motion. Inaccurate motion 
estimation can lead to unreasonable motion compensation, resulting in 
the loss of critical prior image information and the introduction of errors 
and artefacts. However, the continuous rotation of the primary mirror 
during the imaging process forms a three-dimensional dataset in which 
each frame in the temporal dimension exhibits a high correlation with its 
adjacent frames. Hence, inter-frame relations in the temporal dimension 
are as important as intra-frame relations in the spatial dimension. 
However, the effective utilisation of information in the temporal domain 
based on the unique imaging mechanism and on-orbit characteristics of 
the RSA system remains an unexplored issue that requires further 
investigation. 

Fig. 1. Imaging process and image fusion of the rotating synthetic aperture (RSA) system.  

Fig. 2. Long-range dependency in remote-sensing images.  
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Based on the preceding analysis, it is evident that directly applying 
existing deep learning-based image-fusion methods to the RSA system is 
inappropriate. This is because these methods fail to consider the imaging 
mechanism and orbital imaging characteristics of the system. Further-
more, most current deep learning approaches are based on convolu-
tional neural networks (CNNs). Convolutional operations in CNNs 
primarily capture localised features owing to their inherent local 
inductive biases. However, remote-sensing images, as shown in Fig. 2, 
reveal a high correlation between pixels and patches, even at larger 
spatial distances. This long-range dependency on remote-sensing images 
can result in highly correlated content lying beyond the receptive field of 
the convolutional kernel and going unnoticed by the kernel. This renders 
CNNs incapable of establishing long-range spatial dependencies. 

To address this concern, we consider the fact that the self-attention 
mechanism of vision transformer (ViT) is designed specifically to 
calculate correlations among pixels within an image. This resonates with 
the goal of fusing sequential images to preserve high-resolution infor-
mation in different directions. Consequently, it enables a more efficient 
utilisation of both intra-frame spatial relations and inter-frame temporal 
relations in a remote-sensing image sequence. Therefore, we treat the 
image quality improvement of the RSA system as a multisource visual 
fusion problem and present an end-to-end network that leverages ViT as 
its foundation. This is the first deep learning-based image-fusion method 
to enhance the image quality of an RSA system. As shown in Fig. 3, the 
network leverages intra-frame self-attention and inter-frame mutual 
attention to extract and fuse spatiotemporal information. In the spatio-
temporal information extraction block (SIEB), mutual attention in the 
temporal mutual attention block (TMAB) is employed to model the 
correlation between pixels that are close to each other in the spatial and 
temporal dimensions, whereas long-range dependencies are captured 
using self-attention in the rotated varied-size attention block (RVAB) 
[38]. Specifically, in the RVAB, we utilise rotated varied-size self--
attention to extract spatial information within frames. This approach 
introduced shift, scale, and rotation factors based on window-based 
attention to capture diverse local windows. By allowing windows of 
various locations, sizes, shapes, and angles, the model can better address 
objects with different orientations and scales that are prevalent in 
remote-sensing images. This capability is advantageous for extracting 
additional contextual information. Explicit motion compensation oper-
ations typically rely on bilinear or bicubic resampling operations. 
However, the weights of such operations are inaccessible, rendering 
interpolation irreversible. This can lead to a loss of information [39]. 
Therefore, we avoided explicit alignment operations and used TMAB 
directly to extract temporal information. After extracting information 
from the spatial and temporal domains, we use video swin transformer 
blocks (VSTBs) [40] to merge the extracted features. The transformer 
can implicitly establish connections for unaligned pixels by calculating 
the mutual attention between adjacent frames, thereby adaptively 

preserving information from different frames. This is equivalent to 
implicitly performing motion estimation and image warping at the 
feature level to avoid information loss and artefacts. Finally, we con-
ducted a comparative analysis between our proposed method and 
image-fusion techniques designed for the RSA system, as well as 
state-of-the-art general deep learning-based image-fusion methods. The 
results of both digital simulations and semi-physical imaging experi-
ments validate the effectiveness of our method. 

The main contributions of this work can be summarised as follows: 

(1) Analysis of temporal periodicity and spatial asymmetry charac-
teristics of rotating rectangular pupils in RSA system.  

(2) Establishment of on-orbit dynamic imaging characteristic model 
for the RSA system.  

(3) An image-fusion network based on ViT aligned with the system’s 
imaging mechanism and on-orbit imaging characteristics was 
proposed. By integrating attention into the time dimension, the 
network leveraged intra-frame self-attention and inter-frame 
mutual attention to extract and fuse spatiotemporal information. 

The remainder of this paper is structured as follows: Section 2 dis-
cusses the imaging mechanism of the RSA system and analyses its im-
aging characteristics during on-orbit operations. In Section 3, we 
introduce the details of the proposed image-fusion network. Section 4 
validates the effectiveness and accuracy of the proposed method using 
digital and semi-physical simulation experiments. Finally, Section 5 
concludes the study. 

2. Imaging characteristics of the rotating synthetic aperture 
system 

Traditional optical remote-sensing systems typically use circular 
primary mirrors, resulting in circularly symmetric point-spread func-
tions (PSFs) that degrade identically in all directions. In contrast, the 
RSA system uses a rectangular primary mirror with a high aspect ratio. 
Specifically, the pupil function of the mirror at time t is 

Prect(ξ, η, t) =rect
(

ξcos(wt + φ0) − ηsin(wt + φ0)

a

)

rect
(

ξsin(wt + φ0) + ηcos(wt + φ0)

b

) (1)  

where a and b are the length and width of the rectangle, respectively; w 
is the angular velocity of the mirror rotation; and φ0 is the initial phase. 

Applying the Fourier transform to Eq. (1) and taking the modulo 
square, we obtain the PSF at time t [41] 

Fig. 3. Overall framework of the proposed network.  
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PSF(x, y, t) = absinc(a(xcos(wt + φ0) − ysin(wt + φ0)))

× sinc(b(xsin(wt + φ0) + ycos(wt + φ0)))
(2) 

Fig. 4 shows the PSF of the primary mirror at various rotation angles, 
along with the resulting images. These images reveal that the resolution 
of the acquired images differs significantly in different directions, as 
evidenced by the edge and texture details of the square buildings, 
aircraft, and ships. 

In addition to the aforementioned unique pupil shape, the complex 
coupling of links in the imaging process also affects the image quality of 
the RSA system during in-orbit applications. More specifically, the sys-
tem’s imaging-link commences with the target scene and culminates 
with the digital image. It encompasses numerous links, including the 
atmosphere, optical system, on-orbit vibration of the satellite platform, 
detector photoelectric conversion and sampling, and imaging circuits. 
The primary factor affecting image fusion is satellite-platform vibration, 
which causes relative displacement (i.e., image shift) between the object 
and detector. In particular, the angular rotation of the satellite platform 
under a single frequency sinusoidal vibration mode has a substantial 
effect on image quality. The platform’s rotation angles along its three 
spatial axes, namely, pitch, roll, and yaw, are respectively denoted by θp, 
θr, and θy. 

In the satellite coordinate system xyz (image plane coordinate system 
xy), the amplitudes of the image shift Ay1 and Ax2 resulting from the 
vibrations of the satellite in the roll and pitch axes, respectively, are 

Ay1 = f tanθr
Ax2 = f tanθp

(3)  

where f is the focal length. 
The image shift amplitudes generated on the x and y axes owing to 

the vibration in the yaw axis direction can be represented as 

Ax3 = dsinθy
Ay3 = d

(
1 − cosθy

) (4)  

where d represents the pixel size of the detector. 
In the case of harmonic oscillation in the cosine form, the image shift 

at time t can be represented by the image shift functions Ax(t) and Ay(t)
in the satellite coordinate system as follows: 

Ax(t) = Ax2cos(wvibt + ψ2) + Ax3cos(wvibt + ψ3)

Ay(t) = Ay1cos(wvibt + ψ1) + Ay3cos(wvibt + ψ3)
(5)  

where ψ1, ψ2, and ψ3 denote the initial phase angles of the axis vibra-
tions during system exposure and wvib represents the frequency of the 
satellite-platform vibration. 

Fig. 4. PSFs and degraded images with various rotation angles. (a) 0 ◦, (b) 45 ◦, (c) 90 ◦, and (d) 135 ◦
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3. Methods 

3.1. Overall architecture of the proposed network 

The aim of the proposed image-fusion network is to create one high- 
quality frame H ∈ R1×H×W×3 from T low-quality frames I ∈ RT×H×W×3. 
Fig. 5 illustrates the network architecture, which essentially adopts a U- 
shaped structure. The input is a sequence of low-quality frames, where 
T, H, and W represent the sequence length, height, and width of the low- 
quality frames, respectively. First, the network utilised a two dimen-
sional (2D) convolutional layer to map I into tokens X0 ∈ RT×H×W×C, 
where C denotes the channel number. Next, X0is processed through the 
space–time domain feature-extraction module consisting of SIEBs and 
patch merging layers to generate hierarchical features. The patch 
merging layer doubles the channels and downsamples the feature maps, 
whereas Xi ∈ R

T×H
2i×

W
2i×2iC denotes the tokens passing through the ith 

patch merging layer. Then, Xi passes through one SIEB and one VSTB. 
These two blocks act as the bottleneck in the U-shaped network. Anal-
ogously, we employ some VSTBs and patch-expanding layers as the 
space–time domain feature fusion module. During the fusion of spatio-
temporal information, the features are gradually upsampled, and finally, 
the features are restored to the original size T× H× W × C. We use skip 
connections to mitigate information loss caused by patch merging and 
the burden of feature learning. At the end of the network, there are two 
2D convolutional layers. Specifically, after passing through the last 
VSTB in the space–time domain feature fusion module, we merge the 
information of each channel of the features X′

0 ∈ RT×H×W×C in the time 
dimension. For C channels, X′

0 can be regarded as C feature maps of size 
H× W× T. To merge these maps, we employ C 1 × 1 2D spatial 
convolution kernels, resulting in C feature maps of size H × W × 1. After 

merging, the size of the features becomes 1× H× W× C. Finally, a 2D 
convolutional layer is utilised to adjust the number of output channels, 
generating a high-quality frame H. 

3.2. Space–time domain feature-extraction module 

To better capture self-similarity within a single frame and across 
adjacent frames, we introduce content-based interactions between 
attention weights and image content in the process of space–time 
domain feature extraction. However, it is worth noting that remote- 
sensing images often have large sizes, and directly applying global 
self-attention will result in quadratic computational complexity with 
respect to the token number. Thus, we employed a window-based 
attention approach in the space–time domain feature-extraction mod-
ule to replace the global attention, reducing the computational 
complexity to a linear correlation with the image size. 

The space–time domain feature-extraction module is composed of 
several SIEBs and patch merging layers. As illustrated in Fig. 5(b), each 
SIEB consists of an RVAB, TMAB, and a 2D convolutional layer. 

3.2.1. Window-based attention 
Both RVABs and TMABs within the space–time domain feature- 

extraction module utilise window-based attention. Window-based 
attention [42] differs from the standard global self-attention in its 
local attention and window-transfer mechanisms. Specifically, for an 
input of size T× H× W× C, denoted as X ∈ RT×H×W×C, window-based 
attention initially reshapes the input by partitioning it into 
non-overlapping M × M local windows, denoted as X ∈ RT×H

M×
W
M×M2×C, 

where HW
M2 is the total number of windows. For each window, the input 

features are represented as Xw ∈ RT×M2×C, thus, all input features can be 

Fig. 5. Architecture of the proposed image-fusion network.  
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denoted as 
{

Xwi |i = 1, ⋯, HW
M2

}
. Subsequently, the standard multihead 

self-attention was calculated for each window. Let h denote the number 
of heads, and the query, key and value matrices are represented by{Q(j)

wi
}, 

{K(j)
wi
}, and {V(j)

wi
}, respectively. Here, i indexes the window (i = 1,⋯,HW

M2 ), 
and j indexes the head (j = 1,⋯,h). 

The attention calculations are then conducted in each non- 
overlapping local window: 

Z(j)
wi

= Attention
(

Q(j)
wi
,K(j)

wi
,V(j)

wi

)
= softmax

(Q(j)
wi

(
K(j)

wi

)′

̅̅̅̅
C′

√

)

V(j)
wi

(6)  

where Q(j)
wi
,K(j)

wi
,V(j)

wi
,Z(j)

wi
∈ RT×M2×C′ and C′ = C

h 

Finally, the features 
{

Z(j)
wi
|i= 1,⋯, HW

M2 , j= 1,⋯, h
}

are concatenated 

to restore the original shape of the input. Specifically, features from 
diverse non-overlapping windows are concatenated along the spatial 
dimension, whereas features from diverse heads are concatenated along 
the channel dimension. 

3.2.2. Rotated varied-size attention block 
As is well known, in remote-sensing images, it is a common challenge 

to deal with a variety of objects that can be oriented in different ways 
and come in various sizes. However, the window size in the original 
window-based attention operation was fixed, and the window was al-

ways horizontal or vertical. Let (xc,yc), (xul,yul), and (xlr, ylr) denote the 
coordinates of the pixels at the centre, upper-left corner, and lower-right 
corner of the window, respectively. 

⎡

⎢
⎢
⎣

xul
yul
xlr
ylr

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

xc
yc
xc
yc

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xr
l

yr
l

xr
r

yr
r

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(7)  

where xr
l ,y

r
l ,x

r
rand yr

r denote the distances between the coordinates of the 
corner and centre points, respectively. 

A fixed and unchangeable window is clearly not conducive to 
extracting the contextual information of targets with different orienta-
tions and scales in remote-sensing images. To address this problem, we 
introduce additional learnable parameters and implement rotated 
varied-size attention blocks in the space–time domain feature-extraction 
module. In accordance with Section 3.2.1, we independently calculated 
the intra-frame self-attention for the input features of each time step (i.e. 
every low-quality frame) to extract the spatial domain information 
within the frame more effectively. 

As illustrated in Fig. 6, the RVAB comprises layer normalisation, 
rotated varied-size multihead attention (RVSA), and feed-forward 
network (FFN) [38]. Unlike the original window-based attention oper-
ations, RVAB does not consider fixed-size window partitions in a fixed 

Fig. 6. Illustration of the rotated varied-size attention block.  

Fig. 7. Illustration of the temporal mutual attention block.  
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orientation. Instead, it generates windows with varying positions, sizes, 
shapes, and angles through learnable shift, scale, and rotation parame-
ters, that is OK

w, SK
w, and Θw, respectively. Specifically, for each window, 

separate prediction layers can be used to predict the shift, scale, and 
rotation parameters of key and value tokens based on the input features. 

OK
w , SK

w ,ΘK
w= LinearK(LeakyReLU(GAP(Xw))) (8)  

OV
w, SV

w,ΘV
w= LinearV(LeakyReLU(GAP(Xw))) (9)  

where GAP denotes the global average pooling operation. 
Thereafter, based on the aforementioned parameters, the initial 

window is transformed, and the transformed coordinates of the corner 
points (x′

l/r, y
′
l/r) are calculated as follows: 

[
x′

l/r

y′
l/r

]

=

[
xc

yc

]

+

[
ox
oy

]

+

[
cosθ sinθ
− sinθ cosθ

][ xr
l/r⋅sx

yr
l/r⋅sy

]

(10)  

where ox,oy,sx,sy, and θ denote the shift, scale, and rotation parameters, 
respectively. Namely,Ow = {ox, oy ∈ R1}, Sw = {sx, sy ∈ R1}, and Θw =

{θ ∈ R1}. 
The key and value features were then sampled from the transformed 

windows and utilised to calculate multihead self-attention [38]. The 
remaining steps are similar to those outlined in Section 3.2.1 and need 
not be reiterated at this point. More importantly, different heads can 
produce windows with varying positions, sizes, and shapes. This implies 
that the RVAB is better suited for extracting information from multiple 
target objects of various scales and orientations. 

3.2.3. Temporal mutual attention block 
The rotation of the rectangular pupil and coupling of various factors 

during the imaging process can lead to unequal information content in 
adjacent frames. Therefore, the inter-frame temporal relation also plays 
a crucial role in the image fusion of the RSA system. To this end, we 
propose a TMAB by introducing the calculation of attention into the time 
dimension and leveraging the transformer’s powerful modelling capa-
bilities to capture self-similarity among pixels over time. 

Because of the high temporal resolution of geostationary orbit sat-
ellites, inter-frame displacement in RSA system images occurs at the 
subpixel level. Specifically, as per the analysis in [16], for an RSA system 
with a 90 m effective focal length, the geometric distortion is usually no 
more than 0.2 pixels. The experiments in [39,43] indicate that align-
ment operations only positively impact pixels with a large motion 
(inter-frame displacement greater than five). This means that traditional 
explicit registration and motion compensation methods are unsuitable 

Fig. 8. Target scenes from WorldView3. The ground resolution of these remote- 
sensing images is approximately 0.4 m. 

Fig. 9. Design scheme of the imaging experiment platform.  

Fig. 10. (a) Semi-physical imaging experiment platform, (b) rectangular pupil optical elements, and (c) the primary mirror with an element is placed in front.  
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for extracting time-domain information because inaccurate motion 
estimation and image warping can cause error accumulation. Inaccurate 
motion estimation is a combination of true inter-frame displacement and 
random errors, and warping operations based on random errors can 
destroy subpixel-level information [39]. Moreover, misregistration and 
misalignment in the preorder stage can negatively affect information 
extraction in the subsequent stage, leading to error propagation that 
affects the subsequent fusion module and results in artefacts in the fused 
high-quality frames. To address this issue, we replaced the alignment 
module with a temporal mutual attention approach based on a 
window-based transformer. For sub-pixel-level inter-frame displace-
ment, a window-based transformer can implicitly establish connections 
for unaligned pixels because it lacks a local inductive bias, similar to 
CNNs. This dynamic aggregation of adjacent frames at the subpixel level 
is necessary for the efficient fusion of time-domain information. The 
mutual attention we employed can adaptively detect correlations be-
tween pixels in different frames and align them implicitly at the feature 
level, which is beneficial for extracting additional information and 
facilitating fusion. Furthermore, it helps to avoid the occurrence of black 
hole artefacts in explicit motion compensation operations owing to the 
lack of matching positions. 

TMAB comprises layer normalisation, temporal inter-frame mutual 
attention (TIMA), and FFN, as shown in Fig. 7. The calculation of TIMA 

is similar to that of window-based intra-frame self-attention in RVAB; 
however, instead of generating different locations, sizes, shapes, and 
angles of windows, each head in TMAB focuses on high-resolution in-
formation preserved in different directions in the images obtained at 
different times. Specifically, for each window, X(t)

wi
∈ RM2×C and Q(t)

wi
∈

RM2×C
T represent the input vector and query matrices at time t in the 

sequence, respectively. In the multihead attention calculation of TMAB, 
the key and value matrices {K(p)

wi
} and {V(p)

wi
} are calculated based on the 

input features {X(p)
wi
} of the window at the same position in each frame. 

Here, K(p)
wi
,V(p)

wi
∈ RM2×C

T, i indexes the window (i = 1,⋯, HW
M2 ), and p in-

dexes the head, that is, the frame number (p = 1,⋯,T). 
Subsequently, mutual attention is calculated as: 

Z(t,p)
wi

= Attention
(

Q(t)
wi
,K(p)

wi
,V(p)

wi

)
= softmax

⎛

⎜
⎜
⎝

Q(t)
wi

(
K(p)

wi

)′

̅̅̅̅̅̅
C

T− 1

√

⎞

⎟
⎟
⎠V(p)

wi
∈ RM2×C

T , p

= 1,⋯,T
(11) 

Thereafter, the features Z(t,p)
wi

∈ RM2×C
T are concatenated along the 

channel dimension to generate the features Z(t)
wi

∈ RM2×C at time t. 

Fig. 11. Experimental flowchart.  

Table 1 
Quantitative results of PSNR (dB). The best result is in red while the second-best result is in blue.  

.    
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Because Kwand Vw are generated from adjacent frames, Z(t,p)
wi 

reflects the 
correlation between elements in the adjacent frames. By calculating 
inter-frame mutual attention, TMAB can explore similar features in 
adjacent frames during the process of extracting information along the 
time dimension for the subsequent fusion module. Finally, to restore the 
shape of input features, Z(t)

wi 
are concatenated along the time dimension. 

3.3. Space–time domain feature fusion module 

In our space–time domain feature-extraction module, we employed a 
combination of spatial self-attention and temporal mutual attention 
mechanisms. This approach enables us to approximate global self- 
attention by utilising local self-attention in the subsequent space–time 
domain feature fusion module. Following the U-shaped network archi-
tecture, this module comprises the same number of VSTBs and patch- 
expanding layers as the SIEBs and patch merging layers in the space-
–time domain feature-extraction module. The VSTB (shown in Fig. 5(c)) 
replaces the multihead self-attention in the standard global transformer 
with either three dimensional (3D) window-based multihead self- 
attention or 3D shifted window-based multihead self-attention. It con-
sists of layer normalisation, 3D multihead self-attention, and an FFN. 
Therefore, we always use two consecutive VSTBs in the space–time 
domain feature fusion module, with one calculating the 3D window- 
based multihead self-attention and the other calculating the 3D shifted 
window-based multihead self-attention. Finally, two 2D convolutional 
layers follow the space–time domain feature fusion module to adjust the 
channel dimensions and generate a high-quality output frame. 

4. Experiments 

4.1. Experimental setup 

4.1.1. Datasets 
Digital and semi-physical imaging simulation experiments were 

conducted separately to verify the efficacy of the proposed method. The 
digital simulation experiment utilised high-resolution remote-sensing 
images and employed the simulation method in [41] to simulate the 
imaging quality degradation process of the RSA system, resulting in a 

low-resolution version of the high-resolution remote-sensing images for 
the construction of the dataset. The input image comprised various 
scenes, including airports, farmlands, forests, harbours, and residential 
areas. These images were derived from WorldView-3 satellite data and 
were downloaded from the official website of Maxar Technologies Inc. 
(https://www.maxar.com/). Some of the target scenes are shown in 
Fig. 8. To further substantiate the superiority of the proposed method in 
addressing satellite-platform vibrations, we referred to the analysis 
presented in [16] and deliberately selected parameters that induced a 
more pronounced degradation in image quality. To be precise, for an 
optical system with an effective focal length of 90 m, we set the vibration 
frequency of the satellite platform to 20 Hz, the angular amplitude to 
0.05 μrad, and the rotational angular velocity of the primary mirror to 
0.1 rad/s. 

According to [22], to reconstruct high-quality fusion images, it is 
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Fig. 12. Quantitative comparison of two evaluation metrics among 
different methods. 

Table 2 
Quantitative results of SSIM. The best result is in red while the second-best result is in blue.  

.    
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necessary to capture a minimum of Nmin images evenly spaced at various 
angles to collect sufficient spatial frequency information in all di-
rections. Specifically, Nmin depends on the aspect ratio of the primary 
mirror, which can be determined using the following formula: 

Nmin = ceil
(

180∘

2 × arctan(b/a)

)

= ceil
(

90∘

arctan(b/a)

)

(12)  

where a and b are the length and width of the rectangle, respectively, 
and ceil(⋅) represents the ceiling function, which denotes the nearest 
integer greater than or equal to a given value. 

To satisfy the lightweight requirements of the system while ensuring 
image restoration quality, [23] proposed that the aspect ratio of the 
rectangular aperture should be approximately three. Hence, we set b/a 
as 1/3 in the digital simulation experiment by substituting this value 
into Eq. (12), we derive Nmin = 5. To introduce additional information 
into the time domain, we set the frame sequence length T to eight, with 
an angular interval of 22.5 ◦. 

A semi-physical imaging experiment involves the utilisation of an 
imaging platform capable of simulating the RSA imaging process for 
imaging target scenes [44]. The captured images were then used for 

testing. The design scheme and physical diagrams are displayed in 
Figs. 9 and 10, respectively. 

4.1.2. Implementation details 
We set the window size to 8 × 8 × 8 and the channel number C to 

120. The head number of the multihead self-attention in RVAB is six, 
whereas in TMAB, it corresponds to a sequence length of eight. The 
Charbonnier loss function L =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
‖ H − G ‖2 + ε2

√
is used to calculate 

the loss, where G represents the ground-truth high-quality frame and H 
represents the fusion result, with ε set to 1 × 10− 3. 

We compared our method with both general image-fusion methods 
and those specifically tailored to the RSA system. Among RSA-focused 
methods, we evaluated Zackay’s approach, which is currently the only 
open-source method, and considered Zhi’s method. Among the general 
image-fusion methods, our evaluation includes traditional techniques, 
such as discrete wavelet transformation (DWT) and principal component 
analysis (PCA), as well as state-of-the-art deep learning-based methods. 
These include multifocus image-fusion techniques, such as SESF-Fuse 
[32] and MUFusion [34], and multiexposure image-fusion techniques, 
such as GALFusion [35]. We used objective evaluation metrics such as 

Fig. 13. Ground-truth and fusion results of the test image on residential area scene. (a) GT, (b)DWT, (c) PCA, (d) Zackay’s, (e) Zhi’s, (f) GALFusion, (g) SESF-Fuse, 
(h) MUFusion, and (i) proposed. 
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structural similarity (SSIM) [45] and peak signal-to-noise ratio (PSNR), 
as well as subjective visual effects, to evaluate the fused output. The 
SSIM and PSNR are two metrics that assess the similarity between two 
images. SSIM considers the luminance, contrast, and structure of the 
images, providing a value between − 1 and 1, where 1 indicates identical 
images, and lower values denote increasing dissimilarity. By contrast, 
PSNR is typically expressed in decibels (dB), and a higher PSNR value 
indicates greater similarity. Traditional methods, namely, DWT, PCA, 
and Zackay’s methods, are registered based on the optical flow. The 
experimental process is shown in Fig. 11. 

4.2. Experimental results and discussion 

Tables 1 and 2 the results of the quantitative evaluation of the seven 
image-fusion methods mentioned above, as well as our proposed 
method. Fig. 12 provides a more intuitive representation of the average 
results, where the horizontal and vertical axes denote the SSIM and 
PSNR, respectively. As shown in the figure, the proposed method ach-
ieved the highest performance in terms of both the PSNR and SSIM 
metrics for the digital simulation test images containing five scenes. This 
demonstrates that our method can provide high-quality fused results 
with an accurate pixel intensity distribution and faithful texture and 

structure. Regarding the overall performance across all test images, our 
fusion results yielded a PSNR 32.77 dB and SSIM of 0.9520. This dem-
onstrates an improvement of 1.25 dB in PSNR and 0.0279 dB in SSIM 
compared with MUFusion, which is the second-best approach. The 
proposed method fully considers the imaging mechanism and on-orbit 
characteristics of the RSA system, thereby effectively leveraging the 
powerful modelling capability of the transformer. Consequently, in 
scenes with high repetition rates of visual information, such as farmland 
and residential areas, the proposed method significantly outperformed 
the other methods. Notably, in the case of the farmland scene, our results 
achieve 35.70 dB and 0.9769 for PSNR and SSIM, respectively. This 
marks an impressive improvement of 6.16 % in the PSNR and 2.97 % in 
the SSIM compared with the second-best method. 

We also present visual outcomes as a qualitative assessment of 
scenes, as shown in Fig. 4. Specifically, we show the locally magnified 
images and fusion results obtained using DWT, PCA, Zackay’s method, 
Zhi’s method, GALFusion, SESF-Fuse, MUFusion, and the proposed 
method in Figs. 13–15. The processing results of the semi-physical im-
aging experiment images are shown in Fig. 16. The image captured by 
the circular-aperture system and its locally magnified image are shown 
in Fig. 16(a). The fusion results of the DWT, PCA, Zackay’s method, Zhi’s 
method, GALFusion, SESF-Fuse, MUFusion, and the proposed method 

Fig. 14. Ground-truth and fusion results of the test image on airport scene. (a) GT, (b)DWT, (c) PCA, (d) Zackay’s, (e) Zhi’s, (f) GALFusion, (g) SESF-Fuse, (h) 
MUFusion, and (i) proposed. 
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are illustrated in Fig. 16(b)–(i). 
The above figures indicate that the fusion result of the PCA primarily 

mitigates the uneven resolution phenomenon without significantly 
enhancing the image clarity. Although DWT preserves image details 
better than PCA, it also retains artefacts introduced by explicit regis-
tration and motion compensation operations as well as high-frequency 
noise in the image sequence (e.g. the trailing effect observed in the 
square building edge in Fig. 13 and noise in the resolution target image 
in Fig. 16). Zackay’s method limits the recovery of high-frequency in-
formation, resulting in a loss of detail and overly smoothed fused images 
with poor overall clarity. The fusion results of Zhi’s method were 
significantly better than those of the three traditional methods 
mentioned above. However, it does not fully leverage the self-similarity 
of remote-sensing images, resulting in blurry textures in the fused im-
ages. For a fair comparison, we utilised publicly available codes for deep 
learning-based methods while maintaining the original architectures of 
the models designed for two-frame image input. However, because our 
input images consisted of eight frames, we integrated them sequentially 
in a straightforward manner. The visual results demonstrated that SESF- 
Fuse enhanced the clarity of small image patches within the images. 
Nevertheless, owing to its primary reliance on convolution, it exhibits 

limitations in terms of effectively utilising long-range dependencies. 
Furthermore, repeated fusion steps can lead to error accumulation, 
resulting in blurring of the final fused output. The collaborative aggre-
gation module of GALFusion captures long-range pixel dependencies 
and mitigates artefacts. However, it can erroneously integrate the edges 
in the image, as illustrated in Fig. 13(f), leading to a slight reduction in 
the size of the fused buildings compared to their original size. MUFusion 
slightly surpasses Zhi’s method in terms of objective evaluation metrics 
and notably improves subjective visual outcomes. Nevertheless, this 
method still struggles to effectively address the inter-frame displace-
ment caused by satellite-platform vibrations. Consequently, the fusion 
results exhibited certain artefacts, as shown in Fig. 14(h) for the hori-
zontal wing edges of the aircraft, and in Fig. 15(h) for the rear edges of 
the ship. By contrast, even without alignment modules, our fusion 
network based on ViT can adaptively establish connections between the 
most relevant pixels through attention, thereby effectively avoiding the 
generation of artefacts while obtaining more natural and reliable fusion 
results. 

Fig. 15. Ground-truth and fusion results of the test image on harbour scene. (a) GT, (b)DWT, (c) PCA, (d) Zackay’s, (e) Zhi’s, (f) GALFusion, (g) SESF-Fuse, (h) 
MUFusion, and (i) proposed. 
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5. Conclusions 

In this study, we propose an image-fusion method for the on-orbit 
imaging characteristics of an RSA system. First, we establish a mathe-
matical model for a rectangular rotating pupil and analyse its on-orbit 
imaging characteristics. Subsequently, we propose an end-to-end 
image-fusion network based on ViT. The space–time domain feature- 
extraction module of the network comprises rotated attention blocks 
of various sizes and temporal mutual attention blocks. The RVAB gen-
erates windows with different locations, sizes, shapes, and angles based 
on window-based self-attention, which is beneficial for better processing 
the information of objects with different orientations and scales in 
remote-sensing images. TMAB uses inter-frame mutual attention instead 
of explicit alignment modules, which can adaptively capture the corre-
lation between pixels in close proximity in different frames and reduce 
the generation of artefacts. Video swin transformer blocks are employed 
in the space–time domain feature fusion module of the network to fully 
fuse spatiotemporal information with the transformer’s powerful 
modelling capability. The proposed method was compared with seven 
other methods, including the latest deep learning-based image-fusion 
method, using digital simulations and semi-physical imaging experi-
ments with various scenes. The results demonstrate that the proposed 
method exhibits superior performance in both objective evaluation and 
image interpretation applications. Notably, our method achieved an 
overall performance of 32.77 dB in PSNR and 0.9520 in SSIM across all 
test images, showing a significant enhancement of 3.97 % in PSNR and 
3.02 % in SSIM compared with MUFusion, the second-best approach. 
One limitation of the proposed method is its requirement for an 
adequate number of input frames to ensure the sampling of sufficient 
information in all directions, thereby supporting the reconstruction of 
high-quality fusion images. Therefore, in future research, our objective 
will be to explore single-image super-resolution methods for RSA 

systems to overcome this limitation. 
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