Optical Tastebuds for Water Quality Testing

Sperling, J. R. , Savage, L., Wilson, L. T. , Cuthill, C., Mcguire, K., Robbie, J. , Sloan, W. D. , Gauchotte-Lindsay, C. , Peveler, W. J. and Clark, A. W. (2023) Optical Tastebuds for Water Quality Testing. In: SPIE BiOS 2023: Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXIII, San Francisco, CA, USA, 28 Jan - 03 Feb 2023, (doi: 10.1117/12.2647396)

[img] Text
310026.pdf - Published Version

444kB

Abstract

To achieve the UN Sustainable Development Goal of universal access to clean water and sanitation, we need to rethink centralized water systems with global net-zero carbon and sustainability in mind. One approach is to develop scalable off-grid systems that are reliable and easy to use and maintain. A major challenge for such systems is translating the standard laboratory-based monitoring of centralized systems to a more sustainable and scalable model for regularly and routinely monitoring system outputs, which consist of complex mixtures with varying concentrations of molecules and ions in water. Here, we demonstrate a preliminary sensor that, once fully developed, could allow for point-of-use measurements with a single output to monitor. Rather than developing multiple sensors to monitor the levels of each individual component in the water, our label-free, array-based design mimics the biological system of taste. The sensor is comprised of an array of nano-tastebuds made of tailored plasmonic metasurfaces. The combination of different signals from each nano-tastebud to the same sample yields a unique fingerprint for that sample. Through training, these fingerprints build an identification model. By integrating a fully developed sensor into decentralized water systems, we seek to provide non-expert end-users with an easy-to-read output capable of warning of imminent system failures.

Item Type:Conference Proceedings
Keywords:plasmonics, water, environment, sensor, nanophotonics, array-based sensing, cross-reactive sensing, metasurface.
Status:Published
Refereed:No
Glasgow Author(s) Enlighten ID:Wilson, Mr Liam and Savage, Dr Laurie and Mcguire, Miss Katie Jane and Peveler, Dr William and Clark, Professor Alasdair and Robbie, Dr Jill and Sperling, Dr Justin and Gauchotte-Lindsay, Professor Caroline and Cuthill, Mr Calum and Sloan, Professor William
Authors: Sperling, J. R., Savage, L., Wilson, L. T., Cuthill, C., Mcguire, K., Robbie, J., Sloan, W. D., Gauchotte-Lindsay, C., Peveler, W. J., and Clark, A. W.
College/School:College of Science and Engineering
College of Science and Engineering > School of Chemistry
College of Science and Engineering > School of Engineering > Biomedical Engineering
College of Science and Engineering > School of Engineering > Infrastructure and Environment
College of Social Sciences > School of Law
ISSN:1605-7422
Copyright Holders:Copyright © 2023 SPIE
First Published:First published in Proceedings of SPIE 12372:123720M
Publisher Policy:Reproduced in accordance with the publisher copyright policy

University Staff: Request a correction | Enlighten Editors: Update this record